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We develop and implement a finite difference lattice Boltzmann scheme to study multicomponent flows on
curved surfaces, coupling the continuity and Navier-Stokes equations with the Cahn-Hilliard equation to track
the evolution of the binary fluid interfaces. The standard lattice Boltzmann method relies on regular Cartesian
grids, which makes it generally unsuitable to study flow problems on curved surfaces. To alleviate this limitation,
we use a vielbein formalism to write the Boltzmann equation on an arbitrary geometry, and solve the evolution of
the fluid distribution functions using a finite difference method. Focusing on the torus geometry as an example of
a curved surface, we demonstrate drift motions of fluid droplets and stripes embedded on the surface of the torus.
Interestingly, they migrate in opposite directions: fluid droplets to the outer side while fluid stripes to the inner
side of the torus. For the latter we demonstrate that the global minimum configuration is unique for small stripe
widths, but it becomes bistable for large stripe widths. Our simulations are also in agreement with analytical
predictions for the Laplace pressure of the fluid stripes, and their damped oscillatory motion as they approach
equilibrium configurations, capturing the corresponding decay timescale and oscillation frequency. Finally, we
simulate the coarsening dynamics of phase separating binary fluids in the hydrodynamics and diffusive regimes
for tori of various shapes, and compare the results against those for a flat two-dimensional surface. Our finite
difference lattice Boltzmann scheme can be extended to other surfaces and coupled to other dynamical equations,

opening up a vast range of applications involving complex flows on curved geometries.
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I. INTRODUCTION

Hydrodynamics on curved manifolds is relevant for a
wide range of physical phenomena. Examples range from
the motion of electrons in graphene at the microscale [1],
through thin liquid films [2,3], confined active matter [4-6]
and biomembranes [7,8] at the mesoscale, to relativistic flows
in astrophysics [9] and at the cosmological scale [10]. How-
ever, despite its importance, the study of flows on curved
space has received much less attention when compared to cor-
responding investigations on two- and three-dimensional flat
space. Suitable numerical approaches to study these problems
are also still limited, especially when the flow phenomena of
interest involve several fluid components.

Here, our focus is on multicomponent flow on curved
two-dimensional surfaces. An important motivation to study
such problem arises from biological membranes and their
synthetic counterparts. Experimentally, it has been observed
that self-assembled lipid and polymer membranes can adopt
an astonishing range of shapes and morphologies [11], from
single bilayers to stacks and convoluted periodic structures.
Moreover, these membranes are usually comprised of several
species, which can mix or demix depending on the thermody-
namic conditions under which they are prepared [12—14]. The
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interplay between curvature and composition is a ubiquitous
structural feature for biomembranes, and they are key to bio-
logical functions and synthetic membrane-based applications
[15-17].

There is much interest to understand this interplay be-
tween membrane curvature and composition. However, to
date continuum modeling of membranes with several lipid
components have largely focused on their equilibrium config-
urations [18-21]. Several dynamic studies of phase separation
on curved surfaces have been carried out in the literature.
However, apart from a few exceptions [22], they usually
involve diffusive dynamics and ignore the importance of
hydrodynamics [23-25]. The aim of this paper is to develop
a flexible finite difference lattice Boltzmann framework to
simulate multicomponent flow on arbitrary curved surfaces.
For simplicity, here we will assume the two-dimensional
flow is Newtonian. For lipid membranes, this assumption
is supported by both molecular dynamics simulations and
experimental observations [26-29].

Our approach is based on the lattice Boltzmann method
(LBM) [30,31], which has recently become increasingly pop-
ular to study multicomponent flow phenomena, with good
agreement against experiments and other simulation meth-
ods, including for drop dynamics, liquid phase separation,
microfluidics, and porous media [32-35]. Within the lattice
Boltzmann literature, there are several models for multicom-
ponent flow, including the so-called free energy [36], pseu-
dopotential [37], and color [38] models. In this work, we have
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chosen to employ the free energy model, though our frame-
work can be adapted to account for the pseudopotential and
color models. Our approach can also be extended to account
for more fluid components [39-43], as well as coupled to
other dynamical equations, including those for liquid crystals
[44,45] and viscoelastic fluids [46,47].

Standard lattice Boltzmann method is based on regular
Cartesian grids. In recent years, several groups proposed its
extension to the case of curvilinear coordinates. Of these
extensions, we mention three groups of approaches. In the
first, exact streaming is preserved [48—51] and the equilibrium
distribution exhibits metric-dependent terms. Furthermore, a
source term is added to enable the recovery of the covariant
Navier-Stokes equations through the Chapman-Enskog ex-
pansion. This approach transfers the metric dependence from
the streaming part to the forcing and collision parts. In the sec-
ond approach, the transformation to curvilinear coordinates
is performed in the streaming operator [52-55]. The velocity
space degrees of freedom are still the Cartesian ones. In this
approach, the equilibrium distribution is unmodified and no
source terms are required. However, exact streaming is lost
because the advection velocities become coordinate depen-
dent. Finally, the third approach employs a transformation
of the velocity space degrees of freedom, allowing these to
retain the symmetries of the curvilinear coordinate grid. This
approach has been commonly used in the discrete velocity
method (DVM) community [56,57]. Recently, this approach
was formulated in a general way by use of differential geom-
etry and vielbein fields [58], in the spirit of previous work on
kinetic theory in general relativity [59]. In this approach, the
advection velocities become coordinate independent, allowing
the dimensionality of problems with a given symmetry to be
reduced. In this paper, we employ the latter approach, due to
its versatility in treating more complex geometries. Thus, our
implementation relies on finite difference techniques for the
implementation of the time stepping and advection parts of
the lattice Boltzmann algorithm.

The capabilities of our method are demonstrated using
several problems. First, we study drift motion of fluid droplets
and stripes when placed on the surface of a torus. This drift
is due to nonuniform curvature and, as such, is not present
on flat space, or for surfaces with uniform curvature (e.g.,
a sphere). For the stripes, analytical results are available for
their equilibrium configuration, Laplace pressure, and relax-
ation dynamics [60], thus providing an excellent platform
to systematically examine the accuracy of our method. We
demonstrate that these predictions are accurately captured in
our simulations. Second, we simulate binary phase separation
on the surface of a torus for equal and unequal compositions,
both in diffusive and hydrodynamic regimes. We compare and
contrast the results for tori of various shapes against those for
flat two-dimensional surface [61-63].

II. COMPUTATIONAL MODEL AND METHOD

In this section we develop a framework that allows simu-
lations of multicomponent flow on arbitrary curved surfaces.
Our vielbein finite difference lattice Boltzmann approach has
three key features. First, similar to standard lattice Boltzmann
method, we exploit the Boltzmann equation to solve the

continuum equations of motion, and we use a discrete and fi-
nite set of fluid distribution functions. Second, unlike standard
lattice Boltzmann method, the discrete velocity sets do not
coincide with the neighboring lattice points. Thus, rather than
solving the Boltzmann equation using a sequence of collision
and propagation steps, we take advantage of a finite difference
method. Third, to describe the curved surface, we employ a
vielbein field, which decouples the velocity space from the
coordinate space [58,59]. This simplifies the formulation and
computation of the governing Boltzmann equation.

A. Brief introduction to vielbein fields

Let us begin by considering a two-dimensional curved
surface embedded in three dimensions. Vector fields, such as
the velocity field u(x), on the two-dimensional surface can be
expressed in the curvilinear coordinate system using

u(x) = u(q")d,,

where u“(g”) represent the components of the velocity field on
a manifold parametrized using the coordinates ¢” (1 <a, b <2
for two-dimensional manifolds). Furthermore, the squared
norm of the velocity field u can be computed as

2.1

u? = gapuu®, 2.2)
where g, is called the metric tensor. This description of vector
fields in curvilinear coordinates can become inconvenient for
practical computations. This is because the elements of the
metric tensor g,, may become singular at various points due
to the choice of surface parametrization. In such instances,
the contravariant components u“ of the velocity must diverge
in order for the squared norm u? to remain finite.

The difficulty described above can be alleviated by intro-
ducing, as an interface between the coordinate space and the
space of vectors, the vielbein vector fields (frame) e; = € d,,.
Dual to the vielbein vector fields are the vielbein one-forms
(coframe) w” = wldq®. We reserve the hatted indices to de-
note the vielbein framework. The vielbein frame and coframe
have to satisfy the following relations:

Wleh =80, gaweiel =8, (2.3)

With the above vielbein frame and coframe, the vector field
u can be written as

u = u'e,, (2.4)
where the vector field components are
ut = a)gu“, ut = eZu&, (2.5)
and the squared norm
u? = 8,pulul. (2.6)

In the vielbein framework, the information on the metric
tensor is effectively absorbed in the components of the vector
field, which makes the formulation and derivation of the
lattice Boltzmann approach significantly less cuambersome.

In the lattice Boltzmann implementation used in this paper,
we need to introduce two more geometrical objects. First, the
Cartan coefficients Caéé are defined as

é

i’ = (lea. e5]) . 2.7)
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with the commutator ([e;, ¢;])* = egabeg — ega,,eg. Second,

I'“;. and T',;, represent the connection coefficients, which are
defined as

d da
[ = 8%T e Tape = 5(Cape + Caop — i) (2.8)

In Appendix A, we detail the application of the vielbein
formalism for a torus. It is worth noting that our approach
is general and other curved geometries can be handled in a
similar way.

B. Binary fluid model and equations of motion

We consider a binary mixture of fluids A and B, character-
ized by an order parameter ¢, such that ¢ = 1 corresponds to
a bulk fluid A and ¢ = —1 to a bulk fluid B. A simple free
energy model that allows the coexistence of these two bulk
fluids is given by the following Landau free energy [30,64]:

\If=f [i‘<1—¢2>2+5(V¢)2]dv (2.9)
v|4 2 ’ ’

where A and «k are free parameters, which are related to the
interface width &; and surface tension y through

E_\/? _[8kA
0 — Aa Yy = 9

The chemical potential can be derived by taking the functional
derivative of the free energy with respect to the order parame-
ter, giving

(2.10)

() = 22— _Ag(1— ) — kA
) = 5o = —Ad(1 = 6) = k9.

The evolution of the order parameter ¢ is specified by the
Cahn-Hilliard equation. In covariant form it is given by

hp + Vale) = Va(MV2p),

@2.11)

2.12)

where the hatted indices are taken with respect to the orthonor-
mal vielbein basis. Equivalently, indices with respect to the
coordinate basis can be used, e.g., Va(ule) = V,(u’p). In
the above, M is the mobility parameter, i is the chemical
potential, and the fluid velocity u is a solution of the continuity
and Navier-Stokes equations
a ~
an+ Va(un) =0, plz)“t = —V;T% 4 nF* (2.13)

where D/Dt = 0, + ubv 5 1s the material (convective) deriva-
tive, m is the particle mass, n is the number density, and
p=mn. The stress tensor T% = p;8?% + 0% is that of a
viscous ideal gas, where p; = nkgT is the pressure of the ideal
gas and 0% is the viscous stress for the Newtonian fluid [65]:

ot — (v 4 Vi — 59y 00y — 80Vl (2.14)
In the above, n and 75, represent the dynamic (shear) and
volumetric (bulk) viscosities of the fluid. The thermodynamic
force term F? takes the following form:

nF* = —pVe = =V ppinay + kp VAP,

Pbinary = A( - %452 + %¢4) (2.15)

A summary on how the differential operators must be applied
for the cases of the Cartesian and torus geometries is provided
in Appendix C.

C. Vielbein lattice Boltzmann approach

In this paper, we employ the lattice Boltzmann approach
to solve the hydrodynamics equations [Eq. (2.13)], while
the Cahn-Hilliard equation [Eq. (2.12)] is solved directly
using a finite difference method. The details of the numerical
implementation are discussed in Appendix C. It is possible
to solve the Cahn-Hilliard equation using a lattice Boltzmann
scheme, and on flat manifolds, it has been suggested that
extension to more fluid components is more straightforward
in this approach [43,66]. However, for our purpose here, it is
more expensive than the finite difference approach.

We use a discretized form of the Boltzmann equation that
reproduces the fluid equations of motion in the continuum
limit. In covariant form, the Boltzmann equation on an arbi-
trary geometry is given by [58]

af 19,4, O [(F" & 5o\,
ot G G Ve)t3; [(;—F;;a” v )f]—”f]’

(2.16)

where ,/g is the square root of the determinant of the metric
tensor, and J[ f] is the collision operator.

For the specific case of a torus, the Boltzmann equation
reads as

af W af VP A f(1 +acosh)]
ot  R+rcos6dp r(l+acosh) a0
sin 6 ¢3(fv‘7’) 5 0(fv?)
- v ——~ — -
R+ rcosé av? av¥
F? af FO of
——+ —— =J[f]. 2.17
o + m 208 [f] (2.17)

The steps needed to derive Eq. (2.17) from Eq. (2.16) are
summarized in Appendix A. Here, r and R represent the inner
(small) and outer (large) radii, a = r/R is the radii ratio, while
the angle 6 goes around the inner circle (we use the convention
that the range 0 < 6 < m covers the upper side of the torus,
with 8 = 0 corresponding to the outermost part of the torus),
and ¢ covers the large circle. The range for both 6 and ¢ is
[0, 27r) and the system is periodic with respect to both these
angles. The term on the second line of Eq. (2.17) corresponds
to inertial and reaction forces that arise when we have flow
on curved surfaces since fluid motion is constrained on the
surface.

As commonly the case in the lattice Boltzmann literature,
we employ the Bhatnagar-Gross-Krook (BGK) approximation
for the collision operator

1
JIfl= —;[f—feq],

where the relaxation time 7 is considered to be constant. The
ensuing fluid kinematic and dynamic viscosities v and n are
[67]:

(2.18)

n  tkgT
V= —= .
m

(2.19)
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Furthermore, in this paper, we only consider isothermal flows,
which are implemented by constructing % in Eq. (2.18)
with a fixed temperature. In the isothermal BGK model, the

viscous stress o is given, via the Chapman-Enskog proce-
dure, by [68]:
o = vy 4 vy, (2.20)
Comparing the above expression with Eq. (2.14) shows that
the volumetric viscosity of the isothermal BGK model for a
2D fluid is
kT
Mo _ TEBT 2.21)
P

m

Rather than considering fluid distribytion functions f(v)
with continuous velocity space v = (v, v?), we discretize
the velocity space using v = (vg,, v, ). The recovery of
the Navier-Stokes equations requires at least a fourth order
quadrature (Q = 4). However, in the small Mach number
regime, accurate results can be obtained using the third or-
der quadrature (Q = 3). The choice of quadrature is further
discussed in Appendix B. Following the discretization of the
velocity space, the particle number density n and velocity u
can be computed as zeroth and first order moments of the
distribution functions

n=Y fi, =Y fin,
k k

where the sum over k = (ki, k») runs over the entire discrete
velocity set. With the discretization of the velocity space, we
also replace the Maxwell-Boltzmann equilibrium distribution
with a set of distribution functions f;* corresponding to the
discrete velocity vectors vg. Due to the use of the vielbein
formalism, the expression for f,:’ 4 coincides with the one
employed on the flat Cartesian geometry. More details can be
found in Appendix B.

(2.22)

II1. DRIFT DYNAMICS OF FLUID
STRIPES AND DROPLETS

In this section we begin by studying the behavior of fluid
stripes on the torus geometry. By minimizing the interface
length subject to area conservation, we find there is a sec-
ond order phase transition in the location of the equilibrium
position as we vary the stripe area. In particular, we observe
bistability when the stripe area exceeds a critical value. We
validate the ability of our method to capture this effect in
Sec. III A. We then consider the Laplace pressure test in
Sec. I B. The Laplace pressure takes a different form on
a torus geometry compared to that on a flat geometry, as
discussed in Ref. [60]. Furthermore, the approach to equi-
librium configuration through a damped harmonic motion
is investigated in Sec. IIIC. We show that we recover the
damping coefficient and the angular frequency as derived in
[60]. Finally, we contrast the drift dynamics of fluid stripes
with that of droplets on the torus in Sec. IIID. While the
former drift to the inside of the torus, the latter move to the
outside of the torus.

A. Equilibrium positions of fluid stripes

The basic idea behind establishing the equilibrium position
of fluid stripes is that the interface length must attain a
minimum for a fixed stripe area. We consider a stripe of
angular width Af, centered on 6 = 6, such that its interfaces
are located at

0_=6,—A0/2, 0, =0+ A0)2. 3.1)

As a convention, here the stripe is identified with the minority,
rather than the majority, fluid component. The area AA en-
closed between the upper and lower interfaces can be obtained
as follows:

0;
AA = 27TVR/ dO(1 +acosf)
0

= 2arR[A6 + 2asin(A6 /2) cos b, ], (3.2)

where @ = r/R. The preservation of the area allows the vari-
ation of the stripe width A6 to be related to a variation of the
stripe center 6. Setting d AA = 0, it can be seen that

A0 a sin(A6/2)

2 14acos(A8/2)cosb,

sin6.d0,. (3.3)

The total interface length €y, = €4 + £_ can be computed
as

Af
Liotal = 4nR<1 + a cos 6. cos 7) 34

Imposing df, = 0 yields an equation involving the stripe
width Afeq and stripe center 6:° at equilibrium

<a cos 659 + cos Ageq) sinfs = 0. (3.5)
The above equation has different solutions depending on the
stripe width. For narrow stripes, the equilibrium position is
located at 654 = 7. There is a critical point corresponding
to stripe width Afeq = Af; = 2 arccos(a), or alternatively
stripe area

AAui = 4nrR(arccos a — av/1 — a?).

For stripes with areas larger than this critical value, two
equilibrium positions are possible, namely,

(3.6)

(3.7)

1 AB,
09 = 7 =+ arccos |:— cos q:|.
a 2

We now reproduce the above phenomenon using our lattice
Boltzmann approach. Unless stated otherwise, in Sec. III, we
use a torus with r =0.8 and R=2 (a=r/R=0.4). We
set the parameters in our free energy model, Eq. (2.9), to
k=5x10"% and A = 0.5, and set the kinematic viscosity
v = 2.5 x 1073 and mobility parameter in the Cahn-Hilliard
equation M = 2.5 x 1073, Due to its homogeneity with re-
spect to ¢, the system is essentially one dimensional, such
that a single node is used on the ¢ direction (i.e., N, = 1).
The discretization along the 6 direction is performed using
Ny = 320 nodes. Throughout this paper we ensure that our
discretization is such that the spacing is always smaller than
the interface width &, as given in Eq. (2.10). The time step is
setto 8t =5 x 1074,
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FIG. 1. (a) Time evolution of stripe center 6, for stripes initialized at 8y = 7 /2 on the torus with » = 0.8 and R = 2 (a = 0.4), with initial
widths of A6 = 0.957 (6% < ), A6 = 0.657 (0% > 7), A6 = 0.6 (0° < 7, with one oscillation), and A8 = 0.37 (0°4 = 7). (b) Diagram
indicating the location of the equilibrium position 679 as a function of the stripe width A8, and the radii ratio @ = r/R, for stripes initialized at
6 = 7 /2. (c)—(e) Examples of stripes equilibrated at (c) 69 > 7 (A = 0.657), (d) 659 = 7 (ABy = 0.37), and (e) 69 < 7 (A = 0.67).
(f)—(h) Interface length £,y as a function of the stripe center position (solid line) for the stripe parameters considered in (c)—(e). The symbols
highlight the interface lengths at maximum oscillation amplitude at initialization (0) and after each half period (1, 2, etc.).

We initialize the fluid stripes using a hyperbolic tangent
profile

¢smpe<9,r>=¢o+tanh[ r (|6>T€|—A—9)], (3.8)
E0v/2 2

P

where 6 — 6, gives the difference between the coordinate 6
and the stripe center 6. between —m and m, while ¢y is an

offset due to the Laplace pressure (see next subsection)

_ & cos 6, sin(A6/2)
" 3RJ2 14 a cosb,.cos(AG/2)

$o (3.9)

We consider stripes having the same initial position centered
at 8y = /2 (upper side of the torus), but initialized with
different initial widths A#y. The area of these stripes is given
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by

AA = 27 rRAb,. (3.10)

The time evolution of the stripe center 6. for four stripes
with different initial widths is shown in Fig. 1(a). The first
case corresponds to a very large stripe (Afy = 0.957, AA ~
1.88AA.q), for which the possible equilibria 6:% are close
to /2 and 37 /2. Due to the initial condition, the stripe is
attracted by the equilibrium point on the upper side of the
torus, where it will eventually stabilize. As the stripe size
decreases, its kinetic energy as it slides toward the equilib-
rium point will be sufficiently large for it to go over the
“barrier” at 0. = 7w to the lower side of the torus. Because
of energy loss due to viscous dissipation, its kinetic energy
may be insufficient to overcome this barrier again, so the
stripe remains trapped on the lower side. This is the case
for the second stripe having Afy = 0.657 (AA ~ 1.29AAq)-
Further decreasing the stripe size causes the peak at 6. = 7 to
also decrease, allowing the stripe to overcome the barrier a
second time as it migrates back toward the upper side. The
third stripe, initialized with Afy = 0.6 (AA ~ 1.19AA4),
stabilizes on the upper side of the torus. Finally, the fourth
stripe is initialized with A6y = 0.3, such that its area AA =~
0.59AA is below the critical value. Thus, the fourth stripe
will perform oscillations around the equilibrium at 6, = 7,
where it will eventually stabilize.

Judging by the number of times that the stripe center 6,
crosses the barrier at 6, = m, two types of stripes having
AA > AA. can be distinguished: (i) the ones that cross the
6. = m line an even number of times stabilize on the upper
side of the torus, while (ii) the ones that cross it an odd
number of times stabilize on the lower side of the torus. This is
presented in Fig. 1(b), where the equilibrium position 654 for
stripes initialized at 8y = 7 /2 is represented as a function of
A6y in comparison with the analytical predictions in Eq. (3.7).

Figures 1(c)-1(e) illustrate the three scenarios where the
stripes are equilibrated at 654 > m, 0% =n, and 6% <
7, respectively. The total interface lengths €y (~W) for
the stripes shown in Figs. 1(c)-1(e) are represented in
Figs. 1(f)-1(h). The interface lengths corresponding to the
initial state, as well as to the turning points corresponding
to half-periods, are also shown using symbols, numbered
sequentially in the legend (0 corresponds to the initial state).
It can be seen that £, measured at these turning points de-
creases monotonically. When £y, decreases below its value
atf, = m, the stripe center can no longer cross the 6, = 7 line
and becomes trapped in one of the minima.

Figure 2 further summarizes the location of the equilibrium
stripe position as a function of the stripe width A6y and the
radii ratio a = r/R. Our simulations are performed by keeping
R = 2 constant, such that the various values of a are obtained
by changing r. As before, the stripe is initialized at 6y = 7 /2.
Moving from the top right corner of the diagram toward the
bottom left corner, the subsequent regions distinguish between
whether the stripes stabilize on the upper side (<) or on the
lower side (>m) of the torus, depending on the number of
times that . crosses 7. In the bottom left corner, the stripes
stabilize at ;1 = m. The black region between the purple
band and the lower left region correspond to stripes that cross
7 more than three times but stabilize away from 7 (659 # ).

0 0.2 0.4 0.6 0.8 1
ABgy/m

FIG. 2. Diagram indicating the location of the equilibrium po-
sition 659 as a function of the stripe width A6, and the radii ratio
a = r/R, for stripes initialized at 6y = 7 /2.

Due to the diffuse nature of the interface, the stripes evaporate
when rA0 < 5&, (5 = +/k /A >~ 0.031). These regions corre-
spond to the top left and bottom right corners of the diagram
and are shown in red.

B. Laplace pressure test

Since the stripe interfaces have a nonvanishing curvature,
it can be expected that there will be a pressure difference
across this interface. This pressure difference is often termed

9 T T T T T _I4 T
k=5x10_, @
8t ¥k=2.5x10" --O-- |
Analytical

10% Ap

0
0 025 05 075 1 125 15 175 2
AA [ AA

crit

FIG. 3. Comparison of the Laplace pressure obtained numeri-
cally (dashed lines and circles) against the analytic formula (3.12) for
k =5 x 107 (dotted lines and filled circles) and 2.5 x 10~* (dotted
lines and empty circles). The analytic predictions (solid black lines)
are almost everywhere overlapped with the numerical results.
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the Laplace pressure, and it was recently derived analytically
on a tors. The result is [60]

y  cosf.sin(A6/2)
R1+acos6.cos(A6/2)

This expression can be simplified for the two types of equilib-
rium positions highlighted in the previous subsection:

Ap = 3.11)

¥ Sin(Abeq/2) AA AA .
Ap — JRl-a CZSa(Aeeq/z) ’ < erits (3 12)
% cot zeq > AA > AAgi.

We remind the readers that, on the first branch, 6:¢ = 7. On
the second branch, the equilibrium position is determined via
acos 0.1 + cos(Abeq/2) = 0.

In order to validate our numerical scheme against the
Laplace pressure test on the torus, we perform numerical
simulations for two values of « in our free energy model
k =2.5x10"* and 5 x 10~*. These effectively change the
surface tension and interface width in our simulations [see
Eq. (2.10)]. All of the other simulation parameters are kept the
same as in the previous subsection: R =2, r = 0.8, A = 0.5,
v=25x1073, and M =2.5 x 1073. We consider stripes
of various areas AA in Fig. 3. After the stationary state is
reached, we measure the total pressure p = p; + puinary =
nkgT +A(—%q§2 + %(])4) in the interior and exterior of the
stripe, and compute the difference Ap between these two
values. The simulation results are shown using dashed lines
and symbols in Fig. 3. We observe an excellent agreement
with the analytic results, Eq. (3.12), which are shown using
the solid lines.

C. Approach to equilibrium

For stripes close to their equilibrium position, the time
evolution of the departure §6 = 6, — ;7 can be described as
a damped harmonic oscillation:

80 >~ 860y cos(wot + ¢)e ™, (3.13)

where the damping coefficient « = «, + o, receives contri-
butions from the viscous damping due to the fluid [60]

v
R2 — 2’
as well as from the diffusion due to the mobility of the order
parameter ¢, [60]. In the applications considered in this paper,
o, < ay, such that we will only consider the approximation

o >~ «,. For the case of subcritical stripes (AA < AAgt),
which equilibrate at 6:¢ = 7, the oscillation frequency is [60]

W2 = yvV1—a? cos(Abq/2) —a
0 7r2Rp [l — a cos(Abeg/2)1’

(3.14)

a, =

(3.15)

For the supercritical stripes (AA > AAg;it), when the equilib-
rium position is at @ cos ;1 + cos(Abeq/2) = 0, j is given

by
2
(2) : |:

3.16
arR2p(1 — a?)3/2 (3.16)

sing 7
Sin(Afeq/2) |
We will now demonstrate that our lattice Boltzmann imple-

mentation captures the dynamical approach to equilibrium as
described by the analytical results. First, we consider a torus

0.05 ¢ ‘ " Numerical --©-- -
Analytical
0.025
R
o
@ 0
8o
)
-0.025
-0.05 | 1 1 1 . (@]
0 1000 2000 3000 4000 5000
t
0.05 ¢ ‘ " Numerical --©-- -
Analytical
0.025 | |
£
<
. 0
o
QO
&)
-0.025
-0.05 | 1 1 1 . (b)]
0 1000 2000 3000 4000 5000

t

FIG. 4. Time evolution of the stripe center 6, for stripes initial-
ized at (a) 6y = 0.957 with Afy) = 0.2807 (equilibrating at 629 = )
and (b) 6y = 0.7m with Afy = 0.7967 (equilibrating at 639 = 37 /4).
The numerical results are shown using dotted lines and symbols,
while the analytic solutions are shown using solid lines.

with r = 0.8 and R =2 (a =0.4), and set x =5 x 1074,
A=0.5,and t =M = 2.5 x 1073, The number of nodes is
Ny = 320, and the order parameter ¢ is initialized according
to Eq. (3.8), where the stripe center is located at an angular
distance 86y =0, — 61 = —m /20 away from the expected
equilibrium position. Figure 4 shows a comparison between
the numerical and analytical results for the time evolution of
(6% — 6.)/7 for the cases (a) 6c' = m with initial stripe width
A6y = 0.287 and (b) 6;% = 37 /4 with ABy = 0.786x. For
the analytical solution, the angular velocity wy is computed
using Egs. (3.15) and (3.16) for cases (a) and (b), respectively,
and the damping factor @ =~ «,, is computed using Eq. (3.14).
We also set ¢ =0 in Eq. (3.13). It can be seen that the
simulation results are in excellent agreement with the analytic
expression for the stripe that goes to 6;0 = 7. For the stripe
equilibrating to 37 /4, we observe a small discrepancy, espe-
cially during the first oscillation period. However, the overall
agreement is still very good.
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FIG. 5. The damping coefficient o obtained by fitting Eq. (3.13)
to the simulation results (points), for stripes initialized at (a) 6, =
0.957 with 629 =7 and (b) 6y = 0.77 with 629 = 0.757. The
dashed lines represent the viscous damping coefficient «,, given in
Eq. (3.14).

Next, we consider three tori having radii ratio a = r/R =
0.4, with r = 0.8, 1, and 1.2, and perform two sets of simu-
lations. In the first set of simulations, the initial configuration
corresponds to a stripe centered on 6y = 0.95x, with initial
width A6y = 0.287. These stripes relax toward 6;" = 7. In
the second set of simulations, the stripes are initially cen-
tered at 6y = 0.7, and they equilibrate at 85" = 37 /4, with
initial width A6y = 0.786m. The simulations are performed
using Ny = 320, 400, and 480 nodes for r = 0.8, 1, and 1.2,
respectively. The best-fit values of « and wy for the three
torus geometries are shown in Figs. 5 and 6, respectively,
as functions of the kinematic viscosity v (varying between
2.5x 1073 and 7.5 x 1073) at k = 5 x 10™* and of the line
tension y = /8kA/9 (A = 0.5 is kept fixed and « is varied
between 2.5 x 107* and 1.5 x 1073) at v = 2.5 x 1073, For
each simulation, Eq. (3.13) is fitted to the numerical data
for the time evolution of the stripe center as it relaxes to-
ward equilibrium, using « and @ as free parameters, while
¢ =0. For simplicity, we used M = v and A =0.5 in Figs. 5

24| R=20,1=08 W _a
R=2.5,r=1.0 @ -
20| R=3.0,r=1.2 A ~-° i
Analytic () === ,.l'
2| P g .
o
o 18F /,.I 1
3 . .‘
S 16 7 i
9 . { "/
14 | e 1
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1.2 ./‘, .’/’ 1
] ' 2 e
A . |
-~ (a)
0.8 (\ L L L L L L
1 12 14 16 18 2 22 24 26
102y
R=2.0,r=0.8 N
1.4F R=251r=10 @ 1
R=3.0,r=1.2 A R
Analytic (0g) ==+ = ,,‘f ™
1.2 | .,‘- N
K
o .
c Tr -2 |
C\lO ‘/‘ ('1
- o ./‘b/
0.8 | PRt 2 1
<" UL\
el _,A/r
0.6 [ o ]
.t
I R
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102y

FIG. 6. The angular frequency wy, obtained by fitting Eq. (3.13)
to the simulation results (points). The black dashed-dotted curves
correspond to the analytic expressions, as given by Eq. (3.15) for
(a), when 69 = 7 and Eq. (3.16) for (b), when 659 = 3m /4.

and 6. Figures 5(a) and 6(a) correspond to stripes equilibrating
at 6:1 = mr, while Figs. 5(b) and 6(b) are for 6.1 = 37 /4.
It can be seen that the analytic expressions are in good
agreement with the numerical data in all instances simulated.

Finally, we investigate the applicability of Egs. (3.15) and
(3.16) with respect to various values of the stripe area AA. The
simulations are now performed on the torus with » = 0.8 and
R =2, using k =5 x 104, A=051t=M=25x%x 1073,
Figure 7 shows the values of w obtained by fitting Eq. (3.13)
to the numerical data (points) and the analytic expressions
(solid lines). As before, for the fitting, we set ¢ = 0, and use
o and ) as free parameters. An excellent agreement can be
seen, even for the nearly critical stripe, for which wy is greatly
decreased.

D. Droplets on tori

We will now show that, when placed on a torus, a fluid
droplet will also exhibit a drift motion. However, in contrast
to stripes, the drops will move toward the outer rather than

063306-8



MULTICOMPONENT FLOW ON CURVED SURFACES: A ...

PHYSICAL REVIEW E 100, 063306 (2019)

20
18
16 |
14 |
12 |
10 |

Analytical
Numerical

10° g

o N B~ O
T

02 04 06 08 1 12 14 16 18
AA T/ AA

FIG. 7. Comparison between the values of w, obtained by fitting
Eq. (3.13) to the numerical results, shown with points, and the
analytic expressions (3.15) for AA < AA.y and (3.16) for AA >
AA_;, shown with solid black lines.

the inner side of the torus. To study this phenomenon quan-
titatively, we initialize drops on a torus using the following
equation:

I"—R()
EN2

where r = /(x — x.) + (y — y.) + (z — z¢) is the Euclidean
distance between the point with coordinates (x, y, z) and the
center of the drop (x., y., z.), corresponding to (6, ¢) and
(6o, 0) in polar coordinates, respectively. The relation between
the Cartesian and polar coordinates is given in Eq. (A1) of
Appendix A. The parameter 6, represents the center of the
drop, while Ry is a measure of its radius. & is the inter-
face width derived for the Cartesian case. In principle, the
interfacial profile will be different on a torus, but currently
we are not aware of a closed analytical formula. We also do
not introduce in Eq. (3.17) the offset ¢y responsible for the
Laplace pressure difference since the analysis of this quantity
is less straightforward than for the azimuthally symmetric
stripe domains discussed in the previous subsections.

In order for the drops to have approximately the same
areas, for a given value of 6, R is obtained as a solution of

Parop (00, Ro; 0, ¢) = tanh

(3.17)

2 2
/ d(p/ dO(R + rcos 9)[¢drop(o, 3080;0, @)
0 0

- ¢dr0p(901 R0, )] =0,

where the first term in the parentheses corresponds to the
configuration when the droplet is centered on the outer equator
and has Ry = 30&,. The drift phenomenon we report here is
robust with respect to the drop size, but we choose a relatively
large drop size because small drops are known to evaporate
in diffuse interface models. The simulation parameters are the
same as in Sec. [II C, namely, r = 0.8, R=2,x =5 x 1074,
A=05andt =M =25 x 1073,

As shown in Fig. 8(a), similar to the stripe configuration
in the previous subsection, we observe a damped oscillatory

(3.18)

motion. Here, the three drops are initialized at different posi-
tions on the torus. Moreover, as is commonly the case for an
underdamped harmonic motion, the drops initially overshoot
the stable equilibrium position, but they eventually relax to the
minimum energy configuration. In all cases considered in this
section, we find that the drops eventually drift to 6 = 0 (the
outer side of the torus). Typical drop configurations during the
oscillatory motion are shown in Figs. 8(b)-8(d). Compared to
the oscillatory dynamics for the stripe configurations, we also
observe that the oscillation dies out quicker for the drops.

IV. PHASE SEPARATION

In this section we investigate binary phase separation on
the torus and compare the results against those on flat surfaces.
We consider hydrodynamics and diffusive regimes for both
even (Sec. IV A) and uneven (Sec. IV B) mixtures.

The fluid order parameter at lattice point (s, ¢) is initialized
as

¢S,q = E + (8¢)S,qa

where ¢ is a constant and (8¢)s,4 1s randomly distributed be-
tween (—0.1, 0.1). We characterize the coarsening dynamics
using the instantaneous domain length scale L;(¢), computed
using the following function:

.1

, 4.2)

where Ay 18 the total area of the simulation domain. The
total interface length at time ¢, L;(¢), is computed by visiting
each cell (s, g) exactly once, starting from the bottom left
corner, where s = g = 1, and progressing toward the top right
corner, where s = N; and g = N>. N; = N, and N, = N, for
the Cartesian domains and N; = N, and N, = N, for the torus
domains. For each cell where ¢ 4 x ¢511,4 < 0, the length of
the vertical interface between the (s, ¢) and (s + 1, g) cells
is added to L;. In the case of the Cartesian geometry, this
length is 8y, while for the torus, the length is given by ré6.
Similarly, if ¢, 4 % ¢54+1 < 0, the length of the horizontal
interface [6x for the Cartesian case and (R + 7 cos6,41/2)5¢
for the torus case, where 6,41/, = 6, + §6/2 is the coordinate
of the cell interface] is added to L;. The periodic boundary
conditions allow the cells with (N; 4+ 1, ¢) and (s, N, + 1) to
be identified with the cells (1, g) and (s, 1), respectively.

Unless specified otherwise, we use the following param-
eters in this phase separation section: M = 7 = 2.5 x 1073,
St=5x%x10"% A=0.5, and x =5 x 10~*. In the initial
state, the distributions for the LB solver are initialized using
Eq. (B26) with a constant density ny = 20 and vanishing
velocity.

A. Even mixtures
1. Cartesian geometry

We begin by considering the coarsening dynamics of a
phase separating binary fluid with even mixtures on a flat
two-dimensional surface. We use a simulation domain of
N, x N, = 512 x 512 with a grid spacing of x = 8y = 0.02.
The linear size of the simulation domainis L = 512 x 0.02 =
10.24 and its total area is A = L>.
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FIG. 8. (a) Time evolution of the position of the center 6./m for drops initialized according to Eq. (3.17) with (6y, Ry) €
{(57 /10, 0.938), (77 /10, 0.924), (97 /10, 0.910)}. (b)—(d) Snapshots of the evolution of the drop corresponding to 6, = 97 /10 for t = 0,

650, and 1775.

As shown in Fig. 9(a), we observe that the fluid domain
grows with an exponent of % This exponent is often asso-
ciated with the so-called inertial-hydrodynamics regime for
binary fluid phase separation in three dimensions [61,62].
However, in two dimensions, it has been argued that self-
similar growth in the inertial-hydrodynamics regime may be
absent [63]. The apparent exponent of % is really due to
a mixture of viscous exponent of 1 for the growth of the
connected domains and an exponent of % for the diffusive
dissolution of circular droplets.

Classical morphologies typical of a spinodal decomposi-
tion phenomenon are shown in Figs. 9(c)-9(f). The deviation
from this apparent scaling law is observed at early times when
the domains of fluid components A and B are formed from
the initial perturbation, and at late times, due to finite size
effects, when the domains become comparable in size to the
simulation box. For the latter, there are very few domains left
[see Fig. 9(f)], and coarsening slows down because of the lack
of coalescence events between the fluid domains.

To access the diffusive regime, in this work we remove the
advection term in the Cahn-Hilliard equation and decouple it
from the Navier-Stokes equation. In this case, coarsening can
only occur via diffusive dynamics, and indeed we do observe
a growth exponent of %, as shown in Fig. 9(b), as expected

for diffusive dynamics [61,62]. Representative configurations
from the coarsening evolution are shown in Figs. 9(2)-9(j).
These snapshots look somewhat similar to those shown in
Figs. 9(c)-9(f) for the apparent % scaling regime. The key dif-
ference between the morphologies is that more small droplets
are accumulated during coarsening when hydrodynamics is
on. It is also worth noting that the coarsening dynamics are
much slower in the diffusive regime. At late times we see a
deviation from the diffusive scaling exponent, where L;(t)
appears to grow faster than % exponent. In this limit, as
illustrated in Fig. 9(j), the increase in L;(¢) is primarily driven

by finite size effects.

2. Torus geometry

We now consider the coarsening dynamics of a phase
separating binary fluid on the surface of a torus. Initially, we
simulate a torus domain withR=25andr=1(a=r/R =
0.4). These parameters are chosen such that the total area
Aol = 472rR is close to the one employed in the Cartesian
case. The ¢ direction is discretized using N, = 800 nodes,
while the 6 direction is discretized using Ny = 400 nodes.
The fluid order parameter at lattice point (s, ¢) is initialized
according to Eq. (4.1) with ¢ = 0.
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FIG. 9. Growth of the fluid domain size L,(¢) for an even mixture in two dimensions in (a) the inertial-hydrodynamics and (b) the
diffusive regimes. For the diffusive regime, we remove the convective term in the Cahn-Hilliard equation. (c)—(f) Snapshots of the typical
fluid configurations at ¢ = 40, 100, 250, and 3000 corresponding to the case indicated in (a). (g)—(j) Snapshots of the fluid configurations
corresponding to the case indicated in (b), at times ¢ = 300, 2700, 15000, and 168 000. These are selected such that L,(¢) matches the values

corresponding to (c)—(f).

Our simulation results are shown in Figs. 10(a) and
10(b), respectively, for cases with and without coupling to
hydrodynamics. Qualitatively, we find a similar behavior
to the results obtained in the Cartesian case, Fig. 9. In
Fig. 10(a), it can be seen that L;(t) grows with an ap-
parent exponent of % when hydrodynamics is on. Turning
off the hydrodynamics, the % diffusive exponent emerges,
as demonstrated in Fig. 10(b). The coarsening dynamics is
also much faster with hydrodynamics on the torus. Snap-
shots of the order parameter configuration at various times
for the case of the even mixture with and without hydro-
dynamics are shown in Figs. 10(c)-10(e) and 10(f)-10(h),
respectively.

Quantitatively, we observe that finite size effects occur ear-
lier (smaller L) for the torus considered in Fig. 10 compared
to the Cartesian case. This is expected since the effective
length scale in the poloidal direction 27 r is smaller than the
width of the simulation box in the Cartesian case, even though
the total surface areas are comparable. Indeed, we can observe
that the departure from the % [Fig. 10(a)] and % [Fig. 10(b)]
exponents occur when the fluid domains start to wrap around
the circle in the poloidal direction.

In Fig. 11 we further show simulation results for a thicker
(R=2 and r = 1.25; a = 0.625) and a thinner (R = 5 and
r = 0.5; a = 0.1) torus, having a total area equal to the one
considered at the beginning of this section. The simulation
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FIG. 10. Growth of the fluid domain size L,;(¢) for an even mixture on the surface of a torus with R = 2.5 and r = 1 in (a) the inertial-
hydrodynamics and (b) the diffusive regimes. For the diffusive regime, the convective term in the Cahn-Hilliard equation is removed. (c)—(e)
Snapshots of the typical fluid configurations at # = 40, 100, and 250 corresponding to the case indicated in (a). (f)—(h) Snapshots of the typical
fluid configurations at r = 350, 4250, and 25 500 corresponding to the case indicated in (b). The times are chosen such that the values of L,

match the ones corresponding to (c)—(e).

parameters are kept the same as before, except that for the
thicker torus, the time step must be decreased down to 6t =
5 x 107 since the minimum spacing along the ¢ direction
occurring on the inner equator is 27 (R — r)/N, ~ 0.00589.
Comparing Figs. 10(a), 11(a), and 11(b), finite size effects
seem to appear sooner for the thinner torus and later for the
thicker torus, which suggests the importance of the circum-
ference in the poloidal direction for finite size effects. An in-
teresting direction for future work would be to systematically
study how finite size effects are influenced by the interplay
between the circumference in the poloidal direction, 27, and
the circumference on the inner side of the torus (at 6 = ¢),
2n (R —r).

Given the fluid stripes are generally formed in the poloidal
rather than the toroidal direction during phase separation, the
drift phenomenon reported in Sec. III C for stripe configura-
tions cannot be clearly visualized. However, domain drifts for

drops, as reported in Sec. IIID, can be seen in Figs. 10 and
11 during the late stages of the coarsening phenomenon. This
drift phenomenon can be observed even clearer when we study
uneven mixtures, as discussed in the next section.

B. Uneven mixtures
1. Cartesian geometry

The simulation results for a mixture with asymmetric com-
position are shown in Fig. 12. We use the same simulation
parameters as in Fig 9, except that ¢ = —0.3. Figure 12(a)
shows how the typical domain size scales with time both when
hydrodynamics is turned on and off. Interestingly, in both
cases we observe an exponent of 1, albeit with different pref-
actors. This is in contrast to our results for the even mixtures,
when an apparent exponent of % is obtained with hydrody-
namics. It has been suggested in the literature that the effect
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FIG. 11. Growth of the fluid domain size L,;(¢) for an even mixture on (a) a thick torus (R =2, r = 1.25) and (b) a thin torus (R =5,
r =0.5). (c)—(e) and (f)—(h) Snapshots of the typical fluid configurations at + = 40, 100, and 250 corresponding to the cases indicated in

(a) and (b), respectively.

of hydrodynamics decreases as a function of the asymmetry
of the mixture, though we do not yet know of a convincing
systematic study of this effect. For example, Wagner and
Cates [69] showed that at high concentrations droplets with
hydrodynamics exhibit the viscous hydrodynamic coarsening
regime, but as droplet coalescence is reduced at lower volume
fractions the effect of hydrodynamics diminishes. Here, we
observe the limit where the scaling is typical of that for
diffusive dynamics.

The fluid configurations at various times in the simulation
are shown in Figs. 12(b)-12(e), when hydrodynamics is taken
into account. These can be compared to Figs. 12(f)-12(i),
when the advection term is switched off in the Cahn-
Hilliard equation. The differences are mainly that the mor-
phologies with hydrodynamics are coarsening faster. In the

nonhydrodynamic simulation there are more coalescence
events visible because the restoration of a round shape takes
more time. Thus, while the scaling exponent is the same
with and without hydrodynamics, hydrodynamics still plays
an important role in that it allows coalescing droplets to return
to a round shape more quickly.

2. Torus geometry

Here, we consider a torus geometry with R = 2.5 and r =
1 (same geometry and simulation parameters as in Fig. 10),
and the order parameter is initialized according to Eq. (4.1)
with ¢ = —0.3. The simulation results for the uneven mixture
are shown in Fig. 13. Quantitatively, we find a similar behav-
ior as for the Cartesian case. Both when hydrodynamics is
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FIG. 12. (a) Growth of the fluid domain L, (¢) for an uneven mixture (¢ = —0.3) in two dimensions with and without hydrodynamics. In
both cases, an exponent of % characteristic of the diffusive regime is observed at late times. (b)—(e) Snapshots of the typical fluid configurations
attimes ¢ = 50, 250, 500, and 4000, corresponding to the case with hydrodynamics. (g)—(j) Snapshots of the fluid configurations corresponding
to the case without hydrodynamics, at times ¢ = 150, 1050, 1500, and 6500. These are selected such that the values of L;(¢) correspond to

those in (b)—(e).

turned on and off, we observe a % exponent in our simulations.
Similar to the even mixture shown in Fig. 10, we also find
that finite size effects occur earlier (smaller L) for the torus
compared to the Cartesian geometry. As discussed in the case
of even mixtures, this occurs when the fluid domains start to
wrap around the circle in the poloidal direction. Snapshots of
the fluid configurations during phase separation are shown in
Figs. 13(b)-13(d) and 13(e)-13(g), respectively, for simula-
tions with and without hydrodynamics.

At late times, the effect of the curvature on the domain
dynamics becomes important. In Sec. IIID we discussed
how droplet domains migrate to the outer side of the torus.
To quantify this effect during phase separation of uneven
mixtures, we consider the average of ¢ with respect to the
azimuthal angle ¢:

2w d(p
(9) = / 2—¢(9, ®). 4.3)
0 T
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FIG. 13. (a) Growth of the fluid domain size L,;(¢#) for an uneven mixture on a torus with R = 2.5 and r = 1 with and without
hydrodynamics. (b)-(d) Snapshots of the typical fluid configurations at r = 40, 250, and 1500 corresponding to the case with hydrodynamics.
(e)—(g) Snapshots of the typical fluid configurations at # = 100, 1250, and 3500 corresponding to the case without hydrodynamics. The times

are chosen such that the values of L, match those in (b)—(d).

The discrete equivalent of the above relation is

N‘P
(), = — > bsa- (44
Nw s=1

We plot ((¢) + 1)/2 as a function of the poloidal angle 6 at
various times in Fig. 14(a). At late times [see, e.g., Fig. 14(c)],
the typical configuration corresponds to the majority phase
(¢ = —1) forming a continuum with several large droplets
of the minority phase (¢ = +1) primarily in the outer side
of the torus. At ¢t = 18000 [Fig. 14(d)], when the steady
state is reached, the inner stripe spans 0.657 < 6 < 1.357.
The maximum of ({¢) + 1)/2 is clearly reached at 6 = 0,
indicating that the outer side of the torus is populated by
droplets centered on 6 = 0.

V. CONCLUSIONS

In this work we developed a vielbein lattice Boltzmann
scheme to solve the hydrodynamics equations of motion of
a binary fluid on an arbitrary curved surface. To illustrate
the application of our vielbein lattice Boltzmann method to
curved surfaces, here we focused on the torus geometry and
studied two classes of problems. First, due to the nonuniform
curvature present on a torus, we showed drift motions of
fluid droplets and stripes on a torus. Such dynamics are
not present on a flat surface or on surfaces with uniform
curvature. Interestingly, the fluid droplets and stripes display
preference to different regions of the torus. Fluid droplets
migrate to the outer side of the torus, while fluid stripes
move to the inner side of the torus. The exhibited dynamics
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FIG. 14. (a) The average distribution of the component ({¢) + 1)/2 as a function of 8 at various times. (b)—(d) Snapshots of the fluid

configurations at ¢ = 2500, 5000, and 18 000.

is typical of a damped oscillatory motion. Moreover, for the
fluid stripes, the corresponding dynamics can effectively be
reduced to a one-dimensional problem by taking advantage
of the symmetry with respect to the azimuthal angle. Our
simulation results are in excellent agreement with the analyti-
cal predictions for the equilibrium position of the stripes, the
Laplace pressure difference between the inside and outside of
the stripes, and the relaxation dynamics of the stripes toward
equilibrium.

We also studied phase separation dynamics on tori of
various shapes. For even mixtures, 2 and % scaling exponents
characteristic of hydrodynamics and diffusive regimes are
observed. In contrast, for uneven mixtures, we only observe a
% scaling exponent both when hydrodynamics is turned on and
off. Compared to Cartesian geometry, we saw that finite size
effects kick in earlier for the torus geometry. By comparing
the results for three torus aspect ratios, our observation seems
to suggest that the perimeter in the poloidal direction is a
key length scale for the appearance of finite size effects,
corresponding to fluid domains wrapping around the circle
in the poloidal direction. That the stripes are observed to
form in the poloidal rather than the toroidal direction prevents
the observation of drift motion of fluid stripes toward the
inner side of the torus during phase separation. However, the

domain drifts for fluid drops to the outer side of the torus can
be clearly observed at the late stage of phase separation.

While we focused on the torus geometry, our approach
can be applied to arbitrary curved geometry. Moreover, one
interesting area for future work is to expand the method to
account for unstructured mesh, where the geometrical ob-
jects needed for the Boltzmann equation must be evaluated
numerically. A major challenge is to construct a numerical
scheme which is accurate to second order or higher. Another
important avenue for future investigations is to couple the
hydrodynamics equations of motion with more complex dy-
namical equations, such as those for (active and passive) liquid
crystals and viscoelastic fluids. We believe this work extends
the applicability of the lattice Boltzmann approaches to a new
class of problems, complex flows on curved manifolds, which
are difficult to carry out using the standard lattice Boltzmann
method.
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APPENDIX A: APPLICATION OF THE VIELBEIN
METHOD TO THE TORUS GEOMETRY

The derivation of the Boltzmann equation (2.16), written
in conservative form with respect to vielbein vector fields, is
discussed in [58]. Using Eq. (2.16) as a starting point, here we
present generic main steps required to write the Boltzmann
equation for any arbitrary curved surface. For concreteness,
we focus on the torus geometry in this paper.

(1) Parametrizing the surface. As a two-dimensional man-
ifold, a surface needs two coordinates g' and ¢> to be
parametrized. In the case of a torus of inner radius r and outer
radius R, the parametrization can be chosen in terms of the
angles ¢! = ¢ € [0,27) and ¢> = 6 € [0, 27) as follows:

x = (R+rcos6f)cos g,
y=(R+rcosf)sing,

z=rsino, (A1)

and the system is periodic with respect to both of these angles.
(2) Writing the line element. Differentiating the functions
x, v, and z with respect to ¢' and ¢? yields the formula

Ax’ dx’

2 __ b Lo T
ds” = gabdqadq s ij aqa aqhv

8ab =0 (A2)
where {i, j} € {1,2,3}, 1 < a,b < 2, and g, are the compo-
nents of the metric tensor. In the case of Eq. (Al), the line
element becomes

dS2 = [dxz + dy2 + dzz]ontorus

= (R+ rcos0)’de* + r*d6?, (A3)
leading to the metric tensor components
8op = (R+rcos 6)2, 8u0 =0,
g =1, oy =0. (Ad)

(3) Constructing the vielbein field. The vielbein vector
frame consists of the vectors e; = e49, which satisfy

ga;,egeg = 85 (AS5)

Since Eq. (AYS) is invariant under the action of the orthogonal
group with respect to the hatted indices, the vielbein is defined
up to an arbitrary rotation. After fixing the vielbein, the viel-
bein one-form coframe denoted via ©® = widg® is uniquely
fixed by Eq. (2.3).

For the torus geometry, the natural choice is to take

wf = (R+rcosb), wz =,

¢ _ 1 o1
e‘z’_R—I-rcosé’ %= 7 (A6)
while 0} = o) = 0 and ) = ¢/ = 0.

(4) Computing the Cartan coefficients. The commutator
of two vector fields u and v is another vector field, denoted
by [u, v] = (u*d,v" — v*d,u")dy. The contraction between the
coframe one-form ¢ and the commutator of the tetrad frame
vector fields e; and e;; defines the Cartan coefficient cal;é 2.7,

via the following relation:
(AT)

& _ & a c b c
Cypl =y (6&8,165 — egabea).

In the case of the torus, the commutator of the vielbein vectors
e; and ey is

sin 6

[eg. ep]l = —lep, €3] = m%» (A8)
leading to the Cartan coefficients
. sin 6
= e = A9
o0 o R+ rcosf (A9)

(5) Computing the connection coefficients. In this paper,
we employ the convention Ve, = I'C,ze; for the definition
of the connection coefficients I‘éag, such that the covariant
derivative of a vector is V u’ = el d.u’ + '’;,uf. The connec-
tion coefficients can be computed using the Cartan coefficients
as follows:

T = 58%(caas + Casa — Capa)- (A10)

In the case of the torus, the only nonvanishing connection
coefficients are

sin 0
%~ R+ rcost’
(6) Writing the Boltzmann equation. Plugging Eq. (Al1)

into Eq. (2.16) yields the Boltzmann equation for the torus
geometry, Eq. (2.17).

¥, =-1% (Al1)

APPENDIX B: VIELBEIN LATTICE
BOLTZMANN ALGORITHM

The implementation of the lattice Boltzmann algorithm
requires several ingredients. The first ingredient is the dis-
cretization of the velocity space. In this paper, we employ
the Gauss-Hermite quadrature prescription and discretize the
velocity space on each axis separately. We use Hermite poly-
nomials obeying the following orthogonality relation:

oS efx2/2
/;oo dxw(xX)H(x)Hp(x) = L1860, w(x)= Nt . (B
More properties of these polynomials relevant in the con-
text of the LB method are given, e.g., in the Appendix of
Ref. [70]. The Cartesian components vy, of the elements of
the discrete velocity set along axis « are then equal to the
roots of the Hermite polynomial Hp(v, ) (1 < ko < Q). Their
values for Q = 3 and 4 are given in Eqs. (B19) and (B24),
respectively. The resulting velocity set comprises O elements
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(Vo vy)  (Vavy)

A

FIG. 15. The discrete velocity set employed by the lattice Boltz-
mann models based on the third (a) and fourth (b) order Gauss-
Hermite quadratures. The filled black circle in the center of the figure
corresponds to a lattice point in space. In our off-lattice implementa-
tion, the velocity directions do not coincide with neighboring lattice
points.

Vg = (vg,, U, ), Where k = (ky, ky) and 1 < ki, ky < Q. The
cases Q = 3 and 4 are illustrated in Figs. 15(a) and 15(b),
respectively.

Following the discretization of the velocity space, the
moments of f and f°! are replaced by quadrature sums.

Introducing
MO / ¥
el = dv( e)v Vs (B2)
(m&f& o)

where dv = dv'dv” is the integration measure on the two-
dimensional velocity space, the Gauss-Hermite quadrature
rule recovers the velocity space integration via

Mg fk
(Meql:é';(fl) = Z < eq) Uky, - -+ Vky, - (B3)
oy...00p k k

The connection between the discrete populations f and the
Boltzmann distribution f is made through

—v2/2

Wi
fe), o) =

fi= w(vg) 21

(B4)

A similar relation can be written for f?. The quadrature
weights wy = wy, wy, appearing above are obtained as the
product of the one-dimensional Gauss-Hermite quadrature
weights, which are computed using the following formula
[71]:

Q!
H é.q.] (Uk) .
The weights corresponding to the particular cases Q = 3 and
4 are given in Eqs. (B20) and (B25), respectively.

The second ingredient concerns the BGK collision term.

We first consider an expansion of f°! with respect to the
tensorial Hermite polynomials [72]:

Wy = (BS)

oo

1 .

fI=no@)) Eﬂgﬁ?'.a{(vk)agﬁlf@l. (B6)
=0 "

The first few tensorial Hermite polynomials are reproduced

below:

HOw) =1, HP @) = va, HY(®) = vavp — Sup,
HY, () = vavyv, — (Uabpy + Vpbay + Vy00p). (BT)

The expansion coefficients agﬂff_@( appearing in Eq. (B10) are

obtained with the help of the orthogonality relation of the
tensorial Hermite polynomials:
0, = [avrug w. (®8)

In particular, the first few coefficients for the case of an
isothermal flow at temperature 7 = 1 are [72]

a0 — 5 azq;(l) = Ny, aZ‘};(z) = nugug,
eq;(3) _
Ayp, = Nilglglly . (B9)

In order to preserve the collision invariants ¢ € {1, v} of the
BGK model after the discretization of the velocity space,
the expansion of f°1 in Eq. (B6) must be truncated at order
N=Q0-1:

0-1
. 1 .
2 =g Yy —HE | (0)agt ) (B10)

=0

E' o...0¢ o..0p "

The superscript Q of ka;eq

0 — 1 are included in the expansion. The expressions of ka;eq
employed for Q = 3 and 4 are given in Eqgs. (B21) and (B26),
respectively.

The third ingredient refers to the computation of the force
terms. In order to preserve consistency with the procedure
for the velocity space discretization, we consider a unidimen-
sional expansion of the distribution function f with respect
to the velocity space degrees of freedom (for definiteness, we
focus on the axis & = 1) in terms of the Hermite polynomials
[58,73]:

indicates that only terms up to

21
f=o0)) 5_1']:1}1 (v2)Hy, (v1). (B11)
£,=0 '

A similar expansion can be written with respect to vy,
essentially by performing the swap 1 <> 2. The expansion
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coefficients F, [11 (vy) are obtained using the orthogonality prop-
erty in Eq. (B1):

Fi () = / dvy f(vi, v2)Hy, (vy). (B12)

o0

We now consider similar expansions of the velocity space
derivatives of f which are relevant in the context of this paper:

af _ o 1
o = w(vl)e% T (v He (o),

a(fvr) _

B13
™ (B13)

oo
l ~1
)y T () He ().
6=0

An integration by parts shows that the expansion coefficients
]-'] (v2) and .7-'1 (v2) can be related to F; (v,) through

-7:51 (n) = —£1]:Z]71(U2),

Fil2) = —0[F () + (& = DF} ()],

After the discretization of the velocity space, the expansion
coefficients ]-"[1l (v) are obtained from f; through

(B14)

0
D fiHe, (),

Foto = (BI5)
k=1
such that Eq. (B14) becomes
[
Flom=—"0 kaHzl—1(Uk1),
ki=1
~ 0
‘Ffll;kz =—b ka[Hfl(vkl) + (4 — I)Hll_z(vkl )] (B16)
ki=1

Substituting Eq. (B16) into Eq. (B13), it can be seen that
daf/dv; and 9(fv;)/0v; are linear with respect to f. After
discretization, Eq. (B13) can be written as

<8v1> Z’Cklkfk ks

k=1

a(fvr) o .
( 9y )kZZ’CkHI,k;fk;,kz~ (B17)

k=1

The kernels ICH Y and IC i can be written in terms of the
Hermite polynomlals as follows [58]:

0-1

1
Kl = —wi Y 5o He (0)H: (),
=0
0-1 1
Ko = —wi D i Hen Oz (vp) + EHy ()],
=0 "’

(B18)

where the summation ends at Q —1 since Hp(v) =
Hp(vy) = 0. The exact expressions for the kernels introduced
above are given separately for the cases Q =3 and 4 in
Appendices B 1 and B 2, respectively.

The fourth and final ingredient concerns the streaming step.
In this paper, we employ finite difference schemes to deal with
this step. Further details are summarized in Appendix C.

1. Q = 3 implementation

The nine velocity directions, corresponding to Q = 3, are
illustrated in Fig. 15(a). The possible values of v, and vy,
(1 < ki, kp < 3) are given as the roots of the third order Her-
mite polynomial H3(x) = x> — 3x. Specifically, we employ

U1 —/3
V| = 0 .
U3 V3

The quadrature weights computed using Eq. (B5) [we use
Hy(x) = x* — 6x2 + 3] are

(B19)

wy = 2. (B20)

wy = w3 = 5

OI'—‘

The Maxwell-Boltzmann distribution corresponding to Q = 3
can be obtained from Eq. (B10):

5 = {1+ v w o+ S[(oe-w)” — ]}

(B21)
It is clear that the above expression cannot reproduce the third

order moment MZCE;S). Indeed, using the ingredients above,
we obtain

MEE ;0=3;(3)

by = MO _ Ny Uglly, .

o (B22)

The above error term is third order with respect to the Mach
number and is usually neglectable in the LB community.

Finally, the kernel matrices for the constructing the force
terms, given in Eq. (B18), are

V3 I I
I NPT
Kev=|-75 0 Nl b
A 1 _¥3
2V3 23 2
3 1
B -3 0 —
Kife=12 0 2] (B23)
1 3
-2 0 =3

After introducing the above kernels into Eq. (B17), it can be
seen that the expansion coefficients JF , and JF; . can be

retrieved exactly for 0 < ¢; < 2, while .7'-'3’;,(2 = ]-'3’;k2 =0.

2. O = 4 implementation

The velocity components {vy,, v, } (1 < kg, k, < 4) cor-
responding to Q = 4 are obtained as the roots of the fourth
order Hermite polynomial H,(x) = x* — 6x? + 3. Explicitly,
their values are [70]

—V34+ V6

v
V3 -6

V21— V6 . (B24)

Us 3-v6

V4

346
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It is worth noting that, unlike the Q = 3 case, in general
these velocity directions cannot be made to simultaneously
coincide with the neighboring lattice points. The weights
corresponding to O = 4 can be obtained from Eq. (BS), by
noting that Hs(x) = x> — 10x* + 15x:

The discrete equilibrium populations fke 4 can be obtained from
Eq. (B10) [70,72]:

=4;
kQ = nwkﬁwkqj{l + v -u+ %[(vk cu)’ —u?)

+ toe - ul(ve - u)” — 3u’1}. (B26)

3-6 3+6 The kernels required for the computation of the force terms,
W) = wy = , Wy =w3= ——. (B25) introduced in Eq. (B18), have the following structure [74]:
12 12 a &
J
1 3+v3 3-3 1 2
V346 23+/6) 26G+v06) 1= \[§
_ /54246 1 /2 _ 1 2 A 27411V6-A/3+V6
o eV W3i-ve 1} 1+\ﬁ —
' 27+11v6-+/3+6 1 2 1 AV 27+11V6+4/3+V6
NG oyl \/; —3V3-W6 TS
3-v6 3-v3 /3443 1
T 23 2(3+/6) T 26+v6) —3V3+6
_3+/6 2-5V244/60-4v2)  245v2-4/609+4v2) 1
2 i i 2
N 2+52+4+/3+/6 _3-v6 1 2-5v2-4V3+6
CH — 4 2 2 4 B27)
i,m 2-5V2-4/3+6 1 _ 36 245V24+4/34/6
2 2 2 3
1 245v2-1/6090+4v2)  2-5v244/6(9-4v2) _3+V6
2 4 4 2

3. Chapman-Enskog analysis

We now consider the recovery of the Navier-Stokes equa-
tions via the Chapman-Enskog expansion. We begin by dis-
cussing the familiar case of the Cartesian geometry, after
which the torus geometry is considered.

In the so-called simplified version of the Chapman-Enskog
method, the deviation from equilibrium 8 f = f — f©%9 of the
distribution function is considered to be of the same order of
magnitude as the relaxation time t, which is regarded as a
small quantity. Noting that J[f] = —4 f/t in the BGK model,
at zeroth order, the distribution on the left hand side of the
Boltzmann equation (2.16) can be replaced by f©%, allowing
8 f to be obtained as

afe 19 .,
8f=—r{ P +ﬁa_qb(v Lf*/2)

+ 2 [(F— - r‘”’,;év’;vf) feq“. (B28)
dv4 m

The viscous part 0,; = T,; — P§,; of the stress tensor can be
obtained as a moment of § f:

O = m/dv 8f &abp = Wl/a’v 8 f vavy, (B29)

where &; = v; — u, is the peculiar velocity and the equality
follows by noting that the preservation of the collision invari-
ants ¥ € {1, v?} of J[f] entails

/dv(Sf:/dv(va&:O.

Multiplying Eq. (B28) by v,;v; and integrating with respect
to the velocity space shows that the recovery of o, requires

(B30)

(

various moments of the equilibrium distribution £©9 and its
derivatives in the velocity space.

We first focus on the Cartesian geometry, in which case
Eq. (B28) becomes

(B31)

af¢ F
8f="< ! +”-Vf“‘+—-vvfeq>'
ot m

It can be seen that the correct recovery of o, is subject to the
recovery of the third moment of f°4. When Q = 3, the error
highlighted in Eq. (B22) induces a deviation from o, as given
in Eq. (2.20):

0273 =

27 = oy + TV (pugugue). (B32)

Since this error is of third order with respect to the local Mach
number, it is generally regarded as negligible. When Q = 4,
no such error appears and o, is correctly recovered:

o 2=*

o (B33)

= O4p-

In the case of the torus geometry, Eq. (B28) reduces to

£ ¢ 9 flea)
§f=—1 U v f
ot R(1 +acosf) dg
4 v’ A[f V(1 + acosh)]
r(1 4+ acosf) 00
sin 0 ¢3(f(eq>v¢’) 5 A(fCDVP)
_ v v, i
R(1 +acosb) v dvd
Fo gfen)  phgra
+— / —+ — / — 1. (B34)
m ov? m gv?

At Q = 3, aside from the error coming from the advection
term, due to the inaccurate recovery of the third order moment
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Drop: d=4 —— Str‘ipe: Q=4‘ ——

1000
t

1500 2000 2500

FIG. 16. Time evolution of the stripe and drop center 6., for a
stripe initialized at 8 = 0.1z and a drop initialized at 6, = 0.97,
using both Q = 3 and 4 implementations. The results overlap for all
times.

of f°4, there is another source of errors, coming from the
inertial term. The errors introduced are always of order Ma?
and contribute such that the relation in Eq. (B32) between
the apparent viscous stress O‘QE and the physical one o, is
exactly retained. For completeness, we give below the relevant
moments of the inertial terms for which a deviation is seen at

0=3:

9 fe eq
kalvkz( / ) /dvv?vz 8f + pus,

(afq>
k k
I(fvr) / I(fvr) 2
3 = d 2 )
E vklvk[ a0, i|k vvlvz a0, + 2pujuy
I(f*vr) 2 0(f%u)
E vklvkz[ S i| :/dvv1v2€—1]+pu1u§.
k

(B35)

As before, no errors are seen in the case when Q = 4.

4. Convergence test

The previous subsection showed that a third order quadra-
ture (Q = 3) introduces errors of order O(Ma®) in the re-
covery of the Navier-Stokes equations. In order to assess the
relevance of these errors, the simulations reported in the main
body of the paper were performed using both Q = 3 and 4.

We begin this section by showing a comparison of the
results for the fluid stripes and drops migration discussed
in Secs. IIT A and III D, respectively. Since the deviations
between Q =3 and 4 are expected to be more signifi-
cant at larger fluid velocities, we choose the initializations
corresponding to the largest initial amplitude of the stripe

1 L .
_I'G
0 Exponent 2/3 ——
10 102 103 10*
t
1 T T
_I'U
Ly(t)-Q4 ——
Ly(®)-Q3 ——
0.1 (b) Exponent 1/3 ——
' 10 103 10*
t

FIG. 17. Comparison of the growth of the fluid domain size L, ()
in the inertial-hydrodynamics regime in two dimensions for (a) an
even mixture and (b) an uneven mixture, using the Q =3 and 4
implementations. Minor discrepancies can be observed at late times.

(6, = 7 /10) and drop (6. = 97 /10). The comparison can be
seen in Fig. 16. The agreement is excellent, showing that the
regime in which these phenomena occur is not affected by
the spurious O(Ma?) terms appearing in the Navier-Stokes
equations at Q = 3.

We now consider the domain growth for the initial condi-
tions considered in Sec. IV. Figure 17 shows L;(¢) computed
in the case of the Cartesian geometry, for the even [Fig. 17(a)]
and uneven [Fig. 17(b)] initial compositions, as discussed
in Sec. IV. The results corresponding to Q = 4, shown with
purple lines and 4 symbols, are identical to those reported in
Figs. 9(a) and 12(a). A small discrepancy between the Q = 3
and 4 results can be seen at late times, essentially at the time
when the domain growth rate is affected by finite size effects.
Similar discrepancies can be seen in Fig. 18, in the case of the
torus geometry. The even and uneven initial compositions on
the torus with R = 2.5 and r = 1 are shown in Figs. 18(a) and
18(b), where the Q = 4 results are identical to those reported
in Figs. 10(a) and 13(a) (only the results with hydrodynamics
are shown). Figures 18(c) and 18(d) show the results for even
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-
Ly(h)-Q4 ——
Ly()-Q3 ——
0.1 Exponent 2/3 ——
10 10 10° 10*
t
(R=2, r=1.25)
1 L 4
-
Ly()-Q4 ——
©) Ly()-Q3 ——
01 Exponent 2/3 ——
10 10 10° 10*

t

T T
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FIG. 18. Comparison of the growth of the fluid domain size L,(¢) in the inertial-hydrodynamics regime on a torus for even (a), (c),
(d) and uneven (b) mixtures on the tori with R =2.5 and r =1 (a), (b), R=2 and r = 1.25 (c), as well as R =5 and r = 0.5 (d). The
results corresponding to Q = 4 and 3 are shown with purple + signs and cyan x signs, respectively. The solid line shows the best fit curve
corresponding to at*, with o = % for (a), (¢), (d) and % for (b), to the Q = 4 data on the interval 30 < ¢ < 200 for the even mixture and

200 <t < 2000 for the uneven mixture.

mixtures on the tori having (R, r) = (2, 1.25) and (5,0.5),
respectively. The Q = 4 results coincide with those shown in
Figs. 11(a) and 11(b).

Finally, Fig. 19 shows a comparison of the domain config-
urations in the spinodal decomposition problem for the torus
geometry. The initial fluctuations are taken around ¢y = 0 on
a torus with R = 2.5 and r = 1. The Q = 4 snapshots, shown
on the bottom line, coincide with the results shown on the
middle line of Fig. 10. The agreement between the Q = 3 and
4 is remarkably good, with small differences observable only
at the small-scale structure. Similar agreement can be seen for
all decomposition cases discussed in Sec. IV.

The conclusion of this Appendix section can be sum-
marized from the perspective of the improvements to the
Q = 3 results brought by employing the increased quadrature
order O = 4. In the problem concerning the sliding drops
and stripes, which is dominated by surface tension effects,
the agreement is excellent and the improvement is negligible,
indicating that Q = 3 is sufficient to capture the relevant
phenomena. In the case of the domain decomposition, the

early stages seem to be captured similarly with Q = 3 and 4.
However, in the late stages of the evolution, differences can
be seen, which are however irrelevant since they occur after
finite size effects affect the growth dynamics. The snapshot
comparison shows that the differences between the two im-
plementations are more visible at the small-scale structure of
the flow.

APPENDIX C: FINITE DIFFERENCE SCHEMES

1. Cartesian geometry

In the Cartesian geometry, the Boltzmann equation
reads as

a—ﬁ‘—i-vka—fk—i-vk.%—i-ﬂ(af) —i—B(ﬂ)
kom k

ot *ox 7 dy m \ ov* vy
1
= ——[fe— 1], (@)

where k = (k,, k,) and the components of the force term are
given in Eq. (2.15).
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FIG. 19. Snapshots of the typical fluid configurations at r = 40, 100, and 250, using the Q = 3 (top line) and Q =4 (bottom line)

implementations.

The Cahn-Hilliard equation can be written as

dp ')  Iw'P)
5-’_ dx + ay

where the chemical potential u is given in Eq. (2.11).

Let ¥ (x, y) be a scalar function. Following the discretiza-
tion of the x and y coordinates, 1 (x, y) is replaced by a set
of time-dependent quantities v; ;, which are interpreted as the
point values of ¥ (x, y) at the center (x;, y;) of cell (7, j). The
gradient of ¥ (x, y) at (x;, y;) is computed using the following

procedure:
oy 1 1 " n ZW
ox ), x| 12T 3T

= MApu, (C2)

2
31//1 1,j + Ipz 2}i|a
AN
(a_y)iﬁj - 5[ I/fz Jj+2 + 3 wt J+1
2 1
I/fz -1+ El/fi,jz} (C3)

where 5x and 8y are the grid spacings in the x and y directions,
respectively. The above expressions are fourth order accurate.
The Laplacian of ¥ (x, y) can be obtained using

5
El/fi,j

1 1
+ﬁ (—Elﬁi,jH

4 5 4 1
+ = I/fi,j+1—§1/fi,j+§lﬂi,j—1—El/fi,j—z . (C4)

1 1 4
(AY);; = g<_61ﬂi+2,1‘ + 5‘/fi+1.j -

4
3% 1,j— WiZ,j)

The above expression is also fourth order accurate.

The strategy in computing the force term [Eq. (2.15)] is
to first obtain the set (A¢); ; using the stencil in Eq. (C4),
and then to apply the stencils in Eq. (C3) in order to obtain
(0:A¢); j and (dyA¢); ;. Similarly, the right hand side of the
Cahn-Hilliard equation [Eq. (C2)] is obtained by first comput-
ing p; ; based on the previously computed values of (A¢); ;,
after which the Laplacian of w is obtained by applying the
stencil in Eq. (C4).

We now discuss the time evolution and advection schemes.
Let us consider the evolution equation

oH = L[H], (C5)

where H can be either fi from Eq. (C1) or ¢ from Eq. (C2).
The time variable is discretized using equal time steps 6¢, such
that after » time steps, the time coordinate #, has the following
value:

t, = nét. (Co)

Denoting fi., and ¢, as the distribution function and order
parameter at time step n, their values at time step n + 1 can be
found via the Runge-Kutta algorithm using two intermediate
steps [75]

H!" = H, + 8t L[H,],

H? =3H, + {H" + 16t L[H"],

Hyy = {H, + H? + 38t L[H?]. (C7)
The advection can be computed using

(8(VXH)) Fhapg =Tl
ij

’

0x ox
d(V'H Flip—F i
( ( )) _ Tijti 12 C8)
ay /i 8y
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where V* = v, and VY = v, for the Boltzmann equation
[Eq. (CD)], while V* = u* and V¥ = i’ for the Cahn-Hilliard
equation [Eq. (C2)]. The computation of the fluxes at the
cell interfaces (Fi11,2,; and so forth) is performed in an
upwind-biased manner using the fifth order weighted essen-
tially nonoscillatory (WENO-5) algorithm introduced in [76].
This scheme is particularly well suited for flows involving
strong shocks or discontinuities [77]. Other schemes such as
the discontinuous Galerkin [55,78] or finite volume [79-81]
may be suitable for the same purpose, however, we have not
considered them in the context of this paper. For brevity, we
only summarize the WENO-5 algorithm for constructing the
flux for a one-dimensional problem at the interface between
cells s and s 4 1 for the case when the advection velocity
Vit12 = (Vey1 + Vi)/2 at the cell interface is positive. When
Vi+1/2 < 0, the algorithm can be applied identically by sym-
metrically reflecting all indices with respect to s + 1/2, e.g.,
s + 1 becomes s, s + 2 becomes s — 1, etc. When V., > 0,
the flux F; 1/, is computed using

]:s+l/2=w1]:+]/2+w2f+1/2+w3f+]/2’ (C9)

where the interpolating functions F 1 P (r=1,2,3) can be
written in terms of J, = V H, as follows:

]:51+1/2 = %J372 - %.1571 + %Jss
-Fy+1/2 = _l-]x—l + iJ + lJs-‘rl,
Fovip =30+ o1 — $ss2- (C10)
The weighting factors w, are defined as
@) O =2 (C11)
=~ = =< Wy = —
@1 + @y + w3 o?
with ideal weights §, given by
8 =1/10, &, =6/10, & =3/10, (C12)
and the smoothness indicators o, given by
o1 = B — 2oy + I + 2o — 401 + 3007,
oy = (ot — 20 + T’ + FUsm1 — Jo)’,
03 = By — 2t + Je2) + FBJs — 4l + i)

(C13)

The above implementation ensures third order accuracy with
respect to the time step 8¢ and fifth order accuracy with respect
to the grid spacings éx and §y for smooth data sets [76].

2. Torus geometry

After the velocity space discretization, the Boltzmann
equation on the torus, given by Eq. (2.17), reads as

0k Vky A fi(1 + acosH)]
F? ( af
i),

r(1 +acosf) 200
Uk, d fr aof
+R(1+acos@) g T <8v9> +
sin 6 |: (E)f) <8(fv¢’)> ]
~ R(1+acosh) ov? ~ Ve e /),
— (eq)
- _L_[f f ]7

(C14)

where a = r/R. The components of the force term F % and F?
are given through

5 1
nFG = ;(aﬁpbinary + kpdgAg),

1

nFb — — ~
R(1 4+ acosB)

(  Pbinary + K‘Pa(pAd)) (CIS)

The Cahn-Hilliard equation given in Eq. (2.12) is reproduced
below explicitly for the case of the torus geometry:

¢ 1 (1 + acos0)u’ ]
r(l +acosf) a0

1 ou?

+—_

R(1 +acosf) dp

= MAu, (C16)

where the action of the Laplace-Beltrami operator A on u is

Ay — 1 u
= R%(1 +acos9)? | 0¢?

1 0 ou
+E(1+acose)£ (1+ac059)% . (C17)

We now consider an equidistant discretization of the ¢ and
6 coordinates using N, and N, points ¢, = 12V—7:(s —-1/2) (1 <
s <N, and 6, = fv—;’(q —1/2) (1 < g < Ny). The advection
terms appearing in the Boltzmann equation [Eq. (C14)] and
in the Cahn-Hilliard equation [Eq. (C16)] are implemented as
follows:

%
{ 1 [a(v H) a(va)]} B 1
5,q

R+ rcosf 00 ap " R+ rcosb,

0 0
% ]:s+1/2,q - ]:571/2,11 + ‘qu+1/2 -
30 3¢

41/2}, (C18)

where V¢ = —vkﬁ(l +acosf) and V¥ =y, in the case of

the Boltzmann equation (when H = f;), and V? = & W (1 +
acosf)and V¢ = u? in the case of the Cahn-Hilliard equation
(when H = ¢). The fluxes F? st1/2.q and ]—" 5.q+1/2 Ar€ computed
via Eq. (C9) by replacing J; with

JoB

kis.g ng(l +a Cos‘gq)fk;s,qy

»;B
Jk 5.q vkwfk;s,qv

R
JGCH —u (1+a 08 6y) s, ¢,

:CH _
S = ”?q‘pw' (C19)
This scheme retains fifth order accuracy with respect to 66 and
8¢. The form of the advection operator in Eq. (C18) prompts
the approximation of the connection coefficient in front of the
inertial and reaction forces on line 2 in Eq. (C14) as follows:

sin 6 sin 6
= . (C20)
R+rcos6f;,, R+rcost,
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The components F % and F? of the force term in Eq. (C15)
are replaced by

P Yoo + 229 5. A )
s,q rlngg 6 Pbinary Js,q My (] 5,q |»

@ 1 1
FP = | — (3 Pbinay)sq +

K¢sq
= =0y AP)sq |
R + rcosé; (3 A¢) ’qj|

Ns.q N q
(C21)
where the derivatives with respect to 6 and ¢ are computed
using the stencils given in Eq. (C3) by replacing v, with
(Pbinary )5, and (A¢); 4, as appropriate.
We now turn to the computation of the Laplacian. Intro-
ducing the variable

(C22)
|

1

the Laplace-Beltrami operator [Eq. (C17)] acting on the func-
tion ¢ € {¢, u} reduces to

1 —~

AYy = —— AV,
v R2(1 +acos§)? v

~ Py Y

Ay = — + —. Cc23
V=t (€23)

The discrete equivalent of the above relation leads to
(AY),q = (AY)eg  (C24)

(R + rcosb,)?

The second order derivative with respect to ¢ appearing in
Eq. (C23) can be replaced using the stencils in Eq. (C4). The
derivative with respect to x is more difficult since the variable
x 1is not equidistantly discretized. The following stencil is
fourth order accurate with respect to both §¢ and §6:

(AY)sg = W<_1]_2ws+2,q + g%ﬂ,q - gl/fs,q + gl/fsfl,q - ll—zlﬂsz,q>
F+agoVs g2 + A1 Vs g1 + Faq0Vs g + g—1Vsg—1 + Ag:—oWs g—2, (C25)
where the coefficients a4 are given below:
g = 2[(Xg — Xgx1)Kg — Xaz2) + (Xg — Xq21)(2ZXg — Xgw1 — xm)]’
’ (Xgx2 = Xgx2)(Kgx2 — Xg+1)(Kgx2 — Xg)(Xg£2 — Xg—1)
tyr = 2[(xg — Xqx1)(Xg — Xgx2) + (Xg — Xq£2)(CXg — XgF1 — quz)]’ (©26)
(g1 = Xgx1)(Xgx1 — Xg+2)(Xg£1 — Xg)(Xgt1 — Xg—2)
while a0 = —ag — ag1 — ag.—1 — ag—2.
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