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ABSTRACT
We present the Iκεα model of galaxy formation, in which a galaxy’s star formation rate is
set by the balance between energy injected by feedback from massive stars and energy lost
by the deepening of the potential of its host dark matter halo due to cosmological accretion.
Such a balance is secularly stable provided that the star formation rate increases with the
pressure in the star-forming gas. The Iκεα model has four parameters that together control
the feedback from star formation and the cosmological accretion rate on to a halo. Iκεα

reproduces accurately the star formation rate as a function of halo mass and redshift in
the EAGLE hydrodynamical simulation, even when all the four parameters are held constant. It
predicts the emergence of a star-forming main sequence along which the specific star formation
rate depends weakly on stellar mass with an amplitude that increases rapidly with redshift. We
briefly discuss the emerging mass–metallicity relation, the evolution of the galaxy stellar mass
function, and an extension of the model that includes feedback from active galactic nuclei.
These self-regulation results are independent of the star formation law and the galaxy’s gas
content. Instead, star-forming galaxies are shaped by the balance between stellar feedback and
cosmological accretion, with accurately accounting for energy losses associated with feedback
as a crucial ingredient.

Key words: galaxies: evolution – galaxies: formation – galaxies: general – quasars: super-
massive black holes.

1 IN T RO D U C T I O N

The cold dark matter cosmogony links the small fluctuations
detected in the cosmic microwave background (CMB) at redshift
z ∼ 1000 to the observed large-scale clustering of galaxies at
all observable redshifts. The fluctuations in the CMB temperature
correspond to density perturbations that grow in amplitude due to
gravity, resulting in the formation of dark matter haloes that host
galaxies (see e.g. Springel et al. 2005, and reference therein for
more background).

Whereas computer simulations can reliably predict virtually all
properties of dark haloes, the same cannot be said for the properties
of the galaxies that inhabit these haloes. Even though our basic
understanding of the underlying physics is probably correct –
galaxies form as gas accretes on to a halo, cools, becomes self-
gravitating, and forms stars (White & Rees 1978; White & Frenk
1991) – numerous uncertainties remain. What sets the star formation
rate of a galaxy in a given halo at a given redshift? How does the
energetic feedback from stars and accreting black holes regulate star
formation? What is the role of galaxy interactions such as mergers?
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Are there any other crucial processes, for example feedback from
cosmic rays or reionization, and what is the role of magnetic fields?

Models that are designed to reproduce a mock universe that looks
and evolves like the one we observe may not care about the details of
the relevant physical processes. Examples include halo occupation
distribution models (HOD; e.g. Peacock & Smith 2000) or subhalo
abundance matching [SHAM; e.g. Vale & Ostriker (2004), see e.g.
Wechsler & Tinker (2018) for recent reviews].

Semi-analytical models recognize that the physics of galaxy
formation is complex, and use parametrizations to model poorly
understood physical processes. Cosmological hydrodynamical
simulations try to capture some of these physical processes as
accurately as possible (cosmological accretion and cooling of gas
on to haloes for example), but also rely on more parametrized
descriptions of physical processes to capture physics below the
resolution scale (see Somerville & Davé 2015 and Naab & Ostriker
2017, for recent reviews).

Several of the semi-analytical models and recent hydrodynamical
simulations yield a mock universe that looks impressively similar to
the one observed. Even though these models typically all include the
same ingredients, the details of how the processes are implemented
may be quite different. It is therefore somewhat surprising that the
resulting galaxy population is nevertheless very similar. At the very
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least, this suggests some level of degeneracy in the modelling and
that such calculations cannot be used to infer how the unresolved
processes operate in detail. But it also suggests that many properties
of galaxies do not actually depend on the details of many of these
processes (see Hopkins et al. 2014, for a similar point of view).

Arguably, one of the more striking features of the galaxy
population as a whole is the emergence of a ‘star-forming main
sequence’ (or ‘blue cloud’), Noeske et al. (2007), on which galaxies
form stars at a specific rate, Ṁ�/M�, that depends weakly on stellar
mass (M�), but increases rapidly with redshift. The scatter around
the mean trend is small, of the order of 0.3 dex (see Schreiber et al.
2015, and references therein for more recent observational analysis
and discussion).

The appearance of such a main sequence suggests that the rate at
which a galaxy forms stars in a halo of given mass is somehow self-
regulating. Several papers argued just that (e.g. Bouché et al. 2010;
Davé, Finlator & Oppenheimer 2012; Dayal, Ferrara & Dunlop
2013; Lilly et al. 2013; Dekel & Mandelker 2014). The aim of these
models is not to be able to predict the properties of galaxies in great
detail, but rather understand the origin of self-regulation. This paper
follows this philosophy, adopting simplifications to more clearly ex-
pose the feedback loop that operates on the star-forming sequence.

This paper is organized as follows. Section 2 exposes the basic
physics behind self-regulation in our model and tests the central
assumptions by comparing to galaxies from the EAGLE (Evolution
and Assembly of Galaxies and their Environments) cosmological
hydrodynamical simulation (Schaye et al. 2015). Section 3 explores
consequences in terms of galaxy scaling relations [such as the
galaxy stellar mass function (GSMF) and the mass–metallicity
relation], compares these to simulations and data, and discusses
successes and failures of the model. Section 4 puts our results into
context by comparing to previous work, and discusses what we
think are its main limitations. Section 5 summarizes our findings
and is followed by an appendix that contains a short overview of the
EAGLE simulations, including a description of the reference model,
‘Ref-L100N1504’, in which the subgrid parameters are calibrated
to reproduce redshift z = 0 observations of the GSMF, the relation
between galaxy size and mass, and the relation between black hole
mass and stellar mass, as described by Crain et al. (2015). The
appendix also describes the EAGLE model ‘FbConstNoAGN’, in
which the feedback parameters are kept constant and which does
not include feedback from an active galactic nucleus (AGN), as
well as another EAGLE variation, ‘FbConst’, in which the feedback
parameters are kept constant and which does include AGN feedback.

2 SELF-REGULATION O F STA R FORMATI ON
IN GALAXIES

The appearance of a star-forming sequence of galaxies is suggestive
of the action of a feedback cycle. Such a feedback cycle is
also important in understanding the main sequence of stars in a
Hertzsprung–Russel diagram. Indeed, nuclear energy generation in
main-sequence stars is secularly stable – a prerequisite for their
longevity. We begin this section by briefly describing the well-
known reason behind this stability (see e.g. any text book on stellar
structure, for example Prialnik 2009). We next investigate whether
we can apply similar reasoning to star-forming galaxies.

2.1 The secular evolution of main-sequence stars

The total energy E of a main-sequence star of mass M is the sum of its
gravitational energy, � < 0, and its internal energy, U = Mu, where

u is its mean specific energy per unit mass. Stars are approximately
in virial equilibrium, E = �/2 = −Mu, and as a consequence dE/du
< 0. Therefore, if a star loses energy, for example, through radiation
so that Ė < 0, it will heat up, u̇ > 0. The effective negative specific
heat capacity of a star is well known but nevertheless an intriguing
feature of gravitationally bound systems, see e.g. Lynden-Bell &
Lynden-Bell (1977), and is crucial for its longevity.

Indeed, consider a star losing energy through radiation (rate L),
while gaining internal energy through nuclear fusion (rate Ėnucl),

Ė = Ėnucl − L. (1)

In equilibrium, Ė = 0, however consider what happens for (small)
deviations from equilibrium. Assuming Ėnucl < L, say, |E| increases
since E < 0, meaning |u| increases and hence the temperature T
rises. The rate of energy generation through fusion is a rapidly
increasing function of T, hence increasing T increases Ėnucl, so
that Ėnucl < L results in an increase in Ėnucl towards equilibrium.
Similarly, if Ėnucl > L, the decrease in T results in a decrease in the
nuclear burning, until Ėnucl = L. Clearly, the negative specific heat
capacity of a star is not just an amusing feature of self-gravitating
systems, but is key in understanding stability on the main sequence.
As the star’s mean molecular weight changes due to fusion, L and
hence Ėnucl evolve secularly on a time-scale that vastly exceeds E/L.

2.2 The evolution of a galactic halo

As a galactic halo1 grows in mass due to cosmological accretion,
its energy changes in time as well. At first sight, there is little
in common between the evolution of a galactic halo and that of
a main-sequence star. Indeed, the total energy of a star changes
only secularly, |Ė| � L, as self-regulation leads to a near-balance
between the energy generated by nuclear fusion and lost by
radiation, but a galactic halo seems to have no equivalent channel for
regulation. Does that mean that it is not secularly stable? The answer
is partially yes: We show in the following that the dark matter halo
is not secularly stable, in the sense that Ėh �= 0. However, the same
may not be true for the galaxy itself, because supernovae inject
energy into the interstellar medium (ISM). Below, we investigate
whether that energy injection rate balances the loss of energy due to
cosmological accretion, and if such a situation is a stable equilibrium
– in analogy with the evolution of main-sequence stars described
above. Before we do so, we summarize some well-known relations
for the evolution of dark matter haloes.

2.3 The growth of a dark matter halo

We begin by investigating the cosmological growth in mass and the
associated change in energy of a dark matter halo. The concentration
and mass of a dark matter halo may be affected by baryonic
processes. Indeed, in the simulations presented by Duffy et al.
(2010), strong cooling and inefficient feedback increase the central
dark matter density of galaxy and group haloes significantly,
whereas strong feedback, for example from an AGN, decreases
that density. Baryonic mass-loss, associated with strong feedback,
may lead to a decrease in the rate at which a dark matter halo
increases its mass. These effects are relatively modest at the scale

1We will use the term ‘galactic halo’ to refer to a central galaxy (as opposed
to a satellite galaxy) with gas and stars, together with its host dark matter
halo.
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2420 M. Sharma and T. Theuns

Figure 1. The redshift evolution of the virial ratio, −2Uh/�h, of dark matter
haloes from the EAGLE L100N1504 dark matter-only simulation tracked
along their merger tree. Here, Uh is the sum of the kinetic energy of all
particles in the centre of mass rest frame, and �h is the gravitational energy.
Different colours refer to haloes in narrow bins of their z = 0 halo mass
Mh, 0: blue, red, and purple correspond to Mh, 0 = [0.98–1.02] × 1011, [0.9–
1.1] × 1013, and [0.8–1.2] × 1013 M�, respectively; the solid curves are
the median value of the virial ratio, and the shaded region encompasses the
25–75th percentiles. Haloes evolve approximately in virial equilibrium.

of galaxies in the EAGLE simulations, as shown by Schaller et al.
(2015), and we will neglect them in this paper.

The total energy, Eh < 0, of a dark matter halo with mass Mh is
the sum of its potential energy, �h < 0, and its internal energy, Uh

(the total kinetic energy of all dark matter particles in the centre of
mass rest frame, subscript h for halo). Dark matter haloes satisfy the
virial theorem approximately, Eh ≈ �h/2 ≈ −Uh (e.g. Neto et al.
2007), as we show in Fig. 1. There is clearly some evolution of
the ratio Uh/�h as the halo grows, but we will neglect this in what
follows.

Assuming that the dark matter halo is in virial equilibrium, mass,
radius, and internal energy are related by

Eh = �h + Uh = �h

2
= −Uh

�h = −α
G M2

h

Rh

Uh = 1

2
Mh vh

2

Rh =
(

GMh

100 H 2

)1/3

. (2)

We used the standard way of assigning a ‘radius’, Rh, to a halo, by
requiring that the mean density within Rh is 200 times the critical
density, ρc = 3H2/(8πG), where H(z) is the Hubble constant at
redshift z. The value of the dimensionless parameter α depends on
the halo’s density profile: α = 3/5 for constant density, α = Rh/(6a)
for the spherical profile with scale radius a described by Hernquist
(1990), and α is uniquely related to the concentration parameter,
c, of a halo with a NFW (Navarro, Frenk & White 1997) profile.
Equations (2) also define a characteristic ‘virial velocity’ of the
halo, vh, also given by

vh
2 = α (GMh)2/3(10H )2/3. (3)

If the accreting halo remains in virial equilibrium, then

d ln |Eh|
dz

= 5

3

d ln Mh

dz
+ d ln α

dz
+ 2

3

d ln H

dz
. (4)

Figure 2. As Fig. 1 but for the concentration parameter α from equation (2).
As a halo grows, α remains approximately constant. The dashed curve
quantifies the (negligible) effect of the last term on the right-hand side in
equation (4).

Figure 3. As Fig. 1 but for κ = d(ln |Eh|)/d(ln Mh), where Eh and Mh are
the total energy and mass of a halo from equation (2).

We will show below that the first term on the right-hand side,
| 5

3 d ln Mh/dz|, is of the order of unity. How about the other terms?
We tracked the evolution of the parameter α of haloes in the EAGLE

L0100N1504 dark matter-only simulation along their merger tree.
The result is plotted in Fig. 2, where different colours refer to haloes
in bins of their redshift z = 0 mass, Mh, 0. As was the case of the
virial ratio, there is clearly some evolution in α as a halo grows, but
that evolution is relatively weak and we will neglect it. We also note
that the term (2/3)dln H/dz is always <1/2. Therefore, the last two
terms in equation (4) are small compared to the first term on the
right-hand side, therefore d ln |Eh|/dz ≈ κd ln Mh/dz with κ ≈ 5/3.
To test this approximation in more detail, we once more track haloes
along their merger tree to compute d ln |Eh|/d ln Mh directly (the
result is plotted in Fig. 3); different colours refer to haloes in bins of
Mh, 0. As Mh increases, |Eh| increases, with d ln |Eh|/d ln Mh ≈ 5/3.
Combining this approximation with equation (3) motivates us to
parametrize the rate of change of energy as a halo grows in mass
by

Ėh = −κ

2
Ṁhvh

2. (5)

The variables α (equation 3) and κ are two of the four parameters
of the Iκεα model, and as we just showed, they are approximately
independent of halo mass and redshift, and we will simply keep
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Feedback-regulated galaxy formation 2421

them constant at α = 1 and κ = 5/3. We proceed by parametrizing
the evolution of Mh.

The increase with time of the halo mass in the extended Press–
Schecher (EPS) or ‘excursion set’ formalism (Bond et al. 1991;
Lacey & Cole 1993) describes the growth measured in simulations
very well. Here we will use the parametrization described by Correa
et al. (2015a) and Correa et al. (2015b), which we write in the form
of the value of the halo mass at redshift z = 0, Mh,0, times a
dimensionless function mh(z),

Mh = Mh,0 mh(z)

mh(z) ≈ (1 + z)a exp(−bz). (6)

The corresponding logarithmic growth rate is

d ln Mh

dz
= (a − b)ξh(z)

ξh(z) = 1

a − b

(
a

1 + z
− b

)
.

(7)

The dimensionless functions mh and ξ h(z) are both unity at z =
0. Since haloes grow in mass, d ln Mh/dz ≤ 0, and in terms of the
previous equation we have that the function ξ h(z) > 0 but a − b <

0. The parameters a and b depend on the mass of the halo at some
reference redshift, which we take to be z = 0. Averaging over halo
masses, Correa et al. (2015b) find

ā ≈ 0.24 , b̄ ≈ 0.75. (8)

We will use ā and b̄ and denote them by a and b in our derivations,
but in our figures we will use the more elaborate but more accurate
version discussed by Correa et al. (2015b) in which a and b
are functions of Mh, 0 (except in Figs 5 and 15 in which we
use the constant values from equation 8). Using ā and b̄ gives
|(5/3)d ln Mh,0/dz| = 0.85 at z = 0 and 1.25 for z → ∞, therefore
|(5/3)d ln Mh/dz| is of the order of unity, as we used before.

The virial velocity’s evolution follows from equation (3),

vh
2(z) = v2

h,0 (mh(z)H(z))2/3 , (9)

where the function H(z) is defined by

H(z) ≡ H (z)

H0
. (10)

2.4 The growth of a galaxy

2.4.1 Stability of feedback-regulated galaxy formation

A (central) galaxy too satisfies the equivalent of equation (5). We
neglect any preprocessing of the accreted matter, so that the ratio of
gas mass that accretes on to the galaxy to total mass accreted on to
the galactic halo is simply the cosmological ratio ωb of the baryon
to the total matter density,

ωb ≡ �b

�dm + �b
= �b

�m
. (11)

Once more, neglecting the effect of the growing galaxy on the dark
matter halo leads us to deduce that cosmological accretion decreases
the energy of a galaxy at a rate Ėg = −(κ/2)ωbṀhvh

2 (subscript
‘g’ for galaxy).

However, unlike the case of the dark matter halo, the growing
galaxy generates energy through feedback from stars (and AGN,

Figure 4. The evolution of the total energy of the dark matter halo, Eh

(black), and the total energy of the star-forming gas, Eg (blue), along the
merger tree of a halo of z = 0 mass, Mh, 0 = [0.8–1.2] × 1013 M�, selected
from the EAGLE simulation Ref-L100N1504. The solid curves show the
median relation while the shaded area encompasses the 25–75th percentiles.
While the total energy of the dark halo keeps on decreasing, the energy of
the central galaxy decreases (secularly) at a slower rate as it is regulated by
feedback from star formation.

discussed later), therefore

Ėg = Ė� − κ

2
ωb Ṁhvh

2. (12)

In analogy with equation (1), we now speculate that Ė� ≈
κ
2 ωb Ṁhvh

2: Feedback from star formation compensates the energy
loss associated with cosmological accretion so that the galaxy grows
at nearly constant energy. Fig. 4 supports this ansatz: It shows
that, whereas the energy Eh of the dark matter halo (black curve)
increases by almost 2 orders of magnitude from a lookback time
of 10 Gyr to the present, the energy of the galaxy, Eg (blue curve),
changes by less than ∼50 per cent over the same time interval.

Most of the energy injected into the galaxy’s ISM is associated
with star formation (i.e. supernovae and other processes associated
with short-lived massive stars), therefore we write Ė� in terms of
the star formation rate, Ṁ�, and a characteristic velocity v�,

Ė� = 1

2
Ṁ� v2

� . (13)

We can obtain an order of magnitude estimate for v� by assuming
that most of the injected energy is from core-collapse supernovae
(SNe), which inject 1051 erg of energy each and occur once per
100/η solar masses worth of stars formed,2 hence

v� =
(

εη
2 × 1051erg

100 M�

)1/2

≈ 400
( ε

0.091
× η

1.74

)1/2
km s−1. (14)

The factor ε accounts for radiative losses, with ε = 1 corresponding
to no radiative losses and ε � 1 when such losses are substantial.
Numerical simulations of SNe going off in a range of gas densities
(e.g. Thornton et al. 1998, and reference therein), and analytical
models of the wind in M82 combined with simulations (e.g.

2η = 1.74 for a Chabrier (2003) stellar initial mass function that consists
of stars in the mass range of [0.1, 100] M�, of which those with mass
6–100 M� explode as a core-collapse SN.
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2422 M. Sharma and T. Theuns

Strickland & Heckman 2009), suggest that a large fraction of the
injected energy is radiated, 1 − ε ≈ 90 per cent. The cooling rate
of a radiating plasma also depends on its metallicity, therefore ε is
unlikely to be constant in all galaxies and at all times. In this paper,
we use ε as a fitting parameter when comparing to the simulations;
we used a reference value of ε = 0.091 in equation (14), which is
consistent with the expected radiative losses being substantial and
yields a round number for v�.

Equation (12) that describes the rate of change of the energy
of a galaxy is reminiscent of equation (1) that describes the rate
of change of a main-sequence star: Whereas the star loses energy
(becomes more bound) through radiative losses, the galaxy becomes
more bound as the potential well of its host halo deepens due to
cosmological accretion. While the star reacts by compensating the
energy loss by nuclear fusion, the galaxy reacts by forming stars
that inject energy in the galaxy’s star-forming gas. For stars, this
results in Ė = Ėnucl − L = 0, and we propose here that the same is
true for a galaxy, Ėg = Ė� − (κ/2)ωbṀhvh

2 ≈ 0.
Why would the feedback from star formation be just so that

Ėg ≈ 0? Is the equilibrium situation stable in the galaxy’s case, just
as it was for the star? To examine this question, suppose that Ėg < 0,
i.e. |Eg| is increasing because the galaxy is currently undergoing
too little star formation given the current cosmological accretion
rate. With gas in the galaxy getting compressed by the deepening
potential well, the internal energy Ug of the galaxy will increase.
How does that affect the star formation rate?

In the EAGLE implementation of star formation, an increase in
thermal energy per unit mass implies an increase in pressure,
P ∝ u4 from equation (A3), and hence an increase in star formation
rate, ρ̇� ∝ u4(n−1)/2 ≈ u0.8 from equation (A1) for n = 1.4 from
equation (A2). Therefore, an increase in the accretion rate results in
an increase in the star formation rate (and conversely, a decrease in
the accretion rate results in a decrease in the star formation rate), so
that the equilibrium3 situation, Ėg = 0, is secularly stable – just as in
the case of nuclear fusion in a main-sequence star, and for a similar
reason.4 We note in particular that the increase in star formation rate
due to increased accretion neither assumes nor requires that the gas
mass – the fuel for star formation – increases. In our model, the gas
reservoir is not regulating the star formation rate in a galaxy. We
also note that stability requires that the star formation rate increases
with the ISM’s pressure, but without requiring any detailed form of
the dependence of ρ̇� on P: The details of exactly how star formation
feedback operates are unimportant for the secular stability of the
star formation rate in a star-forming galaxy. Another consequence
is that the star formation rate in a cosmological galaxy depends very
little, if at all, on the star formation law that relates star formation
rate to the gas mass.5

The star formation rate in our model of feedback-regulated galaxy
formation depends on the stellar Initial mass function (through η

and the recycle fraction R discussed below) and the parameters κ

(equation 5), ε (equation 14), and α (equation 2), which is why we
called it Iκεα. By computing the star formation rate and stellar mass

3If the dynamical time-scales are very short, then self-regulation may fail
to keep the galaxy in equilibrium. This may happen for example at high
redshift (e.g. Duffy et al. 2010)
4To take the analogy further, the galaxy in its galactic halo plays the role of
the stellar core in the main-sequence star.
5We note this is not true in simulations of an isolated galaxy, for which the
simulator specifies the gas fraction.

as a function of halo mass, we next show that Iκεα galaxies lie on
a star-forming main sequence.

2.4.2 The main sequence of star-forming galaxies

Setting Ėg = 0 in equation (12) for a self-regulating galaxy results
in a relation between a galaxy’s star formation rate and the
cosmological accretion rate on to its host halo at a given redshift,

1

2
Ṁ�v

2
� = κ

2
ωbṀh vh

2, (15)

which is the main result of this paper. The right-hand side is the
cosmological energy accretion rate on to a halo of a given mass.
The left-hand side sets the corresponding star formation rate in the
galaxy, in terms of the effective energy injection rate per stellar
mass formed. Substituting the expressions for the accretion rate Ṁh

and virial velocity vh from equations (6) and (9) allows us to write
the star formation rate as a product of its value at z = 0, Ṁ�,0, times
a dimensionless function, ��(z),

Ṁ�(z) = κωbṀh
vh

2

v2
�

≡ Ṁ�,0��(z)

Ṁ�,0 = κωb(b − a)H0Mh,0
v2

h,0

v2
�

= 1.2 M�yr−1 κ

5/3

α

1

[
h

0.677

]5/3 [
Mh,0

1012 M�

]5/3

×
[

v�

400 km s−1

]−2

��(z) = (1 + z)ξh(z) (mh(z)H(z))5/3 . (16)

The star formation rate scales ∝ M
5/3
h,0 ∝ v5

h,0; the function ��(z =
0) = 1.

Since stars lose mass during stellar evolution, the time integral of
the star formation rate does not equal the total stellar mass at some
later time. In the ‘instantaneous recycling approximation’,

M�(t) = (1 − R)
∫ t

0
Ṁ�(t ′) dt ′, (17)

where R is the fraction of mass originally in stars that is returned
back to star-forming gas through stellar mass-loss; the stellar
population models used in EAGLE have 1 − R ≈ 0.55 (Wiersma
et al. 2009). The stellar mass is in this approximation

M�(z) = (1 − R)
Ṁ�,0

H0

∫ ∞

z

��(z′)(1 + z′)−1H(z′)
−1

dz′

≡ M�,0 m�(z)

M�,0 = (1 − R)
Ṁ�,0

H0
m�,0

= 1.7 × 1010 M�
1 − R
0.55

[
h

0.677

]2/3
κ

5/3

α

1

×
[

Mh,0

1012 M�

]5/3 [
v�

400 km s−1

]−2

m�(z) = 1

m�,0

∫ ∞

z

��(z′)(1 + z′)−1H(z′)
−1

dz′

m�,0 =
∫ ∞

0
��(z′)(1 + z′)−1H(z′)

−1
dz′ = 1.78, (18)

with m�(z = 0) = 1. To evaluate M�, 0 and Ṁ�,0 we have used the
cosmological parameters �b = 0.048 2519, �m = 0.307, � =
1 − �m, ωb = 0.157, and h = 0.677 from Planck Collaboration I
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(2014), and set a = ā and b = b̄ for the redshift dependence of the
halo accretion rate from equation (8); numerical values in our figures
correspond to the more general accretion histories from Correa et al.
(2015b), for which a and b depend on Mh, 0.

The specific star formation rate, sSFR, follows from combining
equations (16) and (18),

sSFR(z) ≡ Ṁ�(z)

M�(z)
= H0

m�,0 (1 − R)

��(z)

m�(z)

= H0

m�,0(1 − R)
≈ 0.07 Gyr−1 at z = 0. (19)

This ratio would depend on halo mass and hence also on M� if (i) we
had taken into account that the halo accretion rate depends on halo
mass rather than using the average accretion rate from equation (8)
and (ii) if one or more of the Iκεα parameters were to depend on
halo mass.

The expression for the sSFR at z = 0 from equation (19) looks
suspiciously simple: What sets this numerical value? Tracing back
the definitions of the dimensionless functions H(z) (equation 10),
��(z) (equation 16), and m� (equation 18), we see that these only
depend on cosmology and the growth rate of dark matter haloes.
Changing the growth rate will change the value of the numerical
constant m�, 0 in equation (18). The only other Iκεα parameter that
sets the sSFR is R, the recycled mass fraction, which depends on
the IMF. Therefore, the value of the sSFR at z = 0 depends on
cosmology (through the accretion history of haloes), and on the
fraction of mass returned to the ISM during stellar evolution, R,
and nothing else. This is of course a consequence of assuming that
none of the Iκεα parameters evolve.

The dimensionless functions ��(z), m�(z), and ��(z)/m�(z)
provide the unique connection between the stellar properties of a
galaxy and the properties of its host halo; they are plotted in Fig. 5.
The star formation rate of an Iκεα galaxy varies over a factor of ∼6
between z = 0 and 6, peaking at z ∼ 2, with half the stellar mass
forming below z ∼ 1. The sSFR increases rapidly with redshift,
and is higher than its z = 0 value by factors of 4.6, 13.7, and 30 at
redshifts 1, 2, and 3, respectively.

To summarize: Iκεα predicts a main sequence of star-forming
galaxies along which the sSFR does not depend on M�, provided
the Iκεα parameters themselves do not depend on halo mass. The
value of this sSFR increases rapidly with redshift.

2.4.3 Comparison to EAGLE

We test the ideas put forward in the previous section by comparing
the star formation rate of galaxies as a function of halo properties
and redshift to that of EAGLE galaxies. We emphasize that for a
given assumed stellar IMF, the ε parameter of the Iκεα model – a
measure of the radiative losses in the ISM of the energy injected by
SNe – is the central free parameter that sets the star formation rate in
a cosmological halo. It does so by setting the characteristic velocity
v� through equation (14). The parameter ε likely depends on the
properties of a galaxy’s ISM – presumably ε would be smaller
(greater cooling losses) when the ISM is denser and more metal
rich. Rather than proposing a more detailed model for this, at this
stage we simply keep ε constant. However, the EAGLE reference
simulation has a parameter fth that explicitly changes the amount
of energy injected into the ISM per solar mass of stars formed,
depending on density and metallicity of the ISM (see equation 7
in Schaye et al. 2015). Therefore, to keep the comparison between
Iκεα and EAGLE fair, we compare here to the ‘FBconstnoAGN’

Figure 5. The evolution of the dimensionless star formation rate ��(z)
(black curve) from equation (16), stellar mass m�(z) (blue curve; we also
plot log101/m� as a dashed blue line) from equation (18), sSFR ��(z)/m�(z)
(red curve) from equation (19), and the gas mass mgas (magenta curve) from
equation (29). We used a = ā and b = b̄ for the accretion history of haloes
(equation (7).

Figure 6. The dependence of the star formation rate, Ṁ�, on the virial
velocity vh of a galaxy’s host halo, at different redshifts. The coloured lines
are the predictions from the Iκεα model (equation 16, with ε = 0.2) based on
our self-regulation arguments; the large dots are the median star formation
rate in EAGLE galaxies (simulation FbconstnoAGN), with the shaded area
encompassing the 25–75th percentile range. Different colours correspond
to different redshifts (blue, green, red, and purple correspond to z = 0, 1, 3,
and 6, respectively). The Iκεα model captures well the dependence of Ṁ�

on vh and z.

EAGLE variation, in which fth is kept constant (and which does not
include AGN feedback either; see the appendix for more details).
We reiterate though, that keeping fth constant is not quite equivalent
to keeping ε constant, because the cooling losses in EAGLE still
depend on density and metallicity.

The star formation rate predicted by equation (16) is compared
to the EAGLE FBconstnoAGN model in Fig. 6, taking α = 1, κ =
5/3, η = 1.7, and ε = 0.2 (so that v� is constant; see equation 14);
the coloured lines are the Iκεα prediction at different redshifts, and
the large dots are the median relation for EAGLE galaxies with the
shaded region encompassing the 25–75th percentile range. Even
when keeping v� constant, equation (16) captures accurately the
increase in Ṁ� with the halo’s virial velocity vh at fixed z, as well
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2424 M. Sharma and T. Theuns

Figure 7. Same as Fig. 6, but for the dependence of Ṁ� on halo mass, Mh.

as the increase in Ṁ� with z at fixed vh. With only one ‘free’ model
parameter ε (which sets v�), we were astonished by the level of
agreement between Iκεα and EAGLE.

In the case of Fig. 6, the increase in Ṁ� with z at given vh

is due to the increase in the cosmological accretion rate on to a
halo with given vh at given z, as is apparent from equation (15).
However, plotting Ṁ� as a function of Mh (Fig. 7), we see that the
redshift dependence is stronger due to the H(z)2/3 dependence of
equation (16). This is not surprising within the context of our self-
regulation model: the star formation rate depends on virial velocity
rather than halo mass.

2.5 The M�–Mh relation

The stellar mass of a galaxy in equation (18) is the product of
a dimensional number that depends on the galaxy’s halo mass at
z = 0, Mh, 0, times a dimensionless function m�(z). This functional
dependence allows us to answer the question of ‘what is the M�–Mh

relation in Iκεα’ in two different ways: (i) ‘What is the M�–Mh

relation for a population of galaxies at a given redshift?’, and (ii)
‘How does the M�–Mh ratio of a halo evolve?’ The answer to the
first question follows from M� ∝ M

5/3
h,0 and Mh ∝ Mh,0, therefore

d ln M�

d ln Mh
|z=const = 5

3
. (20)

The value of the exponent can be traced back to the Ṁh vh
2 ∝ Mh

5/3

dependence of the star formation rate on halo mass (equation 16).
We compare the predicted relation to that measured in EAGLE

in Fig. 8: The coloured lines are the theoretical predictions at
different redshifts, and the large dots are the median relation for
EAGLE galaxies with the shaded region encompassing the 25–75th
percentile range. Given that Iκεα predicts the dependence of Ṁ� on
Mh as a function of z in EAGLE variation FBconstnoAGN well, it is
not very surprising that it also reproduces the relation between M�

and Mh.
Although Iκεα galaxies lie along a line with M�/Mh ∝ Mh

2/3,
they do not evolve along this line. The M�–Mh ratio for a given halo
evolves as

d ln M�

d ln Mh
|Mh,0=const = − mh(z)

m�,0(a − b)m�(z)
(mh(z)H(z))2/3. (21)

This logarithmic slope is ≈1.1 at z = 0 and increases with z to
become nearly constant at a value of 1.4 for z ≥ 4. If this slope

Figure 8. The stellar mass–halo mass ratio, M�/Mh, as a function of Mh

at different redshifts. The coloured lines are the predictions from the Iκεα

model (M� from equation 18); the large dots are the median relation in
the EAGLE galaxies (simulation FbconstnoAGN), with the shaded area
encompassing the 25–75th percentile range. Different colours correspond
to different redshifts (blue, green, red, and purple correspond to z = 0, 1, 3,
and 6, respectively). The black dashed and black dotted lines correspond to
EAGLE galaxies with approximately 100 and 500 star particles, respectively.

were 5/3, then (star-forming) galaxies would evolve along the z =
0 M�–Mh relation so that the stellar mass in a halo of a given mass
would be independent of redshift. Because the slope is less than
5/3, the M�/Mh versus Mh relation evolves with redshift, in the
sense that the stellar mass increases with redshift at a constant halo
mass; however, that evolution is not very strong. This is the redshift
evolution seen in Fig. 8.

Summarizing, we conclude that Iκεα reproduces the relation
between halo mass, star formation rate, and stellar mass measured in
the FBconstnoAGN EAGLE variation. The fact that Iκεα reproduces
the dependence of Ṁ� on Mh is particularly encouraging, since
it directly tests the very basis of the self-regulation argument of
equation (15). Interestingly, the star formation rate predicted by
equation (16) does not depend at all on the galaxy’s gas mass or
indeed the assumed star formation law – as long as ρ̇� ∝ uζ for
some sufficiently large and positive value of the exponent ζ , so that
the star formation rate increases with the pressure of the galaxy’s
ISM. Instead, the star formation rate depends on the cosmological
accretion rate, and on v� – that is, on the efficiency of stellar
feedback. We will return to this point in the discussion section.

2.6 The GSMF

We compute the GSMF by combining the M�–Mh relation from
Iκεα with a model for the evolution of the halo-mass function. The
Press–Schechter (PS; Press & Schechter 1974) approximation for
the actual number density of haloes per dex in halo mass (e.g. Reed
et al. 2007), at z = 0, is

dnh

d log Mh,0
= n0 (

Mh,0

Mps
)−αh exp(−Mh,0

Mps
), (22)

where n0 ≈ 1 × 10−4 Mpc−3 is a normalization constant, Mps ≈
2 × 1014 M� a characteristic mass above which the number density
of haloes falls exponentially, and the exponent αh ≈ 0.9. In the
approximation that all haloes grow at the same logarithmic rate,
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Feedback-regulated galaxy formation 2425

Mh(z) = Mh,0 mh(z), the halo-mass function at redshift z is

dnh

d log Mh
= n0 (

Mh

mh(z) Mps
)−αh exp(− Mh

mh(z)Mps
), (23)

where n0 and MPS are redshift independent, and nh is now the
comoving number density of haloes per dex in halo mass. Provided
the Iκεα parameters are constants, M� ∝ Mh

5/3, and the comoving
number density of galaxies per dex in stellar mass becomes

dng

d log M�

= 3n0

5

(
M�

m�(z)M�,ps

)−α�

exp(− M�

m�(z)M�,ps
)

M�,ps = M�,0

(
Mps

1012M�

)5/3

≈ 1.7 × 1010

(
Mps

1012M�

)5/3

M�

α� = 3

5
αh ≈ 0.54. (24)

In this approximation, the GSMF is just a scaled version of the
halo-mass function, with a power-law shape at low masses and an
exponential cut-off at high masses. However, it is well known that
the ‘knee’ in the GSMF – above which the exponential sets in – does
not correspond to the knee in the halo-mass function, but rather is
a consequence of AGN feedback (Bower et al. 2006; Croton et al.
2006). We discuss how this can be incorporated in the model in
Section 3.4 below.

It is interesting to note that we can make the same argument
that leads to equation (24) to the star formation rate of a galaxy
and compute the ‘galaxy star formation rate function’, GSRF, the
number density of galaxies per dex of star formation rate. Since
Ṁ� ∝ Mh

5/3, the GSRF has the same shape as the GSMF,

dng

d log Ṁ�

= 3n0

5

(
Ṁ�

��(z)Ṁ�,ps

)−α�

exp(− Ṁ�

��(z)Ṁ�,ps
)

Ṁ�,ps = Ṁ�,0

(
Mps

1012M�

)5/3

≈ 1.2

(
Mps

1012M�

)5/3

M� yr−1. (25)

The constants Ṁ�,0(Mh,0 = 1012 M�, z = 0) and M�, 0(Mh, 0 =
1012 M�, z = 0) are the z = 0 star formation rate and stellar mass of
a galaxy in a halo of mass 1012 M�; the numerical values for these
are taken from equations (16) and (18), respectively.

At sufficiently low halo mass, these functions are power laws with
a slope 3αh/5 ≈ 0.54. The comoving number density of galaxies
with a given stellar mass increases monotonically with decreasing
redshift ∝ m�(z)α� . The corresponding evolution of the comoving
number density of galaxies with a given star formation rate is ∝
��(z)α� : This function is not monotonic but peaks around z ∼ 2. It
falls to approximately 0.5 and 0.54 times its z = 2 value at redshifts
z = 5.5 and 0, respectively.

The Iκεα star formation in a halo with low vh is much less
than the rate at which that halo accretes gas. Indeed, according
to equation (15), only a fraction κvh

2/v2
� of the accreted gas

goes into stars. What happens to the remaining gas? Also, self-
regulation due to feedback from star formation must eventually fail
for sufficiently high values of vh ≈ v�/κ

1/2 ≈ 310 km s−1, since
then the star formation rate required to self-regulate would exceed
the gas accretion rate. To investigate the consequence of these
considerations in more detail, we next examine the gas properties
in Iκεα.

3 G A L AC T I C W I N D S A N D T H E FA I L U R E O F
SELF-REGULATI NG STELLAR FEEDBACK

3.1 Galaxy sizes and gas fractions

The star formation rate in the Iκεα model does not depend on
the gas mass. Instead, we compute the mass of star-forming gas
by assuming a star formation law. Taking the Kennicutt–Schmidt
(Kennicutt 1998) star formation law and assuming that star-forming
gas is in an exponential disc with scale length Rgas, the (total) star
formation rate of a galaxy is related to its gas mass by

Ṁ� = 2πAR2
gas

n2

(
Mgas/M�

2π(Rgas/pc)2

)n

, (26)

where A and n are the parameters of the Kennicutt–Schmidt law
(equation A2). We follow Mo et al. (1998) (see also Kravtsov 2013)
by assuming6 that disc size, Rgas, is a constant fraction, λ, of the
halo’s virial radius. Using equation (2), this yields

Rgas = λ Rh = Rgas,0 rgas(z)

Rgas,0 = 2 kpc
λ

0.01

(
Mh,0

1012M�

)1/3

rgas(z) = mh(z)1/3

H(z)2/3
, (27)

where λ= 0.01 yields a reasonable reference scale length of Rgas, 0 =
2 kpc for the galaxy inhabiting a 1012 M� halo at z = 0. Using the
Ṁ�–Mh,0 relation from equation (16) and the M�–Mh, 0 relation from
equation (18) allows us to relate galaxy size to star formation rate
and stellar mass,

Rgas(z)

2 kpc

0.01

λ
=

(
Ṁ�

1.2 M� yr−1

)1/5
rgas(z)

��(z)1/5

=
(

M�

1.7 × 1010 M�

)1/5
rgas(z)

m�(z)1/5
. (28)

Sizes of galaxies with a given M� depend on redshift ∝
m

1/3
h /(H2/3m1/5

� ). The ratio m
1/3
h /m1/5

� varies by less than a factor
of 0.75 below z = 6, meaning that the size scales approximately
as 1/H(z)2/3 = 1/(1 + z) for z � 1, and slower than that at lower
z. This agrees rather well with the observed scaling: Allen et al.
(2017) quote a scaling ∝ (1 + z)−0.97 for redshifts 5–7 and van der
Wel et al. (2014) quote a scaling (1 + z)−0.75 for redshifts 0–3. At
a given value of Ṁ�, Rgas ∝ (1 + z)−1.7 for z � 1, which is steeper
than the (1 + z)−1.1 quoted by Shibuya, Ouchi & Harikane (2015).
The weak dependence of size on mass, Rgas ∝ M1/5

� , is consistent
with the scaling R� ∝ M0.22

� for the stellar size–M� relation found
by van der Wel et al. (2014).

Substituting equation (27) into equation (26) yields

Mgas = Mgas,0 mgas(z)[
Mgas,0

2.45 × 109 M�

]n

= κ

5/3

α

1

[
h

0.677

]5/3 [
λ

0.01

]2n−2

×
[

v�

400 km s−1

]−2 [
Mh,0

1012 M�

]1+2n/3

mgas(z) = [��(z)]1/n [rgas(z)]2−2/n. (29)

6Mo et al. (1998) apply this reasoning to the stellar disc; Navarro et al.
(2017) show that Rgas scales better with the scale radius of the halo, but
since we neglect variations in halo concentration by taking α = 1, these are
equivalent.
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2426 M. Sharma and T. Theuns

Figure 9. The mass of star-forming gas in galaxies, Mgas, versus the star
formation rate, Ṁ�, at different redshifts: z = 0 (blue), 1 (green), and 3
(red). The thick solid lines show the scaling in Iκεα obtained by using the
Kennicut–Schmidt law (equation 26), with n = 1.4 and assuming that the
scale length of the gas disc evolves as in equation (27) (Mo, Mao & White
1998). The large coloured dots are the median relation in the EAGLE galaxies
(simulation FbconstnoAGN), with the shaded regions encompassing the
25–75th percentile range. The dotted horizontal line corresponds to EAGLE

galaxies with 100 gas particles. The galaxies for which Rgas is less than the
gravitational softening length in EAGLE lie below the triangles on each line,
indicating that those galaxies are not well resolved in the EAGLE simulation.
In the Iκεα model, the amount of gas in the ISM is set by the star formation
rate rather than the other way around.

Using the Ṁ�–Mh,0 relation from equation (16) allows us to compute
the Mgas–Ṁ� relation, and the result is compared to the EAGLE

simulation in Fig. 9, where we used the values of A and n from
Kennicutt (1998). The Iκεα prediction reproduces very well the
slope of the relation and the normalization at z = 0. The simulated
evolution is somewhat weaker than predicted. Although pleasing,
the excellent agreement between the theoretical prediction and
the simulation is not surprising: Galaxies in EAGLE follow the
Kennicutt–Schmidt relation of equation (A2), and that relation
results in galaxies following equation (26) at least approximately.

The evolution of the gas mass, as governed by the dimensionless
function mgas(z) from equation (29), is plotted in Fig. 5. The ratio of
mgas(z) over its value at z = 0 is 0.5, 0.8, 1.2, and 1.4 at z = 4, 3, 2,
and 1, respectively, meaning that the gas mass of a forming galaxy
changes by slightly more than a factor of 2 since z = 4. Therefore,
assuming that galaxies form stars at nearly constant gas mass is a
relatively good approximation below z ∼ 4; it forms the basis of
the equilibrium model of Davé et al. (2012); see also Bouché et al.
(2010) and Krumholz & Dekel (2012).

3.2 Galactic winds

Galactic winds are a natural outcome of a model in which cosmo-
logical accretion sets the star formation rate but a star formation
law sets the gas mass. Indeed, conservation of baryon mass requires
that

ωbṀh = Ṁgas + (1 − R)Ṁ� + Ṁw

≡ Ṁgas + (1 + β − R) Ṁ�, (30)

where Ṁw is the rate at which the galaxy loses mass through a
galactic wind, and the ratio β ≡ Ṁw/Ṁ� is usually called the ‘mass-

Figure 10. The dependence of the wind mass-loading factor β (top panels,
from equation 30) and the wind-speed, vw, at 5 times the wind launching
radius (bottom panels, from equation 33) as a function of halo mass, Mh (left-
hand panels), and halo virial velocity, vh (right-hand panels), from the Iκεα

model. The launching radius of the wind is taken to be equal to the gas scale
radius, Rgas (equation 27). The coloured lines correspond to ε = 0.1, κ =
5/3, α = 1, and 1 − R = 0.55 in the Iκεα model, at different redshifts (blue,
green, red, and purple corresponding to z = 0, 1, 3, and 6, respectively).
The redshift dependence is stronger as a function of Mh than as a function
of vh. At low values of vh � 120 km s−1, the wind speed tracks vh, and
the mass loading decreases from β ∼ 30 at vh ∼ 50 km s−1 to β ∼ 1 at
vh ∼ 100 km s−1. The outflow begins to stall, β → 0, for vh → 180 km s−1,
at which point the wind speed becomes large, ∼103 km s−1. The black
dashed line in the bottom right-hand panel is the one-to-one relation. The
thin black curve labelled ‘MW’ shows the evolution of β and vw for a Milky
Way-like galaxy, z = 0 halo mass of Mh, 0 = 1012 M�, as it grows in mass.

loading factor’ of the wind. Solving for β gives

β = v2
�

κvh
2

− (1 − R) − Ṁgas

Ṁ�

, (31)

where we used the main Iκεα relation of equation (15) to relate Ṁ�

and Ṁh. We can compute β as a function of redshift and vh or halo
mass by integrating this equation using the relation between the gas
mass and Ṁ� (equation 26); the result is shown in Figs 10 and 11.
The velocity of the outflow can be estimated by assuming that the
wind conserves energy once launched,7

1

2
Ṁ� v2

� = 1

2
Ṁw

(
1 + 2

M2γ (γ − 1)

)
v2

w + 1

2
Ṁwv2

φ

1

2
v2

φ = cv2
h

ln(1 + c) − c
1+c

[
ln(1 + cRL

Rh
)

cRL
Rh

−
ln(1 + cR

Rh
)

cR
Rh

]
. (32)

M = vw/cs is the wind’s Mach number, γ = 5/3 is the adiabatic
index, v2

φ/2 is the change in potential of a Navarro–Frenk–White
(NFW) halo (Navarro et al. 1997) between the launch cite, RL, and
the location R where it is measured (e.g. Łokas & Mamon 2001), c
is the halo’s concentration parameter that depends on Mh and z (e.g.
Ludlow et al. 2014) and we assume the launch radius, RL = Rgas.
vφ ≈ 0 if the wind speed is measured very close to the launch site,
and vφ equals the escape speed from the halo if the wind speed is

7This assumption may not be unreasonable because ε already accounts
significant radiative losses before the wind is launched.

MNRAS 492, 2418–2436 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/2/2418/5625787 by D
urham

 U
niversity user on 24 January 2020



Feedback-regulated galaxy formation 2427

Figure 11. The mass-loading factor β from equation (31) as a function
of the halo virial velocity, vh, and redshift, z, shown as a colour map, for
Ṁgas = 0 (top panel) and for Ṁgas �= 0 (bottom panel). The dashed and solid
black lines correspond to β = 0.5 and 1, respectively. The red and magenta
lines show the evolutionary tracks of two haloes with masses, M h, 0 =
2×10 12 M � and 10 13 M � , respectively.

measured at infinity. This expression also neglects any ram pressure
the outflow may suffer. If the outflow is cold, M → ∞, and

v2
w ≈ v2

�

β
− v2

φ. (33)

Clearly, this treatment of the wind is quite approximate and in
particular it is not obvious how one should compare our value of
vw to observations, in which the wind speed is often expressed
in terms of the full width half-maximum of an emission line.
Fortunately, the behaviour of the mass-loading β is independent
of these considerations, although here it is not so clear whether β

refers to gas leaving the galaxy or gas leaving the halo.
Given these limitations, we plot β, and the wind speed, vw, at a

distance of 5 times the gas scale radius, Rgas, as a function of halo
mass, virial velocity, and redshift in Fig. 10. The β–Mh relation
evolves with redshift, as is clear from the left-hand panels of the
figure, basically because the relation between Ṁ� and Ṁh depends
on virial velocity according to equation (15). Most of that redshift
dependence is removed if we plot β as a function of vh, as is seen
from the right-hand panels in the figure. As vh increases, β decreases
and vw increases. Also notice that as vh tends to a critical value of
around vh, c ≈ 180 km s−1, β drops precipitously whereas the wind
speed increases rapidly.

Winds in low-vh galaxies are slow and strongly mass loaded, β �
1, as can be seen from Fig. 10 and 11. When β � 1 and making the
further approximation that |Ṁgas| � Ṁ�, equations (30) and (33)
combine to

vw =
(

κ(1 + β − R)

β

)1/2

vh ≈ κ1/2 vh. (34)

Therefore, the wind speed tracks the halo’s virial velocity (in low-vh

galaxies at z < 4), as is apparent from Fig. 10.
The relation between gas mass and star formation rate that results

from the Kennicutt–Schmidt star formation law, equation (29), and
the equation for the mass loading of winds, equation (31), have
interesting consequences, namely (i) the emergence of a mass–
metallicity relation, and (ii) the existence of a characteristic value
of vh above which self-regulation due to feedback from stars fails.
We investigate these next.

3.3 The mass–metallicity relation

The metal mass of the star-forming gas, MZ ≡ Z Mgas, changes due
to metals synthesized and released by stars, metals accreted, metals
lost in a galactic wind, and metals locked-up in long-lived stars. Its
rate of change is therefore

ṀZ = d

dt
(ZMgas)

= yṀ� + Z0ωbṀh − ZwṀw − Z(1 − R)Ṁ�,

(35)

where y is the stellar yield, Z0 is the metallicity of accreted gas,
and Zw is the metallicity of the wind that may differ from that
of the gas, for example because enriched gas is more like to be
ejected by feedback (see e.g. Creasey, Theuns & Bower 2015).
Combining this relation with equation (30), which expresses baryon
mass conservation, and the main Iκεα relation between Ṁh and Ṁ�

from equation (15), we find that provided Zw = Z and Z0 = 0,

Ż = y
Ṁ�

Mgas
− Z

ωbṀh

Mgas
,

= Ṁ�

Mgas

(
y − Z

v2
�

κv2
h

)
. (36)

The recycled fraction R does not affect Ż in the instantaneous
recycling approximation, and the wind’s mass-loading β does not
affect Ż provided Zw = Z. Integrating this equation in time, we
compare the relation between Z and vh as a function of redshift to
the results from EAGLE (simulation FbConstnoAGN) in Fig. 12; the
agreement is quite good, with Iκεα showing a somewhat steeper
dependence of Z on Mh and a lower normalization at Milky Way-like
values of vh ∼ 140 km s−1.

Interestingly though, both Iκεα and EAGLE show very little
evolution of the Z–vh relation in Fig. 12. Indeed, equation (36)
shows that the metallicity of a galaxy tends to a value Z ≈ κyvh

2/v2
�

that in fact only depends on a halo’s virial velocity and not
explicitly on redshift. In this approximation, the metallicity of a
galaxy changes only secularly, tracking the evolution of vh

2. Such a
behaviour is an attractor of equation (36): given that Ṁ�/Mgas > 0,
Ż is positive (negative) when Z < yκv2

h/v
2
� (when Z > yκv2

h/v
2
� ).

Therefore, Z approaches the secular value,

Z = κy
v2

h

v2
�

, (37)

on the gas consumption time-scale, Mgas/Ṁ�. This secular value
reproduces the evolution from equation (36) very well, as shown by
the dashed lines in Fig. 13.

Using this secular expression for Z(vh), taking v� = 400 km s−1,
and y = 0.04, Z� = 0.0127 for the total metal yield and solar
metallicity as done in the stellar evolution models collected from
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2428 M. Sharma and T. Theuns

Figure 12. Metallicity, Z, of the star-forming gas as a function of the halo’s
circular velocity, vh, at various redshifts. The large solid dots are the median
relation from EAGLE (simulation FbconstnoAGN), with the shaded area
encompassing the 25–75th percentile for redshifts z = 0 (blue), 1 (green),
and 3 (red). Only haloes with at least 103 gas particles are shown. The black
lines correspond to the Iκεα model, from equation (38), with ε = 0.05 and
0.1 shown as a solid and dashed line, respectively; the redshift dependence
of these lines is negligible, and the results depend very little on the assumed
initial metallicity. The dependence of Z on vh is slightly shallower in EAGLE

compared to Iκεα. The Z–vh relation is almost independent of redshift in
both the model and EAGLE.

Figure 13. Metallicity, Z, in solar units, as a function of redshift, z, for
haloes with different mass; (blue, green, and red correspond to z = 0
halo masses of log10Mh, 0/M� = 10, 11, and 12, respectively). The result
from integrating equation (36) numerically is shown as solid lines, and the
approximation Z = κyvh

2/v2
� is shown as dashed lines. Results are shown

taking v� = 400 km s−1, y = 0.04, and Z� = 0.0127.

the literature by Wiersma et al. (2009), we obtain

Z

0.68 × Z�
=

(
Mh,0

1012 M�

)2/3

(mhH)2/3

=
(

Ṁ�

1.2 M� yr−1

)2/5
(mhH)2/3

�
2/5
�

=
(

M�

1.7 × 1010 M�

)2/5 (mhH)2/3

m
2/5
�

. (38)

The reference values of Ṁ� and M� for the star formation rate and
stellar mass are taken from equations (16) and (18), respectively. The
normalization of this relation, 0.68 Z� for Mh, 0 = 1012 M�, depends
on Iκεα parameters ∝ (κα/(εη))3/5. The observed normalization is

uncertain but at face value higher than what we find by a factor of
2 (e.g. Tremonti et al. 2004).

The dependence of Z on vh implies that Iκεα galaxies fall on
a mass–metallicity relation, as well as on a star formation rate–
metallicity relation. Similarly to the stellar mass–halo mass relation,
we can compute how Z depends on M� at a given redshift,

d ln Z

d ln M�

|z=const = d ln Z

d ln Ṁ�

|z=const = 2

5
, (39)

independent of redshift, with the value of the exponent resulting
from the vh

2 ∝ M2/5
� dependence of equation (18). As a galaxy

grows in mass, its metallicity increases as

d ln Z

d ln M�

|Mh,0=const = 2

3

d ln(mhH)/dz

d ln m�/dz
. (40)

The evolution of Z at a given stellar mass or star formation rate
is ∝ (mhH)2/3 according to equation (38). With increasing z, mh(z)
decreases whereas H(z) increases, resulting in little evolution in the
Z–M� relation. At a given value of M�, Z decreases with increasing
z by factors of 0.9 and 0.76 compared to its z = 0 value for z = 2
and 3, respectively. The observed evolution is somewhat stronger
and better reproduced by the EAGLE REFERENCE model in which ε

varies with the local gas properties (De Rossi et al. 2017).
Why does Z depend on M� in Iκεα? The Iκεα metallicity of a

galaxy is Z ≈ yṀ�/(ωbṀh), the ratio of the rate at which stars metal
enrich the ISM over the rate at which these metals are being diluted
by accreting (primordial) gas. The reason this ratio depends on M�

is that the star formation efficiency depends on vh: Ṁ�/(ωbṀh) ∝
v2

h ∝ M2/5
� , given that M� ∝ v5

h . In Iκεα, the origin of the mass–
metallicity relation is the dependence of the star formation efficiency
on the halo’s virial velocity. The M�–Z relation evolves because the
M�–vh relation evolves. The first part of this claim agrees with Davé
et al. (2012), but the second part does not: In their model, evolution
is caused by the increase in metallicity of accreting gas. Note that,
as long as the galaxy self-regulates8 its gas metallicity is set by the
instantaneous star formation rate rather than a consequence of the
build-up of metals that fail to escape from the potential well of its
host halo. In other words, the reason that Z depends on vh is because
Ṁ�/Ṁh depends on vh, rather than that it is ‘easier for metals to
escape from haloes with low vh’, as is often claimed. Indeed, we
have assumed that Zw = Z so that an outflow by itself does not affect
Z at all. Instead, low-vh haloes have galaxies with low Z because
they are inefficient at forming stars.

3.4 When stellar feedback fails

The basic Iκεα relation of equation (15) between the halo accretion
rate and the star formation rate results in Ṁ� ∝ v5

h,0, where vh, 0 is the
virial velocity of the halo at redshift z = 0, so that haloes with a large
virial velocity form stars at a greater rate. For low values of vh, 0,
only a very small fraction of the accreted baryons are converted into
stars with the majority of the accreted gas expelled in an outflow, as
discussed in Section 3.1. The rate of gas accretion increases ∝ v3

h,0

but the star formation rate increases ∝ v5
h,0. Since obviously the

star formation rate cannot be higher than when all accreted gas is
converted to stars, Ṁ� ≤ ωbṀh, it eventually becomes impossible
to satisfy equation (15) when vh is larger than the critical value that

8Clearly, this would not be true in case of a recent merger that might increase
Ṁ� and dilute Z by gas accretion.
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Feedback-regulated galaxy formation 2429

results from inserting Ṁ� = ωbṀh in equation (15),

vh,max = v�

κ1/2
= 310

v�/400 km s−1

(κ/(5/3))1/2
km s−1. (41)

Equation 31 gives a slightly weaker limit when requiring that the
mass-loading factor β ≥ 0 so that any outflow decreases the baryon
fraction of the halo rather than spuriously increasing it.

As a halo grows and vh increases, β starts to drop rapidly to
values below 1, as seen in Fig. 10. At z ≤ 2, β → 0 for vh →
vh,max but β already plunges to values β ≤ 1 as vh approaches a
somewhat smaller critical velocity. At higher redshifts, this critical
halo virial velocity decreases, basically because it is no longer a
good approximation to neglect Ṁgas.

What is the consequence of this failure of self-regulation for
haloes with too high vh? The Iκεα GSMF discussed in Section 2.6
is a power law that tracks the power-law shape of the halo-mass
function. In contrast, the observed GSMF has an exponential cut-
off at stellar masses above a characteristic stellar mass. It is thought
that feedback from accreting black holes (AGNs) suppresses star
formation in such massive galaxies and this is the cause of the
observed break in the GSMF (e.g. Bower et al. 2006; Croton et al.
2006).

This motivates us to associate the critical velocity above which
stars cannot self-regulate galaxy formation with those haloes in
which AGNs regulate galaxy formation instead. Using the subscript
‘agn’ as a mnemonic, we see from Fig. 10 that the onset of AGN
activity takes place at a nearly redshift-independent value of vh of
the order of

vh,agn ≈ 180 km s−1, (42)

for which the corresponding virial temperature is9

Th,agn = μmpv
2
h,agn

5kB
≈ 105.7 μ

0.62

( vh,agn

180 km s−1

)2
K. (43)

In the model described by Bower et al. (2017), seed black holes
start to grow exponentially in mass when the outflow that is powered
by feedback from star formation ceases to be buoyant in the hot
corona that fills the dark matter halo. This causes a build-up of gas
that fuels the growth of the black hole. The episode of exponential
growth ends when the black hole is sufficiently massive that its
feedback regulates the forming galaxy. In practice, this results in
a significant decrease in Ṁ�/M�. This model describes well the
behaviour of galaxies in the EAGLE simulation, with the transition
between star formation and AGN feedback-regulated galaxies
occurring in haloes with a virial temperature nearly identical to
that of equation (43) (McAlpine et al. 2018).

At first sight, it seems that the reasoning that led to equation (43),
‘stellar feedback fails because v2

� , a measure of the thermal energy of
feedback-heated gas, is too low compared to κvh

2’ is very different
from that of Bower et al. (2017), ‘stellar feedback fails because
outflows are no longer buoyant in the hot corona’. However, the
build-up of the hot halo is itself depending on the efficiency of
stellar feedback (Correa et al. 2018). Put in terms of Iκεα: the
higher ε, the higher the value of vh above which a hot corona
develops (see in particular fig. 14 in Correa et al. 2018). Within the
current interpretation, the failure of stellar feedback is not due to
the formation of a hot corona, but rather the formation of a hot halo
is facilitated by failing stellar feedback.

9mp is the proton mass, kB is Boltzmann’s constant, and μ the mean
molecular weight.

Figure 14. Metallicity 12 + (O/H) as a function of the stellar mass, M�,
from Iκεα for feedback efficiency ε = 0.01 (dotted blue), 0.05 (solid blue),
and 0.1 (dashed blue). The Iκεα results (solid lines) have been obtained
by integrating equation (36), for a yield, y = 0.04 and then converted to
the units of 12 + (O/H) assuming that a metallicity of Z = Z� = 0.0127
corresponds to 12 + (O/H)=8.7. For a comparison, the observed trend at
z = 0 for SDSS galaxies (Mannucci et al. 2010) is also shown as a thin
magenta line with vertical bars for the scatter. Iκεα reproduces the slope of
the Z–M� relation very well.

The results from the previous sections allow us to compute other
properties of the halo and the galaxy when vh = vh,agn, the onset of
AGN activity. The halo mass, stellar mass, and star formation rate
in a halo with vh = vh,agn at z = 0 are

Mh,agn(z = 0) = 2 × 1012 M�
(vh,agn/180 km s−1)3

α/1

M�,agn(z = 0) = 5.3 × 1010 M�
( vh,agn

180 km s−1

)5

Ṁ�,agn(z = 0) = 3.8 M� yr−1
( vh,agn

180 km s−1

)5
, (44)

and the corresponding values at redshift z are

Mh,agn(z) = Mh,agn(z = 0)

H(z)

M�,agn(z) = M�,agn(z = 0)
m�(z)

(mh(z)H(z))5/3

Ṁ�,agn(z) = Ṁ�,agn(z = 0)
��(z)

(mh(z)H(z))5/3
.

(45)

We do not expect the Iκεα GSMF to be correct for haloes with
vh ≥ vh,agn. We therefore plot the GSMF discussed in Section 2.6
up to haloes of mass M�, agn(z), and compare to the EAGLE GSMF
(simulation FbConst, in which the stellar feedback efficiency is
a constant and which does include feedback from an AGN) in
Fig. 15. The Iκεα model reproduces the power-law shape of the
EAGLE mass function up to Mh,agn(z) well, getting the evolution
of the normalization approximately correct as well. The value of
M�, agn(z) is close to where EAGLE predicts a rapid decrease in the
number density of galaxies, which is due to the action of AGN
feedback in the simulation. The number density of galaxies at the
knee decreases with increasing z. The previous equations elucidate
the reason for this in Iκεα. Consider two redshifts z1 and z2, with
z1 < z2, say. Haloes with vh = vh,agn at a redshift z2 will be more
massive at z = 0 than those that have vh = vh,agn at a redshift z1, by
the factor H(z2)/H(z1), which is ≈((1 + z2)/(1 + z1))3/2 for z1 ≥ 1.
The corresponding ratio of number densities then follows from the
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2430 M. Sharma and T. Theuns

Figure 15. The evolution of the GSMF. The coloured curves show the
EAGLE GSMF (simulation FbConst, in which the feedback efficiency is
constant and which includes AGN feedback), with results at z = 1, 3, 6,
and 8 shown in green, red, purple, and yellow, respectively. At high mass,
the curves are drawn as dashed lines if there are fewer than 5 galaxy dex
in log10M�, at low mass when there are fewer than 100 stellar particles
per galaxy. The black full lines are the corresponding Iκεα results from
Section 2.6, with a triangle corresponding to galaxies of mass M�, agn

(equation 45) above which feedback from an AGN is expected to set in,
and a filled circle at half this mass. The black dotted line is the halo-mass
function (equation 22). The coloured open circles indicate the abundance of
haloes with mass Mh,agn(z)/2, computed from equation (45). The Iκεα model
predicts the shape and evolution of the normalization of the EAGLE GSMF
well. The predicted location of the knee in the GSMF is also reasonable. We
used a = ā and b = b̄ for the accretion history of haloes (equation 7).

slope of the PS halo-mass function, (H(z2)/H(z1))αh . For example,
the comoving number density at z = 6 is lower than at z = 1 by a
factor of 4.8.

3.5 Reality check

Up to now, we have compared Iκεα to an EAGLE simulation in which
the feedback parameters are kept constant (simulation FbConst).
That simulation does not reproduce the observed properties as well
as the EAGLE reference simulation. So, how well does Iκεα describe
the observations?

For a fiducial value of v� = 400 km s−1, Iκεα predicts that a z =
0 galaxy with a stellar mass M� = 5 × 1010 M� has a star formation
rate of Ṁ� = 3.5 M� yr−1 and is hosted in a dark matter halo of
mass Mh = 1.9 × 1012 M�. For the Milky Way, the inferred values
are M� = (5 ± 1) × 1010 M�, Ṁ� = (1.65 ± 0.19) M� yr−1, and
Mh = (1.1 ± 0.3) × 1012 M� (Bland-Hawthorn & Gerhard 2016),
respectively. However, the scatter in M� and Ṁ� for a halo with
given Mh is substantial, and the Iκεα value for M� is consistent with
the abundance matching analysis by Guo et al. (2010), and the star
formation rate of Ṁ� = 3.5 M� yr−1 falls well within the blue cloud
for a galaxy with that M� in the MPA-JHU DR710 catalogue. This
reasonable level of agreement is of course not surprising: We chose
Iκεα’s feedback efficiency parameter ε that sets v� by comparing
to these data sets.

The Iκεα sSFR is Ṁ�/M� ≈ 0.07 Gyr−1 at z = 0, independent of
ε, as compared to an observed value of 0.1 Gyr−1 at M� = 1010 M�
(see the discussion of the data compilation by Behroozi et al. 2018).
The observed sSFR increases to a value of 1 Gyr−1 (2 Gyr−1) by

10https://wwwmpa.mpa-garching.mpg.de/SDSS/DR7/

redshift z = 1 (z = 2, Behroozi et al. 2018), as compared to the
Iκεα values of 0.3 (1). The Iκεα values are actually very close to
those in EAGLE (simulation FbConstNoAGN). The faster observed
evolution might signal that ε does evolve.

The M� ∝ M
5/3
h dependence of stellar mass on halo mass ac-

cording to equation (18) results in a redshift-independent low-mass
slope of the GSMF of dn/d log(M�) ∝ M≈−0.54

� . The faint-end slope
of the Schechter luminosity function (Schechter 1976),

dn(L)

d log L
∝ L−αg exp(−L/L�), (46)

is αg ≈ 0.48 at redshift z = 0 in the GAMA ‘z’ band (Loveday
et al. 2012), a long enough wavelength so that stellar mass is
approximately proportional to z-band luminosity. The level of
agreement between the two slopes, 0.54 versus 0.48, is encouraging,
but not surprising given that Iκεα reproduces the EAGLE GSMF
at the low-mass end well (Fig. 15). Observationally, there is no
convincing evolution of this slope out to z ∼ 3 in the K band
(Mortlock et al. 2017), also consistent with the Iκεα prediction of
no evolution.

The observed evolution in the location of the knee of the
Schechter luminosity function is claimed to be consistent with little
or no evolution in the value of the stellar mass at which the transition
occurs (e.g. Song et al. 2016) but an alternative interpretation is that
the transition occurs at a nearly constant star formation rate. Indeed,
according to Parsa et al. (2016), the absolute 1500 Å magnitude of
galaxies at the knee of the Schechter luminosity function occurs
at M1500, c = −19.6, −20.3, −20.6, and −20.68 for redshifts z =
1, 2, 3, and 4, respectively. If we make the reasonable assumption
that UV luminosity is proportional to star formation rate, then the
star formation rate Ṁ� of those galaxies increases compared to
the value at z = 1 by factors Ṁ�(z)/Ṁ�(z = 1) = 1.9, 2.5, 2.8,
and 2.9 at z = 2, 3, 4, and 5. The prediction from Iκεα follows
from equation (45), Ṁ�,agn(z)/Ṁ�,agn(z = 1) = 1.6, 2.2, 2.8, and
3.4, respectively, impressively close to the observations.

We conclude from this brief comparison to data that Iκεα

reproduces observations of the observed galaxy population and its
evolution rather well, although there are some differences too.

3.6 Incorporating AGN feedback

An important limitation of the model as described so far is the
absence of AGN feedback. Following the arguments that led us to
stellar-feedback self-regulation, an obvious way to include AGNs
in the model is by modifying equation (15) to

1

2
Ṁ� v2

� + 1

2
ṀBH v2

agn = κ

2
ωb Ṁhvh

2

v2
agn = 2εrεf

1 − εr
c2, (47)

with the understanding that AGN feedback sets in when11 vh �
vh,agn. Here, εr ≈ 0.1 is the radiative efficiency of the AGN and εf

≈ 0.15 the fraction of radiated energy that couples to the gas (see
the discussion in Schaye et al. 2015, their section 4.6). As in the
case of feedback from star formation discussed in Section 2.4.1,
AGN feedback will be self-regulating provided that the black hole
accretion rate increases with the pressure in the ISM.

11vagn, which characterizes the energy input by the AGN per unit of mass
accreted on to the BH, is not to be confused with vh,agn – the virial velocity
of the halo above which stellar feedback fails.
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Figure 16. The dependence of black hole mass, MBH, on the circular speed
of the host halo, vc. The blue line is the trend from Iκεα, equation (48), with
vh scaled to vc following Ferrarese (2002); the trend originally proposed by
Ferrarese (2002) is shown as a dashed black line. Data points are taken from
the compilation by Kormendy & Ho (2013); the blue circles with error bars
are spiral and S0 galaxies and the grey circles are elliptical galaxies.

We can examine what to expect for the black hole mass of a halo
with vh � vh,agn by integrating equation (47) for v� = 0,

MBH = 3

5

κωb

α3/2

v5
h

10H (z)Gv2
agn

= 1.2 × 107 (vh/200 km s−1)5

(εrεf/(1 − εr))/(0.1 × 0.07)
M�,

(48)

where the second line is at redshift z = 0; this scaling is plotted
as a blue line in Fig. 16. How does this compare to observations?
Ferrarese (2002) claim that black hole mass scales with the circular
speed as MBH ∝ v5.5

c . This scaling is shown as a black dashed line
and is close to equation (48). Kormendy & Ho (2013) argue that,
because the scatter in the MBH–vc relation is large at low vc, the
Magorrian relation (Magorrian et al. 1998) between black hole
mass and bulge mass is more fundamental. We would argue instead
that low-mass black holes are not in a self-regulating regime.

The observed relation between black hole mass and (3D)12 stellar
velocity dispersion σ � is MBH = 1.1 × 107 (σ�/200 km s−1)5.12 M�
(McConnell et al. 2011). Provided vh ∼ σ�, the observed depen-
dence on velocity is close to our prediction while the normalization
requires reasonable values for εr and εf. The scaling of the MBH–
σ � relation in the model by Silk & Rees (1998) is identical to ours
basically because both are based on energy arguments; however, our
normalization is significantly more realistic, as shown in Fig. 16.
The model by King (2003) is based on momentum arguments; their
scaling, MBH ∝ σ 4

� , is shallower than observed. Booth & Schaye
(2010) obtain an MBH ∝ M1.55

h scaling by arguing that the net total
energy injected by an AGN is of the order of the binding energy of
a halo. This is somewhat similar to our reasoning, except that we
argue that it is the rate of energy injection by the AGN that tracks
the rate of energy accretion by the halo due to self-regulation. The
secular growth rate of a black hole – and hence the time-averaged
luminosity of the AGN – therefore depends on the cosmological
accretion rate on to its host halo and therefore on redshift, and not
just on halo properties.

12We have assumed that σ 2
� = 3σ 2, where σ is the line-of-sight stellar

velocity dispersion.

4 D ISCUSSION

4.1 Comparison to previous work

The paper by Bouché et al. (2010) sparked interest in trying to
understand the basic physics underlying self-regulation of galaxies.
That paper, and several that followed, contains equations that
resemble those of Section 3, but the underlying assumptions are
sometimes strikingly different, as we discuss here. The starting
point of Bouché et al. (2010) is their realization that the dependence
of Ṁ� on stellar mass and redshift resembles that of the cosmological
accretion rate, suggesting that the gas accretion rate Ṁgas,acc ∝ Ṁh.
The proportionality constant is argued to be less than ωb, the
cosmological gas-to-total matter density, because only cold accreted
gas is assumed to be eligible for star formation. The resulting star
formation rate is then determined by the efficiency with which gas
is converted into stars, that is, by the star formation law.

This reasoning results in Ṁ� ∝ ωbṀh, as in our equation (16),
with the important distinction that the efficiency of galaxy forma-
tion,

εg ≡ Ṁ�

ωbṀh
, (49)

is set by the efficiency of star formation,

ε� ≡ Ṁ�

Mgas/τd
, (50)

where τ d is a characteristic time that still needs to be determined.
The onus of getting the observed M�/Mh relation is now wholly
on the star formation law (equation 50). The solution advocated by
Bouché et al. (2010) is to assume that haloes do not form any stars
as long as their halo mass is below some minimum value, Mh, min ≈
1010–1011 M�, which conspires to result in εg increasing with Mh.
They stress repeatedly that their results are completely independent
of the efficiency of feedback.

Lilly et al. (2013) build on this work, and in their ‘gas-regulator’
framework, Ṁ� is regulated by the gas reservoir of the galaxy, Mgas

in our notation. Rather than assuming a minimum halo mass Mh, min

below which no stars form, the model introduces two main fitting
parameters, which in our notation are the product ε� τd (their variable
ε) and β (their variable λ). In the follow-up paper by Birrer et al.
(2014), they show how the evolution of galaxies over cosmic time
can be modelled well once ε and λ are parametrized as functions of
M�. Note that these cannot be independent of M�, since otherwise
the ratio M�/Mh is constant as well, since a constant fraction of the
accreted gas is converted into stars.

The ‘minimum bath-tub’ model described by Dekel & Mandelker
(2014) has very similar ingredients, in that Ṁ� is also regulated by
Mgas through the star formation law. These authors stress that many
properties of galaxies follow from this model if it is assumed that
the system is in a quasi-steady state, Ṁgas = 0.

These models ‘self-regulate’ in the sense that the star formation
rate is determined by the gas mass by mass conservation, in our
notation Ṁgas = ωbṀh − (1 − R + β)Ṁ� (equation 30), so that too
much star formation depletes the gas reservoir, which ultimately
decreases Ṁ�. Conversely, too little star formation leads to a build-
up of Mgas, and through the star formation law, this increases Ṁ�.
A very nice feature of these models, in addition to predicting
correctly the rapid increase in Ṁ�/M� with redshift because the
gas accretion rate ∝ Ṁh, is that they correctly predict secondary
parameter dependences, for example the fact that galaxies that lie
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above the main sequence are more gas rich and more metal poor;
see also Dayal et al. (2013).

What all these models have in common is that the star formation
rate is set by the gas reservoir through the star formation law.
The origin of that law is not discussed in detail, but presumably
it results from a balance between cooling and heating from star
formation, as originally envisioned by White & Frenk (1991).
In these models, feedback from star formation is only important
in setting the star formation law, basically parametrized by ε�.
Combined with a model for the build-up of dark matter haloes,
or using dark matter-only simulations that follow the growth of
haloes, these ‘self-regulation’ models are very successful in building
realistic looking mock universes (see e.g. Moster, Naab & White
2018; Tacchella et al. 2018).

In our opinion, there are two major weaknesses to this basic
model: (i) to be predictive, the model needs to be able to predict
how the efficiency of star formation, ε�, and the mass-loading factor,
β, depend on halo (or stellar mass), which is a formidable task. More
worryingly, (ii) there is evidence that one of the main assumptions
– that the star formation rate depends on the gas mass through the
star formation law – is not quite correct.

At first sight, it seems impossible that the rate of star formation
in a galaxy is not dependent on the star formation law, and in fact
it would be if the galaxy were isolated. However, a galaxy in a
cosmological setting can gain mass through accretion and lose it
through winds, and therefore the amount of gas in the reservoir
is not some constant, rather Mgas too is set by the physics of
galaxy formation. Demanding that Ṁ� depends on Mgas through
a star formation law, and vice versa, results in a ‘chicken and egg’
problem.

Numerical simulations can be very helpful in distinguishing cause
from effect. The OWLS simulations described by Schaye et al.
(2010) are cosmological hydrodynamical simulations performed
with GADGET (Springel 2005), but the parameters of subgrid models
are varied over a very wide range and not calibrated to observations
as in EAGLE. In particular, the OWLS simulation suite includes
parameter variations in which the efficiency of feedback from stars
(i.e. the value of v� in our notation) and the star formation law (the
values of A and n in equation A2) are varied separately. By plotting
Mgas and Ṁ� versus a variable that does not depend on either v� or the
star formation law, such as halo mass, Mh, it becomes possible to test
the very core assumption of the gas-regulator or bath-tub models.

Haas et al. (2013a) compare models with the same star formation
law (same value of A and n) but different values of the feedback
efficiency. Compare, in particular, their models REF and WML4:
These have identical numerical parameters, except that the value
of v2

� in simulation WML4 is twice that of REF. Maybe not
surprisingly, Ṁ�/Mh in the simulation with the stronger feedback is
about half as large as in REF (their fig. 4). Because the star formation
law in these simulations is the same, this also implies that Mgas/Mh

is also approximately half in WLM4 compared to REF, as is also
born out by the same figure.

However, now compare models REF and SFAMPLx3 in Haas
et al. (2013b): These have identical feedback parameters, but the
value of A (from equation A2) in simulation SFAMPLx3 is three
times that in simulation REF. Fig. 5 in Haas et al. (2013b) shows
that nevertheless the ratio Ṁ�/Mh is nearly identical in the two
simulations: The star formation rate in a halo of given mass is
not, or only very weakly dependent, on A: a direct violation of
the main assumption in the ‘gas-regulator’ models. Given that the
star formation rates are the same in these models, but the star
formation law differs, this must imply that the gas reservoir in

SFAMPLx3 is less than that in REF at a given value of Mh: The
same Fig. 5 shows that indeed Mgas/Mh is about a factor of 3 lower
in model SFAMPLx3 compared to REF. As stressed by Haas et al.
(2013b) and confirming what was found by Schaye et al. (2010),
stellar feedback regulates the star formation rate by determining the
amount of (star forming) gas. In this interpretation, Ṁ� regulates
Mgas through stellar feedback, rather than Mgas setting Ṁ� through
a star formation law.

The model presented by Davé et al. (2012) incorporates
self-regulation through feedback, as envisioned here. Because they
limit their analysis to equilibrium states defined by Ṁgas = 0, their
results are actually very similar to the various incarnations of the
bath-tub models.

In our interpretation, self-regulation follows from energy con-
servation, equation (15), and in particular the fact that Ėg = 0
is a secularly stable equilibrium (provided that ρ̇� increases with
pressure of the star-forming gas). Therefore, accretion sets the star
formation rate, once the net energy input generated by forming stars
is known. This sets the ‘efficiency of galaxy formation’ (the ratio of
the star formation rate over the cosmological baryon accretion rate
on to a halo) to be

Ṁ�

ωbṀh
= κ

v2
h

v2
�

, (51)

which does not depend on the star formation law but on the
properties of the halo (through vh) and the efficiency of feedback
(through v�). This is in contrast to equation (50). The star formation
law then determines the gas reservoir in the Iκεα model, with any
excess accreted gas expelled in a wind.

The relation between stellar mass and halo mass (equation 18)
can be cast in the form

log10

(
M�

1012 M�

)
= 5

3
log10

(
Mh

1012 M�

)
+ log10 N (z)

log10 N (z) = log10

(
1.7 × 1010 M�

1012 M�

1 − R
0.55

m�(z)

mh(z)5/3

)
,

(52)

which has the form of equation (1) in the paper by Salcido, Bower &
Theuns (2019), with their ε(Mh, z) = 5/3. These author show that
a halo mass–stellar mass of this form can be integrated to give
analytical relations for the GSMF and the evolution of the cosmic
star formation rate density.

4.2 Limitations of the model

A forming galaxy can fail to be able to attain its equilibrium
star formation rate given by equation (15) for several reasons.
Consider for example what happens if Ṁh suddenly decreases –
for example, because the galaxy becomes a satellite. Star formation
will nevertheless continue in accordance with the star formation law,
depleting the gas reservoir. In such galaxies, the star formation rate
is set by the gas consumption time-scale, rather than regulated by
feedback. A less extreme version of the same phenomenon occurs
when Ṁh for a particular halo is unusually small compared to the
ensemble average. The Iκεα model does not correctly describe this
situation and in particular is not applicable to satellite galaxies.

We have neglected the finite lifetimes of massive stars. We think
this is unlikely to be a major limitation at lower redshifts when the
dynamical time of any galaxy is much larger than the lifetimes of
massive stars. However, the limitation may affect the onset of star
formation in small galaxies at high redshift. When vh is very low,
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gas cannot cool and our self-regulation argument will not correctly
predict Ṁ�. When the halo grows in mass it may pass the threshold
where gas can cool on a short time-scale, and star formation may
be unable to self-regulate because of the finite lifetimes of massive
stars. This may lead to a starburst that Iκεα does not model correctly.

Not unrelated is what happens at high values of vh at low redshift.
The Iκεα model predicts that feedback becomes inefficient for
vh ≈ 180 km s−1 following similar reasoning to Bower et al. (2017).
We argued, as did Bower et al. (2017), that the resulting increase
in gas mass triggers the AGN, which, once the black hole mass
has increased sufficiently, will regulate the galaxy. However, by
construction this occurs in the same haloes that develop a hot
halo of gas, so that it becomes unlikely that the right-hand side
of equation (15) describes correctly the rate at which gas enters
the galaxy: It may simply add to the hot halo instead [see the
discussion in Bouché et al. (2010) on hot versus cold accretion].
We think therefore that it is unlikely that Iκεα models such
galaxies accurately. Moreover, galaxy–galaxy mergers contribute
significantly to the mass growth of such galaxies, and we have not
attempted to include these in the model either.

We also neglected that stars may form from gas lost by previous
generations of stars – such recycling may affect the star formation
rate of galaxies at late times when their stellar masses are high
but the cosmological accretion rate is low (e.g. Oppenheimer et al.
2010; van de Voort 2017). Gas lost from galaxies by winds may re-
accrete later – again we have neglected this effect. More in general,
we have neglected the possibility that the accretion rate differs from
ωbṀh.

If equation (15) is indeed applicable, then it might be possible
to estimate the scatter around the main sequence of star-forming
galaxies from the scatter of Ṁh around the ensemble average. This
would provide a good test of the basic assumption in our model.

5 SU M M A RY A N D C O N C L U S I O N S

We have presented a model for star formation in galaxies that is
motivated by the origin of the stability of nuclear fusion in main-
sequence (MS) stars. The energy generated by nuclear fusion in an
MS star equals the rate at which energy is lost through radiation.
This equilibrium is secularly stable because if the star loses energy,
it heats up, which increases the rate at which fusion occurs. The
analogy with a star-forming galaxy is that the rate of energy injection
by supernovae (and winds from their massive progenitor stars)
equals the rate at which energy is lost due to cosmological accretion.
This equilibrium is stable provided the star formation rate increases
with the pressure of the star-forming gas.

Equation (15), (1/2)Ṁ�v
2
� = (κ/2)ωbṀh vh

2, encapsulates this
energy balance. Here, v2

� is a measure of the effective energy injected
per unit mass of star formed by feedback, so that the left-hand
side is the rate at which feedback increases the galaxy’s energy.
The right-hand side of the equation is the energy loss term due
to cosmological accretion (ωb is the cosmological baryon-to-total
mass fraction), with vh

2 a measure of the depth of the dark halo’s
potential. In our ‘Iκεα’ model, the star formation rate is set by
the cosmological accretion rate by energy balance. The predicted
dependence of Ṁ� on redshift and virial velocity, vh, or halo mass,
Mh, agrees very well with that measured in the EAGLE cosmological
hydrodynamical simulation (Schaye et al. 2015), as shown in Figs 6
and 7, respectively.

The Iκεα model has four parameters (I, κ , ε, and α; hence the
name), which together shape the star-forming sequence of galaxies.
The parameter ‘I’ stands for the (stellar) Initial mass function (IMF),

which sets how much energy is available for feedback from star
formation, in particular from the supernovae (SNe) associated with
star formation, as well as the recycled fraction R that relates the
time integral of star formation to the stellar mass formed. We have
kept the IMF constant in this paper. The dimensionless parameters
κ and α quantify the rate of cosmological accretion on to a halo (κ),
and the concentration of such haloes (α; see equation 2). We find
that κ ≈ 5/3 and α ≈ 1, and have kept these constant as well.

We think that the main numerical parameter that affects our
results is ε, which is a measure of the fraction of the energy that
is injected by SNe that effectively increases the energy of the star-
forming gas, rather than being radiated away. It relates v2

� to the
energy produced by SNe per unit mass (or more generally to the
energy injected in the ISM as a result of recent star formation); see
equation (14). If feedback is efficient, ε is large, and Ṁ� is small. The
EAGLE simulation has a parameter, fth, that controls what fraction of
the available supernova energy is injected into the star-forming gas.
This means that fth ≈ ε, provided radiative losses are small. Because
feedback is efficient13 in EAGLE, radiative losses in SN-heated gas
are mostly small, which explains why the Iκεα model reproduces
the EAGLE model with fth held constant relatively well. However, in
the EAGLE REFERENCE model, fth is allowed to vary as a function
of density and metallicity in a way that is calibrated so that the
simulation reproduces (some) observations. Therefore, to improve
the agreement of Iκεα with data, we would need to understand
how radiative losses depend on the ISM of a star-forming galaxy. It
seems unlikely that there is a simple way to do so.

A striking feature of the model is that Ṁ� does not depend
on the gas mass, Mgas, unlike what is assumed in many self-
regulating models (e.g. Bouché et al. 2010; Lilly et al. 2013). We
use a star formation law (in our case the Kennicutt–Schmidt law,
Kennicutt 1998) to infer Mgas from Ṁ� – rather than the other way
around. Doing so allows us to reproduce the Mgas–Ṁ� relation in
EAGLE (Fig. 9) as well as the mass–metallicity relation (Fig. 12).

We tried to incorporate feedback from accreting black holes
(AGNs) by (i) identifying when feedback from star formation fails
so that a black hole can grow, and (ii) include AGNs in the self-
regulation process. Stellar feedback fails in galaxies with deep
enough potential wells, so that energy injected by stars cannot
compensate for energy lost through accretion even if all accreted
gas is converted into stars. We showed that this occurs in haloes with
virial velocity above a nearly redshift-independent critical value of
∼180 km s−1. Demanding that the AGN regulates galaxy formation
results in a relation between the black hole mass and the virial
velocity of the halo of the form MBH ∝ vh

5, which closely follows
the observed relation.

In the ‘Introduction’ section, we discussed how gas cooling is
thought to play an important role in determining the rate at which a
galaxy forms stars, to the extent that it may even be the main property
that determines the location of the peak in the redshift evolution
of the star formation rate density of the Universe (Hernquist &
Springel 2003). Numerical simulations at first sight support this
claim directly: A simulation where the contribution from metals is
not included when calculating the cooling rate – and hence where
the cooling rate is lower – yields lower values of M�/Mh than when
metals are included (compare models NOZCOOL and model REF
in fig. 3 of Haas et al. 2013a). However, a lower metallicity of star-
forming gas reduces cooling losses of injected feedback energy,

13Gas heated by SNe has its temperature increased by �T = 107 K where
its cooling rate is minimal and mostly independent of metallicity.
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increasing ε and hence reducing Ṁ�: That sequence of events is
also consistent with the findings from Haas et al. (2013a). The main
impact of metallicity on the cooling rate of the gas may be on the
efficiency of feedback, rather than on the accretion rate. Of course,
this argument breaks down in haloes where the virial temperature
is so high that most of the gas is and remains hot.

We think that Iκεα provides a simple way of calculating the
properties of a galaxy in terms of those of its host halo – and
the results thus obtained agree reasonably well with those from
much more sophisticated models and importantly also with data.
We suggest that a better description of how cooling losses depend
on the properties of a galaxy through its history would improve the
quality of the theoretical prediction.
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APPENDIX A : SIMULATION D ETAILS

We compare the results of the model described in this paper to
galaxies from the EAGLE simulation, which we briefly describe
here. EAGLE is a suite of cosmological, hydrodynamical simulations,
performed using an evolution of the GADGET smoothed particle
hydrodynamics code described by Springel (2005). EAGLE uses a
set of subgrid modules to encode unresolved physics, described in
detail by Schaye et al. (2015), which we briefly summarize here.

The subgrid modules contain a set of numerical parameters,
whose values are calibrated in a REFERENCE run to reproduce a
small number of z ≈ 0 observables, namely the GSMF, the relation
between galaxy stellar mass, M�, and size, and between M� and
black hole mass, as detailed by Crain et al. (2015). Given these
calibrated values, the simulation also reproduces several observable
relations that were not part of the calibration, in particular yielding a
‘main sequence’ of blue star-forming galaxies in which Ṁ� depends
on M� and redshift as observed (Furlong et al. 2015), as well as a
‘red sequence’ of quenched galaxies (Trayford et al. 2015, 2017).
The z = 0 galaxy colours correlate with galaxy morphology as
observed (Correa et al. 2017; Trayford et al. 2018).

Most relevant for the comparisons in this paper is the implemen-
tation of star formation, of stellar feedback, and of feedback from
accretion black holes (AGNs) in EAGLE:

(i) Star formation: Sufficiently dense gas in EAGLE is converted
into star particles at a rate per unit volume, ρ̇�, that depends on the
gas pressure, P, as

ρ̇� ∝ P (n−1)/2. (A1)

The normalization of this relation and the exponent n are set by the
Kennicutt–Schmidt law (Kennicutt 1998) that relates the surface
density of star formation, �̇�, and of gas, �g,

�̇� = A

(
�g

1 M� pc−2

)n

. (A2)

The underlying assumption connecting these relations is that vol-
ume and surface densities are related by the local Jeans length,

Table A1. Selected parameters of the EAGLE simulations used here. From
left to right, the columns show: simulation name, comoving box size, initial
baryonic particle mass, maximum proper softening length, and comment.

Name L mg εprop Comment
(Mpc) (106 M�) (kpc)

REF 50 1.81 0.7 reference
model

FBconst 50 1.81 0.7 fth = 1

FBconstnoAGN
50 1.81 0.7 fth = 1, no

AGN
DMO 50 0 0.7 dark matter

only

as motivated by Schaye & Dalla Vecchia (2008). The simulation
does not resolve the multiphase nature of the ISM and star-
forming gas is assumed to have a minimum pressure (Schaye et al.
2015),

P ∝ ρ4/3 ∝ u4, (A3)

where u is the thermal energy per unit mass.
(ii) Stellar feedback is implemented as described by Dalla Vec-

chia & Schaye (2012): A newly formed star particle increases the
temperature of surrounding gas by an amount �T. The quantity
of gas heated depends on the effective energy injected by star
formation, fth�E, where �E is the total energy released by the
winds from massive stars and core-collapse supernovae, which in
turn depends on the assumed stellar initial mass function (IMF).
The value of �T is chosen such that gas is heated to a temperature
where its cooling rate is small: This makes the feedback efficient.
The value of 1 − fth quantifies the fraction of injected energy
that is lost from the star-forming region, for example through
radiative cooling; fth is one of the main calibration parameters in
EAGLE.

(iii) Black holes and AGNs: The seeding, merging, accretion,
and feedback from black holes (BHs) in EAGLE is described by
Rosas-Guevara et al. (2015). Seed BHs are inserted in each dark
matter halo once it becomes sufficiently well resolved. When a BH
accretes mass and becomes an AGN, it injects thermal energy in the
surrounding gas.

The origin of red galaxies in EAGLE is investigated by Trayford
et al. (2016). Ram-pressure stripping and ‘strangulation’ dramati-
cally decrease the star formation rate of satellite galaxies, causing
them to leave the blue cloud of star-forming galaxies and settle on
to the red sequence. The simple self-regulating model described in
this paper does not attempt to describe these effects, and we will
therefore only compare to central, i.e. non-satellite, EAGLE galaxies.
Similarly, AGN feedback suppresses star formation in massive
galaxies, causing them to become passive. Since that mechanism is
also not included in the model, most of the comparison in this paper
is to EAGLE variation FbConstNoAGN, in which fth is a constant,
and which does not include AGN feedback. We also use variation
FbConst, in which fth is kept constant and which does include an
AGN.

Table A1 contains a list of parameters of the EAGLE runs that we
used. Simulation ‘REF’ is the default EAGLE model from table 2 of
Schaye et al. (2015). The simulation FBconst with fth = 1 appears
in table 1 of Crain et al. (2015), simulation. Simulation DMO is a
dark matter-only version of the same volume. All simulations are
initialized from the same Gaussian initial conditions, so that halo
masses are nearly identical in all runs.
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Galaxies of the EAGLE reference model look like observed galax-
ies in many of their properties. Keeping fth constant, the simulated
galaxies have similar stellar masses and star formation rates, but
are typically smaller than in the reference model. Therefore, this
model is not as good a representation of the real galaxy population,
but we believe its physics is still reasonable – and it is much
easier to compare to our simple model. Many of the properties of
the population of EAGLE galaxies can be extracted directly from

the public data base14 (McAlpine et al. 2016), which we used
extensively in preparing the figures.

14http://icc.dur.ac.uk/Eagle/database.php.
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MNRAS 492, 2418–2436 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/2/2418/5625787 by D
urham

 U
niversity user on 24 January 2020

http://icc.dur.ac.uk/Eagle/database.php

