
Clim. Past, 16, 1599–1615, 2020
https://doi.org/10.5194/cp-16-1599-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Lessons from a high-CO2 world: an ocean view
from ∼ 3 million years ago
Erin L. McClymont1, Heather L. Ford2, Sze Ling Ho3, Julia C. Tindall4, Alan M. Haywood4,
Montserrat Alonso-Garcia5,6, Ian Bailey7, Melissa A. Berke8, Kate Littler7, Molly O. Patterson9, Benjamin Petrick10,
Francien Peterse11, A. Christina Ravelo12, Bjørg Risebrobakken13, Stijn De Schepper13, George E. A. Swann14,
Kaustubh Thirumalai15, Jessica E. Tierney15, Carolien van der Weijst11, Sarah White16, Ayako Abe-Ouchi17,18,
Michiel L. J. Baatsen19, Esther C. Brady20, Wing-Le Chan17, Deepak Chandan21, Ran Feng22, Chuncheng Guo13,
Anna S. von der Heydt19, Stephen Hunter4, Xiangyi Li13,23, Gerrit Lohmann24, Kerim H. Nisancioglu13,25,26,
Bette L. Otto-Bliesner20, W. Richard Peltier21, Christian Stepanek24, and Zhongshi Zhang13,27,28

1Department of Geography, Durham University, Durham, DH1 3LE, UK
2School of Geography, Queen Mary University of London, London, E1 4NS, UK
3Institute of Oceanography, National Taiwan University, 10617 Taipei, Taiwan
4School of Earth and Environment, University of Leeds, Leeds, LS29JT, UK
5Department of Geology, University of Salamanca, Salamanca, Spain
6CCMAR, Universidade do Algarve, 8005-139 Faro, Portugal
7Camborne School of Mines & Environment and Sustainability Institute, University of Exeter, Exeter, TR10 9FE, UK
8Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame,
Notre Dame, IN 46656, USA
9Department of Geological Sciences and Environmental Studies, Binghamton University SUNY, 4400 Vestal Pkwy E,
Binghamton, New York, USA
10Climate Geochemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
11Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, the Netherlands
12Department of Ocean Sciences, University of California, Santa Cruz, CA 95064, USA
13NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, 5007 Bergen, Norway
14School of Geography, University of Nottingham, Nottingham, NG7 2RD, UK
15Department of Geosciences, The University of Arizona, Tucson, AZ 85721, USA
16Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA
17Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
18National Institute for Polar Research, Tachikawa, 190-8518, Japan
19Institute for Marine and Atmospheric research Utrecht (IMAU), Department of Physics, Utrecht University,
Utrecht, 3584 CC, the Netherlands
20Climate and Global Dynamics Laboratory, National Center for Atmospheric Research (NCAR), Boulder, CO 80305, USA
21Department of Physics, University of Toronto, Toronto, M5S 1A7, Canada
22Department of Geosciences, University of Connecticut, Storrs, CT 06033, USA
23Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
24Alfred-Wegener-Institut – Helmholtz-Zentrum für Polar and Meeresforschung (AWI), Bremerhaven, 27570, Germany
25Department of Earth Science, University of Bergen, Allégaten 70, 5007 Bergen, Norway
26Centre for Earth Evolution and Dynamics, University of Oslo, P.O. Box 1028, Blindern, 0315 Oslo, Norway
27Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
28Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy
of Sciences, Beijing 100029, China

Correspondence: Erin L. McClymont (erin.mcclymont@durham.ac.uk), Heather L. Ford (h.ford@qmul.ac.uk),
and Sze Ling Ho (slingho@ntu.edu.tw)

Published by Copernicus Publications on behalf of the European Geosciences Union.



1600 E. L. McClymont et al.: Lessons from a high-CO2 world

Received: 20 December 2019 – Discussion started: 9 January 2020
Revised: 19 June 2020 – Accepted: 2 July 2020 – Published: 27 August 2020

Abstract. A range of future climate scenarios are projected
for high atmospheric CO2 concentrations, given uncertain-
ties over future human actions as well as potential environ-
mental and climatic feedbacks. The geological record offers
an opportunity to understand climate system response to a
range of forcings and feedbacks which operate over multiple
temporal and spatial scales. Here, we examine a single inter-
glacial during the late Pliocene (KM5c, ca. 3.205±0.01 Ma)
when atmospheric CO2 exceeded pre-industrial concentra-
tions, but were similar to today and to the lowest emission
scenarios for this century. As orbital forcing and continental
configurations were almost identical to today, we are able
to focus on equilibrium climate system response to mod-
ern and near-future CO2. Using proxy data from 32 sites,
we demonstrate that global mean sea-surface temperatures
were warmer than pre-industrial values, by ∼ 2.3 ◦C for the
combined proxy data (foraminifera Mg/Ca and alkenones),
or by ∼ 3.2–3.4 ◦C (alkenones only). Compared to the pre-
industrial period, reduced meridional gradients and enhanced
warming in the North Atlantic are consistently reconstructed.
There is broad agreement between data and models at the
global scale, with regional differences reflecting ocean circu-
lation and/or proxy signals. An uneven distribution of proxy
data in time and space does, however, add uncertainty to our
anomaly calculations. The reconstructed global mean sea-
surface temperature anomaly for KM5c is warmer than all
but three of the PlioMIP2 model outputs, and the recon-
structed North Atlantic data tend to align with the warmest
KM5c model values. Our results demonstrate that even under
low-CO2 emission scenarios, surface ocean warming may be
expected to exceed model projections and will be accentu-
ated in the higher latitudes.

1 Introduction

By the end of this century, projected atmospheric CO2 con-
centrations range from 430 to > 1000 ppmv depending upon
future emission scenarios (IPCC, 2014a). At the current rate
of emissions, global mean temperatures are projected to ex-
ceed 1.5 and 2 ◦C above pre-industrial values in 10 and
20 years, respectively, passing the targets set by the Paris
Agreement (IPCC, 2019). The geological record affords an
opportunity to explore key global and regional climate re-
sponses to different atmospheric CO2 concentrations, includ-
ing those which extend beyond centennial timescales (Fis-
cher et al., 2018). Palaeoclimate models indicate that cli-
mates last experienced during the mid-Piacenzian stage of
the Pliocene (3.1–3.3 Ma) will be surpassed by 2030 CE un-
der high-emission scenarios (Representative Concentration

Pathway, RCP8.5) or will develop by 2040 CE and be sus-
tained thereafter under more moderate emissions (RCP4.5;
Burke et al., 2018).

The late Pliocene thus provides a geological analogue
for climate response to moderate CO2 emissions. However,
the magnitude of tropical ocean warming differs between
proxy reconstructions (e.g. Zhang et al., 2014; O’Brien et
al., 2014; Ford and Ravelo, 2019; Tierney et al., 2019a), and
stronger polar amplification has been consistently recorded
in proxy data compared to models (Haywood et al., 2013,
2016a). Some of the disagreements may reflect non-thermal
influences on temperature proxies (e.g. secular evolution of
seawater Mg/Ca; Medina-Elizalde et al., 2008; Evans et
al., 2016) and/or seasonality in the recorded signals (e.g.
Tierney and Tingley, 2018). It has also been proposed that
previous approaches to integrating Pliocene sea-surface tem-
perature (SST) data may have introduced bias to data–
model comparison (Haywood et al., 2013). For example,
the Pliocene Research Interpretation and Synoptic Mapping
(PRISM) project generated warm peak averages within spec-
ified time windows (Fig. 1) (outlined in Dowsett et al., 2016,
and references therein). However, by integrating multiple
warm peaks within the 3.1–3.3 Ma mid-Piacenzian data syn-
thesis windows (Fig. 1), regional and time-transgressive re-
sponses to orbital forcing (Prescott et al., 2014; Fischer et
al., 2018; Hoffman et al., 2017; Feng et al., 2017) are po-
tentially recorded in the proxy data, which may not align
with the more narrowly defined time interval being modelled
(Haywood et al., 2013; Dowsett et al., 2016).

Here, we present a new, globally distributed synthesis of
SST data for the mid-Piacenzian stage, addressing two con-
cerns. First, we minimise the impact of orbital forcing on re-
gional and global climate signals by synthesising data from
a specific interglacial stage: a 20 kyr time slice centred on
3.205 Ma (KM5c; see Fig. 1). At 3.205 Ma, both seasonal
and regional distributions of incoming insolation are close
to modern values, making this time an important analogue
for 21st-century climate (Haywood et al., 2013). The low
variability in orbital forcing through KM5c minimises the
potential for time-transgressive regional signals to be a fea-
ture of the geological data (Haywood et al., 2013; Prescott
et al., 2014). Second, we provide a range of estimates from
different SST proxies, taking into consideration the uncer-
tainties in proxy-to-temperature calibrations and/or secular
processes that may bias proxy estimates. This synthesis is
possible due to robust stratigraphic constraints placed on
the datasets by the PAGES-PlioVAR working group (see
Sect. 2.2).
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Figure 1. The KM5c interglacial during the late Pliocene (3.195–
3.215 Ma). Upper part of graph: benthic oxygen isotope stack (solid
line: LR04, Lisiecki and Raymo, 2005; dashed line and grey shad-
ing: Prob-stack mean and 95 % confidence interval, respectively,
Ahn et al., 2017). Selected Marine Isotope Stages (KM2 through
to M2) are highlighted. The KM5c interval of focus here is indi-
cated by the shaded blue bar. Previous Pliocene synthesis intervals
are also shown: PRISM3 (3.025–3.264 Ma) and PRISM4 (isotope
stages KM5c–M2; Dowsett et al., 2016). Lower part of graph: re-
constructed atmospheric CO2 concentrations (Foster et al., 2017).
Points show mean reported data (except white crosses: median val-
ues from Martinez-Boti et al., 2015); shading shows reported upper
and lower estimates. Past and projected atmospheric CO2 concen-
trations highlighted by arrows: PlioMIP2 simulations are run with
CO2 at 400 ppmv (Haywood et al., 2020) close to the annual mean
in 2018 (NOAA). Pre-industrial values from ice cores (Loulerge
et al., 2008) and projected representative concentration pathways
(RCP) for 2100 CE (IPCC, 2013).

2 Methods

2.1 The KM5c interglacial

KM5c (also referred to as KM5.3) is an interglacial centred
on a ∼ 100 kyr window of relatively depleted benthic 18O
values, which immediately follows a pronounced δ18O peak
during the glacial stage M2 (3.3 Ma; Fig. 1). Minor changes
to orbital forcing during KM5 enables a wider target zone
(3.205Ma± 20kyr) for data collection because the potential
for orbitally forced regional and time-transgressive climate
signals is minimised (Haywood et al., 2013). A comparable
approach has been adopted by the PRISM4 synthesis (3.190
to 3.220 Ma; Foley and Dowsett, 2019; see Fig. 1). Here,
we focus on a narrow time slice from 3.195 to 3.215 Ma,
to span approximately one precession cycle. The recon-

structed atmospheric CO2 concentrations from boron iso-
topes in KM5c are 360±55 ppmv (for median boron-derived
values (n= 3), full range: 289–502 ppmv, Fig. 1; Foster et
al., 2017). A wider range of atmospheric CO2 concentrations
has been reconstructed for the whole mid-Piacenzian stage
(356±65 ppmv for median values (n= 36), full range: 185–
592 ppmv; Foster et al., 2017).

2.2 Age models

The PAGES-PlioVAR working group agreed on a set of
stratigraphic protocols to maximise confidence in the iden-
tification and analysis of orbital-scale variability within the
mid-Piacenzian stage (McClymont et al., 2017). Sites were
only included in the synthesis if they had either (i) ≤ 10 kyr
resolution benthic δ18O data which could be (or had been)
tied to the LR04 stack (Lisiecki and Raymo, 2005) or the
HMM-Stack (Ahn et al., 2017) and/or (ii) the palaeomagnetic
tie points for upper Mammoth (C2An.2n (b) at 3.22 Ma) and
lower Mammoth (C2An.3n (t) at 3.33 Ma). At one site (ODP
Site 1090) these conditions were not met (see Supplement),
but tuning to LR04 had been made using a record of dust
concentrations under the assumption that higher dust flux
occurred during glacials as observed during the Pleistocene
(Martinez-Garcia et al., 2011). At ODP Site 806, uncertainty
over age control resulted from the absence of an agreed splice
across the multiple holes drilled by ODP, and a new age
model has been constructed (see Supplement). For some sites
(see online summary at https://pliovar.github.io/km5c.html,
last access: 30 June 2020), revisions to the published age
model were made, for example if the original data had been
published prior to the LR04 stack (Lisiecki and Raymo,
2005) or prior to revisions to the palaeomagnetic timescale
(Gradstein et al., 2012). In total, data from 32 sites were com-
piled, extending from 46◦ S to 69◦ N (Fig. 2).

2.3 Proxy SST data

A multi-proxy approach was taken, to maximise the informa-
tion available on changing climates and environments dur-
ing the KM5c interval. Two SST proxies were analysed:
the alkenone-derived UK′

37 index (Prahl and Wakeham, 1987)
and foraminifera calcite Mg/Ca (Delaney et al., 1985). Both
proxies have several calibrations to modern SST: here we ex-
plore the impact of calibration choice on KM5c SST data,
by comparing and contrasting outputs between proxies and
between calibrations. Although the TEX86 proxy (Schouten
et al., 2002) has also been used to generate mid-Piacenzian
SSTs (e.g. O’Brien et al., 2014; Petrick et al., 2015; Rom-
merskirchen et al., 2011), these data are not included here
because they could not be confidently assigned to the KM5c
interval either due to low sampling resolution and/or because
our age control protocol was not met.
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Figure 2. Locations of sites used in the synthesis, overlain on mean annual SST data from the World Ocean Atlas 2018 (Locarnini et
al., 2018). A full list of the data sources and proxies applied per site are available in Tables S3 (UK′

37) and S4 (Mg/Ca) in the Supplement and
can be accessed at https://pliovar.github.io/km5c.html (last access: 30 June 2020). The combined PlioVAR proxy data and their sources are
also archived at Pangaea: https://doi.pangaea.de/10.1594/PANGAEA.911847.

2.3.1 Alkenone SSTs (the UK′

37
index)

The majority of the 23 alkenone-derived SST datasets in-
cluded in the PlioVAR synthesis used the UK′

37 index and ap-
plied the linear core-top calibration (60◦ S–60◦ N) (Müller
et al., 1998) (hereafter Müller98; Tables S2 and S3). The
Müller98 calibration applies the best fit between core-top
UK′

37 and modern SSTs, recorded at the sea surface (0 m
water depth) and consistent with haptophyte productivity
in the photic zone. The sedimentary signal is proposed
to record annual mean SST based on linear regression
(Müller et al., 1998). Cultures of one of the dominant hapto-
phytes, Emiliania huxleyi, generated only minor differences
in the slope of the UK′

37–temperature relationship (Table S2),
where growth temperature was used for calibration (Prahl
et al., 1988). Several PlioVAR datasets were originally pub-
lished using the Prahl et al. (1988) calibration (Table S3).

A recent expansion of the global core-top database (<
70◦ N) was accompanied by Bayesian statistical analysis to
assess the relationship(s) between predicted (from UK′

37) and
recorded ocean temperatures (Tierney and Tingley, 2018).
The revised UK′

37 calibration, BAYSPLINE, addresses non-
linearity in the UK′

37-SST relationship at the high end of
the calibration, i.e. in the low-latitude oceans (Pelejero and
Calvo, 2003; Sonzogni et al., 1997). BAYSPLINE also high-
lights scatter between predicted and observed SSTs at the
high latitudes and explicitly reconstructs seasonal SSTs>
45◦ N (Pacific) and > 48◦ N (Atlantic) and in the Mediter-
ranean Sea (Tierney and Tingley, 2018).

To test the impact of different alkenone temperature cal-
ibrations on the quantification of mid-Piacenzian SSTs, we

converted all UK′
37 data to SSTs using both the Müller98 cal-

ibration and the BAYSPLINE calibration. For most sites,
BAYSPLINE was run with the recommended setting for the
prior standard deviation scalar (pstd) of 10 (Tierney and Tin-
gley, 2018). At high UK′

37 values (above ∼ 24 ◦C) it is recom-
mended to use the more restrictive value of 5, to minimise
the possibility of generating unrealistic SSTs (e.g. > 40 ◦C)
given that the slope of the UK′

37–temperature calibration be-
comes attenuated (Tierney and Tingley, 2018).

2.3.2 Foraminifera Mg/Ca

The magnesium-to-calcium ratio of foraminifera calcite can
be used to reconstruct sea-surface (surface dwelling), ther-
mocline (subsurface dwelling), and deep (benthic) ocean
temperatures (Delaney et al., 1985; Elderfield et al., 1996;
Rosenthal et al., 1997). The PlioVAR dataset includes anal-
ysis from 12 sites, on surface-dwelling foraminifera Glo-
bigerinoides ruber, Trilobatus sacculifer, and Globigerina
bulloides (Table S4). In the original publications, data were
converted to SST using a range of calibrations as well as
corrections for CaCO3 dissolution in the water column and
sediments, which leads to preferential removal of Mg from
the CaCO3 lattice (generating cooler SSTs than expected;
Dekens et al., 2002; Regenberg et al., 2006, 2009). The evo-
lution of the Mg/Ca of seawater (Mg/Caseawater) over ge-
ological timescales may also impact Mg/Ca-based palaeo-
temperature reconstructions (Brennan et al., 2013; Coggon et
al., 2010; Fantle and DePaolo, 2005; Gothmann et al., 2015;
Horita et al., 2002; Lowenstein et al., 2001). Changes in
Mg/Caseawater impact the intercept and potentially the sen-
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sitivity of palaeotemperature equations (Evans and Müller,
2012; Medina-Elizalde and Lea, 2010), but there remains un-
certainty over the magnitude of Mg/Caseawater changes in the
late Pliocene (O’Brien et al., 2014; Evans et al., 2016).

To test the impact of different foraminifera Mg/Ca SST
calibrations on mid-Piacenzian SSTs, we compare published
SSTs with the recently developed BAYMAG calibration
(Tierney et al., 2019b). We use published SSTs because
the original researchers used their best judgement to choose
a particular Mg/Ca-SST calibration, given that it (i) fitted
modern (regional) core-top values; (ii) accounted for known
environmental impacts (e.g. [CO2−

3 ] correction); (iii) was de-
veloped within a particular research group; and/or (iv) fitted
conventional wisdom at the time. BAYMAG uses a Bayesian
approach that incorporates laboratory culture and core-top
information to generate probabilistic estimates of past tem-
peratures. BAYMAG assumes a sensitivity of Mg/Ca to
salinity, pH, and saturation state at each core site and also
accounts for Mg/Caseawater evolution through a linear scal-
ing (i.e. there is no change in the sensitivity of the palaeo-
temperature equation as Mg/Caseawater evolves) (Tierney et
al., 2019b). For each site with Mg/Ca data, we computed
SSTs using BAYMAG’s species-specific hierarchical model.
In the absence of knowledge concerning changes in salin-
ity, pH, and saturation state in the Pliocene, we assumed that
these values were the same as today. We drew seasonal sea-
surface salinity from the World Ocean Atlas 2013 product
(Boyer et al., 2013) and pH and bottom water saturation state
from the GLODAPv2 product (Lauvset et al., 2016; Olsen et
al., 2016). We used a prior standard deviation of 6 ◦C for all
sites.

2.4 Climate models

The model outputs used here were generated from the 15
models that contribute to the Pliocene modelling intercom-
parison project, Phase 2 (PlioMIP2) (Haywood et al., 2020).
The boundary conditions for the experiments and their large-
scale results for Pliocene and pre-industrial climates are de-
tailed elsewhere (Haywood et al., 2020, 2016b), so they are
briefly outlined here.

The Pliocene simulations are intended to represent KM5c
(∼ 3.205 Ma) and were forced with PRISM4 boundary con-
ditions (Haywood et al., 2016b). Atmospheric CO2 concen-
tration was set to 400 ppmv (Haywood et al., 2020), in line
with the upper estimates of atmospheric CO2 from boron
isotope data (Fig. 1; Foster et al., 2017). Lower estimates
from the alkenone carbon isotope proxy (Fig. 1) are likely
to reflect an insensitivity of this proxy to atmospheric CO2
in the Pliocene (Badger et al., 2019). All other trace gases,
orbital parameters, and the solar constant were specified to
be consistent with each model’s pre-industrial experiment.
The Greenland Ice Sheet was confined to high elevations in
the eastern Greenland mountains, covering an area approxi-
mately 25 % of the present-day ice sheet. The Antarctic ice

sheet has no ice over West Antarctica. The reconstructed
PRISM4 ice sheets have a total volume of 20.1× 106 km3,
equating to a sea-level increase relative to the present day of
less than ∼ 24 m (Dowsett et al., 2016).

Modelling groups had some choices regarding the exact
implementation of boundary conditions; however, 14 of the
15 models used the “enhanced” PRISM4 boundary condi-
tions (Dowsett et al., 2016) which included all reconstructed
changes to the land–sea mask and ocean bathymetry. Key
ocean gateway changes relative to modern values are the
closure of the Bering Strait and Canadian archipelago, and
the exposure of the Sunda and Sahul shelves (Dowsett et
al., 2016). The initialisation of the experiments varied be-
tween models (Haywood et al., 2020). Some models were
initialised from a pre-industrial state while others were ini-
tialised from the end of a previous Pliocene simulation or
another warm state. The simulations reached equilibrium to-
wards the end of the runs as per PlioMIP2 protocol.

2.5 Statistical analysis (calculating of global means and
meriodional gradients)

For all anomaly calculations we obtain pre-industrial SST
from the NOAA-ERSST5 dataset for the years 1870–
1899 CE (Huang et al., 2017), ensuring alignment between
the KM5c proxy data and the KM5c model experiments
(Haywood et al., 2020). This pre-industrial time window
excludes the largest cooling linked to the Little Ice Age
and predates the onset of 20th-century warming (Owens et
al., 2017; PAGES2k Consortium, 2017). The global mean
SST anomaly from the proxy data was obtained as follows:
firstly, the SST anomaly between the proxy data and the
NOAA-ERSST5 data was obtained for each location and the
data collated into bins of 15◦ of latitude. It is assumed that the
average of all the data in each bin represents the average SST
anomaly for that latitude band. Next, the area of the ocean
surface for each bin is obtained. The average SST anomaly
is then the average of all the bins weighted by the ocean area
in the relevant latitude band.

Meridional gradients were obtained in a similar way. A
low-latitude SST anomaly was obtained as the weighted av-
erage of all the bins containing low-latitude SSTs (for exam-
ple the 4◦×15◦ bins containing latitudes of 30◦ S–30◦ N). A
high-latitude SST anomaly was obtained as the weighted av-
erage of all bins containing high-latitude SSTs (> 60◦ N be-
cause there were no proxy data points > 60◦ S). As only the
Atlantic Ocean contained data points poleward of 65◦ N, the
high-latitude region used in the gradient calculations for both
proxies and models was focused on the longitudinal window
from 70◦W to 5◦ E. The meridional gradient SST anomaly
is then the low-latitude SST anomaly minus the high-latitude
SST anomaly, relative to the pre-industrial period.

There are some uncertainties in this calculation of the
global mean SST, in particular, the fact that the proxy data
are not evenly distributed throughout a latitude bin and also
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that some bins contain very few data points. There is a higher
density of data in the Atlantic Ocean compared to the In-
dian Ocean and Pacific Ocean, and no high-latitude data are
available to consider a Southern Ocean response (Fig. 2).
Nevertheless, this method of calculating averages does at-
tempt to account for unevenly distributed data and provides
an SST anomaly (SSTA) that is comparable with model re-
sults. The impact of proxy choice was examined in the calcu-
lation of the global means and meridional SST gradients. As
no Mg/Ca data were available > 50◦ N or > 30◦ S, we cal-
culated global mean SST and the meridional SST gradients
either including or excluding the Mg/Ca data; both results
are outlined below and shown in Table 1.

3 Results

Relative to the pre-industrial period, the combined UK′
37 and

Mg/Ca proxy data, using the original calibrations, indicate
a KM5c global mean SST anomaly of +2.3 ◦C and a merid-
ional SST gradient reduced by 2.6 ◦C (Fig. 3). The amplitude
of the global SST mean anomaly in the combined proxy data
exceeds those indicated in 10 of the PlioMIP2 models but
is lower than the global SST anomaly from 6 models. The
meridional temperature gradient anomalies are more compa-
rable (Fig. 3). If only the UK′

37 data are used, the global mean
SST anomaly from proxies is higher than all but three of
the PlioMIP2 models, and the UK′

37 meridional gradient cal-
culations are smaller than all models (BAYSPLINE) or one
model (original calibration; Fig. 3).

Overall, the proxy data show the lowest temperature
anomalies in the low latitudes, regardless of proxy (from +3
to −4 ◦C for sites < 30◦ N/S). A larger range of temperature
anomalies is reconstructed in the mid-latitudes and high lati-
tudes (from +9 to −2 ◦C for sites > 30◦ N/S) (Fig. 4). Thus,
there is a broad, but complex, pattern of enhanced warming at
the mid-latitudes and high latitudes, reflecting a combination
of regional influences on circulation patterns and, to some ex-
tent, proxy choice. This pattern is not explained by temporal
variability nor sample density within the KM5c time interval:
regardless of sample number per site, the standard deviation
at any site within the KM5c time bin is < 1.5 ◦C (Fig. S4
in the Supplement). We note that of the 32 sites examined
here, 7 provided a single data point for the KM5c interval
(Fig. S2, alkenones: ODP Sites 907, 1081, U1337, U1417;
Fig. S3, foraminifera Mg/Ca: DSDP sites 214, 709, 763);
the sites are geographically well distributed, however, and
so unlikely to significantly impact our global mean/gradient
calculations.

Calibration choice has a small impact over the recon-
structed patterns of KM5c SST anomalies (Figs. 4, S2,
and S3). Below 24 ◦C, absolute UK′

37 SSTs using Müller98 are
< 1 ◦C lower than those using BAYSPLINE. At high tem-
peratures the non-linearity in the BAYSPLINE calibration
means that BAYSPLINE SSTs can be up to 1.67 ◦C±0.01 ◦C

higher than when using Müller98 (Fig. S2). The low-latitude
offset between Müller98 and BAYSPLINE has two effects: it
elevates the global mean SST (Fig. 3, Table 1) and increases
the KM5c meridional SST gradient towards pre-industrial
values (Figs. 3 and 4, Table 1). The calibration offsets are
less systematic for Mg/Ca. There is a wider range of offsets
between BAYMAG and published SST values (from −4 to
+5 ◦C; Fig. S3, Table S3), although the smallest KM5c SST
anomalies continue to be reconstructed in the low latitudes,
regardless of which Mg/Ca calibration is applied (Fig. 4).

Overall, the UK′
37–temperature anomalies lie within the

range given by PlioMIP2 models (Fig. 4). The Mg/Ca es-
timates are mainly from the low latitudes, and high-latitude
(> 60◦ N/S) Mg/Ca SST data are not available to calculate
meridional gradients using foraminifera data alone (Fig. 4).
Mg/Ca-SST anomalies are generally lower than for UK′

37, and
a cooler KM5c than the pre-industrial period is consistently
(but not always) recorded in the low latitudes by Mg/Ca re-
gardless of calibration choice (Fig. 4). As a result, combining
UK′

37 and Mg/Ca data leads to a cooler global mean SST (∼
2.3 ◦C) than when using UK′

37 alone (∼ 3.2 ◦C with Müller98,
∼ 3.4 ◦C with BAYSPLINE; Fig. 3 and Table 1). At eight
sites, the negative KM5c SST anomalies in Mg/Ca disagree
with both the UK′

37 data and the PlioMIP2 model outputs
(Fig. 4). The disagreement is present regardless of whether
the Müller98 or BAYSPLINE calibrations are applied, but
the difference is larger in the low latitudes for BAYSPLINE
because here this calibration generates higher SST values
(Sect. 2.3.1). Only three sites have both UK′

37 and Mg/Ca
data (DSDP Site 609, IODP sites U1313 and U1143) to en-
able direct comparison between Mg/Ca and alkenone SST
data. Reconstructed SSTs for IODP sites U1313 and U1143
are within calibration uncertainty. At Site U1313 (41◦ N)
there is overlap between both alkenone outputs (Müller98
21.6 ◦C, BAYSPLINE 20.9 ◦C) and the original Mg/Ca re-
construction (22.2 ◦C), whereas BAYMAG generates warmer
SSTs (27.0 ◦C). At Site 1143 (9◦ N), BAYSPLINE SSTs are
warmer (30.6 ◦C) than from the Müller98 (28.9 ◦C), origi-
nal Mg/Ca (27.7 ◦C), and BAYMAG (27.1 ◦C) calibrations.
In contrast, DSDP Site 609 (49◦ N) has colder Mg/Ca esti-
mates (original 11.7 ◦C, BAYMAG 12.5 ◦C) than alkenones
(Müller98 17.7 ◦C, BAYSPLINE 17.1 ◦C) or models (Fig. 4).

4 Discussion

4.1 SST expression of the KM5c interglacial

KM5c is characterised by a surface ocean which is ∼ 2.3 ◦C
(alkenones and Mg/Ca),∼ 3.2 ◦C (alkenones-only, Müller98
calibration), or ∼ 3.4 ◦C (alkenones-only, BAYSPLINE cal-
ibration) warmer than pre-industrial values, with a ∼ 2.6 ◦C
reduction in the meridional SST gradient. The global mean
SST anomaly is higher than the 1.7 ◦C previously calculated
for the wider mid-Piacenzian warm period (3.1–3.3 Ma), re-
gardless of proxy choice (IPCC, 2014b). Previous analysis
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Table 1. Comparison of the magnitude of the global SST anomaly and meridional SST gradients between KM5c and the pre-industrial
period, depending on proxy combination, and the latitudinal bands used for the gradient calculations.

Proxy Global mean SST Meridional SST gradient
anomaly, ◦C anomaly, ◦C

30◦ S–30◦ N minus 0–30◦ N minus 15◦ S–15◦ N minus
> 60◦ N > 60◦ N > 45◦ N/S

UK′
37 (original) 3.24 −1.18 −3.00 −1.56

UK′
37 (BAYSPLINE) 3.41 0.03 −1.66 −0.18

UK′
37 (original) +Mg/Ca 2.32 −2.61 −4.08 −2.84

UK′
37 (BAYSPLINE) +Mg/Ca (BAYMAG) 2.28 −2.21 −3.13 −2.19

Figure 3. Comparison of KM5c SST data relative to the pre-industrial period (NOAA-ERSST5) for global mean SST anomalies (SSTA) and
the change in meridional SST gradient, constructed using proxy data and the suite of PlioMIP2 models. Details of the model experiments
are outlined in Table 1 of Haywood et al. (2020). The meridional SST gradient is calculated as 30◦ S–30◦ N minus 60–75◦ N, so that a more
negative change in the gradient reflects a larger warming anomaly at high latitudes relative to low latitudes. As we only had data points
poleward of 65◦ N in the Atlantic Ocean, the high-latitude region for both proxy and model gradient calculations focuses on the longitudinal
window from 70◦W to 5◦ E. Proxy data calculations were made using either all proxy data (UK′

37 and Mg/Ca using their original calibrations)

or using only UK′
37 data and comparing the original and BAYSPLINE calibrations. No Mg/Ca data are available > 60◦ N, so we were unable

to calculate Mg/Ca-only gradients (Fig. 4). The impact of changing the low- and high-latitude bands is explored in Table 1.

of a suite of models suggested that a climate state resem-
bling the mid-Piacenzian was likely to develop and be sus-
tained under RCP4.5 (Burke et al., 2018). The PlioMIP2
ensemble (Haywood et al., 2020) indicates that best es-
timates for mid-Piacenzian warming in surface air tem-
peratures (1.7–5.2◦) are comparable to projections for the
RCP4.5 to 8.5 scenarios by 2100 CE (RCP4.5= 1.8± 0.5◦,
RCP8.5= 3.7±0.7 ◦C; IPCC, 2013). Our proxy-based mean
global SST anomaly is larger than in most PlioMIP2 mod-

els when we use only alkenones or alkenones and Mg/Ca
combined (Fig. 3), and hence our results suggest that the
global annual surface air temperature anomaly for KM5c
would exceed the PlioMIP2 multi-model surface air temper-
ature mean of 2.8 ◦C (Haywood et al., 2020). The higher
global SST mean recorded in the KM5c proxy data, com-
pared to the PlioMIP2 models, occurs despite the available
atmospheric CO2 reconstructions indicating values below the
∼ 400 ppmv used in the PlioMIP2 models (Fig. 1). Our syn-
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Figure 4. Reconstructed and modelled SST anomalies plotted by latitude. SST reconstructions using the original published data and two
Bayesian approaches (BAYSPLINE, BAYMAG) are shown. The anomalies are calculated with reference to the NOAA-ERSST5 data for the
years 1870–1899 CE at each site. Vertical red lines show the range of modelled annual SSTs from all PlioMIP2 experiments (Haywood et
al., 2020) calculated at the grid boxes containing each site.

thesis of SST data thus indicates that with atmospheric CO2
concentrations≤ 400 ppmv (comparable to RCP4.5), the sur-
face ocean warming response will likely be larger than in-
dicated in models. Further work is required to increase the
temporal resolution of the atmospheric CO2 reconstructions
through KM5c, to improve our understanding of the recon-
structed SST response to CO2 forcing, including whether (or
by how much) the reconstructed atmospheric CO2 differs
from model boundary conditions and whether other changes
in the model boundary conditions also influence SST patterns
(e.g. gateway changes outlined in Sect. 2.4).

Proxy choice, calibration choice, and site selection have
all had an impact on the magnitude of the change in merid-
ional SST gradient for KM5c compared to the pre-industrial
period (Table 1). Focussing only on a Northern Hemisphere
SST gradient leads to higher gradient anomalies than when
all of the low latitudes are included (30◦ S–30◦ N) because it
excludes the high SST anomalies of the Benguela upwelling
sites (20–25◦ S; discussed below, Fig. 4). Smaller meridional
SST gradient anomalies occur using BAYSPLINE (+0.03 to
−1.66 ◦C) than the Müller98 calibration for UK′

37 (−1.18 to
−3.00 ◦C; Table 1), due to the increased low-latitude SST
anomalies generated by BAYSPLINE (Fig. 4). Due to sev-

eral (but not all) low-latitude sites recording negative SST
anomalies for KM5c using foraminifera Mg/Ca, the in-
clusion of Mg/Ca data leads to a larger difference in the
meridional SST gradient relative to the pre-industrial period
(−2.19 to−4.08 ◦C). Further work is required to fully under-
stand the negative KM5c SST anomalies in some of the low-
latitude sites (discussed further below), given their impact
on the meridional SST gradients. However, a robust pattern
emerging from the data is that the KM5c proxy data detail
smaller low-latitude SST anomalies than those of the mid-
and high-latitude SST anomalies (Fig. 4), leading to a re-
duction in the meridional SST gradient relative to the pre-
industrial period. Enhanced mid- and high-latitude warming
has been observed in other warm intervals of the geological
past, including the last interglacial and the Eocene (Evans et
al., 2018; Fischer et al., 2018), and is a feature of future cli-
mate under elevated CO2 concentrations (IPCC, 2014a).

There is complexity in the amplitude of the KM5c SST
anomaly by latitude and basin, which may reflect patterns of
surface ocean circulation. In the Northern Hemisphere, rela-
tively muted warming in the East Greenland Current (ODP
Site 907, 69◦ N) may reflect the presence of at least seasonal
sea-ice cover from ca. 4.5 Ma (Clotten et al., 2018). In con-
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trast, relatively high SST anomalies at ODP Sites 642 (67◦ N)
and 982 (58◦ N) track the northward flow of the North At-
lantic Current, accounting for the enhanced warming rela-
tive to north-east Pacific IODP Site U1417 (57◦ N; Figs. 4
and 5). The large North Atlantic SST anomalies also con-
tribute to an enhanced Northern Hemisphere meridional SST
gradient of up to 4 ◦C (> 60◦ N minus 0–30◦ N; Table 1).
For the Southern Hemisphere, a signal of polar amplification
is less clearly identified than for the Northern Hemisphere
(Fig. 4), although we recognise that all sites are <46◦ S. Low
KM5c SST anomalies (< 2 ◦C) at DSDP sites 593 and 594
(41 and 46◦ S, respectively) might be accounted for by a
similar positioning of the Subtropical Front close to New
Zealand during KM5c as today (McClymont et al., 2016;
Caballero-Gill et al., 2019). Antarctic Intermediate Water
(AAIW) temperatures were also only ∼ 2.5 ◦C warmer than
pre-industrial values during KM5c, suggesting a small warm-
ing in subantarctic waters where AAIW forms (McClymont
et al., 2016). In contrast, large anomalies at ODP Sites 1125
(43◦ S, Pacific) and 1090 (43◦ S, Atlantic) reflect a greater
sensitivity to expanded subtropical gyres during KM5c, con-
trasting with the Pleistocene equatorward displacement (and
enhanced cooling) of subpolar water masses (e.g. Martinez-
Garcia et al., 2010) which today places both of these sites
poleward of the Subtropical Front.

Given that our proxy data meridional SST gradient cal-
culations use only two sites to calculate the high-latitude
SSTs (ODP Sites 907 and 642), which are also both from
the Nordic Seas (Fig. 2), we explored the impact of expand-
ing our high-latitude band into the mid-latitudes. We also ex-
plored narrowing the low-latitude band so that it does not
include the Benguela upwelling sites, which have a signifi-
cant data–model offset (Fig. 4) and may be influenced by lo-
calised circulation changes (see Sect. 4.2). Previous calcula-
tions of Pliocene meridional SST gradients have also consid-
ered differences between the mid-latitudes and low latitudes
through time (Fedorov et al., 2015). Despite adding four
more sites by expanding the high-latitude band to 45◦ N/S,
the meridional SST gradients are reduced by < 0.4 ◦C, from
−1.18 to −1.56 ◦C using the original UK′

37 data (Table 1).
However, it is clear from the distribution of sites (Fig. 2) that
our reconstructed KM5c SSTs (and thus the global mean and
meridional gradients) have a strong signal from the Atlantic
Ocean. There is a relative scarcity of sites from the Indian
Ocean, Pacific Ocean, and Southern Ocean, but it is difficult
to ascertain what impact this may have had on our global
analysis. Further work is required to increase the spatial den-
sity of SST data for KM5c and the wider mid-Piacenzian
stage, to better evaluate the magnitude of the warming and
gradient changes outlined here.

4.2 Proxy data–model comparisons for mid- and
high-latitude sites

For the mid-latitudes and high latitudes, we find broad proxy
data–model agreements for most sites. In the North Atlantic
Ocean, reconstructed SST KM5c anomalies from UK′

37 fall
within the ranges provided by the PlioMIP2 models (Fig. 4)
for all but one site (IODP Site U1387, 37◦ N). The over-
all UK′

37–model agreement for the North Atlantic Ocean sug-
gests that, as proposed by Haywood et al. (2013), a focus
on a specific interglacial within the mid-Piacenzian provides
an improved comparison to the climate being simulated by
the PlioMIP2 models. Thus, some of the data–model mis-
match in previous mid-Piacenzian syntheses (e.g. Dowsett
et al., 2012) may have been due to the averaging of warm
peaks which may not have been synchronous in time be-
tween sites and/or with the interval being modelled. Dis-
agreements occur between proxies (North Atlantic Ocean)
and between proxies and models (Benguela upwelling, Gulf
of Cadiz, Mediterranean Sea) (Fig. 4). Here, we explore the
potential causes for these offsets in turn.

The largely UK′
37-derived data from the North Atlantic

Ocean tend to align with the warmest model outputs (Fig. 4),
and the UK′

37-SST anomalies also tend to be larger than those
from Mg/Ca. A challenge for understanding the cause(s)
of the UK′

37−Mg/Ca differences is that only two sites have
data from both proxies, and these do not show a consis-
tent signal. There is good correspondence between UK′

37 and
the original published Mg/Ca SSTs for IODP Site U1313
(41◦ N), whereas at ODP Site 609 Mg/Ca SSTs (both cal-
ibrations) are between 4.6 and 6.1 ◦C cooler than UK′

37. It
has also been shown that the UK′

37−Mg/Ca SST offset at
Site 609 is not constant with time for the late Pliocene
(Lawrence and Woodard, 2017). When using BAYMAG,
warmer KM5c SSTs are reconstructed than the original pub-
lished data at DSDP Site 603 and IODP Site U1313 (35
and 41◦ N; Fig. 4), but BAYMAG reconstructs SSTs only
0.8 ◦C warmer than the original published SSTs at Site 609.
These mid-latitude North Atlantic Mg/Ca data are provided
by G. bulloides, which may calcify at depth in the wa-
ter column (e.g. Mortyn and Charles, 2003; Schiebel et
al., 1997) and account for those sites where Mg/Ca re-
constructions give lower reconstructed SSTs than from UK′

37
(Bolton et al., 2018; De Schepper et al., 2013). Alterna-
tively, an offset between alkenones and Mg/Ca might be
accounted for if there is a seasonal bias to the UK′

37 calibra-
tion (e.g. Conte et al., 2006; Schneider et al., 2010). Despite
documented seasonality in alkenone production at high lati-
tudes, it has been proposed that mean annual SSTs continue
to be recorded by UK′

37 in sediments (Rosell-Melé and Prahl,
2013), as indicated by the original UK′

37 calibration (Müller
et al., 1998). In contrast, BAYSPLINE explicitly assumes an
autumn signal is recorded at Atlantic sites > 45◦ N (Tierney
and Tingley, 2018). Despite these differences in interpreta-
tion, BAYSPLINE values for KM5c are< 0.7 ◦C cooler than
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Figure 5. Investigating the potential seasonal signature recorded at high-latitude Northern Hemisphere sites (> 50◦ N), ordered by increasing
latitude from left to right. Note that Site U1417 is from the North Pacific, where BAYSPLINE explicitly assumes that a summer signal is
recorded > 48◦ N. All other sites are from the Atlantic Ocean/Nordic Seas, where BAYSPLINE assumes an autumn signal > 45◦ N. The
original calibration by Müller et al. (1998) proposes that mean annual SSTs are recorded. Standard deviations of the multi-model means are
shown for August (red) and April (yellow), which tend to be the maxima and minima, respectively.

the original published UK′
37 data (Fig. S2). Although the North

Atlantic UK′
37 data align with a range of mean annual SST

anomalies generated by the PlioMIP2 models (Fig. 4), three
of the sites show alignment between UK′

37 SSTs and the July–
November values from the multi-model means (Fig. 5). In
contrast, Site 907 aligns with cool spring temperatures in the
models, perhaps reflecting production after sea ice melt.

The large data–model discrepancy at 30◦ S reflects three
sites which today sit beneath the Benguela upwelling system
in the south-east Atlantic (20–26◦ S; Fig. 4). Part of the data–
model discrepancy in the KM5c anomaly can be attributed to
the models overestimating pre-industrial SSTs at the north-
ern Benguela sites (NOAA-ERSST5 SSTs are 2–5 ◦C be-
low the pre-industrial model range) and suggests that mod-
els are not fully capturing the local dynamics of the coastal
upwelling today (Small et al., 2015). Realistic representa-
tions of the Benguela upwelling system today are proposed
to require realistic wind stress curl and high-resolution atmo-
sphere and ocean models (< 1◦; Small et al., 2015). Most of
the PlioMIP2 simulations use lower-resolution atmosphere
and ocean models (Haywood et al., 2020). An increased den-
sity of proxy data reconstructing KM5c atmospheric circu-
lation, as well as the application of high-resolution models,
may help to understand the observed KM5c data–model dis-
crepancy. Furthermore, there was a deep thermocline during

the Pliocene (as reconstructed in the equatorial Pacific (Ford
and Ravelo, 2019; Ford et al., 2015; Steph et al., 2006; Steph
et al., 2010) and theorised globally (Philander and Fedorov,
2003)), so that warmer subsurface waters than today were
upwelled, enhancing local warming. However, warming of
∼ 3.4 ◦C in subsurface waters (Ford and Ravelo, 2019) and
∼ 2.5 ◦C in intermediate waters (McClymont et al., 2016)
for Pliocene interglacials suggests that Pliocene upwelling of
warmer waters is unable to fully account for the 7–10 ◦C SST
anomalies at Benguela sites for KM5c. Changes to the distri-
bution of export productivity and SSTs indicate that an over-
all poleward displacement of the Benguela upwelling system
occurred during the Pliocene, so that the main zone of up-
welling likely sat close to ODP Site 1087 at 31◦ S (Etourneau
et al., 2009; Petrick et al., 2018; Rosell-Melé et al., 2014). As
the northern and southern Benguela regions are today marked
by differences in the seasonality of the upwelling, a temporal
shift in upwelling intensity may also account for some of the
large SST anomaly (Haywood et al., 2020). Thus, the data–
model disagreement may be accounted for by a combination
of displaced upwelling and warmer upwelled waters, giving
large SST anomalies in Benguela proxy data, alongside the
challenges of modelling both the pre-industrial and KM5c
upwelling system and its associated SSTs.

Data–model disagreement also occurs at two Northern
Hemisphere sites where UK′

37-SST anomalies exceed those
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given by the range of model predictions (Fig. 4). Punto Pic-
cola (Sicily, 37◦ N) is located within the Mediterranean Sea,
whereas IODP Site U1387 (37◦ N, Iberian margin) records
the influence of the waters sourced from the Azores Current
and the subtropical gyre. The data–model disagreement for
KM5c reflects warmer SST estimates from the proxy data
compared to the models, despite the good agreement for the
pre-industrial period suggesting that locally complex ocean
circulation in these near-shore and marginal marine settings
may have been captured in the models. For Punto Piccola,
the data–model offset is also likely to be a minimum be-
cause BAYSPLINE Mediterranean SSTs explicitly record
November–May temperatures (Tierney and Tingley, 2018),
and alkenone production below the sea surface has also been
proposed (Ternois et al., 1997): both scenarios would act to
raise mean annual SSTs further from those simulated in the
PlioMIP2 models (Fig. 4). Further multi-proxy investigation
is required to identify whether the data–model disagreements
in the Benguela upwelling, Gulf of Cadiz, and Mediterranean
Sea reflect challenges in modelling near-shore or complex
oceanographic systems and/or biases in the temperature sig-
nal recorded by the proxy data.

4.3 Data–model comparisons for low-latitude sites

The low-latitude UK′
37-SST anomalies for KM5c align well

with the PlioMIP2 models (Fig. 4). At ODP Sites 806 and
959, the Mg/Ca anomalies using the original calibrations are
both +0.3 ◦C compared to the pre-industrial period (Fig. 4)
and also align with the PlioMIP2 models. At Site 806 the
BAYMAG KM5c anomaly (+1.7 ◦C) also aligns with the
PlioMIP2 models. Only one low-latitude site has both UK′

37
and Mg/Ca SST data: ODP Site 1143 (9◦ N) records KM5c
anomalies of +0.8 to +2.5 ◦C (UK′

37) or −0.7 to −1.3 ◦C
(Mg/Ca). Although the UK′

37 data align with the model out-
puts for Site 1143, the negative anomaly in Mg/Ca lies out-
side the model range for mean annual SST (Fig. 4).

Six of the low-latitude sites have negative low-latitude
SST anomalies in KM5c from foraminifera Mg/Ca; these
occur regardless of whether the original or BAYMAG cali-
brations are applied and for both G. ruber and T. sacculifer-
based reconstructions. The negative KM5c Mg/Ca-SST
anomalies lie beyond those shown across the PlioMIP2
model range (Fig. 4), despite the absolute Mg/Ca SSTs re-
constructed from these sites for KM5c falling within the
model range for all but two of the sites (ODP Sites 999
(13◦ N) and 1241 (6◦ N); Fig. S5). However, the absolute
SST values reconstructed for KM5c from Mg/Ca tend to
align with the colder model outputs (Fig. S5).

Mg/Ca-SST calibration choice has no consistent impact
on the KM5c anomalies (across all latitudes; Fig. 4). There-
fore, the corrections for secular seawater Mg/Ca change
and/or non-thermal influences over Mg/Ca, which are ac-
counted for in BAYMAG (Tierney et al., 2019b), do not ac-
count for these cold tropical KM5c anomalies. For example,

for ODP Site 806 in the western Pacific warm pool, BAY-
MAG SST estimates for KM5c are ∼ 1 ◦C warmer than the
published Mg/Ca record (Wara et al., 2005). For Site 999
in the Caribbean Sea, BAYMAG SST estimates for KM5c
are ∼ 0.5 ◦C cooler than the published Mg/Ca record (De
Schepper et al., 2013). This also suggests that the impact of
Mg/Caseawater change on SST is small on warm pool sites.
The Mg/Caseawater correction used in BAYMAG is conserva-
tive, drawing on multiple lines of physical evidence (corals,
fluid inclusions, calcite veins, etc.) (Tierney et al., 2019b).
Given the variable directions of the offsets between pub-
lished and BAYMAG SSTs shown here, the Mg/Caseawater
correction is unable to account for the data–model offsets ob-
served for the low latitudes.

CaCO3 dissolution in the water column and sediments
could lead to a cool bias on the Mg/Ca SSTs (Dekens et
al., 2002; Regenberg et al., 2006, 2009). However, the cool
KM5c anomalies also occur if the forward-modelled core-top
Mg/Ca SSTs from BAYMAG are used as the pre-industrial
“reference” (Fig. S6). The cold low-latitude anomalies for
KM5c could reflect an increase in the calcification depth
of the foraminifera, since the surface-dwelling foraminifera
analysed here calcify at a range of depths, particularly in the
tropics where the thermocline is deep in comparison to mid-
latitudes to high latitudes (Fairbanks et al., 1982; Curry et
al., 1983). The negative anomalies are broadly smaller for
G. ruber (−0.4 to −1.2 ◦C) than for T. sacculifer (−0.6 to
−3.5 ◦C), consistent with a deeper depth habitat for the lat-
ter (Curry et al., 1983), although at Site 959 the G. ruber
anomaly using BAYMAG is −3.8 ◦C. There is therefore a
lack of consistency between sites, which is difficult to re-
solve when single species have been analysed for each of the
sites through KM5c.

Where there are very large differences between BAYMAG
and published Mg/Ca SST estimates, regardless of latitude
(e.g. North Atlantic; Fig. 4), we suggest that some combina-
tion of calibration difference, Mg/Caseawater change, and/or
other environmental factors including seasonality and cal-
cification depth may offer an explanation. To fully investi-
gate the cause(s) of offsets in Mg/Ca SST reconstructions
requires future multi-species analysis for Mg/Ca for each
site and multi-proxy analysis for each site. Such an approach
would enable the exploration of a wider range of potential
influences over both the Mg/Ca and UK′

37-SST reconstruc-
tions and a reduction in the uncertainties of the reconstructed
SSTs and their anomalies. Alongside foraminifera Mg/Ca
and UK′

37 analyses, additional proxies which are likely to add
valuable information about water column structure and sea-
sonality could include TEX86 (Schouten et al., 2002), long-
chain diols (Rampen et al., 2012), and clumped isotopes (Tri-
pati et al., 2010). Previous research has demonstrated that
even within a single site there can be offsets between proxies
which are not continuous through time (e.g. Lawrence and
Woodard, 2017; Petrick et al., 2018), so that high-resolution
and multi-proxy work is required to fully understand the off-
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sets we have identified here. Resolving the causes of the dif-
ferent proxy–proxy and proxy–model offsets is important be-
cause they impact the calculation of the global mean SST
anomaly relative to pre-industrial values; however, even with
the inclusion of the overall cooler Mg/Ca data, the combined
KM5c proxy data still indicate a global mean SST anomaly
which is larger than most models from the PlioMIP2 experi-
ments (Fig. 3).

5 Conclusions

This study has generated a new multi-proxy synthesis of SST
data for an interglacial stage (KM5c) from the Pliocene. By
selecting an individual interglacial, with orbital forcing sim-
ilar to modern values, we are able to focus on the SST re-
sponse to atmospheric CO2 concentrations comparable to to-
day and the near future (∼ 400 ppmv) but elevated relative
to the pre-industrial period. Using strict stratigraphic proto-
cols we selected only those data which could be confidently
aligned to KM5c. By comparing different calibrations and
two different proxy systems (UK′

37 and Mg/Ca in planktonic
foraminifera) we identified several robust signals which are
proxy-independent. First, global mean SSTs during KM5c
were warmer than pre-industrial values. Second, there was a
reduced meridional SST gradient which is the result of rela-
tively small low-latitude SST anomalies and a larger range of
warming anomalies for the mid-latitudes and high latitudes.
Overall, there is good data–model agreement for both the ab-
solute SSTs and the anomalies relative to the pre-industrial
period, although there are complexities in the results. Further
work is required to generate multi-proxy SST data from sin-
gle sites, accompanied by robust reconstructions of thermo-
cline temperatures using multi-species foraminifera analysis,
so that the range of factors explaining proxy and calibration
offsets can be explored more fully.

The choice of proxy for SST reconstruction impacts the
overall calculation of global mean SST and the meridional
gradients. The negative anomalies in Mg/Ca SSTs at 6 of the
16 low-latitude sites lowers the global mean SST of KM5c
from ∼ 3.2–3.4 ◦C (UK′

37-only) to ∼ 2.3 ◦C (combined UK′
37

and Mg/Ca). The meridional SST gradient anomalies are de-
creased to −2.6 ◦C (combined UK′

37 and Mg/Ca) relative to
the pre-industrial period, although a more muted reduction
(up to−1.18◦ C) occurs with UK′

37 alone. A number of factors
may lead to a cool bias in the foraminifera Mg/Ca SSTs,
which require further investigation through multi-proxy and
multi-species analysis, particularly at low-latitude sites.

We identify the strongest warming across the North At-
lantic region. The results are consistent with the PlioMIP2
models, although the largely UK′

37 data sit at the high end of
the calculated model anomalies. Although seasonality may
play a role in the proxy data signal, these results also suggest
that many models may underestimate high-latitude warming
even with the moderate CO2 increases identified in KM5c

relative to the pre-industrial period. More data points are re-
quired to fully explore these patterns: for seven sites only
one data point lay within KM5c, and more than half of the
analysed sites (18/32) recorded Atlantic Ocean SSTs.

Both the PlioMIP2 models (Haywood et al., 2020) and fu-
ture projections (IPCC, 2019) indicate that warming is higher
over land than in the oceans in response to higher atmo-
spheric CO2 concentrations. Our synthesis of KM5c thus
likely represents a minimum warming to be expected with
atmospheric CO2 concentrations of ∼ 400 ppmv. Even un-
der low-CO2 emission scenarios, our results demonstrate that
surface ocean warming may be expected to exceed model
projections and will be accentuated in the higher latitudes.

Data availability. The combined proxy data (absolute SST
reconstructions and anomalies to the pre-industrial pe-
riod) and full details of the data sources are available at
https://doi.org/10.1594/PANGAEA.911847 (McClymont et al.,
2020).
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