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ABSTRACT 

The rivers of the world are undergoing accelerated change in the Anthropocene, and need to 

be managed at much broader spatial and temporal scales than before. Fluvial remote sensing 

now offers a technical and methodological framework that can be deployed to monitor the 

processes at work and to assess the trajectories of rivers in the Anthropocene. In this paper, we 

review research investigating past, present and future fluvial corridor conditions and processes 

using remote sensing and we consider emerging challenges facing fluvial and riparian research. 

We introduce a suite of remote sensing methods designed to diagnose river changes at reach to 

regional scales. We then focus on identification of channel patterns and acting processes from 

satellite, airborne or ground acquisitions. These techniques range from grain scales to landform 
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scales, and from real time scales to inter-annual scales. We discuss how remote sensing data 

can now be coupled to catchment scale models that simulate sediment transfer within connected 

river networks. We also consider future opportunities in terms of datasets and other resources 

which are likely to impact river management and monitoring at the global scale. We conclude 

with a summary of challenges and prospects for remotely sensed rivers in the Anthropocene. 

 

Key Words: remote sensing, GIS, drone, fluvial geomorphology, biogeomorphology, channel 

changes, riparian vegetation, sediment transport modelling, grain size, fluvial corridor  
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1. Introduction   

 

The concept of the Anthropocene proposed by Crutzen (2002) suggests that the 

geophysical influence of humans on Earth is such that we have fundamentally modified global 

landscape characteristics and entered a new era. Humans are changing the world’s ecosystem 

processes and functioning, and need to adapt to the consequences of these changing conditions. 

With the “Great Acceleration” of landscape changes since the 20th century (Steffen et al. 2007), 

it has become crucial to characterize evolutionary trajectories of Earth’s environments in order 

to infer future conditions. Even though the concept of the Anthropocene is still debated, there 

is a pressing need to quantify the human impacts on physical systems in recent decades. 

Moreover, the concept of the Anthropocene also helps identify the driving processes of 

landscape change (Moore, 2015). Thus, although the concept focuses predominantly on large 

spatio-temporal scales, human societies produce different types of change, and not all regions 

of the world follow the same trajectories. In other words, multi-scale approaches are needed to 

explore the characteristics of the Anthropocene from local to global scales. Lastly, the concept 

of the Anthropocene also highlights the key principles of rehabilitation and restoration as tools 

to preserve our landscapes and their ecological integrity.  

The Anthropocene is notably of interest for river scientists and fluvial 

geomorphologists who explore future changes and are engaged in management applications 

and decision-making support. Comprehensive reviews of research on river morphology and 

riverine environments in the Anthropocene have been recently proposed by Downs and Piégay 

(2019) and Wohl (2019). The Anthropocene reshapes river management perspectives by 

encouraging conservation and restoration processes and introduces humans as a boundary 

condition to be taken into account in the definition of management options (Mould & Fryirs, 

2018). The concept also suggests that fluvial systems are now socio-ecological hybrids and that 

human constructions can be perceived as potentially valuable, as is discussed with the novel 

ecosystem concept (Hobbs et al. 2006). There is an urgent need to work on highly modified 

river systems and not only the most natural systems, in order to understand the physical 

processes and improve their functioning (Thorel et al. 2018). Fluvial geomorphologists have 

made considerable progress in reading the landscape (Fryirs & Brierley, 2012), interpreting the 
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range of past channel processes, understanding the biophysical and anthropogenic drivers of 

channel trajectories, and predicting future changes (Brierley et al., 2013; Wohl, 2014; Brown 

et al., 2018). However, our ability to quantify interactions between local hydromorphological 

processes and fluvial system functioning at the basin scale is still largely conceptual (Fryirs, 

2013; Bracken et al., 2015), as is our ability to predict likely future channel trajectories (Surian 

& Rinaldi, 2003; Brierley & Fryirs, 2008; Dufour & Piégay, 2009). Recent scientific 

contributions are emerging in this domain based on geospatial resources (Schmitt et al. 2018b; 

Grill et al. 2019). Factors that influence evolutionary trajectories can be natural or 

anthropogenic and may act at both reach and catchment scales; they can be progressive (e.g. 

climate or land use change), impulsive (e.g. floods, earthquakes) or discontinuous, e.g. either 

a transient (e.g. sediment mining) or a permanent disturbance (e.g. dam, bank protection), 

forming a complex set of drivers (Dufour & Piégay, 2009). A temporal analysis of past river 

processes and natural inheritance is necessary to understand present river conditions, sensitivity 

and resilience (Brierley & Fryirs, 2005; Gurnell et al., 2016; Brown et al., 2018) and to support 

river restoration and management (Grabowski et al., 2014). In the context of the Anthropocene, 

one of the major challenges is to isolate the role of natural and anthropogenic driving forces on 

past and present river trajectories to anticipate future change. Local changes (flooding, erosion, 

ecological alteration, water resource availability) must always be considered with an integrated 

catchment perspective (Figure 1). Fluvial changes are not only driven by water and sediment 

but also by changing vegetation and human interactions in a fairly complex system of drivers, 

pressures, and impacts. The assessment of river status, trajectory and functioning requires a 

space-time framework much broader than the one employed traditionally by river engineers 

and managers. A complete understanding of fluvial trajectories cannot only come from the 

field, even if geomorphology has a long tradition of field-based investigation, because of the 

temporal and spatial limitations of field data. Understanding the Anthropocene is therefore 

intimately linked with remote sensing (RS). Recent advances in remote sensing have produced 

a step-change in the spatial and temporal scales of data that can be used to characterise the 

impacts of humans on river systems. 

 The science of remote sensing includes a range of techniques and methods to acquire 

information about spatial objects (e.g. a river corridor and its associated features and 

characteristics) and phenomena (river processes and changes) without any physical contact. It 

includes sensors (digital cameras, video-cameras, thermal-, infra-red-, hyper-, multi-spectral 

sensors, Light Detection and Ranging (LiDAR), Ground-Penetrating Radar (GPR), or 

geophones) mounted on platforms (satellite, airborne, or even ground) (see details on Fluvial 

Remote Sensing in Carbonneau & Piégay (2012) or more recent publications (Gilvear et al., 

2016; Entwistle et al., 2018; Tomsett & Leyland, 2019). RS can help understand morphological 

trajectories because of new spatial and temporal resolution and detection capabilities (e.g. 

applications of hyperspectral imagery or green-LiDAR). The capabilities and spatial extent of 

these techniques have grown considerably since the early 2000s. Piégay et al. (2015) 

highlighted a shift in the kind of tools used by geomorphologists to understand river systems. 

Remote sensing acquisition has partly informed the “Great Acceleration” with data archives, 

so we can increasingly work within a BACI (Before-After-Control-Impact) design (Green, 

1979) based on robust hypothesis-driven protocols to assess changes and their drivers in 
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comparative settings. When used alone, most field techniques only allow a short temporal 

perspective and access to a limited spatial context with no clear appraisal of processes occurring 

upstream or even laterally (notably in forested or large river systems). Integrative approaches, 

where field data, archived documentation (i.e. aerial photos, maps, topographic surveys) and 

remotely sensed information (which can be programmed, planned, repeated, and archived) are 

combined allow fluvial geomorphologists to widen their spatial and temporal perspectives. RS 

sensors are now largely employed by river scientists in the field (e.g. Terrestrial Laser Scan; 

aerial photos from drones; ground cameras, etc.) and RS data validation is usually based on 

intensive field surveys (See Carbonneau & Piégay, 2012; Bizzi et al., 2016). In summary, 

remote sensing offers new opportunities based on: (i) greater temporal resolution (i.e. repeated 

snapshots of the targeted landscape); (ii) larger spatial extents; (iii) higher spatial resolution; 

and (iv) use of contactless or non-invasive techniques (i.e. not disturbing the landscape). 

 

 

Figure 1.  

 

 

Gilvear and Bryant (2016) in their early review on the application of remote sensing in 

fluvial geomorphology highlighted that remote sensing is often the only way to obtain an 

“overall picture” of river functioning at large scales. This overall picture is fundamental to 

understand channel behaviour and changes, especially for the purposes of river planning and 

management frameworks, as highlighted for instance in Europe by the Water Framework 

Directive. Even if existing management-oriented frameworks are still mainly based on the 

acquisition of a large amount of local in situ data and require specific expertise of the river 

catchments to derive large-scale interpretations, they recognize the value and encourage the 

use of data and methods from remote sensing.  

 

Societies are shaping and modifying the landscape to a degree that has never occurred 

in the past. One of the key challenges for understanding remotely sensed rivers in the 

Anthropocene is to use the new, rapidly evolving technologies which provide an unprecedented 

ability to observe and understand the landscape. With this perspective in mind, we review 

research that investigates past, present and future fluvial conditions and processes, and 

summarise insights and challenges for new research.  

 

 

 

 

2. Remote sensing to explore past conditions within the Anthropocene  

 

2.1. Data and methodological framework to diagnose river changes 

 

 

Aerial photography 
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Reconstructing river trajectories requires the use of historical data, and especially 

remote sensing information (Grabowski & Gurnell, 2016). Early studies mostly relied on the 

use of oblique and vertical aerial photography in the visible domain. The use of remote sensing 

to explore past conditions starts with the advent of aerial photography around the 1930s, with 

mainly black and white images before the 1970s (Gilvear & Bryant, 2016). In many European 

countries, national aerial surveys were conducted with decadal frequency or even less from the 

1950s (e.g. the historical archives of the French Geographical Institute: 

https://remonterletemps.ign.fr/).  

Given the relatively coarse spatial resolution of early civilian airborne remote sensing 

data (typically from 5 to 0.5 m), the smallest spatial scale that can be characterized over time 

corresponds to river features (e.g. changes in flow channel areas, emerged bare ground units, 

islands or riparian vegetation; Toone et al., 2014; Lallias-Tacon et al., 2017). The 2D 

reconstruction of channel planform dynamics from historical aerial photographs, sometimes 

combined with historical maps, has largely improved our understanding of channel 

metamorphosis (sensu Schumm, 1969), meander migration and channel shifting (Hookes, 

2003; Alber & Piégay, 2017). Early studies (e.g. Petts et al., 1989; Gurnell et al., 1994; Hooke, 

2003) focused on 2D interpretation but did not quantify geomorphic work or sediment volumes, 

which limited the understanding of channel response. Historical aerial photographs have been 

used to detect channel changes in recent decades (e.g. Liébault and Piégay, 2002; Kondolf et 

al., 2007; Surian et al., 2009; Comiti et al., 2011; Arnaud et al., 2015; Marchese et al., 2017) 

to corroborate conclusions derived from traditional field-survey methods; to understand the 

causes of channel changes (Rollet et al., 2013; Grabowski & Gurnell, 2016; Bizzi et al., 2019); 

and to isolate human impacts on rivers since the 1950s, especially since the “Great 

Acceleration” of impacts in the Anthropocene era (Brown et al., 2017).  

 

 

Satellites 

 

Historical analyses of changing river systems now also use satellite products. Landsat 

TM multi-spectral data at 30 m resolution covers a temporal extent of 30 years 

(http://landsat.usgs.gov) but this is still limited to main river branches (Donchyts et al., 2016). 

Dewan et al. (2017) assessed channel changes of the Ganges-Padma River over 200 km and 38 

years, and found significant channel shifting over the 1973-2011 period related to changes in 

the hydrological regime but no real geomorphic changes which may be attributed to upstream 

dams. Pekel et al. (2016) quantified changes in surface freshwater globally using the entire 

Landsat 5, 7 and 8 archives over the past 32 years (1984-2015; ca 3 millions images). An 

increasing number of papers have recently been published on channel changes based on such 

Landsat archives because the images are free of charge and the temporal range is now sufficient 

to detect channel response to specific drivers (mainly damming), in the case of responsive 

rivers.  

 Satellite images are becoming increasingly available with a resolution allowing 

users to explore smaller riverine systems globally. However, with the exception of Landsat, the 

https://remonterletemps.ign.fr/
http://landsat.usgs.gov)/
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temporal window covered by satellite data is still too short for historical analysis. Satellite 

imagery is therefore accurate to characterize processes at an inter- and intra-annual scale, but 

not yet for detecting channel changes over decades beyond last 30-40 years. For longer channel 

temporal trajectories, or smaller rivers, satellite records are insufficient. Data can be 

supplemented by historical map data to extend data records, as used by Ricaurte et al. (2012) 

to compare the contemporary and historical distribution of vegetated islands in sections of the 

Danube, Rhine and Olt rivers. 

 

Complementary field data 

 

Remote sensing data can be complemented with more traditional field approaches to 

increase the set of convergent evidence confirming changes in channel morphology and their 

drivers. Historical hydrometric archives of stream gauging stations are commonly used to 

quantify long-term changes in channel width, depth, and riverbed elevation, and to understand 

the driving processes (James 1999, Stover & Montgomery 2001, Slater & Singer 2013, Phillips 

& Jerolmack 2016; Pfeiffer et al., 2018). Long profiles are also available at regional or national 

scales, sometimes with historical resources (Liébault et al., 2013). Additionally, time series of 

discharge and stage can be used conjointly to estimate changes in channel depth and 

conveyance (e.g. Biedenharn & Watson, 1997; Pinter & Heine, 2005). Finally, hydrometric 

data are increasingly being used to quantify the influence of changes in channel conveyance on 

flood frequency (Slater et al., 2015).  

 

 

2.2. Reach-scale changes 

 

 

Classical approach from airborne images 

 

A classic approach to analyze reach-scale channel adjustments over multiple kilometres 

is to compile historical aerial photographs. Series of photographs are selected at least every ten 

years, depending on the availability of archived photos and flood dates, and integrated in a GIS 

environment to extract geomorphic variables, e.g. active channel width or sinuosity, gravel bar 

area (Gilvear et al., 2000; Ollero, 2010; Michalkova et al., 2011; Rollet et al., 2013; Toone et 

al., 2014; Arnaud et al., 2015; Lallias-Tacon et al., 2017; Scorpio et al., 2018) and landscape 

unit characteristics (e.g. Dufour et al., 2015; Solins et al., 2018). Image georeferencing and 

vectorization of river features from historical datasets are still mostly manual and time-

consuming tasks which require real expertise. By analyzing the temporal series of historical 

remote sensing data, we can detect discontinuities in the spatio-temporal trajectories of rivers. 

Homogeneous sub-reaches in terms of magnitude of change can be statistically delineated 

using tests for stationarity (Alber & Piégay, 2011; Roux et al., 2015). Aerial photographs are 

also broadly used to study patterns of pioneer and woody riparian vegetation related to 

regional/climatic factors and human disturbance, and link these changes with river pattern 

changes to assess vegetation controls (Aguiar & Ferreira, 2005; Dufour et al., 2007; Kondolf 
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et al., 2007; Cadol et al., 2010; Dufour et al., 2012; Belletti et al., 2015; Surian et al., 2015; Kui 

et al., 2017; Safran et al., 2017). Dépret et al. (2017) and Tena et al. (in review) analysed a set 

of aerial photographs from different sites of the Rhône river and underlined effects of channel 

regulation on cutoff channel life span and groyne field terrestrialization (Figure 2A). Decadal 

changes in species composition and landscape configuration can also be surveyed with satellite 

images (Rodríguez-González et al., 2017). 

 

Added value of combining field and airborne data 

 

Archived aerial photos and field surveys can be used jointly to assess both planform and 

vertical channel changes or vegetation properties. For example, Arnaud et al. (2015) exploited 

seven sets of aerial photos and three cross sections series from the 1950s to the 2010s to 

quantify channel narrowing/widening and bed degradation/flood terrace aggradation rates on 

the dammed Rhine River. Belletti et al. (2014) assessed the influence of floods on riverscape 

organization of twelve braided reaches (French Rhône basin) by using five archived aerial 

photos series and sediment regime information from archived longitudinal profiles (Liébault et 

al., 2013). Sequences of archive images and field measures of standing tree volumes have been 

also used to determine wood recruitment through time and contribute to wood budgeting 

(Lassettre et al. 2008; Boivin et al. 2017). With the emergence of new remote sensing 

technologies, it is now much easier to combine sequences of archive imagery with topographic 

information, and to move a step forward towards the reconstruction of 3D multi-decadal 

channel responses. For instance, sequential aerial photos since the 1940s-1950s and present-

day LiDAR data were combined to reconstruct floodplain formation and relate this with 

vegetation properties along three alpine braided rivers in France (Figure 2B, Lallias-Tacon et 

al., 2017). RS has also been used to estimate riverbank erosion volumes for different river 

reaches in New Zealand (Spiekermann et al., 2017).  

The time periods covered by national aerial photograph series are typically too short to 

explore lowland rivers that are less responsive to change. In these larger river systems, RS data 

must be combined with other data such as sedimentological information from coring or 

geophysics to access information ranging from the medieval period to the 20th century (Vauclin 

et al., 2019). 

 

Figure 2.  

 

Vertical information can also be derived directly from archived aerial photographs using 

digital photogrammetry (Lane, 2000; Gilvear & Bryant, 2016; Bakker & Lane, 2017). For 

example, Carley et al. (2012) assess post-dam channel changes by combining elevation contour 

maps acquired from aerial photogrammetry, in situ bathymetric surveys, and point cloud 

models acquired from a total station (TS). On the other hand, geomorphic metrics extracted 

from archived aerial photographs or 3D bed topography offer input/validation data for linking 

hydraulic modelling with channel change (Santos et al., 2011; Gilvear & Bryant, 2016; Serlet 

et al., 2018). However, extracting channel change information from archived data (e.g. old 

aerial photographs) is not straightforward and requires an assessment of error production and 
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propagation to allow its application for quantitative geomorphic analysis (James et al., 2012; 

Bakker & Lane, 2017). For example, it has been demonstrated that SfM data processing of 

historical air photos of braided channels can produce a quality of information equivalent to 

classical photogrammetric approaches, provided that image texture and overlap are sufficiently 

high for tie-point detection and matching (Bakker and Lane, 2017). However, the persistence 

of systematic centimetre- to decimetre-scale elevation errors after coregistration of point clouds 

indicates that topographic differencing using SfM processing of archival imagery is still limited 

for the quantitative analysis of sediment budgets. 

The integration of large-scale historical data (beyond remote sensing) is often used to 

better contextualise reach-scale changes within a catchment and landscape context. For 

example, Ziliani and Surian (2012) combine catchment-scale datasets on river pressures (e.g. 

bank protection, sediment mining, chronology and location of torrential control works), RS-

derived information (land use changes), historical maps, and aerial photos to disentangle the 

contribution of local vs. large-scale drivers in the evolutionary trajectory of channel 

morphology along the nearly-natural Tagliamento river (north-western Italy).  

 

 

2.3. Regional network changes 

 

Reach-scale river trajectory assessment, combining field data, manual editing of 

historical remotely sensed information and qualitative expert-based interpretation of process 

evidence, is a research challenge that requires careful harmonization and consistency when 

implemented at regional or network scales (several thousands of km of river length). Two 

strategies are usually implemented: i) assessing inter-reach differences at the network scale to 

infer controlling factors, ii) observing continuous network changes.  

 

Assessing inter-reach differences at the network scale to identify controlling factors  

 

Past evolutionary trajectories can be explained, and future trajectories can sometimes be 

predicted, through location-for-time substitution which infers a temporal trend from a study of 

different aged sites, permitting regional assessment of channel changes (Pickett, 1989; Fryirs 

et al., 2012) or location-for-condition evaluation allowing to identify factors explaining 

observed changes. This location-for-time approach builds on the well-known channel-

evolution model of Schumm et al. (1984) and Simon and Hupp (1986). Such historical large-

scale studies are usually based on relatively few observations (at best decadal), mainly aerial 

photos (e.g. Belletti et al., 2014), manually digitized historical maps (Scorpio et al., 2016; 

Meybeck & Lestel, 2017) or a combination of aerial photos and maps (e.g. Surian et al., 2009). 

Regional active corridor changes are estimated through location-for-condition evaluation by 

sampling a set of river reaches or river features within a hydrographic network which can be 

compared in space and time (Belletti et al., 2015). The approach mainly consists in combining 

present remote sensing data and spatially distributed historical information within a catchment 

to interpret controls of present channel conditions. Belletti et al. (2015) explored active channel 

width evolution between the 1950s-2000s in French braided rivers that showed general 
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narrowing in the northern reaches versus more complex patterns in the southern reaches. 

Applying the location-for-condition evaluation, Bertrand and Liébault (2019) studied the 

impact of nickel mining activities on the river beds in New Caledonia by comparing the spatial 

patterns of present active channel width normalized by the catchment area in a set of 

undisturbed versus impacted reaches, identified on recent orthophotos. They demonstrated that 

the increase in coarse sediment supply induced sediment waves which propagated from the 

major mining sources, widening and aggrading active channels along the stream network. An 

advanced approach in this domain by Liébault et al. (2002) showed from Co-inertia Analysis 

that differences in channel changes in twenty mountain streams (channel narrowing, bed 

degradation and armouring) were largely controlled by watershed morphometry and land use, 

permitting to better understand sub-catchment sensitivity to change. Recently, Alber and 

Piégay (2017) predicted potential bank retreat at an entire network scale from stream power 

and active channel width based on a set of sites/observations where bank retreat was assessed 

over a 50-year period from two series of aerial photos. 

 

Observing continuous network changes 

 

This second approach has become possible in the last ten years thanks to a better temporal 

and spatial resolution in remote sensing data. It relies on the integration of optical, multi-

spectral (orthophotos or satellite images) and topographic (LiDAR) data. Macfarlane et al. 

(2017) combined Landsat imagery and a modelled estimate of pre-European settlement land 

cover, and showed, over 50,000 km of rivers, that 62% of Utah rivers and 48% of the Columbia 

River Basin network exhibited significant differences in riparian vegetation compared to 

historic conditions due to land-use impacts and flow and disturbance regime changes. Bizzi et 

al. (2019) derived in the Piedmont river network (Italy) historical and current hydraulic scaling 

laws by integrating a recent regional geomorphic database based on remotely sensed datasets 

(Demarchi et al., 2017), sparse historical field measurements of channel cross sections, and 

evidence from unaltered river systems in similar Alpine regions in France (Figure 3) (Piégay 

et al., 2006; Gob et al., 2014). It has long been recognized that past changes in channel 

characteristics can be used to predict long-term trajectories of channel morphology. Comparing 

these relationships with present channel measurements provides an indication of the level of 

channel modification at the regional scale due to human pressures over the last century. Such 

approaches are promising for understanding river evolution over much larger scales in the 

future. 

Historical maps are rare and not so widely used as additional layers to quantify temporal 

changes at a regional level because of limitations (geometric distortion, simplified 

representation of features, notably the hydrography) (Dunesme et al., 2018). But there are some 

opportunities in countries such as Switzerland or Belgium that have very good historical map 

resources covering the 19th century and for which automatic vectorization is possible (Horacio 

et al., on line). 

 

Figure 3.  

 

https://www-sciencedirect-com.inee.bib.cnrs.fr/topics/earth-and-planetary-sciences/landsat
https://www-sciencedirect-com.inee.bib.cnrs.fr/topics/earth-and-planetary-sciences/river-basin
https://www-sciencedirect-com.inee.bib.cnrs.fr/topics/engineering/land-use
https://www-sciencedirect-com.inee.bib.cnrs.fr/topics/social-sciences/alteration
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3. Remote sensing to identify patterns and acting processes  

  

3.1 Characterizing rivers from ground, sky, and space  

 

Remotely sensed approaches of river systems can be classified according to the scale of 

observation, ranging from ground-based and close-range surveying techniques to airborne and 

spaceborne platforms (Table 1).  

 

Table 1 – A few examples of corridor features and attributes remotely sensed from a set of 

platforms/sensors within specific space-time frameworks 

 

Ground-based and close-range surveying techniques 

 

Field-based approaches in fluvial geomorphology increasingly use terrestrial remote 

sensing to survey the topography and to measure the fluxes of water, sediment or wood passing 

through a river section. For example, Terrestrial Laser Scanning (TLS) is now commonly 

employed to produce dense 3D point clouds of river channels (e.g. Milan et al., 2007; Heritage 

& Milan, 2009; Hodge et al., 2009). Although this technique is mostly used at scales ranging 

from small gravel patches to short channel reaches of several hundreds of metres, combining 

TLS with mobile platforms allows for coverage of several kilometres of non-wetted area in 

complex river channels (Williams et al., 2014). Time-lapse cameras (Džubáková et al., 2015), 

video recordings (Le Coz et al., 2010; MacVicar & Piégay, 2012), seismic sensors (Burtin et 

al., 2016) or active RFID tracers (Cassel et al., 2017) are now in the modern toolkit for the 

ground-based observation of fluvial forms and processes. The main limitation of ground-based 

observations remains the small spatial coverage of investigation. 

 

Airborne techniques 

 

Airborne surveys can be made using a range of platforms, from the most affordable and flexible 

ones (poles, lighter-than-air balloons or blimps, small Unmanned Aerial Vehicle (UAV) also 

called Unmanned Aerial Systems (UAS)) to manned aircraft (ultralight trikes, helicopters, 

planes) (Figure 4). Blimps (Vericat et al., 2009; Fonstad et al., 2013) and poles (Bird et al., 

2010) used to get high resolution images in short river reaches, typically less than 1 km in 

length, are particularly appropriate in narrow river channels partially or totally masked by 

forest canopy. UAVs can more easily cover several km of wide river reaches (e.g. Woodget et 

al., 2015; Vázquez-Tarrío et al., 2017). Airborne observations allow for the investigation of 

larger spatial scales with constraints of flight duration, optical properties of the sensor and 

flying height of the platform. In co-evolution with UAV and ultralight trikes, Structure from 

Motion (SfM) photogrammetry has largely resolved the issue of image orthorectification and 

Digital Elevation Model (DEM) production (James & Robson, 2012; Westoby et al., 2012; 

Fonstad et al., 2013). Such low-cost platforms are usually equipped with commercial digital 

cameras, with varied configurations and technical options as technology is rapidly evolving 
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(Marcus & Fonstad, 2010; Bertoldi et al., 2012; MacVicar et al., 2012; Entwistle et al., 2018). 

More recently, there is a growing availability of drones equipped with real-time kinematic 

(RTK) GPS allowing for cm accuracy positioning of the imagery. The popular Phantom series 

of drones produced by DJI inc. now has a model equipped with such RTK-GPS technology 

and the cost is of approximately 7000 € (in early 2019). This technical development should 

further enhance the ease of use of UAVs for geomorphological investigations. As a 

consequence of these key technological advances, published papers on the use of UAVs in river 

settings have appeared at an accelerated pace with a Google Scholar search for keywords ‘UAV 

River’ returning over 9000 items published since 2015. Drones are now equipped with LiDAR 

sensors, multi- and hyper-spectral sensors, even RFID tracking technology (Cassel et al., in 

review). 

 

Figure 4 

 

 

However, we note that this rapid growth of technologies with increasing levels of 

automation has not been without negative effects.  In the case of SfM-photogrammetry, the 

major drawback of the high levels of automation has in fact been a net loss, or at the very least 

a stagnation in growth, of photogrammetric expertise in the geomorphology community. 

Modern softcopy SfM-photogrammetry packages will often deliver visually stunning results 

and extremely high data volumes irrespective of the quality of the input data.  Since it is 

increasingly difficult to validate a significant percentage of these outputs with field data, they 

are too often accepted as good without detailed examination.  After the appearance of the first 

papers on the topic of SfM in 2012/2013, it has taken several years and multiple contributions 

to recognise that SfM-photogrammetry, whilst still strongly rooted in photogrammetry, 

requires its own expertise.  The best example is the debate around optimal flight patterns and 

camera calibrations.  Given that nadir image acquisition had been the norm in the first 50 years 

of photogrammetry, SfM-photogrammetry acquisitions initially employed this approach.  But 

some early papers (Wrackow and Chandler 2008, 2011; James and Robson 2014; Woodget et 

al., 2015) started to document a doming deformation whereby the centre of a digital elevation 

model produced with SfM-photogrammetry was either depressed or elevated along a parabolic 

shape. The simulation work of James and Robson (2014) and laboratory experiments of 

Wrachow and Chandler (2011) further demonstrated that this doming deformation was due to 

poor camera calibration due to the exclusive use of nadir imagery.   It is now well recognised 

that for SfM-photogrammetry with low-cost cameras, the acquisition of off-nadir imagery with 

convergent views is critical.  Significant photogrammetric expertise is required to correctly 

adapt SfM technology to a geomorphic context.  This is also true for hardware. UAV-based 

LiDAR systems are now increasingly common; however, anecdotal evidence (Lejot, pers. 

comm.) suggests that getting these systems to an operational state is not straightforward.  Once 

again, very significant technical expertise is required. Overall, airborne acquisition technology 

has advanced considerably, but potential users must be aware that significant expertise and 

time is still a critical requirement for successful deployment of these technologies.  
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Spaceborne techniques 

 

For working at larger spatial scales, satellite images are also becoming an important 

source of data. Since the advent of multi-spectral satellite images (around the late 1970s for the 

Landsat TM), satellites provide access to further information derived from electromagnetic 

radiation that is complementary to field-based data or aerial photographs, mainly for large 

rivers (e.g. Salo et al., 1986; Henshaw et al., 2013). Landsat 7 and 8 with images at 15 and 30 

m resolution and a revisit capacity of 16 days are often used at large scales, e.g. for 

characterizing thermal patterns (Wawrzyniak et al., 2016) or channel morphology (Xie et al., 

2018). Early work using Landsat-5 images focused on channel migration in the Peruvian 

Amazon (Salo et al., 1986). The main advantage is that these images are globally available and 

free of charge to users. If metric-scale resolutions are required, commercial satellite products 

become the only option. SPOT 5 imagery has been used associated with LiDAR and Very High 

Resolution (VHR) QuickBird images to map riparian zone features (Johansen et al., 2010). 

Since 2015, SPOT 6 and 7 programs now offer daily images at 1.5 m in panchromatic mode. 

The Pleiades program (launched in 2011-2012) produces daily images at 70 cm resampled at 

50 cm which have been used to map aquatic areas in river corridors and assess their spatial 

extent according to discharge (Wawrzyniak et al., 2014). These data sources provide VHR 

images but the acquisition costs can be particularly high for large scale or multitemporal 

studies. In recent years, there has been an increase in the number of studies using Sentinel 

images both in visible, infrared and radar domains (e.g. Spada et al., 2018 who combine data 

from the CORONA, Landsat and Sentinel-2 missions) that are publicly-accessible and provide 

high spatial resolution (10 to 60 m) images in Europe every 5 days (if no cloud), or weekly or 

sub-monthly, at the global scale. 

 

Over the past few decades, geomorphologists have advocated for an increase in spatial 

resolution whereas now, some of the geomorphic questions are solved when resolution is 

reduced (e.g. channel bathymetry from radiometric information). An issue is then to determine 

the optimal resolution and level of change detection for solving geomorphic questions.  

 

In recent years, satellites have increased in spatial resolution (reaching sub-meter scales) 

and frequency of acquisition (sub-weekly acquisition), colleting multispectral and radar 

information and in some cases (such as Pleiades) stereoscopic datasets for topographic/DEM 

reconstruction. We are entering an era where river channel planforms and processes can be 

observed and classified from satellites almost weekly for large rivers worldwide. This 

opportunity requires specific and interdisciplinary expertise as well as access to 

funding/resources to be properly realized. For this reason, this new satellite information has 

not yet produced a concrete advance in river process understanding. Remote sensing derived 

information has so far mostly been used to test existing concepts and their range of applications, 

rather than for generating new concepts or theory. The time has come to translate our request 

for data (now partially satisfied) into efforts to use this data to pose specific research questions 

to advance fluvial geomorphology scientific understanding.    
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3.2. Detection and characterization of fluvial forms and their attributes  

 

Grain size and shape measurement 

 

The grain-size distribution (GSD) of river channels is critical for understanding the 

interactions between hydraulics, sediment transport, and channel form, and for the 

characterization of physical habitats. Investigations of the spatial variability of river 

sedimentology is at the core of many works dedicated to sediment sorting patterns and 

processes of fluvial environments (e.g. Dietrich et al., 1989; Rice & Church, 1998; Guerit et 

al., 2014). Collecting data about surficial GSD has been for a long time only possible through 

laborious and time-consuming field samplings, such as the well-known pebble count protocol 

(Wolman, 1954). Remotely-sensed solutions started to emerge in the late 1970s, with the 

development of “photo-sieving” image analysis tools. Initially, photosieving methods relied on 

manual measurement of clasts visible on images taken from the ground (e.g. Adams, 1979; 

Ibbeken & Schleyer, 1986). Later solutions became based on the automatic segmentation and 

size extraction of single particles on close-range images of gravel patches (Butler et al., 2002; 

Graham et al., 2005 a and b; Detert & Weitbrecht, 2012). At similar scales, other methods 

started to emerge which relied on statistical properties of images. Image-based 

sedimentological extraction initially used a grain-size calibration with image texture, 

semivariance or entropy (e.g. Carbonneau et al., 2004; Tamminga et al., 2015; Woodget et al., 

2018). Wavelet analysis and autocorrelation have also been demonstrated as being capable of 

extracting grain-size information from imagery (Rubin, 2004; Buscombe, 2008; Buscombe & 

Masselink, 2009; Buscombe et al., 2010). Chardon et al. (in review) tested the automatic 

Buscombe procedure on underwater images and showed solar lighting conditions and particles 

petrography influence significantly the GSD. They proposed procedures to correct these effects 

and determine the optimal sampling area to accurately estimate the different grain size 

percentiles when using such a technique, which is still the only accurate approach to 

characterize grain size underwater. Similar approaches would later be applied to airborne data 

in order to extend the spatial coverage of remotely sensed grain size mapping approaches 

(Figure 5). 

As an alternative, the 3D point cloud-based technique uses roughness metrics to 

approximate grain-size (e.g. Heritage & Milan, 2009; Brasington et al., 2012; Vázquez-Tarrío 

et al., 2017). Only few recent works proposed a comparison between these techniques. 

Woodget et al. (2018) tested a 2D image texture approach and a 3D topographic roughness 

approach in a small gravel-bed river in UK and obtained a better grain-size prediction with the 

3D approach. However, another field experiment showed that the texture of single UAV images 

is more efficient than 3D roughness metrics for grain-size prediction, provided that UAV 

images are acquired with a mechanical stabilization system (gimbal) to avoid blurring effect 

(Woodget et al., 2018). First attempts to predict grain-size with 3D point clouds were based on 

local standard deviation of elevations which were determined by scale-dependent submeter 
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kernels (Entwistle & Fuller, 2009; Heritage & Milan, 2009). More recent works demonstrated 

that detrending the local micro-topography (e.g. bank slope, edges of gravel bars) before 

computing the roughness metrics is crucial for grain-size prediction (Brasington et al., 2012; 

Rychov et al., 2012; Vázquez-Tarrío et al., 2017).  

Recently, Carbonneau et al. (2018) demonstrated a method that leverages Direct 

Georeferencing (DG) in order to roboticize the grain-size mapping process. By using the on-

board GPS of a drone, and by flying at very low altitudes (below 10 m), the authors 

demonstrated that drone images could be combined in a DG workflow which uses particle 

recognition software. As a result, the method of Carbonneau et al. (2018) allows a drone to act 

as a fully autonomous robotic field worker that measures grain-size data over local areas. With 

the advent of hyperspatial remote sensing solutions at larger scales, grain-scale information can 

now cover entire river reaches of several kilometres in length. The airborne LiDAR 

topographic survey can also accurately generate grain-size maps when the point density is high 

(38 to 49 points/m2, mean distance between points of 0.08 m to 0.09 m) and the laser spot size 

fairly low (0.12 m at NADIR; see Chardon et al., in review), comparatively to observed grain 

sizes, allowing to cover areas much larger than with drones.  

 

 

Figure 5.  

 

The study of longitudinal grain shape evolution helps understand the downstream fining 

and rounding processes and enhances our ability to decipher the transport history of river 

sediment (Domokos et al., 2014; Litty and Schlunegger, 2016) and interpret gravel provenance 

(Lindsey et al., 2007) (Figure 6). From traditional field measures which emerged in the 1930s 

(Wadell, 1932), image processing and Fourier grain shape analysis were used in the 1990s in 

the first attempts to automatically measure particle shape and roundness (Diepenbroek et al., 

1992). This approach was further developed in the late 2000s using automatic ground imagery 

procedures to get a set of roundness and shape indexes and explore spatial patterns at reach to 

network scales (Roussillon et al., 2009; Cassel et al., 2018). A digital approach has been also 

proposed to estimate roundness of individual particles using 3D laser scanner, but it is still at 

an experimental level without in situ results (Hayakawa and Oguchi, 2005). Using a large set 

of SfM field data, Pearson et al. (2017) highlighted effects of particle shape or grain packing 

structure on roughness/grain-size relationships, opening new issues to potentially characterize 

particle shape from imagery without sampling particles and disrupting the bed surface. 

However, particle roundness characterization needs an accurate detection of particle 

boundaries, therefore such measurement is still difficult to imagine without field sampling. 

 

Figure 6.  

 

 

Bathymetry and water depth 
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Water depth is arguably the most fundamental parameter in fluvial morphology and has 

been the topic of considerable work in fluvial remote sensing.  We can distinguish three main 

approaches to water depth mapping: radiometric depth retrieval, direct measurement with 

photogrammetry and active measurements with bathymetric LiDAR.  Radiometric depth 

retrieval uses the Beer-Lambert law of absorption and correlates the brightness levels in an 

image with the depth of water.  Crucially, the bottom of the river must be clearly visible.  This 

empirical approach has been frequently used and reported (Winterbottom and Gilvear, 1997; 

Marcus, 2002; Fonstad and Marcus, 2005, Carbonneau et al., 2006).  In these cases where the 

stream is clear, the full bathymetry of the channel can be retrieved with photogrammetry either 

using a classic approach (Westaway et al., 2003; Fuerer et al., 2008; Lane et al. 2010), or a 

SfM approach (Woodget et al., 2015, Dietrich 2016). Finally, bathymetric LiDAR using a 

green laser has been in use for several years and is now available for deployment in rivers using 

manned airborne platforms (e.g. Kinzel et al., 2007; Bailly et al., 2010; Legleiter et al., 2015).  

However, readers should note that all these methods suffer from the same limitation: water 

clarity.  Radiometry and photogrammetry methods must have a clear view of the riverbed and 

are therefore limited to very low-levels of turbidity and suspended sediment.  Active methods 

based on LiDAR are somewhat more robust since a laser pulse is capable of penetrating turbid 

water, but in practice, the increased signal noise caused by suspended particles means that the 

improvement is marginal. Ultimately, ground remote sensing with intensive measurements 

from boat are the only way to obtain accurate depth predictions for heavily turbid flows.  

 

Characterization of fluvial corridor features: from reach to network and global scales 

 

At the reach scale, river corridors can be seen as complex mosaics of distinct spatial 

units resulting from interactions between sediment, water, and vegetation. Fryirs & Brierley 

(2012) define these landforms as the “building blocks” of the fluvial mosaic, but other terms 

have been proposed, like geomorphic units, hydraulic units, physical habitats, meso-habitats or 

biotopes (Milan et al., 2010; Wyrick et al., 2014; Wheaton et al., 2015; Belletti et al., 2017). 

Some recent works combine multisource remote sensing data from different sensors to better 

classify, characterize, and model these building blocks (Bertoldi et al., 2011; Legleiter, 2012; 

Williams et al., 2014; Wyrick et al., 2014; Demarchi et al., 2016), as well as their physical 

properties, such as temperature (Wawrzyniack et al., 2016). 

 Reach-scale features are traditionally mapped by means of expert-based approaches 

based on interpretation of available imagery, which may be used in complement with high 

resolution topography (e.g. Dietrich 2016). Topographic and morphometric signatures can be 

systematically extracted from high resolution DEMs, allowing the prediction of fluvial 

landscape features such as channel heads (Clubb et al., 2014), floodplains and terraces (e.g. 

Clubb et al., 2017), morphological units (Cavalli et al. 2008) or river reach features (Schmitt 

et al., 2014). Automatic or semi-automatic algorithms to map river features started to emerge 

recently to improve the reproducibility of mapping products, and to reduce the time for 

mapping. Image classification is often a first step required to focus the application of algorithms 

to specific features in the image. To this day, a cost-effective method for classifying river 

features is still lacking and the first step of data processing is often one of the most laborious. 
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Over the last decade, Object Based Image Analysis (OBIA) has slowly developed as a step 

change allowing for enhanced image classification (Blaschke, 2010; Blaschke et al., 2014). In 

contrast, the rapid developments in machine learning, deep learning and artificial intelligence 

are now beginning to cross-over in the environmental sciences. Casado et al. (2015) 

demonstrated that a low-complexity, shallow, artificial neural network (i.e. a multilayer 

perceptron) was capable of identifying geomorphic features in a short river reach with an 

accuracy of 81%. Recently, Buscombe and Ritchie (2018) use a large dataset to demonstrate 

that a convolutional neural network (CNN) could be adapted to fluvial imagery in order to 

classify images and report mean F1 scores ranging from 88% to 98%. Carbonneau et al. (in 

revision) developed a novel approach dubbed ‘CNN-Supervised Classification’ which uses a 

pre-trained convolutional neural network to replace the user input in traditional supervised 

classification. They report mean F1 scores ranging from 90% to 98%. The result of 90% 

reported in Carbonneau et al. (in revision) is for rivers that were never seen by the classifier 

during the training phase. This suggests that deep learning could deliver a quasi-universal 

classifier capable of matching human performance when visually establishing the semantic 

classes of a river image. 

In the case of vegetation and the riparian zone, the last years have seen significant gains 

in terms of resolution and detail (Bertoldi et al., 2011; Dufour et al., 2012, Kasprak et al., 2012; 

Abalharth et al., 2015; Atha & Dietrich, 2016). The ability to identify vegetation composition, 

including at species scale, and to describe vegetation structure has greatly increased (Kaneko 

& Nohara, 2014; Riedler et al., 2015; Husson et al., 2016; Michez et al., 2016; Bywater-Reyes 

et al., 2017; Hortobágyi et al., 2017; Loicq et al., 2018). This is due to the integration of 

structural information provided notably by LiDAR data (Charlton et al., 2003; Farid et al., 

2006; Antonarakis et al., 2008; Geerling et al., 2009; Johansen et al., 2010; Michez et al., 2017; 

Laslier et al., 2019a). Indeed, LiDAR data can be used at the reach scale to assess vegetation 

roughness (Straatsma & Baptist, 2008), to monitor vegetation volume changes following a 

flood event at a very fine scale (Milan et al., 2018), to identify tree genera at individual scale 

(Ba et al., 2019), and many other attributes such as vegetation height, crown diameter canopy 

closure, vegetation density, age class or stream shading (Michez et al., 2017; Laslier et al., 

2019a) (Figure 7). The ability to identify vegetation composition, including at species scale, 

has been also greatly increased with the development of hyperspatial (Kaneko & Nohara, 2014; 

Husson et al., 2016; Michez et al., 2016; Bedell et al., 2017, Laslier et al., 2019b) and 

hyperspectral data (e.g. Peerbhay et al., 2016; Rodríguez-González et al., 2017). Mapping 

efforts from remote sensing data also detect specific features such as instream wood 

distribution (Atha, 2014; Ulloa et al., 2015), wood deposits (Marcus et al. 2002, 2003) or 

instream wood characteristics and volumes in riverine environments (Boivin & Buffin-

Bélanger, 2010; Tonon et al., 2014).  

 

 

Figure 7.  

 

 

 In recent decades, important efforts have been made for network-scale mapping of 

fluvial environments (Alber & Piégay, 2011; Demarchi et al., 2016) and riparian zones (Goetz, 
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2006; Johansen et al., 2007; Clerici et al., 2014; Michez et al., 2017). Notebaert and Piégay 

(2013) studied the present variability of floodplain width in the entire Rhône basin by 

combining digital terrain models, historical maps and other GIS layers (hydro-ecoregions, 

geological maps). They highlighted the contribution of inherited landscapes from tectonic 

processes and glaciations. Such approaches have also been used to map geomorphic units using 

aerial infrared orthophotos only (Bertrand et al., 2013a) or combined with LiDAR DEM 

(Demarchi et al., 2017) (Figure 8). Another example is the method for regional scale automatic 

mapping of unvegetated patches in headwater catchments based on an object-based image 

analysis of infrared orthophotos and Landsat 7 ETM+ images developed by Bertrand et al. 

(2017). This has been successfully applied in the Southern French Alps to assess regional-scale 

sediment supply conditions in relation to debris-flow triggering, and more recently to link 

suspended load hysteresis patterns and sediment sources configuration in alpine catchments 

(Misset et al., 2019). Concerning the riparian zone, the method can be used from large scale 

delineation of buffers to the description of the zone characteristics at watershed to continental 

scales (Johansen et al., 2010; Clerici et al., 2014; Cunningham et al., 2018). Fine scale 

approaches now extend to the network scale. Michez et al. (2017) compared rivers of different 

regions in Belgium based on the ratios of channel width and depth to the basin area. 

 

 

Figure 8.  

 

 

Comprehensive, systematic analyses of the different predictors of fluvial patterns, as well 

as predictions of future channel evolution (if any of these predictors are altered), may now be 

achieved at a global level, at least for medium-size rivers, using existing pre-processed, 

remotely-sensed archives and platforms. For instance, the Global Width Database for Large 

Rivers (GWD-LR) contains channel widths between 60S and 60N extracted using the SRTM 

Water Body Database (Yamazaki et al., 2014). Considerable advances may be achieved by 

using global archives to interrogate or predict channel form, e.g. using remotely-sensed 

measurements of global surface water (Pekel et al., 2016), global river widths extracted from 

gauging stations worldwide (Allen & Pavelsky, 2018), or a global geospatial river reach 

hydrographic information database (including river networks, watershed boundaries, drainage 

directions, and flow accumulations) derived from SRTM high-resolution elevation data 

(HydroSHEDS; Lehner et al., 2008). Recently, a Global River Classification (GloRiC) 

database has been built on such global archives (Ouellet Dallaire et al., 2019). Global River 

Classification (GloRiC) database provides 127 river reach types for all rivers globally, based 

on variables such as hydrology, physiography and climate, fluvial geomorphology, water 

chemistry and aquatic biology (Ouellet-Dallaire et al., 2019). Pan-European riparian corridors 

have been generated also (Weissteiner et al., 2016).  

 

 

3.3. Fluvial processes: from decadal landform changes to real time observations  
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The notable advances in fluvial remote sensing during the last two decades have been 

particularly helpful for the investigation of channel responses to environmental driving forces 

in a very large variety of physical settings, and for the assessment of fluvial processes.  

 

 

Riverscape changes 

 

Landform changes (sediment erosion, deposition, channel shifting) investigated at decadal 

scales are now approached at inter-annual or even event-based scales. Until the mid 1990s, 

when the first high-resolution DEMs of river channels have been reported (Lane et al., 1994; 

Lane et al., 1995), it was only possible to constrain erosion and deposition processes acting in 

river channels by using time-consuming repeated terrestrial topographic surveys, generally 

along predefined monumented cross-sections positioned at regularly-spaced intervals along 

river reaches. With the advent of modern topographic surveying solutions, it is possible to 

rapidly cover several km of river reaches with dense 3D point clouds of high accuracy and 

precision. LiDAR surveys (ground-based or airborne) and SfM photogrammetry are the two 

technological solutions available for a rapid and continuous topographic survey of river 

channels. Both solutions offer comparable precision, accuracy, and density of information for 

unvegetated and exposed terrains (a compilation of precision and accuracy values for airborne 

LiDAR datasets in gravel-bed rivers is available in Lallias-Tacon et al., 2014), but with LiDAR, 

it is possible to capture the topography of vegetated surfaces, provided that the density of the 

vegetation cover is not too high (e.g. Charlton et al., 2003). The most recent advances in LiDAR 

technology also offer the possibility to combine different LiDAR wavelengths to capture 

during the same flight the topography of exposed and submerged surfaces of river channels 

(Mandlburger et al., 2015), which can be a decisive advantage for large river channels. Case 

studies making use of sequential and distributed high-resolution remote sensing data to 

reconstruct short-term channel changes are now common in the literature (see recent review 

from Vericat et al., 2017). Differential topography based on sequential LiDAR or SfM datasets 

is used to produce distributed maps of erosion and deposition of channel reaches, to use this 

information to reconstruct sediment budgets, and also to back-calculate bedload transport using 

the morphological approach (Passalacqua et al., 2015; Vericat et al., 2017; Antoniazza et al., 

2019). The order of magnitude of detectable elevation changes with those data is generally 

around 10-20 cm, but this depends on the sensor accuracy or flight height as well as the 

properties of the investigated surfaces. Several studies document the negative effect of 

vegetation, local slope, and surface roughness on the level of detection of topographic change 

in river channels (e.g. Wheaton et al., 2010; Milan et al., 2011; Lallias-Tacon et al., 2014). It 

is also recognized that these data need a careful inspection and correction of systematic errors 

in spatial positioning or elevation before computing a sediment budget, as this error may have 

a strong impact on the integrated volumes of sediment erosion and deposition (Anderson, 

2019). Stable areas may be used to evaluate the systematic error, and to coregister the 

sequential datasets before computing the sediment budget (e.g. Lallias-Tacon et al., 2014; 

Passalacqua et al., 2015; Anderson, 2019). Topographic differencing using high resolution 

datasets have been successfully used to investigate a large range of fluvial processes, such as 
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bank erosion (Thoma et al., 2005; Jugie et al., 2018), braided channel responses to flow events 

(Lane et al., 2003; Milan et al., 2007; Hicks et al., 2009; Lallias-Tacon et al., 2014), channel 

response to restoration projects (Campana et al., 2014; Heckmann et al., 2017) (Figure 9). 

 

 

Figure 9.  

 

 

Classically, vegetation dynamics have been analysed using temporal series of remotely-

sensed images (satellites, aerial, UAV, terrestrial, etc.) to monitor management actions such as 

ecological restoration (Norman et al., 2014; Nunes et al., 2015; Martínez-Fernández et al., 

2017; Bauer et al., 2018; Martinez et al., 2018). In many cases, the monitored processes impose 

a given temporal resolution and thus a given sensor/vector couple. For example, single events 

and intra-annual processes can be monitored using close range terrestrial photography (Bonin 

et al., 2014; Džubáková et al., 2015) or UAV (Laslier et al., 2019b), and inter-annual succession 

processes using UAV (Hervouet et al., 2011; Räpple et al., 2017) or airborne orthophotos (e.g. 

Michez et al., 2017).  

 

 

Real time monitoring of fluvial processes 

 

Fluvial processes can now be monitored in real time using ground-based imagery with 

high temporal or spatial resolution. Tauro et al. (2018) review the most commonly used and 

new techniques to measure and observe different hydrological variables, and notably the latest 

optical flow tracking techniques to estimate flow velocity and discharge, including large-scale 

particle image velocimetry (LSPIV; Le Coz et al., 2010), particle tracking velocimetry (PTV; 

Tauro et al., 2019), and Kanade-Lucas-Tomasi (KLT) flow tracking (Perks et al., 2016). These 

techniques allow the computation of flow surface velocities using images of the river surface 

sampled with UAV (Perks et al., 2016), ground-based cameras, or screenshots extracted from 

film (Le Boursicaud et al., 2016). Natural tracers present at the flow surface are tracked, such 

as boils, surface ripples, driftwood, or artificial tracers, such as cornstarch chips (Le Coz et al., 

2010). They have been increasingly used to measure and estimate surface flow velocity and 

discharge during floods (Muste et al., 2011; Tauro et al., 2016) in both gauged and ungauged 

basins, and proved to be a powerful approach when standard techniques fail or are difficult to 

deploy (Le Coz et al., 2010). 

 

Manual and automatic procedures have been also developed to monitor instream wood 

fluxes using ground cameras (MacVicar et al., 2009). Kramer and Wohl (2014) used a time-

lapse camera to observe and quantify wood fluxes in the subarctic Slave River and stressed that 

an appropriate and site-specific sampling interval is key to achieve unbiased estimates. 

MacVicar and Piégay (2012) pioneered installing a video camera on the Ain River in France 

to describe the relation between wood transport and water discharge, and to construct and 

validate a wood budget for the reach upstream of the camera (Figure 10A&B). Boivin et al. 
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(2017) used two video cameras to monitor the passage of wood during floods and ice-breakup 

events in the Saint-Jean River in Canada. As for flood discharge data (Le Coz et al., 2016), 

web crowdsourced home movies have been recently used to define and characterize wood-

laden flows (Ravazzolo et al., 2017; Ruiz-Villanueva et al., 2019) (Figure 10C). Automatic and 

semi-automatic wood detection procedures have been developed to track and quantify the wood 

discharge in the images (Benacchio et al., 2017), but the systematic application still requires 

further research (Piégay et al., 2019). Despite the limitations, monitored sites with cameras 

have significantly increased in the last years and will continue in the future. 

 

Figure 10 

 

Ground-based remote sensing techniques for the indirect monitoring of bedload transport are 

also in an active phase of development. Seismic sensors like impact sensors, geophones or 

seismometers are increasingly used as non-intrusive devices to detect and characterize bedload 

transport from ground vibrations generated by grain impacts (Burtin et al., 2011; Downs et al., 

2016; Burtin et al., 2016; Roth et al., 2016). Their deployment in the near proximity to river 

channels, in relatively safe positions, is a great advantage compared to traditional seismic 

methods based on the deployment of plates or pipes in the active zone of bedload transport 

(e.g. Mizuyama et al., 2010; Rickenmann et al., 2012). The monitoring of bedload in large 

rivers with high water depths is also now possible with the use of acoustic sensors, like 

hydrophones (Belleudy et al., 2010; Geay et al., 2017). Although reliable estimates of bedload 

flux with seismic and acoustic sensors still implies time-consuming field efforts for calibration 

with physical bedload samples, these RS solutions offer valuable continuous proxy records of 

sediment transport. These records have been successfully used to inform incipient motion, 

hysteresis in bedload rating curves, or to detect the passage of sediment pulses at river cross-

sections (Belleudy et al., 2010; Geay et al., 2017; Burtin et al., 2016). 

 

 

4. Developing predictive models using RS information 

 

RS technologies open new opportunities to assess future changes and potential physical 

or ecological responses. The technologies can be used to develop scenarios of change (Baker 

et al., 2004), pressure-impact models (Tormos et al., 2012), risk assessment (Bertrand et al., 

2013 a and 2013 b), and increasingly process-based models. Remote sensing technology is 

moving toward the possibility to map entire river networks consistently, extensively (from 

geomorphic features and processes to acting pressures), and over time (Carbonneau et al., 

2012).  

 

 

Biogeomorphic models 
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Abiotic and biotic interactions have long been an important part of fluvial 

geomorphology, given the role of riparian vegetation (Corenblit et al., 2007, 2009; Gurnell et 

al., 2012) and large wood (Ruiz-Villanueva et al., 2016), but also aquatic macrophytes/biofilm 

(which can be a constraint to extract water depth or grain size from remote sensing data) and 

the other biotic components. 

There is scope to increase the linkage between disciplines by incorporating remotely-

sensed information (such as land cover change or NDVI) within future predictive models of 

river changes. Models are able to simulate complex fluvial processes including water–

sediment–vegetation–wood feedbacks. First attempts have been made to model the effect of 

flow and climate change on vegetation dynamics (Hammersmark et al., 2010), the succession 

of riparian vegetation as a function of scour disturbance, shear stress, and flood duration using 

the CASiMiR-vegetation model (Benjankar et al., 2014) or the effects of vegetation growth on 

meander bank stability (Perucca et al., 2007). Recent developments have enhanced 

computational fluid dynamic models by including vegetation and wood dynamics (Bertoldi et 

al., 2014; Ruiz-Villanueva et al., 2014b) (Figure 11). These advanced models open the door 

for investigations of how changes in the water, sediment or wood regime may affect the fluvial 

response, which is fundamental for river management. Still the full coupling of hydro-, 

morpho- and vegetation dynamics remains challenging. One key constraint is to gather the 

required high-resolution input and validation data.  

 

Figure 11 

 

Catchment-scale models 

 

Until a few years ago, catchment scale models were limited by the lack of suitable 

datasets, but are now flourishing research area which is providing valuable evidence to support 

the management and planning of river systems. Catchment-scale models have become feasible 

due to the availability of DEMs with a high enough resolution to represent river features (e.g. 

Passalacqua et al., 2015). The coupling of DEMs with large scale distributed hydrological 

models (Van Der Knijff et al., 2010) can now be used to characterize sediment and nutrient 

transport across entire networks (Jain et al., 2006; Barker et al., 2009; Bizzi & Lerner, 2015). 

This context has fostered the development of sediment models to assess how sediment is routed 

through a network and how the various sediment sources within the basin generate different 

sediment connectivity patterns (Cavalli et al., 2013; Heckmann & Schwanghart, 2013; Czuba 

and Foufoula-Georgiou, 2014; Heckmann et al., 2015 Parker et al., 2015; Czuba, 2018; 

Heckmann et al. 2018). For instance, the CAtchment Sediment Connectivity And DElivery 

(CASCADE) modelling framework enables a quantitative, spatially explicit analysis of 

network sediment connectivity with potential applications in both river science and 

management (Schmitt et al., 2016) (Figure 12). In the Mekong delta, understanding the 

cumulative effects of constructed and planned dams helps identify new solutions addressing 

both economic and environmental objectives (Schmitt et al., 2018a, 2018b, 2019).  
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Figure 12.  

 

 

Similarly, in the case of instream large wood (i.e. fallen trees, trunks, rootwads and 

branches), models have been developed to assess wood supply and transfer through catchments 

using novel datasets (Ruiz-Villanueva et al., 2016). Wood is supplied to rivers by complex 

recruitment processes (e.g. landslides, bank erosion) with large spatial and temporal variability, 

which makes predictions challenging. Models fed with remotely sensed data, such as aerial 

imagery and forest cover information, enable the simulation and identification of recruitment 

processes and sources and the estimation of wood supplied volumes (Gregory & Meleason, 

2003; Mazzorana et al., 2009; Ruiz-Villanueva et al., 2014 a; Cislaghi et al., 2018). High-

resolution canopy models obtained from LiDAR or photogrammetry may provide more 

accurate estimation of wood volumes (Steeb et al., 2017; Gasser et al., 2019). Scenarios based 

on forecasted climate change alterations of vegetation cover, flow regimes, and human 

activities can be also designed to explore and quantify the range of variability of instream wood 

supply, and to make predictions about how differences in river and forest management may 

alter instream wood supply (e.g. Cislaghi et al., 2018). 

Understanding future changes consistently at the network scale to inform river 

management requires an integrated approach, combining local field data with current large data 

archives and computational tools and drawing upon a range of disciplines such as hydrology, 

climatology, or ecology. Hydrology can help us understand patterns in remotely sensed rivers 

by better incorporating information on flow non-stationarity, catchment characteristics, large-

scale river flow archives, and hydrologic modelling. Integrating geomorphological analyses 

with climatology is increasingly important for understanding how climate change and large-

scale climate variability may alter sediment dynamics, vegetation patterns, streamflow, and 

ultimately channel adjustment (Darby et al., 2013; Slater et al., 2019a).  

 

 

 

5. Forthcoming resources 

 

Emerging data, tools and geospatial analyses are generating cost-effective and promising 

opportunities to inform river management worldwide. This section provides an overview of 

datasets, tools and web resources available to assess river status and changes.  

 

New acquisition opportunities 

 

One of the principal technological challenges in remote sensing is to increase the scale 

and spatial coverage at which it is possible to obtain a continuous and high-resolution 

reconstruction of the Earth’s surface. This in turn allows an increase in the number of forms 

and processes that can be identified using a variety of spatial and spectral information. 

However, the cost of remote sensing technology generally increases rapidly with increasing 
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resolution, along with associated costs in terms of data handling and processing and the 

technical skills required to analyze the products of new aforementioned sensors. Despite the 

growing availability of low-cost airborne solutions such as UAV, the challenge of surveying 

entire rivers at sub-decimetric resolutions remains considerable.  

In recent years, the growing popularity of the consumer drone market has meant that 

models equipped with moderate quality imaging sensors are now available at less than 2500 € 

(in 2019). The drive to produce imagery and video footage for mass consumption has benefited 

scientists who require images with relatively low distortion and a good dynamic range. 

Furthermore, ease of operations for the mass consumer market means that these low-cost 

airborne platforms are capable of automated flight, have single-phase, non-corrected, GPS 

systems and, increasingly, active collision avoidance systems. Expanding the area of operations 

for drone surveys remains at the research frontier. There are two important issues to confront. 

First, the current regulatory trend in most nations is to limit drone operations to the line of sight 

of the pilot. This obviously constrains the range of operations to a radius of a few hundred 

meters per flight. In practice, this means that a well-trained team of operators can currently 

survey 3-5 km of river corridor per day depending on the relocation conditions and the amount 

of ancillary data required, such as surveyed ground control. Second, this use of ground control, 

long held as an absolute requirement, is currently being challenged (e.g. Carbonneau and 

Dietrich, 2017; James et al., 2017).  

If we look towards the near future, the resolution of Earth Observation data from satellites 

is such that soon it should provide more information to characterize large to mid-sized river 

features and changes almost continuously in space and time. Mini-satellites provide almost 

daily images globally at 3-5 m resolution in the RGB and near-infrared bands (see 

https://www.planet.com/), and the SWOT satellite will soon observe major lakes, rivers and 

wetlands with unprecedented resolution. In the next few years, two major programs will supply 

more frequent images with better quality: Landsat 9 which will be launched in 2020, and 

Pleiades Neo will be composed of 4 satellites that will revisit the same scene twice daily, 

producing panchromatic images at 30 cm resolution, a higher spatial resolution than for 

airborne campaigns done by many national institutions since 1940s.  

 

The increasing global data availability 

High resolution topographic and observed hydrological data have only been available for 

a few years at the global scale and are providing new ways to characterize river characteristics 

and trajectories. Better understanding of how fluvial systems vary globally will require close 

integration of geomorphic datasets with a range of hydrologic, climatic, topographic, and 

biological data archives. Hydrologic data have become available for many countries via the 

GRDB and the World Meteorological Organisation’s Hydrological Observing System 

(WHOS). Crochemore et al. (2019) provide an analysis of the quality of 21,586 river flow time 

series from 13 openly-accessible hydrological archives. Recent global datasets such as the 

Global Streamflow Indices and Metadata Archive (Do et al., 2018) have used these archives to 

compute global river catchment attributes. Global discharge reanalysis data from 1979 to near 

real time has also recently become available through the Copernicus Climate Data Store 

(CEMS GloFAS 2019). DEM-derived topographic signatures (e.g. Amatulli et al., 2018) may 

https://www.planet.com/
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also be used to provide a more systematic assessment of the spatial distribution of different 

river types, with the advent of high resolution DEMs such as MERIT (Yamazaki et al., 2017) 

or the 90-m resolution TanDEM-X (Archer et al., 2018). A systematic understanding of 

channel signatures will also require the integration of these topographic signatures with large-

scale climatic and anthropogenic data, e.g. by using global high-resolution reanalysis products 

such as ERA5 from Copernicus ECMWF (Hersbach et al., 2018), information on global 

reservoirs and dams (Lehner et al., 2011; Grill et al., 2019)(Figure 13), or suspended sediment 

data (e.g. the Land2Sea database; Peucker-Ehrenbrink, 2009).  

 

 

Figure 13.  

 

 

Emerging geoprocessing tools 

 

Data are increasingly available from a number of freely and openly accessible 

repositories. However, to realize the full potential of big data, rapid access and efficient 

processing capabilities are required (Giuliani et al., 2017). With the development of new data 

and sensors we must also develop our collective ability to manage and analyze these data. The 

increasing development of 3D information provided by photogrammetry and LiDAR or infra-

annual time-series of VHR images, for instance, potentially opens many scientific and applied 

issues related to the interpretation and understanding of riverscape functioning, but also raises 

the question of the chain of actors involved in data acquisition, processing and utilization.  

Deriving insights on fluvial characteristics from very large datasets requires 

computational tools and automation. There has been a rise in computational hydrology, 

ecology, and geomorphology over the last decade thanks to the uptake of open-source 

programming languages like R and Python. For example, hydrologists have developed many 

packages supporting the entire hydrological ‘workflow’, including meteorological and 

hydrological data retrieval via application programming interfaces; data extraction at 

catchment scales from global gridded data; many different catchment hydrological models; and 

packages specifically designed for statistical analyses, and data visualization (Slater et al., 

2019b). Many hydrological and ecological packages already exist for automated satellite image 

processing, handling and manipulating remote sensing data, correcting and rescaling satellite 

imagery, or for analyzing remotely sensed vegetation data. For R users, the CRAN Task Views 

provide lists of packages for different areas of research, many of which are relevant for fluvial 

geomorphology, including areas such as time series analysis, reproducible research, machine 

learning, or spatial data analysis (https://cran.r-project.org/web/views/). Supervised 

classification is on the verge of undergoing a fundamental change whereby general pre-trained 

deep learning models are used to obviate the labour-intensive phase of manual image labelling 

for land-cover classification. Most notably, the machine learning algorithms used by 

Carbonneau et al. (in revision) are fully in the open-source realm. It would therefore seem 

likely that artificial intelligence approaches are set to overtake, or perhaps absorb, existing 

approaches of ‘object-based image analysis’.  

https://cran.r-project.org/web/views/)
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Computational fluvial geomorphologists are also increasingly using and developing 

toolboxes to understand and quantify river landscape change (Figure 14 ; for a recent review 

see Fryirs et al. 2019). For instance, the open-source LSDTopoTools software is used for 

topographic analysis, channel network extraction, chi analysis, calculation of erosion rates, 

hilltop flow routing and relief metrics, and/or topographic extraction of floodplains and terraces 

(Mudd et al., 2018). The RiVMAP MATLAB toolbox or the cmgo R package can be used to 

measure channel widths, the locations and rates of migration, accretion and erosion, and the 

space-time characteristics of cutoff dynamics (Golly & Turowski, 2017; Schwenk et al., 2017). 

The CASCADE toolbox (Tangi et al., 2019) provides assessment of sediment connectivity at 

the network scale and enables screening impacts of many infrastructure portfolios. Other 

toolboxes include the Fluvial Corridor Toolbox (https://github.com/EVS-GIS/Fluvial-

Corridor-Toolbox-ArcGIS; Roux et al., 2015), the NCED Stream Restoration Toolbox (Lauer, 

2006), the River Bathymetry Toolkit (McKean et al, 2009) or the RVR Meander toolbox (Abad 

& García, 2006) to measure channel features and processes (e.g. migration rates). The River 

Analysis and Mapping engine (RivaMap) has been developed to facilitate the computation of 

large-scale hydrography datasets (i.e. extracting the river centerline and width) from Landsat 

data in a short time period (Isikdogan et al., 2017). The Valley Bottom Extraction Tool (V-

BET) (Gilbert et al., 2016) and the Valley Bottom Confinement Tool (VBCT) (O’Brien et al., 

subm.) used across networks, allow to categorize channel confinement categories and degrees. 

The shape/morphology of different channel units (i.e. concave, convex and planar surfaces) 

can be mapped along reaches using the Geomorphic Unit Tool (GUT) (Wheaton et al., 2015; 

Kramer et al., 2017) as well as the Geomorphic change detection (GCD) software for sediment 

budgeting (Wheaton et al., 2010) (see www.riverscapes.xyz). Digital grain sizing algorithms 

developed by Buscombe (2013) (pyDGS - http://digitalgrainsize.org/) and Detert and 

Weitbrecht (2012) (Basegrain - https://basement.ethz.ch/download/tools/basegrain.html) are 

also available online as well as an algorithm for calculating roundness index (Cassel et al., 

2018) (https://github.com/EVS-GIS/2D-Roundness-Toolbox). Most of these datasets and 

toolboxes are free to use, globally applicable and represent a valuable resource for researchers 

and managers worldwide.  

 

 

Figure 14.  

 

Online platforms and repositories 

 

Sharing data and knowledge is an indispensable component of stakeholder-integrated 

problem-solving (Lehmann et al., 2017; Dick et al., 2018). The wide range of automatic feature 

extraction toolboxes listed above indicates that mapping/detecting geomorphic features is 

possible. However, collective organization and repository tools are needed. One example is the 

international long-term ecological research (ILTER) network which gathers more than 600 

sites worldwide in a broad variety of terrestrial, freshwater, and marine environments (Haase 

et al., 2016; Dick et al., 2018). Networking is based on the DEIMS-SDR data system (Dynamic 

Ecological Information Management System – Site and Dataset Registry: https://data.lter-

https://github.com/EVS-GIS/Fluvial-Corridor-Toolbox-ArcGIS
https://github.com/EVS-GIS/Fluvial-Corridor-Toolbox-ArcGIS
http://dx.doi.org/10.1002/esp.1886
file:///C:/Users/HPIEGAY/Desktop/2019_Piegay_et_al_Linton/www.riverscapes.xyz
https://basement.ethz.ch/download/tools/basegrain.html
https://github.com/EVS-GIS/2D-Roundness-Toolbox
https://data.lter-europe.net/deims/
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europe.net/deims/), which includes repository of remotely-sensed data. Similarly, a spatial data 

infrastructure (SDI) has been developed within the Human-Environment Observatories 

network which brings together 13 French and international observatories, including river 

observatories (Chenorkian, 2012). Web GIS, metadata and other visualization tools developed 

in this SDI are available for scientists and stakeholders. Additionally, the Data Center of the 

San Francisco Estuary Institute provides a broad range of tools and web services to upload, 

access, and visualize remotely-sensed datasets and other GIS layers to support and inform 

natural resource management in the area (Grosso & Azimi-Gaylon, 2018; 

https://www.sfei.org/sfeidata.htm). In the Earth surface sciences, the Community Surface 

Dynamics Modeling System (CSDMS) maintains a code and metadata repository for numerical 

models and scientific software tools (https://csdms.colorado.edu). In hydrology, Lehman et al. 

(2014) reviewed innovative global observation solutions which provide a suite of hydrological 

standard specifications to BRIdging Services Information and Data for Europe (BRISEIDE) 

project to visualize, manage and process geospatial resources useful for hydrological model 

development. Google Earth or NASA WorldWind also offer capabilities to visualize spatio-

temporal data. An example is the Global Dam Watch initiative (http://globaldamwatch.org/), 

which aims to maintain the world’s most comprehensive and freely available global dam data, 

including repository for the GlObal georeferenced Database of Dams (GOOD2) obtained from 

Google Earth satellite imagery, and an open list of existing dam data available at regional and 

global scales. 

 

 

6. Prospects for the remote sensing of Anthropocene rivers  

 

 Remote sensing has become a key tool to characterize past, current and future fluvial 

corridor conditions, and provides information almost as important as field information. In 

recent decades, fluvial RS has mainly been used in the sciences, but now these techniques are 

increasingly used by consultants too. Many river management consultancies utilise drones, 

equipped with different sensors, as well as SfM techniques or classical images in monitoring 

studies. Ground cameras are also widely employed to study processes in action. RS has become 

one of the most common tools in the geomorphologist’s toolkit and one might almost say the 

“field tradition” is in the past! What are thus the future research prospects for RS? Some 

research objectives are likely to be rapidly attained whereas others are still inaccessible. Ten 

future avenues for RS of Anthropocene rivers include: 

 

1) Exploring existing data more deeply such as national (maps and aerial photos) or satellite 

(Landsat archives) resources to assess channel behaviour and trajectories. This gap is 

particularly important in regions of the world where river corridor studies are rare, or where 

human activities such as damming are an issue (e.g. where channel sensitivity or bedload 

transport are not monitored). Additionally, recent advances in the digitisation of old archives 

and maps, alongside increasing computational power and the availability of novel geomatic 

toolboxes, are opening new opportunities to generate vast databases of digital historical 

information, ready for big-data analysis. More work may be done on derivation of DEMs from 

https://data.lter-europe.net/deims/
https://www.sfei.org/sfeidata.htm
https://csdms.colorado.edu/
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stereo-photo pairs. Recent (10-20 years) dynamics could be detected by stereoscopic 

acquisitions from airplane or satellite high resolution images. Some satellites acquire now at 

sub-meter resolution in stereoscopic mode (e.g., Pleiades and WorldView) and it would be 

worth testing their accuracy to explore what kind of earth surface process monitoring they can 

be exploited for. Finally, we might also question if after almost a decade of methodological 

development, more efforts could be made to use the existing new data and place more collective 

effort on geomorphic understanding, theory and practice, rather than always seeking 

technological development.  

 

2) Merging data sources and scales of analysis to obtain new information, with careful data 

quality control and validation. Drone data can for instance be used to validate information from 

satellites. Assessing vegetation growth patterns and health is now possible by combining 

hyperspectral LiDAR information and age unit layers from aerial photo series. A major 

challenge in the future is to build a modulable, methodological framework integrating different 

sensors (optical, hyperspectral, LiDAR, SAR, etc.), as well as different spatial (from local to 

regional) and temporal (daily to annual or greater) approaches. We will need to combine the 

strengths of each sensor and approach to improve understanding of channel trajectories and 

behaviour. Traditional measurements (such as stream gauging measurements, width/depth 

ratios, hydraulic scaling laws) are not obsolete but – quite the contrary – are increasingly 

indispensable to validate, integrate and generalize RS-based characterization and assessments. 

More data with higher resolution does not mean necessarily more knowledge. A key challenge 

and a goal for future river science will be to translate information into knowledge and to 

critically consider the data quality, metadata and resolution accuracy. 

 

3) Accessing high temporal resolution RS information to provide input for water policy. 

Considerable efforts have been made to characterize the status of rivers but only a few studies 

have focused on the changes of river status through time. Monitoring these changes is crucial 

to understand channel responses to management actions. Obtaining bottom-up feedback on the 

potential success of implemented measures from RS is a real issue in river restoration. 

Similarly, top-down strategies can be also based on high temporal resolution RS. Combining 

LiDAR data at regional scales should soon provide inter-annual information (e.g., in Belgium, 

Switzerland or Denmark) to detect major changes in channel geometry as well as riparian 

vegetation and identify the most critical reaches, and to design planning strategy to target 

actions.  

 

4) Implementing large scale models and upscaling catchment characterisation to continental or 

global scales. We are at the beginning of large/network scale modelling. In the future, river 

scientists should invest efforts to generate consistent hydrological, morphological and biotic 

datasets at global scales, working with local, national and international environmental 

agencies/institutions to characterize river status and develop model frameworks capable of 

tackling the network scale at which most fluvial processes operate. Some of the key challenges 

are: to integrate the sediment cascade, supply, transfer and functional connectivity; to combine 

riparian vegetation recruitment, growth and even diversity; and to quantify channel evolution, 
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including shifting, incision, and aggradation. Bio-geomorphic diagnostics that use RS to detect 

differences in health conditions (and explore potential links with stationary conditions, such as 

water resource availability) should soon be possible. Sediment or wood budgeting is expected 

to relate with human pressures and land use changes at these large scales. With new resources 

available, RS is becoming a key technology for monitoring river trajectories and scenarios of 

change alongside process-based models. 

 

5) Developing real time monitoring from ground sensors. Real time tools and early-warning 

systems are increasingly available for monitoring wood flux, bank retreat, sediment transport 

or hydro-meteorological extreme events. Discharge is already available online in real time. In 

the future, it is conceivable that websites will provide real-time monitoring of in-channel wood 

flux, potentially with alerts based on threshold values, as is already the case with water 

discharge gauging stations or debris-flow hazards in steep slope torrents. Similar systems might 

be developed for bedload transport with geophones, hydrophones or seismographs. 

 

6) Exploring new knowledge frontiers that are still a challenge for RS. Accessing underwater 

environments remains a key challenge, notably when monitoring channel responses to 

restoration and aquatic habitat improvement. The main challenge for surficial grain size 

mapping in rivers remains the characterization of submerged areas, for which we still lack 

efficient remote sensing solutions. Bathymetry is still challenging for many rivers and it is not 

clear when it is appropriate to collect RS bathymetric data. Another critical challenge is the 

investigation of the subsurface sedimentology of river channels, notably the subsurface grain 

size for which geophysical solutions are still lacking to obtain reliable grain size distribution. 

Bank material characterization, floodplain geomorphic units, and sediment supply are all 

examples of relevant river components which cannot be easily assessed by RS, even with semi-

automated procedures.   

RS also still fails to capture key information on rapid phenomena such as the changes and 

bedload transport that occur in river channels during floods (high-frequency monitoring). Much 

of the RS techniques allow extracting ‘snapshots’ of riverine landscapes These can be 

compared to analyse net changes (i.e. integrate changes during the period between snapshots). 

Two snapshots of a given landscape might look the same even though the channel has 

experience considerable change during the period between snapshots (e.g. compensation). For 

example, how does a channel or the bed material adjust during a competent flood event? Field 

work will remain the only feasible method to generate this type of information in the near 

future. However, this issue might be solved with new emerging ground sensors (which are also 

RS) rather than classic airborne imagery. We expect a new step of knowledge production to 

emerge from this ground sensor technology - notably in terms of process understanding at high 

temporal resolution – relying on the creativity of researchers to adapt these technologies to 

solve geomorphic questions. 

A new era is also emerging in this domain with Big Earth Data. It seems we are just at the 

beginning of this new period. Fluvial geomorphologists do not really use Big Data yet.  There 

are almost no deep learning papers in the river literature because the data is not available.  This 

is especially true with VHR airborne data where there are no papers on multiple 
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catchments.  River scientists still lack a shared global infrastructure to compile and organise 

data collectively. This is a new avenue for fluvial geomorphologists and satellite archives are 

one of the key resources suitable for a Big Data approach. 

 

7) Developing long term integrative science observatories within which RS data are shared, 

managed and archived. Compiling data on river basins is critical to validate modelling studies 

and to develop simulations and scenarios. Field campaigns (such as grain size characterization, 

sediment sources identification, sediment transport monitoring) and river diagnosis (such as 

multi-temporal aerial photo series) take time, and the processed data are often lost even though 

subsequent projects could build on these efforts. Archiving long-term data is also critical for 

practitioners who may access scenarios of change and incorporate them into policy strategies. 

Here is also a clear need to share efforts in knowledge production. Some river scientists must 

specialise in data acquisition (i.e. data collectors). It is a research task in itself. There are new 

opportunities to acquire original data at unprecedented scales (i.e. produce repeated near real-

time facsimiles of the landscape features) and this implies learning new techniques, designing 

new sampling and post-processing strategies taking into account data precision, accuracy and 

different sources of errors. These tasks are time-consuming and sometimes require a never-

ending learning process due to the continuous advances in terms of sensors, platforms and 

software. Peer-reviewed journals must provide space for such methodological research, even 

if they do not always reach geomorphic answers because practical tests, experiments, 

descriptions of new techniques are needed to inject new tools and data in the research domain. 

he geomorphology community must organise itself to support complementary research and 

engineering, sharing the geomorphic data and tools, and not only methodological 

developments. Research teams must thus join methodologists and thematicians. A network 

strategy can also be necessary when experts cannot be present on a local academic site. 

 

8) Sharing data and processing tools online. River science requires collective efforts to improve 

access to data, geoprocessing tools, and algorithms. Building a geomorphological repository of 

tools and data for monitoring/benchmarking fluvial change, as well as associated literature and 

tutorials is urgent to accelerate research and uptake of these tools within the community. Data 

and tools can be shared among scientists and practitioners, as both would benefit. Data sharing 

can induce both bottom-up and top-down strategies: practitioners can provide local data 

(bottom-up) to implement basin-scale or national-scale tools and use these tools to better 

contextualise their own catchments within the large-scale framework in term of river status, 

functionality, or responsiveness (top-down). Collecting and managing these data is a long-term 

investment, which can be enhanced by collaborating with local institutions in charge of data 

management. Existing archives can be used to characterize large-scale historical trajectories 

and then advance our capacity to predict future change. Participatory approaches and citizen 

science are also a key future avenue to obtain information on channel geometry, status, and 

attributes (e.g. grain size), for quality control or validation and for knowledge transfer.   

 

9) Using RS to reexplore theories. Many concepts that were developed in the 20th century using 

small datasets can now be quantified and tested systematically using RS over much larger 
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scales and at greater temporal resolutions than ever before. RS generates new opportunities to 

disentangle and quantify the role of natural and anthropogenic drivers in shaping river systems, 

rank them in terms of impact, identify the mosaics of riverscape conditions, better understand 

the time scales of adjustment and lag times, generate conclusions and assess their range of 

applicability. Increasingly, it is becoming possible to monitor short-term river trajectories 

consistently at local, basin, regional or even national scales and to predict future trajectories of 

change. These advances allow us to test concepts such as river sensitivity (which has been so 

far introduced mostly theoretically in science and management; Fryirs, 2017), or resilience of 

river channels to human disturbances, and assess their contextual applications. Large scale data 

can also be used in retrospective hydraulic modelling to assess past changes in channel 

geometry, morphodynamics, sensitivity to changes and bedload transport. Real time ground 

monitoring also allows us to better understand the processes at work and reconsider physical 

drivers to improve modelling approaches. The time has come to translate our requests for more 

data (which are now partially satisfied) into efforts to use this data to review and advance the 

basic concepts and theories at the core of fluvial geomorphology.    

 

10) Promoting a critical approach to RS practices. It is clear that some of the “emergent” 

remote-sensing techniques are no longer new. These techniques are already available for the 

community, with clear workflows and freely-available tools, and, consequently, we need to use 

them for specific objectives, avoiding further methodological developments and improving the 

knowledge we have in terms of understanding how rivers work (both natural and disturbed 

systems) and their future trajectories. Furthermore, the intensive use of RS tools to characterize 

environmental processes is not neutral: depending on the context and the issue, these methods 

may bexclude certain stakeholders, limit the understanding of phenomena, and/or generate 

controversial data. Thus, the use of RS tools needs to be combined with a critical understanding 

of their sociological and cultural effects, and complementary approaches to counterbalance any 

potential negative effects. Thus, interdisciplinary scientific teams are required to generate 

integrative river science. Collaborative engagement and co-development of decision-support 

tools are required to identify solutions to problems faced by specific stakeholders. 

 

 

 

6. Conclusions  

 

Research in remote sensing is essential to address one of the major challenges of the 

Anthropocene: understanding and managing the relationship between society and the 

environment. Field data alone is insufficient to tackle complex geomorphic questions, and the 

reverse (remote sensing without field data for validation and field observation) is also true. 

While geomorphologists still need to spend time in the field observing the complexity of 

processes and landforms, geomorphic understanding can also emerge from image observations. 

Remote sensing resources provide much greater insight into the spatial variability of channel 

forms and processes than ever before – from the scale of the cross section to that of entire river 

networks. However, even with the enhanced availability of data, river scientists still need to 

https://www.linguee.fr/anglais-francais/traduction/theoretically.html
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develop appropriate scientific questions, ground-truth measurements at relevant space and time 

scales, and interpret the data.  

Remote sensing is no longer only a scientific tool; it is a set of data and techniques for 

informing river managers at local to basin scales. River scientists need to move beyond simple 

methodological development (eureka it works!) by sharing tools, transferring knowledge, and 

developing critical understanding of where, how and when methods can be accurately 

incorporated in applied geomorphology. Remote sensing can be used to help implement and 

monitor management measures, identify criticalities, tipping points, future trajectories, 

pressures and their effects, better than in the past. Merging field observations with RS 

information will allow us to understand rivers in the Anthropocene and identify the best 

management scenarios for their (and our) future. 
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Figure 1. General framework of geomorphic studies: diagnosis and project appraisal, top-down 

and bottom-up strategies (From: Piégay et al. 2016, chapter 22) 
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eries of aerial photographs: (A) example of the terrestrialisation of the natural (dashed line) 

and artificial (thick line) abandoned channels of the Rhône River – Grange Ecrasée is the only 

one case of expansion right after cut-off and then shrinking (From: Figure 1, Dépret et al. 2017, 

Geomorphology) (B) reconstruction of bed-level evolution of a small alpine gravel-bed stream 

from the combination of historical aerial photographs (from 1948 to 2010) and a recent airborne 

LiDAR survey (2010) (modified after Lallias-Tacon et al., 2017);  historical aerial photographs 

have been used to date recent terraces, and airborne LiDAR data to extract elevation differences 

between dated terraces to reconstruct the floodplain formation history 
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Figure 3. Classes of channel changes combining incision and narrowing based on regional 

LiDAR, aerial photos and field/archived data to established reference: severe changes indicate 

significant narrowing (>50-100% of their current width) and riverbed incision (2-5 m) over the 

last century, moderate changes indicate mostly river reaches that show substantial narrowing 

and moderate channel incision (From: Figure 12, Bizzi et al., 2018 in ESPL) 
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Figure 4.  Example of platforms used by scientific teams to acquire hyperspatial imagery : A) 

Octocopter ; B) Hexacopter equipped with an active RFID antenna; C) Ultralight trike equipped 

with RGB and thermal cameras; D) Unmanned Control Helicopter (Sources : A) Franck Perret 

; B) Mathieu Cassel; C) Baptiste Marteau and D) Kristell Michel) 
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Figure 5. Long profile of median grain size over 80 km of the Sainte Marguerite River, Québec 

from image processing and showing link cutoff points (vertical lines), numbered 1–8 as 

determined by Davey and Lapointe (unpublished report, 2004) and an example of an ‘‘error 

column’’structure caused by glare at the water surface (From Carbonneau et al., 2005). 
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Figure 6. (A) Evolutions of the ratios of perimeters rP according to the distance travelled 

through 36 km from the headwater of Progo river (Indonesia) (dark grey) or in an annular flume 

(red). rP = Pg/Pe with Pg the pebble perimeter and Pe the ellipse perimeter, both having the 

same surface area. The single clear grey boxplot with red borders represents values 

distributions of rounded pebbles which were collected 30 km downstream the Progo spring 

Boxplots represent distributions of shape parameter values at a given distance and provide 10th, 

25th, 50th, 75th and 90th percentiles values. White circles represent median values. (B) 

Example of picture of angular pebbles taken for roundness analysis. (Modified from Cassel et 

al., 2018). 
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Figure 7. Riparian genuses map obtained from LiDAR data and tree morphological patterns 

(Sélune River, western France). Tree crown morphology and internal structure indicators were 

computed from the 3D points clouds of two surveys (summer and winter; n = 144 indicators) 

and the most discriminant indicators were selected using a stepwise Quadratic Discriminant 

Analysis allowing the number of indicators to be reduced to less than 10 relevant indicators. 

The selected indicators were used as variables for classification using Support Vector Machine. 

Overall accuracy ranges from 80% for 3 genuses to 50% for 8 genuses. With 8 genuses, the 

identification remains a challenge as for one tree crown predicted pixels can be mixed (From 

Laslier et al., 2019a).  
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Figure 8. Workflow of the multilevel, object-based methodology developed for the 

classification of riverscape units and in-stream mesohabitats. Top row shows data type used 

(multispectral and Lidar derived DTM); central row describes the OBIA steps to derive 

topographically and spectrally homogenous units; the bottom row displays classification results 

for riverscape units (on the left) and mesohabitats (on the right).  (From Demarchi et al. 2016 

Figure 5) 
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Figure 9. Monitoring of sediment wave propagation following a gravel replenishment operation 

downstream of a dam in the Buëch River (Southern French Prealps), using repetitive airborne 

LiDAR surveys and UHF active RFID tags (From Brousse et al, online); the combination of 

HR topographic differencing before and after a 5-yr flood and bedload tracing successfully 

allow to detect the propagation of the artificially-induced sediment wave, with a front located 

at 2.5 km from the dam 
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Figure 10: (A) Wood detection procedure using a video camera in the Ain River, France. 

Images show the region of interest (ROI) based on a visual detection of wood including 

measurement of date and time from time stamp, the precise location of end and side points to 

define the piece length, diameter, and first position, and the definition of second position after 

advancing a user-determined number of frames to allow calculation of velocity and angular 

velocity; (B) Flood hydrograph and wood flux estimated based on video records during the 

event on April 10–13, 2008 (Modified from MacVicar and Piégay, 2012); (C) Wood transport 

regimes characterized using home movies; the small images show the same river section (North 

Creek, US) at different times (t),  h: water depth and z: wood flow depth; dw: wood piece 

diameter; k: coefficient >1 (Modified from Ruiz-Villanueva et al., 2019). 
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Figure 11: (A) Aerial images of the Magra River near Aulla (Italy) in 2007 (up) and in 2011 

(down) and bed topography before a simulated flood sequence, after four floods and simulated 

biomass distribution (From Bertoldi et al., 2014).(B) Simulated water depth and logs deposited 

along the Czarny Dunajec River reach at a discharge of 28m3/s. From Ruiz-Villanueva et al., 

2017. 
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Figure 12. Examples of plots obtained from CASCADE toolbox (From Tangi et al, 2019). The 

tool allows analysing various properties of sediment connectivity in an interactive manner. 

Panel a shows the total sediment transported in Kg/s in the network. b visualizes patterns of 

deposition for a single sediment class out of the 18 considered in the model (in this case 

boulders/cobbles). c shows the changes in total sediment transport caused by the removal of 

one dam and two external sediment flows. d shows an analysis of grain size distribution, 
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sediment sources and deposition and entrainment in a specific reach. Each step can be 

interactively controlled by the user using a graphical interface. 
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Figure 13. Dominant pressure indicator for global river reaches below a given Connectivity 

Status Index (CSI) threshold (95%). Pressure indicators include the DOF (degree of 

fragmentation), DOR (degree of regulation), SED (sediment trapping), USE (consumptive 

water use) and URB (urban areas). The inset shows the number and proportion of river reaches 

per dominant pressure indicator at the global scale. (From Grill et al., 2019; Figure 2) 
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Figure 14. Example of tools/interfaces available online to measure characters of fluvial 

corridors : A) The Fluvial Corridor Toolbox – FCT - within the ArcGIS Arc Toolbox (Modified 

from Roux et al. 2015) and view of generic spatial units for characterizing aggregated 

geographical objects at the network-scale (https://github.com/EVS-GIS/Fluvial-Corridor-

Toolbox-ArcGIS); B) website views (tutorial and dataset example) of the Geomorphic Change 

Detection software (http://gcd.riverscapes.xyz/) (Wheaton et al., 2010a); and C) Example of 

image output showing grain detection using BaseGrain software 

(https://www.ethz.ch/content/specialinterest/baug/laboratory-

vaw/basement/en/download/tools/basegrain.html) (Modified from Detert et Weitbrecht, 2012) 
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Table 1 – A few examples of corridor features and attributes remotely sensed from a set of 

platforms/sensors within specific space-time frameworks 
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 Type of Data sensed References 

Grain characters    
Grain size X    1 m² no TLS Hodge et al., 2009 

 X    180 m² no TLS Heritage and Milan 2009 

 X    Flume and field 

sampling (~1 m2) 

no Ground photos Stähly et al., 2017 

 X    0.5 m2 no Ground photos Purinton & Bookhagen, 

2019 

  X    2.5 km yes Aerial photos (RGB) Vázquez-Tarrío et al., 

2017  

  X   Reach Scale no UAV/SfM Carbonneau et al. 2018 

 X  X   no Ground photos, 

airborne LiDAR 

Chardon et al.,in review 

Grain shape X    Reach and 

catchment scale 

no Ground photos Litty and Schlunegger, 

2016 

Grain roundness X    Catchment scale no Ground photos Roussillon et al., 2009 

 X    Gravel bar no TLS Hayakawa & Oguchi, 

2005 

 X    Catchment scale no Ground photos Cassel et al., 2018  

Channel 
characters  

        

Geomorphic 

features 

 X   Javoří brook (1-

km-long stretch, 

catchment : 

11 km²) 

no Aerial photos (RGB) Langhammer, J. & 

Vacková, 2018 

   X   no Airborne LiDAR Wheaton et al., 2015  

   X   Drôme network 

(1640 km2) 

no Orthophotos (RGB 

and NIR) 

Bertrand et al. 2013 a 

 

 

 

 

   X  Piemont region 

(1200 km of 

rivers). 

no Aerial photos (with 

multispectral 

information, RGB and 

NIR), low resolution 

airborne LiDAR 

Demarchi et al. 2017 

 

 

   X  Set of reaches 

(n=53) – regional 

network 

yes Aerial orthophotos 

and historic aerial 

photos, high-

resolution (< 1 m) 

Belletti et al., 2015 

    X All Red River 

Basin (21000 km 

of rivers), 

Vietnam  

no Google EARTH 

(based on Digital 

Globe Quikbird and 

CNES Spot Image), 

Schmitt et al, 2014  
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topographic data 

(ASTER V2 GDEM), 

discharge data, and 

sediment rating curve  

Instream wood 

size and 

distribution  

 X   Several river 

reaches along the 

Blanco River 

no UAV/SfM with a 

RGB camera 

Sanhueza et al., 2018 

  X       

   X  River reach no Airborne LiDAR Atha and Dietrich, 2016 

   X  Lamar River and 

the Cooke City 

Reach of Soda 

Butte Creek 

no Airborne 

hyperspectral imagery 

Marcus et al. 2002, 2003 

    X 146 river reaches 

along the Queets 

River 

no Google Earth imagery Atha 2014 

Instream wood 

volume 

 X   6 river reaches 

along the Clear 

Creek 

no UAV-SfM with a 

RGB camera 

Truksa, 2017 

   X  River reach no Airborne LiDAR Atha and Dietrich 2016 

    X 10 km along the 

Blanco River 

yes Digital Globe satellite 

imagery and three-

band imagery derived 

from an airborne 

LiDAR survey 

Ulloa et al. 2015  

  X   Several reaches 

along the Blanco 

River 

no UAV/SfM with a 

RGB camera 

Sanhueza et al., 2018 

 X    14 ha of the 

Piave River 

no TLS Tonon et al., 2014 

  X   River reach 

Kuzlovec Torrent 

no TLS Grigillo et al., 2015 

Topography 

(excluding 

bathymetry) 

X    Proglacial fan of 

Glacier du Mont 

Miné and 

Ferpècle,Swiss 

alps (5800 m²) 

yes TLS Milan et al., 2007 

   X  Bès River, 7 km yes Airborne LiDAR Lallias-Tacon et al., 2014 

Topography 

(including 

bathymetry) 

X  X  Rees River, 2.5 

km 

no TLS, and aerial 

photos (RGB) 

Williams et al., 2014 

  X    Elbow River, 1 

km 

no Aerial photos (RGB) Tamminga et al., 2015  

 

  X   White River, 

0.25 km 

no Aerial photos (RGB) Dietrich 2017 

   X  Waimakariri 

River, 3.3 km 

yes Airborne LiDAR, and 

aerial photos (RGB) 

Lane et al., 2003 

   X  2 reaches on 

Soda Butte 

Creek, 0.385 km 

and 0. 440 km 

yes Airborne LiDAR, and 

aerial photos (RGB) 

Legleiter 2012 

   X  Pielach River, 1-

2 km 

yes Green airborne 

LiDAR 

Mandlburger et al., 2015 

   X  Ste-Marguerite 

River, 80km 

no RGB camera Carbonneau et al., 2006 

Water, sediment and wood fluxes   



 

 
This article is protected by copyright. All rights reserved. 

Water level  X   Ridracoli 

reservoir 

yes UAV with a RGB 

camera 

Ridolfi and Manciola, 

2018 

    X Ganges and 

Brahmaputra 

Rivers 

yes AMSR-E and TRMM 

sensor 

Hirpa et al., 2013 

Flow velocity X    River reach no Home movies from 

YouTube and LSPIV 

Le Boursicaud et al., 2016  

 X    Laboratory small 

scale 

experiments and 

field sites on La 

Morge River at 

Voiron (<1km²) 

yes Ground camera 

images (B&W) 

Jodeau et al., 2017  

 X    Yufeng Creek 

(cross section 

width of 15~30 

m) 

yes Ground camera 

images (RGB) 

Huang et al., 2018 

  X   River reach no UAV and the  Kande–

Lucas–Tomasi  (KLT) 

algorithm 

Perks et al., 2016 

Pebble mobility X    2.3 km yes Passive RFID tags Liébault et al., 2012 

  X   22 ha, Büech 

River 

no Active RFID antenna 

mounted on a drone 

Cassel et al., in review 

Instream wood 

flux 

X    River reach 

along the Ain 

River 

yes Video camera MacVicar and Piégay, 

2012  
 

 X    River reach yes Time-lapse 

photography 

Kramer and Wohl, 2014;  

 X    Génissiat 

reservoir on the 

Rhône River 

(section about 

0.35km²) 

yes Ground images 

(RGB) 

Benacchio et al., 2017 

 X  X X River reach 

along the Saint-

Jean River 

yes Aerial and satellite 

imagery  

Boivin et al., 2017  

 X    27 rivers reaches yes Home movies from 

YouTube 

Ruiz-Villanueva et al., 

2019 

 

 

 

 


