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Abstract

The aim of this paper is to present a new finite volume method for moving wet/dry fronts
in shallow water flows. The method consists on reformulating the shallow water equations in a
moving wetted domain where the wet/dry interface is located using the speed of the water flow.
A set of parametrized coordinates is introduced and the underlying equations are transformed to
a new hyperbolic system with advection terms to be solved in fixed domains. A well-balanced
finite volume method is developed to approximate numerical solutions of the parametrized
system. We derive a well-balanced approximation of the source terms and prove that the
proposed method is well-balanced for the shallow water flows in the presence of moving wet/dry
fronts over non-flat topography. Several numerical results confirm the reliability and accuracy
of the new method.

Keywords. Shallow water equations; Wet/dry fronts; Finite volume method; Well-balanced dis-
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1 Introduction

Nonlinear shallow water equations are typically used to model free-surface flows, river and lake
hydrodynamics, and long wave run-up, as well as flows in open channels, lakes, reservoirs, coastal
areas, estuaries and harbors among others [22, 9]. Many of these applications involve moving
fronts in which wetting and drying over variable topography occurs, and numerically solving these
processes is becoming increasingly important. For instance, predictions of flooding due to a storm
surge, breached dam, or overtopped levee are crucial for disaster planning. Wave run-up estimates
are needed for beach and coastal structure design [24, 19]. Descriptions of inundation, in both
estuarine tidal flats and riverine flood plains, are also key for predicting the transport of suspended
and dissolved substances. The hydrodynamics of shallow water flows on wetting and drying areas
is of great interest in a wide range of physical flows. The basic feature of these flows is that the
vertical scale is much smaller than a typical horizontal scale. Such shallow water flows give rise to
challenging problems in both theoretical analysis and numerical simulation. Numerical simulations
of shallow water models have been devoted a lot of efforts so far, and as a consequence, many
numerical models have been developed for scientific researches and engineering applications. In
real case simulations, treatment of moving wet/dry fronts is getting more and more popular in
the hydraulics community to represent the complex flow features at river banks and coastal lines.
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The numerical approximation of water flows over wetting and drying areas requires important
choices and compromises to be made when simulations of the water flow are carried out. These
compromises are necessary to minimize both artificial numerical dissipation and dispersion. The
resulting numerical dissipation may severely damp the free-surface flow, producing exaggerated
inaccurate results, whereas the artificial numerical dispersion may introduce nonphysical oscillations
known by wiggles. In general, conservative Eulerian algorithms such as those based on finite
volume shock-capturing techniques perform very well when applied to shallow water flows over
fully wetted areas, see for example [26]. However, when such an algorithm is employed to solve
shallow water flows over wetting and drying areas, numerical inaccuracies usually occur at the
wet/dry interfaces due to the loss of entropy property in the discretization. To overcome this
difficulty, many techniques and methods have been developed in the past two decades with an
even increasing interest, see for instance [26, 12, 1, 6, 7, 11, 13, 17, 20, 21, 29, 10, 5, 18, 14] and
further references are therein. Among them, some of the resultant algorithms may not maintain
the conservation property in the process of enforcing states at the moving wet/dry interface so as
to suppress any undesired numerical oscillations. The objective of this study is to devise a stable,
monotone and accurate numerical method able to approximate solutions to shallow water flows
over wetting and drying areas.

In this paper, we propose a new numerical model for moving wet/dry fronts in shallow water
equations using the parameterization concept and the point-wise Riemann solver. In the current
model, we reformulate the nonlinear shallow water equations in a new set of moving coordinates,
and treat them as the model variables to be predicted at every time step. To numerically solve the
modified equations we consider a well-balanced finite volume method. The object of the current
work is to develop a numerical approach able to accurately approximate solutions to moving wet/dry
fronts in shallow water flows. Our aim is to develop a class of numerical methods that are simple,
easy to implement, and accurately solves the moving wet/dry fronts in shallow water flows without
relying on complicated techniques. The proposed finite volume method can be interpreted as
a fractional-stage scheme. In the first stage, the transport terms are solved by integrating the
system along the characteristics defined by the interface velocity, while the numerical solutions are
computed through a finite volume formulation of flux form in the second stage. The main features
of such a finite volume scheme are on one hand, the capability to satisfy the conservation property
resulting in numerical solutions free from spurious oscillations in significant moving wet/dry fronts,
and on the other hand the achievement of strong stability for simulations of slowly varying wet/dry
interfaces as well as rapidly varying wet/dry interfaces containing also shocks or discontinuities.
Moreover, the numerical formulation is devised so that the source terms are well balanced to the
fluxes on the discretized level. These features are verified using several test examples of shallow
water flows over wetting and drying areas. Results presented in this paper show high resolution of
the proposed techniques and permit the straightforward application of the method to more complex,
physically based shallow water flows.

This paper is structured as follows. In section 2 we present the problem statement for mov-
ing wet/dry fronts in shallow water flows. Numerical solution of the parametrized shallow water
equations is formulated in section 4. This section includes the finite volume discretization of the
system and the solution of the moving fronts. Section 5 is devoted to numerical results for several
test examples in shallow water flows. Concluding remarks end the paper in section 6.

2 Equations for wet/dry fronts in shallow water flows

The shallow water equations can be derived by depth-averaging the Navier-Stokes equations, ne-
glecting the vertical acceleration of water particles, and taking the pressure distribution to be
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hydrostatic, see [11, 26] among others. In one space dimension, ignoring viscous terms and surface
stresses, the shallow water equations read

∂h

∂t
+
∂ (hu)

∂x
= 0, x ∈ [a, b],

(2.1a)
∂ (hu)

∂t
+

∂

∂x

(
hu2 +

1

2
gh2
)

= −gh∂z
∂x
, x ∈ [a, b],

where [a, b] is the computational domain, z(x) is the function characterizing the bottom topography,
h(t, x) is the height of the water above the bottom, g is the acceleration due to gravity, u(t, x) is
the flow velocity. The equations (2.1a) have been widely used to model water flows, flood waves,
dam-break problems, and have been studied in a number of books and papers, see for instance
[22, 26, 9, 16]. Computing their numerical solutions is not trivial due to the nonlinearity in the
flux function, the presence of the convective terms, and the coupling of the equations through
the source term. In many applications, the solutions of equations (2.1a) present steep fronts and
even discontinuities, which need to be resolved accurately in applications and often cause severe
numerical difficulties, compare [16, 26]. In the current study we are interested in moving wet/dry
fronts in shallow water flows for which the equations (2.1a) are solved subject to the following
initial conditions

h(0, x) =


h0, if x ≤ x0,

0, if x > x0,

u(0, x) = u0, (2.1b)

where x0 ∈ [a, b) is the initial location of the wet/dry interface, h0 and u0 are given water height and
water velocity, respectively. Note that most of numerical methods for solving the equations (2.1)
perturb the dry state (zero water height) using a wetted threshold above which the solution state is
considered to be dry. This is mainly used to avoid division by zero for updating the water velocity
during the simulation process. However, perturbing the water height may result in inaccuracy in
the computed solutions and may lead to false location of the wet/dry fronts on the coastal zones.
Furthermore, if due to numerical oscillations the water height h becomes negative, the calculation
will simply break down.

In the present work we propose an alternative formulation of the equations (2.1) to deal with
wet/dry fronts. The idea consists on rewriting the shallow water equations in a moving domain
and solve the obtained model only for the wetted area. The advection of the wet/dry interface is
achieved by using the speed of the water. Hence, the problem statement becomes: solve the system

∂h

∂t
+
∂ (hu)

∂x
= 0, x ∈

[
a, ξ(t)

]
,

(2.2a)
∂ (hu)

∂t
+

∂

∂x

(
hu2 +

1

2
gh2
)

= −gh∂z
∂x
, x ∈

[
a, ξ(t)

]
,

where the interface ξ(t) is defined by the ordinary differential equation

ξ̇(t) :=
dξ(t)

dt
= s,

(2.2b)
ξ(0) = x0,

for a given speed s. Based on the analysis reported in [25], for the application to a moving wet/dry
interface the maximal speed of the flow propagation in the shallow water system is bounded by
|u| + 2

√
g h. Therefore a possible choice for capturing all information in the domain [a, ξ(t)] is

simply
s = |u|+ 2

√
g h. (2.3)
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In general, other velocities s might be used to move the front in the computational domain which
allows also to decouple the solution of the equations (2.2a) and (2.2b).

Remark 2.1 Consider the shallow water equations (2.1a) equipped with the initial data (2.1b). The
solution to this Riemann problem consists of a one-rarefaction wave. The speed at the interface x0
is therefore u0 + 2

√
gh0.

It is clear that the shallow water equations (2.2) have to be solved in a time-dependent computa-
tional domain requiring a mesh at each time step. In order to avoid this difficulty we perform a
change of coordinates. Thus, we define the new coordinates (t, y)

t = t, y =
x− a
ξ(t)− a

,

and the new solution variables in the transformed coordinate system as

H(t, y) = h
(
t, y
(
ξ(t)− a

)
+ a
)
,

U(t, y) = u
(
t, y
(
ξ(t)− a

)
+ a
)
, (2.4)

Z(t, y) = z
(
t, y
(
ξ(t)− a

)
+ a
)
.

Hence, after some algebra, the shallow water equations (2.2a) transform to

∂H

∂t
− ξ̇y

ξ − a
∂H

∂y
+

1

ξ − a
∂ (HU)

∂y
= 0, y ∈ [0, 1],

(2.5)
∂ (HU)

∂t
− ξ̇y

ξ − a
∂ (HU)

∂y
+

1

ξ − a
∂

∂y

(
HU2 +

1

2
gH2

)
= −g H

ξ − a
∂Z

∂y
, y ∈ [0, 1].

Note that the above equations for (H,HU) are now defined in the fixed domain (t, y) ∈ R+× [0, 1].
The transformation is well-defined provided that ξ(0) > a and s ≥ 0. These conditions are satisfied
for the case of a moving front in a dry area. Furthermore, boundary conditions at x = a are not
affected by this transformation. Introducing the advective derivative of any physical variable w as

Dw

Dt
=
∂w

∂t
− ξ̇ y

ξ − a
∂w

∂y
, (2.6)

the shallow water equations (2.5) reduce for y ∈ [0, 1] to

(ξ − a)
DH

Dt
+
∂ (HU)

∂y
= 0, (2.7a)

(ξ − a)
D (HU)

Dt
+

∂

∂y

(
HU2 +

1

2
gH2

)
= −gH ∂Z

∂y
. (2.7b)

For simplicity in the presentation we also rewrite the equations (2.7) in a conservative form as

(ξ − a)
DW

Dt
+
∂F(W)

∂y
= S(W), (2.8)

where

W =

 H

HU

 , F(W) =

 HU

HU2 + 1
2gH

2

 , S(W) =

 0

−gH ∂Z

∂y

 .
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It should be stressed that, the solution of the parametrized equations (2.7) is to be computed in
a fixed domain [0, 1]. In addition, the system (2.7) retains the same structure for the physical
fluxes as the original shallow water equations (2.1a). Remark that once the solution (H,U) of the
system (2.7) and (2.2b) is computed, the solution (h, u) of the system (2.1) can easily be recovered
using the transformation (2.4). It is also well-known that modification of conservation laws lead to
changes in shock speed, see for example [15]. Here, the eigenvalues of the transformed system in
the convective variables are

λ1 =
u−
√
gh

ξ − a
, λ2 =

u+
√
gh

ξ − a
. (2.9)

Clearly, if the front speed s = 0 then the transformation simply scales the computational domain
in the space coordinates but not in the time variable. In the simplest case of a linear advection
equation for fixed (positive) velocity u

∂h

∂t
+ u

∂h

∂x
= 0, h(t, 0) = h0(t),

we can easily verify that the solution to the advection equation with compactly supported initial
data h0(x) in [0, ξ(t)] with ξ′(t) > 0 and ξ(0) > 0 coincides with the solution H(t, y) to the
parametrized equation

∂H

∂t
− ξ′(t)y

ξ

∂H

∂y
+
u

ξ

∂H

∂y
= 0, H(t, 0) = h0(t),

where H(0, y) = h0 (yξ(0)). It should also be noted that the new parametrized system (2.7)
satisfies the still-water equilibrium. Recall that for the steady state with still water u(t, x) = 0, the
momentum equation in the original system (2.1a) yields

h(t, x) + z(x) = c, (2.10)

where c is a positive constant. This property (known by C-property) is needed to be preserved
at the discrete level to reconstruct a well-balanced method [4]. A possibility to derive a well-
balanced scheme introduced by [6] is to rewrite the equations (2.2) in terms of the total height
η(t, x) = h(t, x)+z(x). A similar procedure may be applied in the parametrized system (2.7). Let us
consider the rescaled water height H(t, y) and the rescaled water discharge Q(t, y) = H(t, y)U(t, y),
and define the total water depth ν(t, y) as

ν(t, y) = η
(
t, y (ξ(t)− a) + a

)
= h

(
y (ξ(t)− a) + a

)
+ z
(
y (ξ(t)− a) + a

)
= H(t, y) + Z(t, y).

Hence, at still water equilibrium U(t, y) = 0, the parametrized system (2.7) reduces to

−yξ̇ ∂
∂y
H(t, y) = 0,

1

2

∂

∂y

(
gH2(t, y)

)
= −gH(t, y)

∂

∂y
Z(t, y).

Since at the steady state
dξ

dt
= 0, we obtain

H(t, y) + Z(t, y) = C, (2.11)

where C is a positive constant. Thus, the proposed transformation preserves the hydrostatic
reconstruction and in the case u(t, x) = 0 we may use the same techniques to develop a well-
balanced discretization. Note however, that in a finite volume method for the rescaled equations
(2.7) one needs to account for the additional temporal dependence of the bottom profile due to the
rescaled bed Z(t, y) = z(y(ξ(t)− a) + a).
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3 Well-balanced finite volume methods

To approximate numerical solutions of the shallow water equations (2.7) we consider a class of
well-balanced finite volume discretizations using the different methods to reconstruct the numerical
fluxes. This method is adapted according to the parametrized equations (2.7) including advective
terms and the modified bottom beds. The presented methods use an operator splitting where the
transport part and the conservation part are treated separately. The major part of this section is
devoted to the treatment of the source terms in (2.7) using additional corrections to obtain a well-
balanced finite volume method. The numerical method we propose for approximating solutions
to equations (2.8) can be interpreted as a fractional step technique where the advective part is
decoupled from the conservative part in the temporal discretization. Thus, at each time step the
new water height and discharge are updated by first solving the advective equation

(ξ − a)
DW

Dt
= 0, (3.1)

then the conservation system
∂W

∂t
+
∂F(W)

∂y
= S(W). (3.2)

We discretize the space domain in cells [yi− 1
2
, yi+ 1

2
] with same length ∆y for sake of simplicity.

We also divide the time interval into subintervals [tn, tn+1] with uniform size ∆t. Here, tn = n∆t,
yi− 1

2
= i∆y and yi = (i + 1

2)∆y is the center of the control volume. We use the notation wi(t) to

denote the space average of a function w = w(t, x) in the cell [yi− 1
2
, yi+ 1

2
] at time t, by wni = wi(t

n),

and by wi+ 1
2

to denote the numerical flux at y = yi+ 1
2

and time t,

wi(t) =
1

∆y

∫ y
i+1

2

y
i− 1

2

w(y, t)dy, wi+ 1
2

= w(yi+ 1
2
, t).

To solve the advection equation (3.1) two steps are required namely, the computation of character-
istic trajectories and the interpolation procedure. Both steps are crucial to the overall accuracy of
the method of characteristics. For each mesh point yi+ 1

2
the characteristic curves Yi+ 1

2
associated

with (2.6) are the solutions of the initial-value problem

dYi+ 1
2
(τ)

dτ
= vi+ 1

2

(
τ, Yi+ 1

2
(τ)
)
, τ ∈ [tn, tn+1] ,

(3.3)
Yi+ 1

2
(tn+1) = yi+ 1

2
,

where v(τ, y) = − ξ̇(τ)y

ξ(τ)− a
. Note that Yi+ 1

2
(τ) is the departure point at time τ of a particle that

will arrive at gridpoint yi+ 1
2

in time tn+1. Note that the method of characteristics does not follow

the flow particles forward in time, as the Lagrangian methods do, instead it traces backwards the
position at time tn of particles that will reach the points of a fixed mesh at time tn+1. The solutions
of (3.3) can be expressed as

Yi+ 1
2
(tn) = yi+ 1

2
−
∫ tn+1

tn

vi+ 1
2

(
τ, Yi+ 1

2
(τ)
)
dτ. (3.4)

For a velocity field explicitly given independent of the solution, the integral in (3.4) can be de-
termined analytically. In other general cases, this integral can be calculated using a second-order
extrapolation based on the mid-point rule which is accurate enough to maintain a particle on its
curved trajectory. More details on these techniques can be found [23] among others.
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Once the characteristics curves Y (tn) are known, the method of characteristics advects the
solution of (2.7) at instant tn+1 as

Ŵ(tn+1, y) := W (tn, Y (tn)) . (3.5)

Note that the advection equation (3.1) can also be solved by assuming that its exact solution in an
unbounded domain is given by

W(t, y) = W0

(
y
ξ(t)

ξ(0)

)
,

where W0 is the initial condition associated with the system (2.8). Hence, the exact solution to
the advection equation in the time interval [tn, tn+1] is

Ŵn
i := Wn

(
yi
ξn+1

ξn

)
. (3.6)

Notice that in general, the departure points Y (tn) do not coincide with the spatial position of

a gridpoint. Assuming a suitable approximation is made for Y (tn), the solution Ŵ(tn+1, y) in
(3.5) should be obtained by interpolation from known values at the gridpoints in the host cell
of the departure points. The interpolation procedure we used in this paper is the cubic spline
interpolation most commonly used in practice. Other interpolation procedures can also be applied.

Integrating equations (2.8) along the characteristics with respect to time and space over the
time-space control domain [tn, tn+1]× [yi− 1

2
, yi+ 1

2
] we obtain the following discrete equation

Wn+1
i = Ŵn

i −
∆t

∆y

(
F̂n
i+ 1

2

− F̂n
i− 1

2

)
+

∆t

∆y

∫ yi+
1
2

yi− 1
2

S(Ŵn) dy, (3.7)

where F̂n
i± 1

2

= F
(
Ŵn

i± 1
2

)
are the numerical fluxes at y = yi± 1

2
and time t = tn. The spatial

discretization (3.7) is complete when a numerical construction of the fluxes and source terms are
chosen. In general this step can be carried out using any finite volume method developed in the
literature for solving hyperbolic systems of conservation laws, see for example [15, 26]. In the
current study we consider the following methods:

Lax-Friedrichs method [27]:

F̂n
i+ 1

2

=
1

2

(
F
(
Ŵn

i+1

)
+ F

(
Ŵn

i

))
+

∆y

2∆t

(
Ŵn

i − Ŵn
i+1

)
. (3.8)

Rusanov method [8]:

F̂n
i+ 1

2

=
1

2

(
F
(
Ŵn

i+1

)
+ F

(
Ŵn

i

))
+

1

2
λ
(
Ŵn

i − Ŵn
i+1

)
, (3.9)

where the Rusanov speed is defined as λ = max (λn1 , λ
n
2 ).

Roe method [21]:

F̂n
i+ 1

2

=
1

2

(
F
(
Ŵn

i+1

)
+ F

(
Ŵn

i

))
+

1

2
A
(
Ŵn

i+ 1
2

)(
Ŵn

i − Ŵn
i+1

)
, (3.10)
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where the averaged state Ŵn
i+ 1

2

is calculated as

Ŵn
i+ 1

2

=


ĥni + ĥni+1

2√
ĥni û

n
i +

√
ĥni+1 û

n
i+1√

ĥni +
√
ĥni+1

 , (3.11)

and the Roe matrix A = RΛR−1 with

R =

 1 1

λ̂1 λ̂2

 , Λ =

 λ̂1 0

0 λ̂2

 ,

where λ̂1 and λ̂2 are the eigenvalues in (2.9) calculated at the averaged state (3.11).

FVC method [3]: To reconstruct the numerical fluxes using the finite volume characteristics method,
the equations (3.2) are first reformulated in an advective form as

∂H

∂t
+ U

∂H

∂y
= −H∂U

∂y
,

(3.12)
∂U

∂t
+ U

∂U

∂y
= −gH ∂ (H + Z)

∂y
.

Then, the associated characteristic curves Xi+ 1
2
(τ) are computed as

dXi+ 1
2
(τ)

dτ
= U

(
τ,Xi+ 1

2
(τ)
)
, τ ∈ [tn, tn + ∆t],

(3.13)
Xi+ 1

2
(tn + ∆t) = xi+ 1

2
.

The initial-value problem (3.13) is solved using the same algorithm as the one used for solving
the equations (3.3). The numerical fluxes in the FVC schemes are obtained by integrating the
advective equations (3.12) along the characteristics in the time interval [tn, tn + ∆t]. Assume an
accurate approximation of the characteristics curves Xi+ 1

2
(tn) is made, the intermediate solutions

are obtained from (3.12) as

Hn
i+ 1

2

= H̃n
i+ 1

2

− ∆t

∆y
H̃n
i+ 1

2

(
Uni+1 − Uni

)
,

(3.14)

Un
i+ 1

2

= Ũn
i+ 1

2

− g∆t

∆y

(
(Hn + Z)i+1 − (Hn + Z)i

)
,

where
H̃n
i+ 1

2

= H
(
tn, Xi+ 1

2
(tn)

)
, Ũn

i+ 1
2

= U
(
tn, Xi+ 1

2
(tn)

)
,

are the solutions at the characteristic foot computed by interpolation from the gridpoints of the
control volume where the departure point Xi+ 1

2
(tn) belongs. Hence, the numerical fluxes for the

FVC method are defined by

F̂n
i+ 1

2

= F
(
Ŵn

i+ 1
2

)
, (3.15)
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with the intermediate state Ŵn
i+ 1

2

is given

Ŵn
i+ 1

2

=

 Hn
i+ 1

2

Un
i+ 1

2

 .

It should be stressed that the Lax-Friedrichs, Rusanov and Roe methods have been widely used for
the numerical solution of shallow water equations whereas, the FVC method has been recently pro-
posed in [3]. Analysis of the FVC method and numerical comparison of its performance compared
to Rusanov and Roe methods can also be found in [2].

4 Treatment of source terms

Obviously the above method is first-order accurate for any first-order discretization of the source
term in (3.7). In order to motivate the derivation of the additional source terms necessary for
well-balancing the discretization of gradient fluxes and source terms we first consider the simple
case with dξ

dt = 0, ξ = 1 and a = 0. Then, the system (2.7) and the equation (2.5) coincide and
many approaches to well-balancing are known, see for example [4, 17, 1, 20, 12, 7]. In the current
study, to develop a well-balanced scheme method we resolve the steady-state dynamics up to high
order. Thus, for still water equilibrium the conservation property (2.11) is preserved at time tn
i.e.,

Uni = 0, Hn
i + Zni = C,

where C is a constant and Zni = Z (yiξ(t
n)) = Z(yi). A Taylor expansion up to order O(∆y3)

yields

Hn+1
i −Hn

i =
1

2
∆y2(Hyy)

n
i = −1

2
∆y2(Zyy)

n
i +O(∆y3),

and assuming that the source term in (3.7) is integrated by mid-point rule a similar computation
leads to

(HU)n+1
i − (HU)ni = O(∆y3).

Hence, for a flow at rest the discretization (3.7) preserves the steady-state property up to the
order O(∆y3) provided that the additional term Sni = 1

2∆y2(Zyy)
n
i is added to the equation of

conservation of mass. Note that far from the steady-state, including the source term Sni would
not change the properties of the scheme since this additional term is below the resolution of the
considered finite volume methods.

In the general case with dξ
dt 6= 0 we proceed in a similar manner to construct a well-balanced

discretization for the system (2.7). Here, for simplicity in the derivations we assume a = 0 and the
equations (2.7) reduce to

∂H

∂t
− ξ̇y

ξ

∂H

∂y
+

1

ξ

∂Q

∂y
= 0,

(4.1)
∂Q

∂t
− ξ̇y

ξ

∂Q

∂y
+

1

ξ

∂M

∂y
= −gH

ξ

∂Z

∂y
,

where Q = HU and M = HU2 + 1
2gH

2. Note that unlike the previous case with dξ
dt = 0, the scaled

bottom bed in (4.1) depends on the time variable as Z(t, y) = z(yξ(t)) with z(x) describes the
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original bottom topography in (2.5). For still water equilibrium the conservation property (2.11)
should be preserved i.e.,

U(t, y) = 0, H + Z = H(t, y) + z (yξ(t)) = C.

As in the previous case we seek a discretization of the source term in (3.7) such that

Hn+1
i = C − z

(
yiξ

n+1
)

+O(∆y3) and Qn+1
i −Qni = O(∆y3).

A Taylor expansion in y of Ĥi leads to

Ĥi = Hn
i + ∆t(Hy)

n
i

yiξ
′(tn)

ξ(tn)
+

∆t2

2
(Hyy)

n
i

(
yiξ
′(tn)

ξ(tn)

)2

+
∆t2

2
(Hy)

n
i

yiξ
′′(tn)

ξ(tn)
+O(∆y3),

with a similar expansion for the water discharge Q̂i. The Taylor expansion of Z is given by

Zn+1
i := z(yiξ(tn + ∆t)) = Zni + ∆t(zx)ni yiξ

′(tn) +
∆t2

2
(zxx)ni y

2
i (ξ
′(tn))2 +

∆t2

2
yiξ
′′(tn) +O(∆y3).

For example, using the Lax-Friedrichs method (3.8), the discretization of the balance law (3.2) is
given by

Hn+1
i − Ĥi =

1

2

(
Ĥi+1 − 2Ĥi + Ĥi−1

)
− ∆t

2∆yξ(tn)

(
Q̂i+1 − Q̂i−1

)
,

Qn+1
i − Q̂i =

1

2

(
Q̂i+1 − 2Q̂i + Q̂i−1

)
− ∆t

2∆yξ(tn)

(
M̂i+1 − M̂i−1

)
+

1

∆y

∫ tn+1

tn

∫ yi+
1
2

yi− 1
2

−gH(s, η)
∂

∂x
z
(
ηξ(s)

)
dηds.

Using the conditions of a lake at rest in time tn i.e., Hn
i + Zni = C and Qni = 0, one obtains(

∂H

∂y

)n
i

+ ξ(tn)
∂

∂x
z(yiξ(tn)) = 0,

(
∂2H

∂y2

)n
i

+ ξ(tn)2
(
∂2z

∂x2

)n
i

= 0,

(
∂Q

∂y

)n
i

=

(
∂2Q

∂y2

)n
i

= 0.

Consider now the equation for Hn+1
i and adding and subtracting zn+1

i , Q̂i = 0 yields

Hn+1
i + Zn+1

i − Zni + ∆t(Hy)
n
i

yiξ
′(tn)

ξ(tn)
+

∆t2

2

((
∂2H

∂y2

)n
i

(
yiξ
′(tn)

ξ(tn)

)2

+

(
∂H

∂y

)n
i

yiξ
′′(tn)

)
−Ĥi +O(∆t3) =

1

2

(
Ĥi+1 − 2Ĥi + Ĥi−1

)
+O(∆y3),

Hn+1
i + Zn+1

i − (Hn
i + Zni ) = −1

2
ξ(tn)2

(
∂2z

∂x2

)n
i

∆y2 +O(∆y3).

Hence, as correction to the overall scheme we need to add to the integration of the equation (3.2)

Sni =
∆y2

2
ξ(tn)2

∂2

∂x2
z(yiξ(t

n)).

This leads to a well-balanced discretization up to order O(∆y3). A similar computation leads to

Qn+1
i = − g∆t

4∆yξ(tn)

(
2

(
∂Ĥ

∂y

)n
i

∆y

)(
2Ĥi + ∆y2

(
∂2Ĥ

∂y2

)n
i

)
+Gni +O(∆y3),
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where

Gni = − 1

∆y

∫ tn+1

tn

∫ y
i+1

2

y
i− 1

2

gh(s, η)
∂

∂x
z(ηξ(s))dsdη.

This leads to

Qn+1
i =

g∆t

∆yξ(tn)
∆yĤn

i

∂

∂x
z (yiξ(t

n)) ξ(tn+1) +Gni +O(∆y3),

and after further Taylor expansion ∆y ∂
∂xz (yiξ(t

n)) (ξ(tn) + ∆tξ′(tn)) Ĥn
i +O(∆t2∆y) and midpoint

integration

Gni = − g

∆y

∫ tn+1

tn

∫ y
i+1

2

y
i− 1

2

H(s, η)ξ(s)
∂

∂x
z(ηξ(s))dsdη = −∆tgĤi

∂

∂x
z(yiξ(t

n), (4.2)

one obtains

Qn+1
i =

g∆t2ξ′(tn)

ξ(tn)

∂

∂x
z(yiξ(t

n))Ĥn
i +O(∆y3).

Finally, this leads to the second-order correction term to the momentum equation as

Qni = −g∆t2ξ′(tn)

ξ(tn)

∂

∂x
z(yiξ(t

n))Ĥn
i .

In summary, at each time step tn the equation (3.1) is solved using a third-order interpolation on

Wn
i as well as formula (3.6) to obtain the intermediate values Ŵn

i . Equation (3.2) is discretized as

Wn+1
i = Ŵn

i −
(
F̂n
i+ 1

2

− F̂n
i− 1

2

)
+ Gn

i + Sni , (4.3)

where F̂n
i+ 1

2

are the numerical fluxes defined in (3.8), Sni and Gn
i are source terms defined as

Gn
i =


0

−∆tgĤi
∂

∂x
z(yiξ(t

n)

 , Sni =


∆y2

2
ξ(tn)2 zxx(yiξ(t

n))

−g∆t2ξ′(tn)

ξ(tn)

∂

∂x
z(yiξ(t

n))Ĥn
i

 .

Note that the methods presented are only first-order accurate in space and time. However, higher
order schemes can be reconstructed following similar techniques.

5 Numerical results

We present numerical results for several test problems of shallow water flows over dry areas. The
main goals of this section are to illustrate the numerical performance of the techniques described
above and to verify numerically their capability to solve moving wet/dry fronts in shallow water
flows. In all the computations reported herein, the Courant number Cr is set to Cr = 1 and the
time stepsize ∆t is adjusted at each time step according to the Courant-Friedrichs-Lewy (CFL)
stability condition

∆tn = Cr
∆y

max
(
|λn1 | , |λn2 |

) ,
where λ1 and λ2 are the two eigenvalues of the parametrized shallow water system given by (2.9).
We present numerical results obtained using the Lax-Friedrichs, Rusanov, Roe and FVC methods
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Table 5.1: Errors in the water height H and the water discharge Q obtained for the accuracy test
problem using the parametrized model for the considered finite volume methods at time t = 1 using
different gridpoints.

Lax-Friedrich Rusanov Roe FVC

N Error in H Error in Q Error in H Error in Q Error in H Error in Q Error in H Error in Q

100 2.174E-01 8.936E-01 1.791E-01 7.752E-01 1.283E-01 5.108E-01 1.023E-01 3.961E-01

200 1.385E-01 6.318E-01 1.102E-01 4.906E-01 7.628E-02 3.300E-01 5.295E-02 2.274E-01

400 7.683E-02 3.889E-01 5.905E-02 2.740E-01 4.173E-02 2.031E-01 2.470E-02 1.160E-01

800 3.976E-02 2.157E-01 2.952E-02 1.448E-01 1.946E-02 1.058E-01 1.003E-02 5.411E-02

Table 5.2: Errors in the water free-surface H + Z and the water velocity U obtained for the
verification of well-balanced property at time t = 10 using different gridpoints.

Standard treatment Well-balanced treatment

N Error in H + Z Error in U Error in H + Z Error in U

100 3.836E-02 5.924E-02 7.655E-14 8.716E-14

200 2.764E-03 3.783E-03 9.301E-15 1.136E-14

and we also compare the obtained results for the parametrized model (2.5) to those obtained for
the original model (2.1) using the same methods. Here, to overcome the zero speeds in the original
system, we perturb the associated characteristic speeds by 10−9 far from zero. In our simulations
presented in this section the gravitational force is set to g = 9.81 m/s2 and comparisons between
different methods are presented. The following test examples are selected:

5.1 Accuracy test example

In this example we investigate the accuracy of the proposed method for the shallow water equations
over dry areas. We examine the performance of the considered finite volume methods for the
parametrized model (2.5) using different numbers of gridpoints. To this end we consider the problem
studied in [28] for the shallow water equations (2.1) in the spatial domain [0, 1] with a non-flat
bottom given by

z(x) = sin2 (πx) , (5.1)

and subject to the following initial conditions

h(0, x) = 5 + ecos(2πx), u(0, x) = 0.

Periodic boundary conditions are used for this test example. In order to quantify the errors in this
problem a reference solution computed using a fine mesh of 6400 gridpoints is used as an exact
solution. We compute the solutions at time t = 1 using different mesh densities. We consider the
L1-error norm defined as

N∑
i=1

|Hn
i −Hni |∆x, (5.2)

where Hn and Hni are respectively, the computed and reference solutions at gridpoint xi and time
t, whereas N stands for the number of gridpoints used in the spatial discretization. The obtained
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results for the water height H and the water discharge Q are listed in Table 5.1 using different
values of N . By increasing the number of gridpoints in the computational domain, the errors
decrease in all considered finite volume methods. A faster decay in the errors is also observed for
the errors in the water height compared to the errors in the water discharge for the methods in
Table 5.1. The Lax-Friedrichs and Rusanov schemes exhibits errors of the same order whereas an
improvement is detected in the errors computed using the Roe scheme. We also remark that for
these schemes, nearly optimal convergence rates of first-order are observed in the L1-error norm
for both H and Q. These results also confirm that a finite volume scheme designed for solving the
original shallow water equations (2.1) will retain the same order of convergence when it is applied
to the parametrized shallow water system (2.5). For this test example, the FVC method is the most
accurate and based on the results presented in Table 5.1 the FVC methods is more accurate than
the Lax-Friedrichs, Rusanov and Roe schemes. We clearly see that the convergence rates for the
FVC method for both H and Q are superior than those obtained using the other methods. Needless
to mention that increasing the number of gridpoints N results in an increase of the computational
cost in all considered methods. For the considered mesh densities, the required CPU time in the
FVC method is more than 5 times lower than the other methods.

Next we check the well-balanced property proposed in the current study. To this end we
consider the example of a lake at rest flow using the bed given by (5.1) and a free-surface initially
set to 2. It is expected that the water free-surface remains constant and the water velocity should
be zero at all simulation times. Here, we run the standard method without accounting for the
terms Sni in (4.3) and the well-balanced method including the terms Sni in (4.3). In Table 5.2 we
summarize the errors in the water free-surface and the water velocity obtained at time t = 10 for
both treatments using two different meshes. It is clear that the standard approach fails to exactly
conserve a constant free-surface and it introduces large errors in both water free-surface and water
velocity for the considered meshes. As can be seen, the water free-surface for the well-balanced
approach remains constant during the simulation times and the proposed well-balanced treatment
preserves the C-property to the machine precision.

5.2 Dam-break flow over flat dry bed

We consider the dam-break problem in a rectangular channel with flat bottom, z(x) = 0. The
channel is of length 30 m and the initial conditions are given by (2.1b) with h0 = 1 m and
u0 = 0 m/s. At t = 0 the dam collapses and the flow problem consists of a shock wave traveling
downstream and a rarefaction wave traveling upstream. The analytical solution of this problem is
given by [12]

h(t, x) =



h0, if x ≤ −t
√
gh0,

1

9g

(
2
√
gh0 −

x

t

)2
, if − t

√
gh0 < x ≤ 2t

√
gh0,

0, if x > 2t
√
gh0,

u(t, x) =



0, if x ≤ −t
√
gh0,

2

3

(√
gh0 +

x

t

)2
, if − t

√
gh0 < x ≤ 2t

√
gh0,

0, if x > 2t
√
gh0.

In Figure 5.1 we present the evolution in time-space phase domain of the water height obtained
for the considered finite volume methods using a mesh with 100 gridpoints. In this figure we
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Original model Parametrized model

Figure 5.1: Evolution in the time-space domain of the water height for the dam-break over flat
bed using the original model (left column) and the parametrized model (right column) for the
Lax-Friedrichs method (first row), the Rusanov method (second row), the Roe method (third row)
and the FVC method (fourth row) on a mesh with 100 gridpoints.
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Figure 5.2: Comparison of results obtained for the dam-break over flat bed using the considered
finite volume methods for the original model (first row) and the parametrized model (second row)
at time t = 2.1 using 50 gridpoints (left column) and 100 gridpoints (right column).

include both results obtained for the original model (2.1) and the parametrized model (2.5) using
the same number on gridpoints. It is clear that for this dam-break problem, the results obtained
using the classical Lax-Friedrichs and Rusanov methods are roughly the same in both original and
parametrized models. For both models, the FVC method is more accurate as it is clearly seen in
the vicinity of the shock and the contact waves. To further emphasis these features, we display in
Figure 5.2 a comparison between the results from Figure 5.1 at time t = 2.1 using two meshes with
50 and 100 gridpoints, respectively. It is also clear that for both models, the numerical diffusion is
very pronounced in the numerical solutions computed using Lax-Friedrichs and Rusanov methods.
This excessive numerical dissipation has been successfully removed in the water heights using the
Roe method but the results obtained using the FVC method remain the best. On the other hand,
the proposed parametrized model captures the wet/dry fronts more accurately compared to the
original approach. For this test example, the combined parametrized model and the FVC method
accurately solve the front propagation without generating nonphysical oscillations or excessive
numerical dissipation in the computed results.

Next we examine the performance of the original and parametrized models for capturing the
moving wet/dry interface in this dam-break flow problem. Note that the wet/dry interface ζ(t) for
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Figure 5.3: Time evolution for the wet/dry front obtained for the dam-break over flat bed using
the FVC method for the original and parametrized models using 50 gridpoints (left column) and
100 gridpoints (right column).

Table 5.3: Errors in the wet/dry interface ζ obtained for the dam-break over flat bed using the
original and parametrized models for the considered finite volume methods at time t = 2.1 using
different gridpoints.

Original model Parametrized model

N Lax-Friedrichs Rusanov Roe FVC Lax-Friedrichs Rusanov Roe FVC

100 9.550E-01 7.895E-01 5.417E-01 1.351E-01 3.142E-03 2.469E-03 1.406E-03 7.304E-04

200 5.298E-01 4.319E-01 2.902E-01 6.754E-02 1.570E-03 1.151E-03 5.710E-04 2.582E-04

400 2.742E-01 2.204E-01 1.401E-01 2.939E-02 7.324E-04 5.010E-04 2.163E-04 8.517E-05

800 1.324E-01 1.049E-01 6.535E-02 1.113E-02 3.187E-04 2.034E-04 7.647E-05 2.621E-05

this test example can be analytically computed using

ζ (t) = 2t
√
gh0.

Figure 5.3 depicts the time evolution of the moving wet/dry interface obtained for the original
and parametrized models using the FVC method only. For comparison reasons, we present results
obtained on two meshes with 50 and 100 gridpoints. As it can be seen from these results, the
wet/dry interfaces obtained by the parametrized model are more accurate than those obtained by
the original model. Refining the mesh from 50 gridpoints to 100 gridpoints results in a consistent
improvement in the computed results for the parametrized model but not for the original model.
Obviously, the computed results verify the stability and the shock capturing properties of the pro-
posed parametrized model. The obtained results using the FVC scheme are also in good agreement
with the exact solution for this dam-break problem over dry bed. To quantify the errors in the
wet/dry interface for this dam-break problem, we summarize in Table 5.3 the L2-errors for the
considered finite volume methods for both the original and parametrized models. Here we present
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Table 5.4: Errors in the wet/dry interface ζ obtained for the dam-break over non-flat bed using the
original and parametrized models for the considered finite volume methods at time t = 2.1 using
different gridpoints.

Original model Parametrized model

N Lax-Friedrichs Rusanov Roe FVC Lax-Friedrichs Rusanov Roe FVC

100 9.785E-01 8.936E-01 6.750E-01 2.715E-01 4.692E-03 3.573E-03 2.358E-03 8.903E-04

200 5.620E-01 4.957E-01 3.876E-01 1.454E-01 2.346E-03 1.786E-03 1.026E-03 3.373E-04

400 3.011E-01 2.565E-01 1.938E-01 7.270E-02 1.173E-03 8.331E-04 4.166E-04 1.192E-04

800 1.505E-01 1.238E-01 9.359E-02 3.391E-02 5.472E-04 3.626E-04 1.578E-04 3.932E-05

the errors at time t = 2.1 using different numbers of gridpoints. Again, the combined parametrized
model with FVC method produced the most accurate results for this example. The performance
of the parametrized model and the FVC method is very attractive since the computed solutions
remain stable and accurate even for relatively coarse meshes without solving Riemann problems or
requiring complicated treatment of wet/dry fronts in the flow problem.

5.3 Dam-break flow over non-flat dry bed

Our next flow problem consists of introducing a non-flat bed in the previous example of dam-break
problems over dry beds. We consider an inclined bed with a slope of α = π

60 defined as

z(x) = (15− x) tan (α) .

As in the previous test example, Figure 5.4 illustrates the evolution of the water free-surface in
time-space phase domain for the considered finite volume schemes using a mesh with 100 gridpoints.
We present numerical results obtained for the original model (2.1) and the parametrized model (2.5)
using the same number on gridpoints. As can be seen from these figures, the numerical diffusion is
more pronounced in the results obtained using the Lax-Friedrichs and Rusanov methods, compare
the plots of the water free-surface for the mesh of 50 gridpoints. As expected, the Roe method
has been successful in eliminating the numerical diffusion, but the FVC method is most accurate
near regions of large gradients. On the other hand, comparing the performance of the parametrized
model and the original method in Figure 5.5, results for the parametrized model are more accurate
than those obtained using the original model with a negligible numerical diffusion is introduced
compared to the one introduced by the original model. For this test example, no significant dif-
ferences have been observed between the numerical results obtained using the parametrized model
and the analytical solutions. It is also seen that for the considered dam-break conditions, the FVC
method gives better results, followed by the Roe scheme.

For the sake of comparison, we illustrate in Figure 5.6 the time evolution of the moving wet/dry
interface obtained for the original and parametrized models. For this test example, the exact
equation of the interface is defined by

ζ(t) = 2t
√
gh0 cos (α)− gt2

2
tan (α) .

Only results obtained using the FVC scheme are presented in Figure 5.6. The computed and ana-
lytical wet/dry interfaces are virtually indistinguishable for the simulations using the parametrized
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Original model Parametrized model

Figure 5.4: Evolution in the time-space domain of the water height for the dam-break over non-flat
bed using the original model (left column) and the parametrized model (right column) for the
Lax-Friedrichs method (first row), the Rusanov method (second row), the Roe method (third row)
and the FVC method (fourth row) on a mesh with 100 gridpoints.
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Figure 5.5: Comparison of results obtained for the dam-break over non-flat bed using the considered
finite volume methods for the original model (first row) and the parametrized model (second row)
at time t = 2.1 using 50 gridpoints (left column) and 100 gridpoints (right column).

model on a mesh with 100 gridpoint. A slightly larger errors have been detected in the results
obtained for the original model on the same mesh. The FVC method for the parametrized model
performs very well for this test problem since it does not diffuse the moving wet/dry fronts and
no spurious oscillations have been observed when the water flows over the non-flat bed. The as-
sociated L2-errors in the wet/dry interface are given in Table 5.4 for all considered finite volume
schemes at time t = 2.1 using different number of gridpoints. It reveals that increasing the number
of gridpoints in the computational domain results in a decay of the errors for all methods. Our
parametrized model method exhibits good convergence behavior for this dam-break problem over
dry bed. As can be seen from the errors presented in Table 5.4, the original model is less accurate
in capturing the wet/dry interface than the its parametrized counterpart.

6 Conclusions

In this paper, we have presented a class of accurate well-balanced finite volume methods to solve
moving wet/dry fronts in shallow water flows. The method combines the attractive attributes of
parameterization techniques and the finite volume discretization to yield a procedure for either
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Figure 5.6: Time evolution for the wet/dry front obtained for the dam-break over non-flat bed
using the FVC method for the original and parametrized models using 50 gridpoints (left column)
and 100 gridpoints (right column).

flat or non-flat topography. We have implemented well-established finite volume methods such as
the Lax-Friedrichs and Roe solvers and we have also considered the finite volume characteristics
scheme. Combining the new parametrized model with the finite volume characteristics method
has several advantages. First, it can solve steady flows over irregular beds without large numerical
errors, thus demonstrating that the proposed methods achieve perfect numerical balance of the
gradient fluxes and the source terms. Second, it can compute the numerical flux corresponding
to the real state of water flow without relying on Riemann problem solvers. Third, reasonable
accuracy can be obtained easily and no special treatment is needed to treat moving wet/dry fronts.
Finally, the proposed approach does not require either nonlinear solution or special front tracking
techniques. Furthermore, it has strong applicability to various shallow water systems as shown in
the numerical results. The proposed parametrized finite volume model has been tested on systems
of shallow water equations subject to moving wet/dry fronts. The obtained results indicate good
shock resolution with high accuracy in smooth regions and without any nonphysical oscillations near
the shock areas. Comparisons between the proposed parametrized approach and the conventional
shallow water system have also been carried out in this study. For all considered test examples
the accuracy of the proposed approach is superior than the original model. Although we have
restricted our numerical computations to the low-order methods, the current finite volume scheme
can be straightforwardly extended to high-order discretizations. This and further issues are subject
of future investigations.

Acknowledgments. This work has been supported by BMBF KinOpt 05M2013 and DFG Cluster
of Excellence EXC128. The work of M. Seaid was supported in part by Deutscher Akademischer
Austauschdienst (DAAD).

References

[1] E. Audusse, F. Bouchut, M.O. Bristeau, R. Klein, and B. Perthame. A fast and stable well-
balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on
Scientific Computing, 25:2050–2065, 2004.

20



[2] F. Benkhaldoun, S. Sari, and Seaid M. A family of finite volume Eulerian-Lagrangian methods
for two-dimensional conservation laws. Journal of Computational and Applied Mathematics,
285:181–202, 2015.

[3] F. Benkhaldoun and M. Seaid. A simple finite volume method for the shallow water equations.
J. Comp. Applied Math., 234:58–72, 2010.

[4] A. Bermudez and M.E. Vázquez-Cendón. Upwind methods for hyperbolic conservation laws
with source terms. Computers & Fluids., 23:1049–1071, 1994.

[5] J. Birman, A. Falcovitz. Application of the grp scheme to open channel flow equations. J.
Comput. Phys., 222:131–154, 2007.

[6] A. Bollermann, G. Chen, A. Kurganov, and S. Noelle. A well-balanced reconstruction of
wet/dry fronts for the shallow water equations. Journal of Scientific Computing, 56:267–290,
2013.
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