1	A nearshore Hirnantian brachiopod fauna from South China and
2	its ecological significance
3	
4	Bing Huang ^{1*} , Jiayu Rong ¹ , David A.T. Harper ² and Hanghang Zhou ³
5	
6	¹ State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and
7	Palaeontology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of
8	Sciences, 39 East Beijing Road, Nanjing 210008, China <bhuang@nigpas.ac.cn>,</bhuang@nigpas.ac.cn>
9	<jyrong@nigpas.ac.cn></jyrong@nigpas.ac.cn>
10	² Palaeoecosystems Group, Department of Earth Sciences, Durham University, Durham DH1
11	3LE, UK <david.harper@durham.ac.uk></david.harper@durham.ac.uk>
12	³ University of Science and Technology of China, Hefei 230026, China
13	<zhouhanghang@live.com></zhouhanghang@live.com>
14	* corresponding author.
15	
16	Running Header: A nearshore Hirnantian brachiopod fauna from S China
17	
18	Abstract.—The brachiopods collected from the Kuanyinchiao Beds (Hirnantian, uppermost
19	Ordovician) in Meitan and Zunyi counties, northern Guizhou include 13 species and one
20	undetermined taxon, dominated by Hirnantia sagittifera (M'Coy) accounting for over one-
21	third of the specimens, together with common Eostropheodonta hirnantensis (M'Coy). They
22	are assigned to the Hirnantia-Eostropheodonta Community which probably inhabited a

23	shallow-water, near-shore BA2 to upper BA3 environment. Population analysis shows that
24	the community was well adapted to this environment after the first phase of the end
25	Ordovician mass extinction. Representative specimens of all the species are illustrated, and a
26	new species, Minutomena missa n. sp. is described herein. The variation in Hirnantia
27	sagittifera (M'Coy) was noted in many of previous studies but was not statistically
28	evidenced. Here we have measured representative specimens of that famous species from the
29	major paleoplates and terranes in the world, along with other species assigned to the genus
30	from South China. Having used Principal Component Analysis (PCA), significant variations
31	in the species are documented statistically and revised, and three nominal species, one
32	subspecies and two morphotypes are now reassigned to Hirnantia sagittifera (M'Coy) sensu
33	stricto.
34	
35	UUID: http://zoobank.org/references/3f83fb1e-a6dd-4585-9f9f-9586dad28244
36	
37	Introduction
38	
39	The end-Ordovician marked the first major extinction event of the Phanerozoic. There were
40	significant changes in the brachiopod faunas during the extinction and subsequent recovery.
41	The biotic event heralded the arrival of new groups of brachiopod communities assigned to
42	the Hirnantia Fauna (Temple, 1965). The Hirnantia Fauna is a worldwide, cool-water
43	brachiopod fauna that originated and flourished in shallow-water marine environments at
44	intermediate to low latitudes (e.g., Rong and Harper, 1988, 1999; Rong et al., 2002). The

45	uniqueness of the Hirnantia Fauna throughout geological time, its near global distribution,
46	distinctive and limited stratigraphical range (Hirnantian, uppermost Ordovician), have made
47	it a focus for evolutionary paleobiologists and biostratigraphers.
48	After almost half century of intense investigation, the Hirnantia Fauna is now well
49	known for its importance in the study of end-Ordovician macroevolutionary processes (e.g.,
50	Temple, 1965; Wright, 1968; Amsden, 1974; Lespérance and Sheehan, 1976; Rong 1979;
51	Nikitin et al., 1980; Cocks, 1982; Benedetto, 1986; Rong and Harper, 1988, 1999; Owen et
52	al., 1991; Harper and Rong, 1995, 2001; Rong et al., 2002; Jin and Zhan, 2008; Zhan et al.,
53	2010; Hints et al., 2012; Benedetto et al., 2013; Harper and Hints, 2016). Detailed
54	investigation of the Hirnantia Fauna on a global scale has already made a significant
55	contribution to the recognition of the essence of the end-Ordovician mass extinction. There
56	are more than 100 localities in nearly 30 countries and regions where the Hirnantia Fauna has
57	been documented (Rong, 1979; Rong et al., 2002). In South China, Hirnantia faunas from 24
58	localities were summarized and discussed, most of which are in Guizhou, Sichuan, and Hubei
59	provinces on the Upper Yangtze Platform (Rong et al., 2002; Zhan et al., 2010). Among them,
60	the collections from Yichang, Hubei Province where the Hirnantian GSSP is situated, were
61	systematically described in detail (Rong, 1984; Zeng et al., 2016). The brachiopod fauna is
62	highly diverse (over 20 genera) and was assigned to Benthic Assemblage (BA) 3, the
63	bathymetric zone of the deeper parts of the shallow-water platform (Rong, 1984).
64	Fieldwork by the author group during past several decades has dramatically increased
65	collections of the Hirnantia Fauna in South China. Recently, we discovered two new
66	associations of Hirnantia Fauna in Meitan County and on the east border of the Zunyi area

67	(Figure 1). The two associations dominated by Hirnantia sagittifera (M'Coy) with moderate
68	diversity (14 species) are assigned to BA 2-3, a typical shallower-water environment. The
69	sufficiency of specimens of Hirnantia sagittifera in the study has permitted analysis of its
70	population dynamics following the previous study (Li, 1996) and detection of intraspecific
71	variation. In this paper, the Hirnantia Fauna in Meitan County is reported for the first time
72	and its ecology discussed. One new species, Minutomena missa n. sp. is systematically
73	described. For Hirnantia sagittifera (M'Coy), Temple (1965) noted that significant variation
74	exists in populations of the species, however, this fact and its significance has largely been
75	ignored. Here, based on measurements of global representative specimens of species, together
76	with related specimens from Yichang and this study, we quantatively analyze this variation.
77	

78 Geological setting

80	The Kuanyinchiao Beds were also named as Kuanyinchaio Formation (e.g., Wang et al.,
81	2018). However, due to its limited thickness which is mostly less than 2 meters, we retain the
82	term Kuanyinchiao Beds in this study. Graptolites from shales underlying and overlying the
83	Kuanyinchiao Beds in many nearshore areas indicate that the unit mostly lies between the
84	Metabolograptus extraordinarius Biozone and the M. persculptus Biozone. The
85	Kuanyinchiao Beds in South China is commonly composed of dark gray argillaceous
86	limestone, containing abundant brachiopods, trilobites, corals, and a few other fossil groups
87	(Rong, 1979). However, lithological and faunal variations in the Kuanyinchiao Beds have
88	been reported at different localities (e.g., Rong et al., 2002). In many localities in the near-

89	shore facies belt, the beds are split into two parts on lithological differences, such as those in
90	Bijie, Renhuai, Tongzi, Fenggang, and Yinjiang, northern Guizhou, South China. The lower
91	Bed is commonly a gray-black mudstone whereas the upper Bed argillaceous limestone
92	(Wang et al., 2018).
93	The majority of the specimens in this study were collected from the Hetaoba section,
94	Meitan, northern Guizhou Province (Figure 2). The shelly bed consists of calcareous
95	mudstone with a thickness of only 20 cm, whereas the collection from the Baixiangyan
96	section is confined to 15 cm of strata in calcareous mudstone.
97	
98	Paleoecological significance
99	
100	Community ecology The term "Hirnantia Fauna" was replaced by "Hirnantia Community"
101	(Lespérance and Sheehan, 1976), and assigned to Benthic Assemblage 4, or even 5 (Sheehan,
102	1979), which belonged to relatively deeper-water environment settings; this was based on
103	principally their understanding of the depth ranges of the Hirnantia Fauna from Pérce,
104	Quebec. However, the Hirnantia Fauna may comprise more than one ecological community
105	(Rong, 1979; Harper, 1979, 1981). Wang et al. (1987) recognized 6 communities, with four of
106	them occupying BA3, the other two occupied BA2 and upper BA4, respectively. Detailed
107	studies of the paleogeographic framework for the region indicate that Hirnantia bearing
108	faunas may occupy a position equivalent to BA3 (Rong, 1984, 1986) or lower BA2 to BA3
109	(Rong and Harper, 1999), although the relative frequencies of the genera vary. Based on the
110	data from South China, it is suggested that, the commonly, highly diverse Hirnantia Fauna

(>15 genera) may have lived in a deeper-water environment than that of the more strictly
defined *Hirnantia* Fauna (commonly less than 10 genera) and may occupy a position in low
Benthic Assemblage 3.

The brachiopod specimens collected from two sections in this study are all identified 114 115 (Table 1). Although the relative abundance of common taxa such as Hirnantia sagittifera 116 (M'Coy) and Eostropheodonta hirnantensis (M'Coy) differ between the two assemblages, the similarities in composition indicate that they may have belonged to a single paleoecologic 117 community. Two communities dominated by Hirnantia and Aphanomena are assigned to 118 119 upper BA3 (Rong, 1986; Wang et al., 1987). Rong (1986) recognized Aphanomena-Hirnantia Community based on the materials from Donggongsi section, Zunyi City, that is very close 120 to the Baixiangyan section in this study. Since Aphanomena has been reassigned to 121 122 Eostropheodonta (Cocks and Rong, 2000), the two assemblages are recognized as the Hirnantia-Eostropheodonta community, probably inhabiting a normal shallow-water 123 environment and occupying an upper BA 3 position (Rong, 1986; Wang et al., 1987). With 124 the assumption that a community dominated by *Paracraniops* lived in a lower BA3 125environment (Wang et al, 1987), lower diversity, the absence of the two craniid genera 126 127 Petrocrania and Xenocrania, together with the fact that there is a great deal of biological debris in shell beds in the Baxiangyan section, implying deposition above normal wave base, 128 it may be inferred that the environmental setting for the *Hirnantia* Fauna in the Hetaoba 129 section is relatively deeper than that of Baixiangyan. 130

131

132 Population ecology and its significance. —Since Hirnantia faunas immediately followed the

first phase of the end Ordovician mass extinction, the ecological effect of the event was a
major driver of the adaption of the *Hirnantia* Fauna to their environment. The environmental
effects of the extinction can be monitored by population analysis of the main components of
the *Hirnantia* Fauna.

137 Although fossil populations cannot be defined in the terms as those in modern biology 138 because of the nature of the fossil record, and some attributes of fossil populations are difficult to study, paleoecologists have successfully applied their own approaches to 139 140 population ecology, particularly the study of population structure or dynamics in analyzing 141 fossil populations through time (see Dodd and Stanton, 1991; Brenchley and Harper, 1998). Many studies revealed that survivorship patterns of time-averaged normal populations 142 without selective destruction can also represent an accurate census of their former living 143 144 populations (e.g., Cate and Evans, 1992; Li, 1996). During the identification of the specimens from the Hetaoba section (GHH-02), we found that many delicate structures and even the 145 juveniles are well preserved, which suggest that population dynamics in these fossil 146 147 assemblages can be described and evaluated.

148The brachiopods from Hetaoba are relatively abundant and assigned to a *Hirnantia-*149*Eostropheodonta* community since specimens of two genera account for nearly 60% of the150total. We measured complete specimens of the two taxa, and followed the method of151Levinton and Bambach (1970), recommended by previous studies (e.g., Li, 1996), and152calculated and plotted size frequency and survivorship curves for the two dominant153components (Fig. 3). The size-frequency distributions of the two populations with abundant154juveniles are all left-skewed, especially the population of *Hirnantia sagittifera*, indicating

155	that there were many young individuals and fewer older ones. These two populations,
156	featured by a high juvenile mortality and a lower mortality later in life, are characterized by
157	survivorship curves that are concave upwards. Most of the brachiopods died young with few
158	individuals living to maturity. The clear high juvenile mortality of Hirnantia sagittifera
159	indicates that an ecological threshold may exist during the early life of the population.
160	Compared with the curve of <i>Hirnantia sagittifera</i> , there is a lag in the peak for the population
161	of Eostropheodonta hirnantensis (M'Coy), suggesting better adaptation to the same
162	environment. The adaptation of both populations indicates that they are eurytopic, or their
163	habitat was not as severe to affect the major components of the fauna even in the shallow-
164	water environment after the end Ordovician mass extinction.
165	
166	Materials and locations
167	
168	The shelly beds of the Hirnantian Stage are widely distributed on the Yangtze Platform of

South China. The brachiopod fauna in this study was collected from the lower part of the
Kuanyinchiao Beds (for the division of the Kuanyinchiao Beds, see Wang et al., 2018 for
details) at two sections in Meitan County, and on the east border of Zunyi (Figure 1) by the
authors and their colleagues in 2011, 2017 and 2018. All specimens are preserved as internal
and external molds.

The section previously investigated is located at Hetaoba, 6 km northwest of Tiancheng village, east of Meitan County Town (GPS: 27°48'07.5"N, 107°34'22.9"E). Common fossils include abundant brachiopods, some trilobites, a few bryozoans and rare gastropods which

177	are preserved in gray-yellow calcareous mudstone. There are 603 specimens and 13 species
178	of brachiopods identified in our collections from the Kuanyinchiao Beds (GHH-02) in the
179	section. More than 90 specimens (33.8%) of Hirnantia sagittifera (M'Coy) were collected
180	together with many Eostropheodonta hirnantensis (M'Coy) (15.4%), Paromalomena
181	macmahoni (Reed) (10.3%), Dalmanella testudinaria (Dalman) (8.0%), Palaeoleptostrophia
182	sp.(6.5%), Hindella crassa (Williams) (6.5%), Leptaena rugosa (Dalman) (5.8%),
183	Minutomena missa n. sp. (4.1%), Pseudopholidops partibilis (Rong) (4.8%), and Cliftonia cf.
184	psittacina (Wahlenberg) (2.5%); and rare Fardenia (Coolinia) sp. (0.8%), Xenocrania haimei
185	(Reed) (0.5%) Petrocrania sp. (0.2%) and Discinidae gen. et sp. indet. (0.2%).
186	During recent fieldwork, a relatively low abundance shallow-water shelly brachiopod
187	association was collected from the Baixiangyan section (GMB-01), 7 km east of Yongle
188	village, the east border of Zunyi area (GPS: 27°51'51.8"N, 107°24'36.15" E). The fauna is
189	dominated by brachiopods together with a few trilobites and much crinoidal debris. In Total
190	79 specimens were gathered, including Hirnantia sagittifera (M'Coy)(35.4%),
191	Eostropheodonta hirnantensis (M'Coy)(31.6%), Leptaena rugosa (Dalman)(15.2%),
192	Hindella crassa (Williams)(7.1%), Cliftonia cf. psittacina (Wahlenberg)(5.1%), Dalmanella
193	testudinaria (Dalman)(4.3%) and Paromalomena macmahoni (Reed)(2.9%) are identified in
194	the sample.
195	

196 *Repository and institutional abbreviation.*—Types, figures, and other specimens examined in

197 this study are deposited in the following institution: Nanjing Institute of Geology and

198 Paleontology, Chinese Academy of Sciences (the catalog numbers prefixed by NIGP).

200 Systematic paleontology

202	There are 13 species belonging to 13 genera together with an undeterminate species in the
203	two collections under study. The list of species reported is as follows, with some
204	representative specimens being illustrated of each: Discinidae gen. et sp. indet. (Fig. 4.7),
205	Pseudopholidops partibilis (Rong) (Fig. 4.1-4.3), Xenocrania haimei (Reed) (Fig. 4.4-4.5),
206	Petrocrania sp. (Fig. 4.6), Leptaena rugosa (Dalman) (Fig. 4.8-4.19), Minutomena missa n.
207	sp. (Fig. 5), Paromalomena macmahoni (Reed) (Fig. 6), Eostropheodonta hirnantensis
208	(M'Coy) (Fig. 7.10–7.15), Palaeoleptostrophia sp. (Fig. 7.1–7.9), Cliftonia cf. psittacina
209	(Wahlenberg) (Fig. 10.9–10.12), Fardenia (Coolinia) sp. (Fig. 7.16–7.18), Dalmanella
210	testudinaria (Dalman) (Fig. 10.1-10.4), Hirnantia sagittifera (M'Coy) (Fig. 8, Fig. 9), and
211	Hindella crassa (Williams) (Fig. 10.5–10.8). The one new species and two most dominant
212	species are discussed in detail. Data and some statistical information are also provided.
213	
214	Class Strophomenata Williams, Carlson, Brunton, Holmer and Popov, 1996
215	Order Strophomenida Öpik, 1934
216	Superfamily Strophomenoidea King, 1846
217	Family Glyptomenidae Williams, 1965
218	Genus Minutomena Zeng et al., 2016
219	
220	2016 Minutomena Zeng et al., p. 21.

222	Type species.—Minutomena yichangensis Zeng et al., 2016, p. 21, pl. 2, figs. 1–5;
223	Kuanyinchaio Beds (Hirnantian), Yichang, western Hubei, Central China.
224	
225	Minutomena missa new species
226	Figure 5
227	
228	<i>Type specimens.</i> —Holotype: NIGP 170742 (Fig. 10.5). Paratypes: NIGP 170738-170741,
229	NIGP 170743-170746. All from Kuanyinchiao Beds (Hirnantian, uppermost Ordovician) of
230	Hetaoba section, Meitan County, northern Guizhou, South China.
231	
232	Diagnosis.—Larger Minutomena with coarser ornamentation and relatively small cardinalia.
233	
234	Occurrence.—The new species is only known from Kuanyinchiao Beds (Hirnantian,
235	uppermost Ordovician) of Meitan County, Guizhou Province, South China.
236	
237	Description.—Shells small to medium sized, 3.5 to 11.8 mm long, 4.3 to 13.6 mm wide,
238	transversely semi-circular; ventral valve slightly convex with maximum convexity near
239	umbo, dorsal valve nearly flat to weakly concave, lateral profile rarely resupinate.
240	Ornamentation of multicostellae, unequally round ribs increasing mostly by branching, about
241	3-4 per 2 mm at 10 mm from the umbo (Fig. 5.13); fine and prominent concentric growth
242	lines well developed. Substance of shell coarsely pseudopunctate.

243	Ventral interior with thin and short dental plates, divergent at an angle of about 70°–110°;
244	muscle scars small, broad, faintly visible, rarely extending beyond ends of dental plates
245	anteriorly; diductor scars subtriangular. Pedicle callist broad and well developed (Fig. 5.2,
246	5.4).
247	Dorsal interior with small bilobed cardinal process situated in the depressed posterior end
248	of notothyrial platform; socket ridges short, straight or slightly concave posteriorly, widely
249	divergent about 110°-135°; paired low and conspicuous ridges well developed in front of
250	socket plates (Fig. 5.5–5.10), divergent about 60°–100°; muscle field not seen.
251	
252	Etymology.—Latin, missus, with regards to having overlooked this species during the
253	previous study.
254	
255	Materials.—Eight ventral internal molds, 14 dorsal internal molds and three external molds.
256	
257	Remarks.—The genus was published for the first time in a Chinese book, based on the
258	specimens collected from the GSSP area of the Hirnantian Stage (Zeng et al., 2016). Its close
259	relationship with Paromalomena was not noticed in the original study. However, the
260	specimens in this study were mistakenly assigned to species of Paromalomena by the first
261	author during the earlier study because of a lack of sufficiently informative materials. On the
262	basis of detailed systematic study, the differences between the two genera can be summarized
263	as: 1). Ornamentation of <i>Paromalomena</i> is of fine costellae, and increasing by intercalation;
264	concentric wrinkles or rugae commonly irregularly developed; weak and wavy (Fig. 6.2, 6.9).

265	Whereas costae of <i>Minutomena</i> are coarser and increasing mostly by branching, the wrinkles
266	or rugae rarely found on the genus (Fig. 5.13). 2). More importantly, side septa or paired low
267	ridges are absent or are inconspicuous in Paromalomena (Fig. 6.10), but are essentially
268	developed in front of socket plates in Minutomena (Fig. 5.11).
269	The new species is different from the type species mainly in two aspects: 1). The size of
270	Minutomena yichangensis Zeng et al., 2016 is commonly less than 8 mm in width; whereas
271	the specimens of <i>M. missa</i> n. sp. are mostly larger than 10 mm in width. 2). For the type
272	species, a pair of lateral ridges are often very prominent, with its anterior end even reaching
273	half of the valve length (Zeng et al., 2016, pl. 2 fig. 4a); however, the lateral ridges of <i>M</i> .
274	missa n. sp. are always weaker, with their anterior ends at $1/4$ to $1/5$ of valve length.
275	
276	Order Strophomenida Öpik, 1934
277	Superfamily Strophomenoidea King, 1846
278	Family Leptostrophiidae Caster, 1939
279	Genus Eostropheodonta Bancroft, 1949
280	
281	Type species.—Orthis hirnantensis M'Coy, 1851; Hirnant Formation (Hirnantian), Upper
282	Ordovician, Aber Hirnant, near Bala, Wales, UK.
283	
284	Eostropheodonta hirnantensis (M'Coy, 1851)
285	Figure 7.10–7.15
286	

Type specimens.—Lectotype: Internal mould of pedicle valve, A 28831, from Aber Hirnant,
North Wales(M'Coy, 1852, pl. 1H, fig. 11c; Temple, 1965, pl. 19, fig. 1).

290	Remarks.—The ornamentation of species assigned to Eostropheodonta has been considered
291	to be of taxonomic significance. However, it is highly variable even in specimens from the
292	same population (see discussion in Rong et al., 2019). Furthermore, the development of
293	dental plates is also variable. During the early study of the fauna, all related specimens were
294	assigned to Eostropheodonta. After detailed analysis of the variation, we consider that
295	specimens with vestigial or absent dental plates, together with the triangular and weakly
296	impressed muscle field, are better assigned to Palaeoleptostrophia, rather than
297	Eostropheodonta. Based on the dorsal internal molds of the species of the two genera, it is
298	difficult to differentiate the two (Rong and Cocks, 1994). Since species of
299	Palaeoleptostrophia have numerous coarse pseudopunctae in the posterolateral parts of its
300	both ventral and dorsal internal molds, we assign the dorsal internal molds with the
301	developed coarse pseudopunctae to Palaeoleptostrophia. The genus Palaeoleptostrophia was
302	thought to originate in the Rhuddanian, and the oldest Leptostrophiidae lacked dental plates
303	(Rong and Cocks 1994). There are some specimens of that family recorded as leptostrohiids
304	in the Hirnantian rocks of Latvia and Estonia (Hints and Harper, 2015). Thus, it could be
305	regarded as a progenitor taxon evolved during the crisis interval (Rong et al., 2019). The
306	evolutionary relationship between Eostropheodonta and Palaeoleptostrophia will be
307	discussed together with other genera of Leptostrophiidae in detail elsewhere.

309	Order Orthida Schuchert & Cooper, 1932
310	Suborder Dalmanellidina Moore, 1952
311	Superfamily Enteletoidea Waagen, 1884
312	Family Draboviidae Havlíček, 1950
313	Subfamily Draboviinae Havlíček, 1950
314	Genus Hirnantia Lamont, 1935
315	
316	Type species.—Orthis sagittifera M' Coy, 1851; Hirnant Formation (Hirnantian), Upper
317	Ordovician, Aber Hirnant, near Bala, Wales, UK.
318	
319	Hirnantia sagittifera (M'Coy, 1851)
320	Figure 8–9
321	
322	Here only the data used in the analysis are listed, see Appendix of Rong et al., 2019 for detail
323	list.
324	1851 Orthis sagittifera M'Coy, p. 398.
325	1935 Hirnantia sagittifera (M'Coy); Lamont, p. 313, pl.7, figs. 20-22.
326	1965 Hirnantia sagittifera; Temple, p. 349-401, pl.11, fig. 8; pl. 12, figs. 1-10; pl.13, figs.
327	1–10; pl. 14, figs.1–8.
328	1968 Hirnantia sagittifera; Bergström, p. 10, pl. 3, fig. 13; pl. 4, figs. 1, 2.
329	1974 Hirnantia magna Rong, Xu and Yang, p. 196, pl. 92, fig. 25, 26.
330	1976 Hirnantia sagittifera; Lespérance and Sheehan, p. 723, pl. 109, figs. 3-11.

- 331 1977 *Hirnantia sagittifera*; Havlíček, p. 266, pl. 29, figs. 15–23.
- 1979 Hirnantia sagittifera fecunda Rong, pl. 1, figs. 10, 14, 15.
- 333 **1980** *Hirnantia sagittifera*; Nikitin, p. 43, pl. 11, figs. 1–4.
- 1982 *Hirnantia sagittifera*; Cocks, p. 763–764, pl. 78, figs. 6–10; pl. 79, figs, 1–3; pl. 80, fig.
 8.
- 336 1983 *Hirnantia sagittifera*; Mergl, p. 343–344, pl. 4, figs. 14–16.
- ³³⁷ 1984 *Hirnantia sagittifera*; Rong, 139. 141, pl. 6, figs 1–17; pl. 7, figs 1–8; pl. 12, fig. 15;
- 338 text-figs 10, 11.
- 339 1986 *Hirnantia sagittigera*; Benedetto, p. 444, pl. 1, figs 11–15; pl. 2, figs 1–3.
- ³⁴⁰ 1987 *Hirnantia sagittifera*; Rong and Xu, p. 5–6, pl. 1, figs 9, 12, 13, 16, 17, 20–22, 24, 26.
- 1999 Hirnantia sagittifera; Villas, Lorenzo and Gutierrez-Marco, p. 193, fig. 4 (a-i).
- 342 2012 *Hirnantia sagittifera*; Hints, Parnaste and Gailite, p. 67–70, fig. 2. A–J.
- 343 2016 Hirnantia sagittifera morph. Bohemia Havlíček (1977), Zeng et al., p. 69–70, pl. 35,
- 344 figs. 1–12; pl. 36, figs. 1–2.
- ³⁴⁵ 2016 *Hirnantia sagittifera* morph. Poland Temple (1965), Zeng et al., p. 70–71, pl. 37,
- 346 figs.1–11.
- ³⁴⁷ 2016 *Hirnantia magna*; Zeng et al., p. 71–72, pl. 36, figs. 3–12.
- ³⁴⁸ 2016 *Hirnantia septumis* Zeng et al, p. 72–73, pl. 38, figs. 1–12.
- ³⁴⁹ 2016 *Hirnantia fecunda* (Rong), Zeng et al., p. 74, pl. 34, figs. 6–12.

- 351 *Type specimens.*—Lectotype: Internal mold of brachial valve, A 41217, from Aber Hirnant,
- 352 North Wales (M'Coy, 1852, pl. 1H, fig. 17; Temple, 1965, pl. 11, fig. 8).

354	<i>Remarks.—H. sagittifera</i> has been described in detail by many different authors (e.g.,
355	Temple, 1965; Havlíček, 1977; Cocks, 1982; Villas et al., 1999; Hints et al., 2012 and
356	therein). The population variation in the species was noted mainly in size and outline
357	(Temple 1965; Cocks 1982; Cocks and Torsvik, 2002). Its adult shell width can reach 50 mm
358	(Bergström, 1968; Hints et al., 2012) or less than 15 mm in different populations. The
359	variation of its internal characters is also significant. Rong (1984) initially discussed the
360	morphology variation of the cardinal process and considered it can be both simple and
361	bilobate with peculiar crenulations on its top and sides. The variation in <i>H. sagittifera</i> is so
362	considerable that some specimens in the same population could be easily identified as
363	separate species.
364	Recently Zeng et al. (2016) monographed a Hirnantia Fauna from Yichang, where the
365	GSSP of Hirnantian Stage is situated. With abundant and well-preserved specimens of
366	Hirnantia from the same beds, they identified 5 species (or morphotypes), H. sagittifera
367	(M'Coy) morph. Bohemia, H. sagittifera (M'Coy) morph. Poland, H. magna (Rong et al.), H.
368	septumis (Zeng) and H. fecunda (Rong). The main criteria for discrimination were shell size
369	and the development of muscle fields. However, these key differences are not clear with
370	reference to their specimens.
371	In order to assess the value of the differences between the "5 species", we measured most
372	of the taxa from published figures. We also compared several specimens from other
373	collections from South China: 1) Donggongsi section (AAE-080) of Zunyi city, Guizhou
374	province; 2) Tianbatou section of Gongxian, Sichuan province; 3) Wangjiawan section of

Yichang area, Hubei Province (the GSSP of the Hirnantian). Seven parameters are selected 375 for dorsal internal molds, such as length, width, length of cardinalia (from anterior margin of 376 377 brachiophore bases to the apex of shell), width of cardinalia (the maximum distance between two brachiophore bases), muscle field position (distance from anterior margin of muscle 378 379 fields to the apex of shell), width of muscle fields, and angle of brachiophore supporting 380 plates; six parameters are available for the ventral internal molds, as length, width, length of muscle field, width of muscle field, width of adductor muscle scar, and angle of dental plates 381 (Appendix 1 and 2). Using PCA (principal components analysis) to interrogate the 382 383 measurements above, most of the variation in these specimens can be analyzed and evaluated. Since related specimens from a previous study (Rong, 1979, 1984) were collected from the 384 same locality, we also included them in the analysis. The results (Fig. 10.1) displayed a clear 385 386 pattern of variation. No single morphological group can be clearly recognized from the scatters, indicating that the variation of each "species" is significant but continuous for both 387 388 outline and internal structures.

389 As Zeng (2016) considered that 'H. sagittifera (M'Coy) morph.' Bohemia is different from 'H. sagittifera (M'Coy) morph.' Poland mainly on its larger size. However, as the 390 specimens were collected from the same beds, we consider that many of 'H. sagittifera 391 (M'Coy) morph. Poland' are immature specimens lacking the development of the dorsal 392 muscle field. Since the material from Bohemia and Poland are both assigned to H. sagittifera, 393 this morphotype is not necessarily present. Similarly, H. magna (Rong et al.) was erected 394mainly by virtue of its larger size (It can reach 40 mm) and the development of cardinalia and 395 muscle fields based on specimens from very shallow-water (BA2) populations and is 396

397	represented only by large adult shells rather than different species. Most of the shells were
398	significantly larger than those collected from other localities at that time (Rong et al., 1974).
399	However, large and even larger specimens H. sagittifera have been reported from Sweden
400	(Bergström, 1968), Oslo (Cocks, 1982), Argentina (Benedetto, 1986) and Estonia (Hints et
401	al., 2012), which undermine the validity of the species H. magna. Here, we figure the
402	holotype of this species (Fig. 9.11) and note the similarity between the holotype of <i>H. magna</i>
403	and the large specimens from this study (Fig. 8.11), suggesting H. magna can be treated as a
404	junior synonym of <i>H. sagittifera</i> (M'Coy).
405	H. fecunda Rong (Zeng et al., 2016) was firstly erected as H. sagittifera fecunda (Rong,
406	1979) mainly on the basis of its shorter and narrower cardinalia and ventral muscle fields.
407	Both the measurements and the results of the PCA analysis indicates that the variation of H .
408	sagittifera encompasses that of H. fecunda. In this study, specimens collected from Meitan
409	with short brachiophore bases and muscle fields are also similar to "H. sagittifera fecunda".
410	However, we consider that the subspecies should be suppressed and assigned to H .
411	sagittifera. The typical character of H. septumis Zeng is a short and narrow medium septum
412	developed in the ventral valves. We consider that this character is an indicator of adult or
413	gerontic individuals; these specimens are quite large with a well-developed muscle field, and
414	some of the ventral valves have even muscle bounding ridges. Similar but weaker muscle-
415	bounding ridges are also identified on the specimens collected from Guizhou (Fig. 9.5, 9.6).
416	We suggest that the "five species" of Zeng et al. (2016) together with <i>H. magna</i> (Rong et
417	al., 1974) and H. sagittifera fecunda (Rong, 1979) should be reassigned to H. sagittifera
418	sensu stricto. The "unique characters" described for each of the above taxa are part of wide

419	ranging, continuous intra-specific variation rather than criteria for the establishment of
420	different species. Besides the data from Yichang of China presented above, representative
421	specimens of <i>H. sagittifera</i> from different regions and paleo-plates reveal further variation in
422	these species. We measured the figured specimens from Wales (Temple, 1965; Walmsley et
423	al., 1969; Brenchley et al., 2006), Sweden (Bergström, 1968), Quebec, Canada (Lespérance
424	and Sheehan, 1976), Bohemia (Havlíček, 1977), Kazakhstan (Nikitin, 1980), Oslo (Cocks,
425	1982), Algeria (Mergl, 1983), Argentina (Benedetto, 1986), Tibet of China (Rong and Xu,
426	1987), Spain (Villas et al., 1999) and Estonia (Hints et al., 2012). Most of the specimens are
427	preserved as internal molds, with the exception of those from Estonia with calcareous shells,
428	mainly from drill cores. Using the specimens from Yichang as a template, based on their
429	measurements (Appendix 1 and 2), the results from PCA clearly indicate that the variation of
430	the global species can be captured in the data from Yichang, China (Fig. 10.2). Some outliers
431	such as the data from Estonia and Sweden, may be due to different modes of preservation,
432	which introduce a bias into the measurements. The differences between specimens from other
433	regions were emphasized (e.g., Zeng et al., 2016). However, we consider that given the wide
434	variability of the Yichang material, these differences may be accommodated within the intra-
435	specific variability of <i>H. sagittifera</i> .

436 Specimens of *Hirnantia sagittifera* collected from Guizhou, South China display a
437 marked range of variation. Dorsal valves can be relatively flat or occasionally very convex
438 (Fig. 8.13). The cardinal process can be simple (Fig. 8.15) or bilobed with crenulations (Fig.
439 9.10) in adult specimens. Dorsal muscle fields also vary from weak to well developed, with
440 different outlines. The anterior pairs of dorsal muscle scars can be equal to (Fig. 8.10) or

441	smaller (Fig. 9.11) than the posterior pairs. The angle between the brachiophore supporting
442	plates or dental plates is clearly varied. The ventral adductor muscle field can be wide to very
443	narrow. The anterior extremity of adductor field on a few specimens can form a short septum
444	as described in the different species (Zeng et al., 2016). With sufficient sampling of
445	populations, more variation will be discovered.
446	
447	Acknowledgments
448	
449	The authors would like to thank Wang G.X., Wang Y., Zhan R.B., Tang P., Luan X.C., Gong
450	F.Y. (NIGPAS) and Zhou Z.Q. (Xi'an Center of China Geological Survey) for help during
451	fieldwork. The comments of Dr. Ian Percival and Robin Cocks together with those of the
452	editor greatly improved the clarity of the manuscript. Financial support for this study was
453	provided by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant
454	No. XDB26000000; the National Natural Science Foundation of China (NSFC) 41530103.
455	Harper acknowledges support from the Leverhulme Trust (UK) and IGCP Project 653 'The
456	Onset of the Great Ordovician Biodiversification Event'.
457	
458	References
459	
460	Amsden, T.W., 1974, Late Ordovician and Early Silurian articulate brachiopods from
461	Oklahoma, southwestern Illinois, and eastern Missouri: Oklahoma Geological Survey
462	Bulletin, v. 119, p. 1–154.

463	Bancroft, B.B., 1949, Welsh Valentian brachiopods and the Strophomena antiquata group of
464	fossil brachiopods, in Lamont, A., ed., Welsh Valentian Brachiopods and the Strophomena
465	antiquata Group of Fossil Brachiopods: Preprint from Quarry Managers' Journal.
466	Yorkshire, Times Printing Co., Inc., Mexborough, p. 2–16.
467	Benedetto, J.L., 1986, The First Typical Hirnantia Fauna from South America (San Juan
468	Province, Argentine Precordillera), in Racheboeuf, P.R., and Emig, C., eds., Les
469	Brachiopodes Fossiles et Actuels: Biostratigraphie du Paleozoique (Lyon), v. 4, p. 439-
470	447.
471	Benedetto, J.L., Halpern, K., and Galeano Inchausti, J.C., 2013, High-latitude Hirnantian
472	(latest Ordovician) brachiopods from the Eusebio Ayala Formation of Paraguay, Paraná
473	Basin: Palaeontology, v. 56, p. 61–78.
474	Bergström, J., 1968, Upper Ordovician brachiopods from Västergötland, Sweden: Geologica
475	et Palaeontologica, v. 2, p. 1–37.
476	Brenchley, P.J., and Harper, D.A.T., 1998, Palaeoecology: Ecosystems, environments and
477	evolution: London, Stanley Thornes, 402 p.
478	Brenchley, P.J., Marshall, J.D., Harper, D.A.T., Buttler, C.J., and Underwood, C.J., 2006, A
479	late Ordovician (Hirnantian) karstic surface in a submarine channel, recording glacio-
480	eustatic sea-level changes, Meifod, central Wales: Geological Journal, v. 41, p. 1-22.
481	Caster, K.E., 1939, A Devonian Fauna from Colombia: Bulletins of American Paleontology
482	(Ithaca), v. 24, p. 1–218.
483	Cate, A.S., and Evans, I., 1992. Life Histories and Population–Structure of Pennsylvanian
484	Brachiopods from North-Central Texas as Determined from Size-Frequency Analysis:
	22

- 485 Journal of Paleontology, v. 66, p. 868–880.
- 486 Cocks, L.R.M., 1982, The commoner brachiopods of the latest Ordovician of the Oslo-Asker
 487 District, Norway: Palaeontology, v. 25, p. 755–781.
- 488 Cocks, L.R.M., and Torsvik, T.H., 2002, Earth geography from 500 to 400 million years ago:
- 489 a faunal and palaeomagnetic review: Journal of the Geological Society, v. 159, p. 631–
 490 644.
- 491 Dodd J.R., and Stanton R.J.J., 1990, Paleoecology, Concepts and Applications, 2nd Edition:
- 492 New York, John Wiley and Sons, 528 p.
- 493 Harper, D.A.T., 1979, The environmental significance of some faunal changes in the upper
- 494 Ardmillan succession (Upper Ordovician), Girvan, Scotland: Geological Society of
- London, Special Publication, v. 8, p. 439–445.
- 496 Harper, D.A.T., 1981, The stratigraphy and faunas of the Upper Ordovician High Mains
- 497 Formation of the Girvan district: Scottish Journal of Geology, v. 17, p. 247–255.
- 498 Harper, D.A.T., and Hints, L., 2016, Hirnantian (Late Ordovician) brachiopod faunas across
- 499 Baltoscandia: A global and regional context: Palaeogeography, Palaeoclimatology,
- 500 Palaeoecology, v. 444, p. 71–83.
- Harper, D.A.T., and Rong, J.Y., 1995, Patterns of change in the brachiopod faunas through
- the Ordovician-Silurian interface: Modern Geology, v. 20, p. 83–100.
- 503 Harper, D.A.T., and Rong, J.Y., 2001, Palaeozoic brachiopod extinctions, survival and
- recovery: patterns within the rhynchonelliformeans: Geological Journal, v. 36, p. 317–
 328.
- 506 Havlíček, V., 1950, Ramenonozci Ceskeho Ordoviku. (The Ordovician Brachiopoda from

507	Bohemia.): Ustredni Ustav Geologicky, Rozpravy (Praha), v. 13, p. 1-135.
508	Havlíček, V., 1977, Brachiopods of the order Orthida in Czechoslovakia: Rozpravy
509	Ústředního ústava geologichého, v. 44, p. 1–327.
510	Hints, L., and Harper, D.A.T., 2015, The Hirnantian (Late Ordovician) brachiopod fauna of
511	the East Baltic: Taxonomy of the key species: Acta Palaeontologica Polonica, v. 60, p.
512	395–421.
513	Hints, L., Parnaste, H., and Gailite, L.I., 2012, Hirnantia sagittifera (Brachiopoda) and
514	Mucronaspis mucronata s.l. (Trilobita) in the Upper Ordovician of the East Baltic:
515	taxonomy and distribution: Estonian Journal of Earth Sciences, v. 61, p. 65-81.
516	Jin, J.S., and Zhan, R.B., 2008, Late Ordovician Orthide and Billingsellide Brachiopods from
517	Anticosti Island, Eastern Canada: Ottawa, NRC Research Press, 151 p.
518	King, W., 1846, Remarks on certain genera belonging to the Class Palliobranchiata: Annals
519	and Magazine of Natural History (Series 1), v. 18, p. 26-42, 83-94.
520	Lamont, A., 1935, The Drummuck Group, Girvan: A Stratigraphical Revision, with
521	Descriptions of New Fossils from the Lower Part of the Group: Geological Society of
522	Glasgow, Transactions, v. 19, p. 288–334.
523	Lespérance, P.J., and Sheehan, P.M., 1976, Brachiopods from the Hirnantian Stage
524	(Ordovician–Silurian) at Perce, Quebec: Palaeontology, v. 19, p. 719–731.
525	Levinton, J.S., and Bambach, R.K., 1970, Some ecological aspects of bivalve mortality
526	patterns: American Journal of Science, v. 268, p. 97–112.
527	Li R.Y., 1996, Population dynamics of Dalmanella testudinaria and Dorytreta longicrura
528	(brachiopods) of late Ordovician Hirnantia fauna from Northwestern Guizhou, SW China:
	24

529 Acta Palaeontologica Sinica, v. 35, p.752—765. [in Chinese with	English abstract]
---	-------------------

- 530 M'Coy, F., 1851, On some new Cambro–Silurian Fossils: Annals and Magazine of Natural
- 531 History (London), v. Ser.2, p. 387–409.
- 532 M'Coy, F., 1852, Systematic Description of the British Paleozoic Fossils in the Geological
- 533 Museum of the University of Cambridge. Fasc. v. 2, p. 185–660.
- 534 Mergl, M., 1983, New Brachiopods (Cambrian-Ordovician) from Algeria and Morocco
- 535 (Mediterranean Provinces): Casopis pro Mineralogii a Geologii (Prague), v. 28, p. 337–
 536 348.
- 537 Moore, R.C., 1952, Brachiopods, *in* Moore, R.C., Lalicker, C.G., and Fischer, A.G., eds.,
- 538 Invertebrate fossils: New York, McGraw–Hill, p. 197–267.
- 539 Nikitin, I.F., Popov, L.E., and Rukavishnikova, T.B., 1980, Articulate brachiopods, in
- 540 Apollonov, M.K., Bandaletov, S.M. and Nikitin, I.F., eds., The Ordovician-Silurian
- 541 boundary in Kazakhstan: Alma-Ata, Nauka, p. 37–74.
- ⁵⁴² Öpik, A., 1934, Ueber Klitamboniten: Tartu Universitatis (Dorpatensis): Acta and
- 543 Commentationes, Ser.A, v. 26, p.1–239.
- 544 Owen, A.W., Harper, D.A.T., and Rong, J.Y., 1991, Hirnantian trilobites and brachiopods in
- space and time, *in* Barnes, C.R., and Williams, S.H., eds., Advances in Ordovician
- 546 Geology: Geological Survey of Canada Paper, p. 179–190.
- 547 Rong, J.Y., 1979, The *Hirnantia* fauna of China with comments on the Ordovician-Silurian
- boundary: Journal of Stratigraphy (formerly Acta Stratigraphica Sinica), v. 3, p. 1–29. [in
 Chinese]
- Rong, J.Y., 1984, Brachiopods of Latest Ordovician in the Yichang District, Western Hubei,

551	Central China, in Mu, E.Z., ed., Proceedings of a Symposium on the Stratigraphy and
552	Palaeontology of Systemic Boundaries in China, 1, Ordovician–Silurian Boundary: Hefei,
553	Anhui Science and Technology Publishing House, p. 111–176.
554	Rong, J.Y., 1986, Ecostratigraphy and community analysis of the Late Ordovician and
555	Silurian in Southern China, in Palaeontological Society of China, ed., Selected Paper
556	Collections of the Annual Symposium of the thirteenth and fourteenth committee of the
557	Palaeontological Society of China: Hefei, Anhui Science and Technology Press, p. 1–24.
558	[in Chinese with English summary]
559	Rong, J.Y., Aung, K. P., Zhan, R.B., Huang, B., Harper, D.A.T., Chen, D., Zhou, H.H., and
560	Zhang, X.L., 2019, The latest Ordovician Hirnantia brachiopod Fauna of Myanmar:
561	Significance of new data from the Mandalay Region: Palaeoworld, published online:
562	https://doi.org/10.1016/j.palwor.2019.07.002.
563	Rong, J.Y., Chen, X., and Harper, D.A.T., 2002, The latest Ordovician Hirnantia fauna
564	(Brachiopoda) in time and space: Lethaia, v. 35, p. 231–249.
565	Rong, J.Y., and Cocks, L.R.M., 1994, True Strophomena and a Revision of the Classification
566	and Evolution of Strophomenoid and Strophodontoid Brachiopods: Palaeontology, v. 37,
567	p. 651–694.
568	Rong, J.Y., and Harper, D.A.T., 1988, The Ordovician-Silurian boundary and the Hirnantia
569	fauna: Lethaia, v. 21, p. 168.
570	Rong, J.Y., and Harper, D.A.T., 1999, Brachiopod survival and recovery from the latest
571	Ordovician mass extinctions in South China: Geological Journal, v. 34, p. 321–348.
572	Rong, J.Y., and Xu, H.K., 1987, Terminal Ordovician Hirnantia fauna of the Xainza District,

573	northern Xizang: Bulletin of Nanjing Institute of Geology and Palaeontology, Academia
574	Sinica, v. 11, p. 1–19. [in Chinese, with English abstract]
575	Rong, J.Y., Xu, H.K., and Yang, X.C., 1974, Silurian brachiopods, in Nanjing Institute of
576	Geology and Palaeontology, Academia Sinica, ed., A Handbook of Stratigraphy and
577	Palaeontology of Southwest China: Beijing, Science Press, p. 195–208. [in Chinese]
578	Schuchert, C., and Cooper, G.A., 1932, Brachiopod genera of the Suborders Orthoidea and
579	Pentameroidea: Peabody Museum Natural History Memoir, v. 4, p. 1–270.
580	Sheehan, P.M., 1979, Swedish Late Ordovician Marine Benthic Assemblages and their
581	bearing on Brachiopod Zoogeography, in Gray, J. and Boucot, A.J., eds., Historical
582	Biogeography, Plate Tectonics, and the Changing Environment, Proceedings of the Annual
583	Biology Colloquium and Selected Papers, Corvallis: Oregon State University Press, v. 37,
584	p. 61–73.
585	Temple, J.T., 1965, Upper Ordovician brachiopods from Poland and Britain: Acta
586	Palaeontologica Polonica, v. 10, p. 379–427.
587	Villas, E., Lorenzo, S., and Gutierrez-Marco, J.C., 1999, First record of a Hirnantia Fauna
588	from Spain, and its contribution to the Late Ordovician palaeogeography of northern
589	Gondwana: Earth and Environmental Science Transactions of The Royal Society of
590	Edinburgh, v. 89, p. 187–197.
591	Waagen, W., 1884, Salt Range fossils, vol. I, part 4. Productus Limestone fossils,
592	Brachiopoda: Memoirs of the Geological Survey of India, Palaeontologia Indica (series
593	13), v. fasc. 3–4, p. 547–728.
594	Walmsley, V.G., Boucot, A.J., and Harper, C.W., 1969, Silurian and Lower Devonian

- salopinid brachiopods: Journal of Paleontology, v. 43, p. 492–516.
- ⁵⁹⁶ Wang, G.X., Zhan, R.B., Rong, J.Y., Huang, B., Percival, I.G., Luan, X.C., and Wei, X.,
- ⁵⁹⁷ 2018, Exploring the end-Ordovician extinctions in Hirnantian near-shore carbonate rocks
- ⁵⁹⁸ of northern Guizhou, SW China: A refined stratigraphy and regional correlation:
- 599 Geological Journal, v. 53, p. 3019–3029.
- Wang, Y., Boucot, A.J., Rong, J.Y., and Yang, X.C., 1987, Community Paleoecology as a
- 601 Geologic Tool: The Chinese Ashgillian-Eifelian (Latest Ordovician Through Early Middle
- 602 Devonian) as an Example: Geological Society of America, Special Papers (Boulder), v.
- 603 211, p. 100.
- Williams, A., 1965, Suborder Strophomenidina, in Moore, R.C. ed., Treatise on Invertebrate
- Paleontology. Part H, Brachiopoda: The Geological Society of America and The
- 606 University of Kansas Press, p. 362–412.
- 607 Williams, A., Carlson, S.J., Brunton, C.H.C., Holmer, L.E., and Popov, L., 1996, A supra-
- ordinal classification of the Brachiopoda: Philosophical Transactions of the Royal Society
- of London Series B–Biological Sciences, v. 351, p. 1171–1193.
- 610 Wright, A.D., 1968, A Westward Extension of the Upper Ashgillian *Hirnantia* Fauna: Lethaia,
- 611 v. 1, p. 352–367.
- ⁶¹² Zhan, R.B., Liu J.B., Ian G.P., Jin J.S., and Li G.P., 2010, Biodiversification of Late
- 613 Ordovician *Hirnantia* Fauna on the Upper Yangtze Platform, South China: Science China,
- 614 Earth Sciences, v. 53, p. 1800–1810.
- E15 Zeng, Q.L., Chen, X.H., Wang, C.S., Zhang, M., and Han, H.Q., 2016, *Hirnantia* Fauna of
- 616 Yichang District, its Paleoecology and Extinction, and the Biotic Evolution in Llandovery:

617	Wuhan, China University of Geosciences Press, 112 p. [in Chinese, with English abstract]
618	
619	Figure and table Captions
620	
621	Figure 1. Map showing the locations of the two sections, from where the near-shore
622	Hirnantia brachiopod Fauna was discovered.
623	
624	Figure 2. The Hirnantia Fauna occurring in the Kuanyinchiao Beds at two sections from
625	northern Guizhou, South China.
626	
627	Figure 3. Size frequency histograms and survivorship curves for the two populations of the
628	dominant components (Hirnantia and Eostropheodonta) in the Hetaoba section (GHH-02).
629	
630	Figure 4. <i>Pseudopholidops partibilis</i> (Rong) (1–3), (1) a dorsal (?) internal mold (NIGP
631	170724); (2, 3) and two dorsal(?) external molds (NIGP 170724, 170726); Xenocrania haimei
632	(Reed) (4, 5), dorsal external mold (4) and its local enlargement (5) showing detail of
633	ornamentation (NIGP 170727); Petrocrania sp., (6) dorsal internal mold (NIGP 170728);
634	Discinidae gen. et sp. indet. (7) dorsal valve exterior (NIGP 170729); Leptaena rugosa
635	(Dalman) (8–19), (8–11) four ventral internal molds (NIGP 170730–170733); (12) dorsal
636	internal mold (NIGP 170734); (13–15) dorsal internal mold (13), its latex cast (15) with local
637	enlargement showing detail of cardinalia (14) (NIGP 170735); (17, 18) dorsal internal mold

638 (17) and its latex cast (18) (NIGP 170736); (16, 19) dorsal external mold (19) and its local

enlargement (16) showing detail of ornamentation (NIGP 170737). All specimens from GHH02 except (17) and (18) from GMB-01. Scale bar represent 2 mm except where noted.

642	Figure 5. <i>Minutomena missa</i> n. sp. (1–4) four ventral internal molds (NIGP 170738–170741);
643	(5, 6, 8) dorsal internal mold (5), its latex cast (8) with local enlargement showing detail of
644	cardinalia (6) (NIGP 170742); (7, 11) dorsal internal mold (11) and local enlargement of its
645	latex (7) showing detail of cardinalia (NIGP 170743); (9, 10) two dorsal internal molds
646	(NIGP 170744, 170745); (12, 15, 16) dorsal internal mold (12), its external mold (16) with
647	local enlargement of its latex (15) showing detail of ornamentation (NIGP 170746); (13, 14)
648	dorsal external mold (13) and its local enlargement (14) showing detail of ornamentation
649	(NIGP 170747). All specimens from GHH-02. Scale bar represents 2 mm except where
650	noted.

651

652 Figure 6. Paromalomena macmahoni (Reed). (1, 2) two ventral internal molds (NIGP

653 170748, 170749); (**3**, **4**, **10**, **11**) four dorsal internal molds (NIGP 170750–170753); (**5–8**)

dorsal internal mold (5) and its latex cast (8), with local enlargement of mold (6) and cast (7)

showing detail of cardinalia (NIGP 170754); (9, 12) dorsal external mold (12) and its local

enlargement (9) showing detail of ornamentation (NIGP 170755). All specimens from GHH-

657 02. Scale bars represent 2 mm except where noted.

658

Figure 7. (1–9) Palaeoleptostrophia sp. (1, 4) two ventral internal molds (NIGP 170756,

660 170757); (2, 3) ventral internal mold and its local enlargement showing absence of dental

661	plates (NIGP 170758); (5, 8, 9) dorsal internal mold (5), its external mold (8) with local
662	enlargement (9) showing detail of ornamentation (NIGP 170759); (6, 7) two dorsal internal
663	molds (NIGP 170760, 170761); <i>Eostropheodonta hirnantensis</i> (M'Coy) (10–15), (10–12)
664	three ventral internal molds (NIGP 170762–170764); (13, 14) two dorsal internal molds
665	(NIGP 170765, 170766); (15) local enlargement of a dorsal internal mold (NIGP 170767);
666	Fardenia (Coolinia) sp. (16–18), (16, 18) ventral internal mold and its external mold (NIGP
667	170768); (17) dorsal internal mold (NIGP 170769). All specimens from GHH-02. Scale bars
668	represent 2 mm.

Figure 8. *Hirnantia sagittifera* (M'Coy). (1–3, 6) four ventral internal molds (from GHH-02,
NIGP 170770–170773); (4, 5, 7–9, 14) seven dorsal internal molds (all from GHH-02 except
7 from GMB-01, NIGP 170774–170779); (10, 16) dorsal internal mold and its external mold
(from GHH-02, NIGP 170780); (11–13, 15) dorsal internal mold (11) and its posterior view
(13), its latex cast (15) with local enlargement (12) showing detail of cardinalia (from GMB01, NIGP 170781). Scale bars represent 2 mm.

676

678 (2) with its latex cast (3), from Huangtian section of Gongxian, Sichuan province (NIGP

170782, 170783); (4, 7) ventral internal mold and a dorsal internal mold, from Wangjiawan

section of Yichang area (the GSSP of Hirnantian Stage) (NIGP 170784, 170785); (5, 6)

ventral internal and its latex cast (from AAE-080, NIGP 170786); (9, 10) dorsal internal mold

and its latex cast (from AAE-080, NIGP 170787); (8, 11) ventral internal mold and dorsal

internal mold (AAE-080), the two specimens were designated as paratype and holotype of *Hirnantia magna* Rong et al., 1974 separately (NIGP 22275, 22276). Scale bars represent 2
mm.

686

Figure 10. Principal components analysis of data for 6 parameters for seven "species" of

688 *Hirnantia* (1), and globally-distributed *Hirnantia sagittifera* (2), to show the variation.

689

- 690 Figure 11. Dalmanella testudinaria (Dalman) (1–4), (1) ventral internal mold (NIGP
- 691 170788); (2–4) three dorsal internal molds (NIGP 170789–170791); *Hindella crassa*
- 692 (Williams) (**5–8**), (**5, 6**) two ventral internal molds (NIGP 170792, 170793); (**7, 8**) two dorsal
- 693 internal molds (NIGP 170794, 170795); *Cliftonia* cf. *psittacina* (Wahlenberg) (9–12), (9)
- 694 ventral internal mold (NIGP 170796); (10) ventral external mold (NIGP 170797); (11, 12)
- two dorsal internal molds (NIGP 170798, 170799). All from GHH-02 except 11 and 12 from
- 696 GMB-01. Scale bars represent 2 mm.

697

Table 1. Taxonomic list at species level for this study with numbers of specimens from thetwo collections.

Table 1. Taxonomic list at species level for this study with numbers of specimens from the two
collections.

	Hetaoba section (GHH-02)			Baixiangyan section (GMB-01)		
Species	Ventral internal molds	Dorsal internal molds	External molds	Ventral internal molds	Dorsal internal molds	External molds
Pseudopholidops partibilis (Rong)	12	8	9			
Petrocrania sp.		1	1			
Xenocrania haimei (Reed)		1	2			
Leptaena rugosa (Dalman)	15	11	9	5	4	3
Paromalomena macmahoni (Reed)	19	27	16		2	
Minutomena missa n.sp.	8	14	3			
Eostropheodonta hirnantensis (M'Coy)	43	21	30	12	2	11
Palaeoleptostrophia sp.	26	4	9			
Fardenia (Coolinia) sp.	1	1	3			
Hirnantia sagittifera (M'Coy)	87	78	41	11	14	3
Dalmanella testudinaria (Dalman)	9	31	8	1	2	
Cliftonia cf. psittacina (Wahlenberg)	6	2	7	1	2	1
Hindella crassa (Williams)	16	14	9	1	4	
Discinidae gen. et sp. indet.		1				

Chrono- stratigraphy		- hy	Graptolite biozone	Lithostra- tigraphy	Hetaoba, Meitan		
SILURIAN	LLANDOVERY		P.(Coronograptus) cyphus	Niuchang	Baixiangyan, Zunyi		
		lanian	Cystograptus vesiculosus	Formation	Formation	Formation	silty
		Rhudd	Parakidograptus acuminatus				
				Akidograptus ascensus		Calcareou mudstone	
ORDOVICIAN	UPPER	ntian	Normalograptus persculptus	Kuanyinchiao	shale		
		PER	Hirna	Normalograptus extraordinarius	Formation		
		4	P. pacificus		nodular		
			tiar	D. complexus	Formation		
		Ka	D. complanatus	Linhsiang Formation			

Hirnantia sagittifera (M'Coy)

Eostropheodonta hirnantensis (M'Coy)

- Hirnantia magna Rong (Zeng et al., 2016)
- × Hirnantia septumis Zeng (Zeng et al., 2016)
- + Hirnantia fecunda Rong (Zeng et al., 2016)
- Hirnantia sagittifera fecunda Rong (Rong, 1979)
- Hirnantia sagittifera morph. Bohemia (Zeng et al., 2016)
- Hirnantia sagittifera morph. Poland (Zeng et al., 2016)
- 。 Hirnantia sagittifera M'Coy (Rong, 1984)

- A Meitan, S. China This study.
- Yichang S. China (Rong 1984; Zeng et al., 2016)
- Zunyi, S. China (Rong et al., 1974; Rong, 1979)
- Tibet, China (Rong and Xu, 1987)
- South Ougarta, Algeria (Mergl, 1983)
- × Kazakhstan (Nikitin 1980)
- San Juan, Argentina (Benedetto, 1986)
- Estonia (Hints et al., 2012)
- * Wales (Temple 1965; Walmsley et al., 1969; Brenchley et al., 2006)
- A Oslo, Norway (Cocks, 1982)
- Spain (Villas et al., 1999)
- v Bohemia (Havlicek, 1977)
- Västergötland, Sweden (Bergström, 1968)

