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Abstract 23 

In the middle–late Paleocene, a marine, organic-rich sedimentary unit (Waipawa 24 

Formation [Fm]) in which the organic matter was derived mainly from terrestrial plants 25 

was deposited in many of New Zealand’s sedimentary basins. The unique 26 

organofacies of this formation has not been identified in any other time interval within 27 

the geological history of the Southwest Pacific, indicating that unusual climatic and 28 

oceanographic conditions likely prevailed during this time. It has, therefore, attracted 29 

wide scientific interest due to its significance for regional and global reconstruction of 30 

the early Paleogene transitional climate as well as potential for oil and gas 31 

production. Scarcity of age-diagnostic fossils, presence of unconformities and lack of 32 

volcanic interbeds have, however, hindered precise dating and correlations of all the 33 

known occurrences of the formation. Here, rhenium-osmium (Re-Os) geochronology 34 

has yielded the first radiometric age for the formation (57.5 ± 3.5 Ma), which is 35 

consistent with available biostratigraphic age determinations (59.4–58.7 Ma). Further, 36 

a comparison of Re-Os, bulk pyrolysis, sulfur and palynofacies data for the Waipawa 37 

Fm with those of more typical marine sediments such as the underlying Whangai Fm 38 

supports the interpretation that the chelating precursors or fundamental binding sites 39 

responsible for uptake of Re and Os are present in all types of organic matter, and 40 

that these elements have a greater affinity for organic chelating sites than for 41 

sulfides. The results also indicate that sedimentation rate may not play a dominant 42 

role in enhanced uptake of Re and Os by organic-rich sedimentary rocks.  43 

The initial 187Os/188Os values for the Waipawa (~0.28) and Whangai (~0.36) 44 

formations are broadly similar to those reported for coeval pelagic sediments from 45 

the central Pacific Ocean, further constraining the low-resolution marine 187Os/188Os 46 

record of the Paleocene. We present a compilation of 187Os/188Os values from 47 
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organic-rich sedimentary rocks spanning the period between 70 and 50 Ma which 48 

shows that seawater Os gradually became less radiogenic from the latest 49 

Cretaceous, reaching a minimum value in the earliest late Paleocene (~59 Ma) 50 

during the deposition of Waipawa Fm, and then increased through the later 51 

Paleocene and into the early Eocene. The composite Os isotope record broadly 52 

correlates with global temperature (18O and TEX86) and carbon isotope (13C) 53 

records from the middle Paleocene to early Eocene, which is inferred to reflect 54 

climate-modulated changes in continental weathering patterns. 55 

 56 

Keywords: 57 

Re-Os geochronology; Waipawa Formation; New Zealand; Paleocene; seawater Os curve 58 

 59 

1. Introduction 60 

Marine organic-rich sediments are important archives of past climatic, oceanographic 61 

and geodynamic events. The Waipawa Fm is one such organic-rich sedimentary unit 62 

that has attracted considerable attention due to its significance for the early 63 

Paleogene climate reconstructions of the Southwest Pacific (e.g., Killops et al., 2000; 64 

Hollis et al., 2012; 2014; Hines et al., 2019), as well as its potential as a petroleum 65 

source rock (Moore, 1988; 1989; Killops et al., 1997; 2000; Schiøler et al., 2010; 66 

Field et al., 2018; Naeher et al., 2019). The formation contains a distinctive 67 

organofacies, termed the ‘Waipawa organofacies’, that is dominated by woody 68 

phytoclasts despite also showing a high abundance of marine C30 steranes and a 69 

heavy carbon isotope (13C) signature (values of −24 to −16‰) (Killops et al., 2000; 70 

Schiøler et al., 2010; Hollis et al., 2014; Field et al., 2018; Naeher et al., 2019). The 71 
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formation was deposited over a wide geographic extent covering multiple 72 

sedimentary basins around New Zealand and reaching as far west as the eastern 73 

margin of Tasmania (Fig. 1a; Schiøler et al., 2010; Hollis et al., 2014). The 74 

widespread deposition of such an unusual organic-rich sediment could only have 75 

resulted from a perturbation in Earth’s oceanographic and climatic system (Killops et 76 

al., 2000; Schiøler et al., 2010; Hollis et al., 2014; Hines et al., 2019). However, it has 77 

not been established whether all known occurrences of Waipawa organofacies are 78 

coeval. This is because precise dating of the formation through biostratigraphy has 79 

so far been complicated by several factors, such as the presence of unconformities, 80 

scarcity of age-diagnostic fossils, poor age control for dinoflagellate datums, varying 81 

geochemical signatures between sections, and lack of reliable paleomagnetic data 82 

(Hollis et al., 2014). The Waipawa Fm and correlated units also lack interbedded 83 

volcanic beds that could potentially be used for radiometric dating. Available 84 

biostratigraphy and magnetostratigraphy from the East Coast Basin, New Zealand, 85 

place the timing of deposition of the formation in the late middle to early late 86 

Paleocene, spanning the Selandian–Thanetian boundary (Crouch et al., 2014; Hollis 87 

et al., 2014). Here, we investigate the potential of using the Re-Os isotope system to 88 

independently verify this age range and establish whether correlative units from other 89 

sedimentary basins are coeval. 90 

Rhenium and Os are organophilic trace metals that become enriched in organic-rich 91 

sedimentary rocks (e.g., Ravizza and Turekian, 1989; Cohen et al., 1999; Selby and 92 

Creaser, 2003 and references therein). The resulting combination of high and 93 

variable Re and Os concentrations with variations in 187Re/188Os positively correlating 94 

with 187Os/188Os values means that the Re-Os isotope system can be used to directly 95 

obtain precise (in some cases, <1% uncertainty) and accurate ages of a wide variety 96 
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of organic-rich rocks including: marine shales (e.g., Ravizza and Turekian, 1989; 97 

Cohen et al., 1999; Selby and Creaser, 2005b; Kendall et al., 2006; Selby, 2007; 98 

Kendall et al., 2009b; Xu et al., 2009; Georgiev et al., 2011; Georgiev et al., 2017; 99 

Tripathy et al., 2018), lacustrine mudstones (Creaser et al., 2008; Poirier and Hillaire-100 

Marcel, 2011; Cumming et al., 2012; Xu et al., 2017), and marine-influenced coals 101 

(Tripathy et al., 2015). Previous studies have also shown that post-depositional 102 

processes such as greenschist metamorphism and flash pyrolysis associated with 103 

igneous intrusions do not appreciably disturb the Re-Os isotope system (Creaser et 104 

al., 2002; Kendall et al., 2004; Yang et al., 2009; Rooney et al., 2011; Bertoni et al., 105 

2014). In addition, the Re-Os isotope system remains closed during thermal 106 

maturation of organic matter and hydrocarbon generation (Creaser et al., 2002; Selby 107 

and Creaser, 2003). Based on these points, the Re-Os system represents an ideal 108 

geochronological tool to constrain the age of the Waipawa Fm. However, our current 109 

understanding of the exact mechanisms that control enrichment and fractionation of 110 

Re and Os in organic-rich sediments remains limited. For instance, despite the strong 111 

geochemical affinity that the elements have for organic matter, direct relationships 112 

between total organic carbon (TOC) content and Re and Os concentrations are not 113 

always evident; some sediments with high TOC may have low Re and Os 114 

concentrations and vice versa (Cohen et al., 1999; Kendall et al., 2004; Selby et al., 115 

2009; Rooney et al., 2010). In addition, limited fractionation between Re and Os, and 116 

thus similar 187Re/188Os and 187Os/188Os compositions, has resulted in the production 117 

of imprecise ages (e.g., Turgeon et al., 2007; Selby et al., 2009; Rooney et al., 2011; 118 

Cumming et al., 2012; Bertoni et al., 2014). To further understand some of the factors 119 

controlling uptake and fractionation of Re and Os in sedimentary rocks, we have 120 

included the underlying Whangai Fm in our analyses because its organic matter 121 
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composition and depositional conditions appreciably differ from those of the Waipawa 122 

Fm. 123 

In addition to geochronology, the Os isotope composition (187Os/188Os) of organic-124 

rich sediments provide useful information about past climatic and oceanographic 125 

conditions (Ravizza et al., 2001; Schmitz et al., 2004; Peucker-Ehrenbrink and 126 

Ravizza, 2012; Du Vivier et al., 2014; Dickson et al., 2015). The Waipawa Fm was 127 

deposited during a prolonged temperature minimum in the mid-Paleocene (~60–58 128 

Ma) prior to the start of progressive warming into the early Eocene. This trend is 129 

evident in both high-resolution deep-sea oxygen and carbon isotope records 130 

(Westerhold et al., 2011; Littler et al., 2014; Barnet et al., 2019) as well as regional 131 

sea surface temperatures (58–53 Ma; Bijl et al., 2009; Hollis et al., 2012, 2014). The 132 

deposition of the formation also corresponds with the first phase of a positive 13C 133 

excursion (~59–57 Ma; Westerhold et al., 2011; Littler et al., 2014; Barnet et al., 134 

2019), which is interpreted to reflect a time of enhanced carbon burial, either as 135 

marine (Corfield and Cartlidge, 1992) or terrestrial organic matter (Kurtz et al., 2003). 136 

Shifts in 13C of marine organic-rich rocks have also been linked to changes in the 137 

rate of oxidative weathering of organic matter buried in continents (Ravizza, 1993; 138 

Ravizza and Esser, 1993; Ravizza et al., 2001; Percival et al., 2016; Them et al., 139 

2017; De Lena et al., 2019). The marine Os isotope record can track globally-140 

averaged variations in continental weathering fluxes because at any point in time, the 141 

record reflects the balance between radiogenic Os weathered from the continent 142 

(187Os/188Os = ~1.4) and non-radiogenic Os from hydrothermal activities and extra-143 

terrestrial materials (187Os/188Os = 0.12) (Peucker‐Ehrenbrink and Ravizza, 2000; 144 

Cohen, 2004). The residence time of Os in the water column (10–50 ka range, 145 

sometimes <10 ka) is also short enough to respond to short-term variations in input 146 
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but sufficiently long to allow homogenization of the Os signature in the global ocean 147 

(Burton et al., 1999; Cohen, 2004; Du Vivier et al., 2014; 2015; Rooney et al., 2016). 148 

The seawater Os record for much of the Paleocene, however, remains poorly 149 

resolved (Peucker-Ehrenbrink and Ravizza, 2012). The few available 187Os/188Os 150 

data for this period are also based on analyses of pelagic clay sequences (Pegram 151 

and Turekian, 1999) and Fe-Mn crusts (Klemm et al., 2005) which have numerical 152 

age models that are not easily correlated with those of marine organic-rich 153 

sedimentary rocks because they are based on coarse resolution ichthyolith 154 

biostratigraphy and empirical growth rates of hydrogenous cobalt (Peucker-155 

Ehrenbrink and Ravizza, 2012). These analyses are also based on a leaching 156 

method that may not have preferentially isolated the hydrogenous component of Os, 157 

possibly recording inaccurate seawater Os composition due to the potential presence 158 

of detrital Os (Pegram and Turekian, 1999; Peucker-Ehrenbrink and Ravizza, 2012). 159 

Nonetheless, the pelagic clay record hints at seawater Os with low 187Os/188Os 160 

values of around 0.26–0.32 from around 57–61 Ma, but the extent and cause of 161 

these non-radiogenic 187Os/188Os values remain unclear due to the low resolution of 162 

the record (Pegram and Turekian, 1999; Peucker-Ehrenbrink and Ravizza, 2012).  163 

Here, we present Re-Os elemental and isotope compositions and bulk pyrolysis and 164 

sulfur data for the Waipawa and Whangai formations from the Wairarapa and 165 

Hawke’s Bay region of the East Coast Basin, New Zealand (Fig. 1a). One additional 166 

Waipawa Fm sample from the North Slope Basin was included to assess Re-Os 167 

abundance and isotopic composition of Waipawa organofacies beyond the East 168 

Coast Basin (Fig. 1a). These data allow us to constrain the depositional age of the 169 

Waipawa Fm and contribute to further understanding of mechanistic controls of Re-170 

Os systematics in organic-rich sedimentary rocks. In addition, the Os isotope data of 171 
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the Waipawa and Whangai formations are included in a compilation of initial 172 

187Os/188Os (Osi) ratios for sedimentary rocks that span the latest Cretaceous to early 173 

Eocene (70–50 Ma), enabling us to evaluate temporal trends in Os geochemical 174 

cycle during this period. 175 

2. Geological setting 176 

The focus of this study is on the Waipawa and Whangai formations from the East 177 

Coast Basin, New Zealand, which extends from East Cape in North Island to the 178 

Kaikoura Peninsula in South Island, and about half of which is offshore (Fig. 1a). The 179 

basin occupied a site on the Pacific subduction margin of Gondwana during the 180 

Triassic to early Cretaceous time when rocks of Torlesse Terrane (greywacke) were 181 

accreted to form the now weakly metamorphosed and deformed mudstone and 182 

sandstone basement (Field et al., 1997; King, 2000). From the mid-Cretaceous, the 183 

basin transitioned into a northward-prograding, passive continental margin (Fig. 1b) 184 

that allowed thick units of Late Cretaceous to Paleogene sediments, eroded from 185 

axial ranges, to be deposited onto the continental shelf and slope (King, 2000). The 186 

propagation of the modern plate boundary in the early Miocene transformed the 187 

setting of the basin from a passive margin to a convergent forearc basin (King, 2000). 188 

The additional one sample (Blacks Quarry) from Northland is from an allochthonous 189 

sequence, which is inferred to have originated in the North Slope Basin (Fig. 1a, b; 190 

Hollis et al., 2006). 191 

The Waipawa Fm is a poorly bedded, brownish black, organic-rich marine 192 

sedimentary unit that ranges in thickness from ~2 to 80 m (Moore, 1988; Hollis et al., 193 

2014; Field et al., 2018; Naeher et al., 2019). Foraminiferal paleobathymetry 194 

indicates that the formation was deposited in an upper- to mid-slope setting (Field et 195 
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al., 2018; Naeher et al., 2019). Palynological and palynofacies data suggest that the 196 

Waipawa Fm and correlated units were deposited during a sea-level fall (Schiøler et 197 

al., 2010; Hollis et al., 2014 and references therein) within a relatively short period of 198 

time in the late Paleocene (ca. 0.7 My; Fig. 2; Hollis et al., 2014). The fall in sea-level 199 

is thought to have resulted in increased delivery of terrestrial organic matter to 200 

continental slope settings as the exposed nearshore and shelfal areas were largely 201 

bypassed (Hines et al., 2019; Naeher et al., 2019). Oscillations in key geochemical 202 

parameters (e.g., TOC, hydrogen index [HI], oxygen index [OI], 
13C and 203 

palynofacies) through the formation indicate that influxes of terrestrial organic matter 204 

occurred episodically (Naeher et al., 2019). For the most part, the Waipawa Fm 205 

conformably overlies the Whangai Fm and the transition into Waipawa organofacies 206 

is gradational (Moore, 1989; Naeher et al., 2019). There is, however, an unconformity 207 

in some sections where the Waipawa Fm is condensed (Wilson and Moore, 1988; 208 

Hollis et al., 2014). The top of the formation is commonly marked by an unconformity 209 

(Schiøler et al., 2010; Hollis et al., 2014).  210 

The Whangai Fm is a thick (typically 300–500 m), poorly bedded, variably calcareous 211 

and regionally extensive mudstone that consists of the Upper Calcareous, Rakauroa, 212 

Te Uri, Porangahau and Kirks Breccia members (Moore, 1988; Field et al., 1997). 213 

The Whangai Fm samples analysed in this study are all from the Upper Calcareous 214 

Member, which commonly underlies the Waipawa Fm in the East Coast Basin.  215 

3. Samples and analytical methodology 216 

3.1 Sampes and sample preparation 217 

Waipawa Fm samples were collected from the Orui-1A drill core, housed at the New 218 

Zealand National Core Store in Featherston, and archived outcrop samples from 219 
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Taylor White section and Blacks Quarry held at GNS Science. The Orui-1A 220 

stratigraphic drill hole was drilled in 2011 to a total depth of 117.3 m near Riversdale, 221 

coastal Wairarapa (41° 3' 54.36'' S, 176° 5' 16.44'' E; Fig. 1a; Field et al., 2018). 222 

Taylor White section is a road-side section exposed on Angora Road (40°27’46.9” S, 223 

176°28’24.9” E), near the small settlement of Wimbledon, southern Hawke’s Bay 224 

(Fig. 1a; Bland et al., 2014). This section was freshly exposed when road 225 

construction was undertaken to widen the Angora Road, allowing for fresh samples 226 

to be collected after several meters of rock had been removed (Bland et al., 2014; 227 

Naeher et al., 2019). Blacks Quarry is located in the Doubtless Bay, in the Northland 228 

region of North Island (34° 58' 40.62'' S, 173° 23' 54.24'' E, Fig. 1a). Whangai Fm 229 

samples were obtained from a collection of archived outcrop samples held at GNS 230 

Science, previously collected from the lower part of Angora Road (40°27'43.2" S, 231 

176°28'42.2" E; Tayler, 2011; Hollis et al., 2014), termed the ‘Angora Road section’ in 232 

the present study. Stratigraphically, the Whangai Fm samples are located ca. 17–35 233 

m below the base of Waipawa Fm (Tayler, 2011; Hollis et al., 2014). The Orui-1A 234 

samples were obtained from a 3.2 m stratigraphic interval between the depths of 48.4 235 

and 51.6 m, with sample spacing ranging from 13 to 72 cm and each sample 236 

representing a stratigraphic interval of approximately 3 to 5 cm. Care was taken to 237 

avoid zones of faulting, brecciation and calcite veining that were present in the core. 238 

By contrast, the Taylor White samples are from a much thicker stratigraphic interval 239 

of approximately 50 m and were not collected specifically for Re-Os geochronology 240 

which requires that sampling to be done over a small stratigraphic interval to 241 

minimize possible variation in initial 187Os/188Os ratios (Cohen et al., 1999; Selby and 242 

Creaser, 2003; Kendall et al., 2009b). The Taylor White samples were included to 243 

examine how varying depositional conditions within the Waipawa Fm, as shown by 244 
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stratigraphic oscillations in key geochemical parameters (Naeher et al., 2019), may 245 

have affected the Re-Os systematics. A total of 23 samples are examined in this 246 

study; 18 from the Waipawa Fm and 5 from Whangai Fm. 247 

Sample processing was undertaken in the rock crushing facility at Victoria University 248 

of Wellington (VUW). Rock samples  (80–100 g) were polished to remove any 249 

surface contamination and drilling marks from the core material following the 250 

protocols of Kendall et al. (2009a). The samples were then dried in an oven overnight 251 

at 40 °C, broken into small pieces without direct metal contact, and powdered using 252 

an agate mill. 253 

3.2 Bulk pyrolysis and sulfur analyses 254 

Bulk pyrolysis and sulfur data obtained by this study were used in conjunction with 255 

published geochemical and palynofacies datasets (Naeher et al., 2019) to assess the 256 

variation in organic matter type and depositional conditions within the Waipawa and 257 

Whangai formations. Bulk pyrolysis analyses for the Orui-1A and Angora Road 258 

samples were undertaken at GNS Science following published methods (Naeher et 259 

al., 2019). In brief, powdered samples were analysed using a Weatherford 260 

Laboratories TOC/TPH Source Rock Analyser (SRA) to obtain key geochemical 261 

parameters that include TOC, total volatile (S1) and pyrolysable (S2) hydrocarbons, 262 

temperature of maximum pyrolysis yield (Tmax), HI and OI. The temperature 263 

programme used was 300 °C isothermal for 3 min, then increased at a rate of 25 °C 264 

min-1 to 650 °C (isothermal at 650 °C for 1 min) to pyrolyse the kerogen, followed by 265 

oxidation at 630 °C for 20 min. A standard (Institut Français du Pétrole [IFP] standard 266 

160000) was run at the start and finish of each sample sequence, and after every 8 267 

samples to check for data quality. Bulk pyrolysis data for the Taylor White samples 268 
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were obtained from Naeher et al. (2019). Bulk pyrolysis data for the Blacks Quarry 269 

sample were obtained previously from the Geological Survey of Canada, Calgary, 270 

using a Rock-Eval 6 instrument. 271 

Analyses of total sulfur content (Stot) and forms of sulfur for the Orui-1A, Angora 272 

Road and Blacks Quarry samples were undertaken by CRL Energy Ltd in Lower 273 

Hutt, New Zealand, using standard procedures (Naeher et al., 2019). In brief, Stot was 274 

determined by high-temperature (1350 °C) tube furnace combustion, based on the 275 

ASTM Standard D4239 technique, using a Leco Truspec Sulfur Analyser model 630-276 

100-700 (Naeher et al., 2019). The different forms of sulfur were determined 277 

according to Australian Standard AS1038.11-2002 where sulfate sulfur (Ssul) is 278 

extracted by 10% HCl and determined gravimetrically after purification and 279 

precipitation. The HCl extracted residue is then decomposed with nitric acid and 280 

oxidised using H2O2 to obtain pyritic iron. The pyritic iron is measured by atomic 281 

absorption spectroscopy and used to calculate pyritic sulfur (Spyr). Organic sulfur 282 

(Sorg) is obtained by subtracting the sum of Ssul and Spyr from Stot. Sulfur data for the 283 

Taylor White samples were available from Naeher et al. (2019) and were also 284 

analysed by CRL Energy Ltd using the same procedures and instrumentation. 285 

3.3 Re-Os analyses 286 

To enable optimisation for isotope dilution analyses, Re concentrations were first 287 

determined at the VUW geochemistry laboratory following protocols from Durham 288 

University as described in the supplementary online material (e.g., Jones et al., 289 

2018). Full Re-Os isotope analyses of the samples were carried out at Durham 290 

University's laboratory for source rock and sulfide geochronology and geochemistry 291 

following previously published protocols for isolation, purification and measurement 292 
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by isotope dilution - negative thermal ionization mass spectrometry (e.g., Cumming et 293 

al., 2012; Jones et al., 2018). In brief, a known amount of rock powder (300–500 mg) 294 

was spiked with a known amount of 190Os + 185Re mixed tracer solution and digested 295 

using CrVI–H2SO4 solution in a sealed carius tube at 220 °C for 48 h. Osmium was 296 

separated and purified from the solution using solvent extraction and micro-distillation 297 

methods. The residual Re bearing solution was evaporated to dryness at 80 °C and 298 

purified by NaOH-acetone solvent extraction and further purified using HCl-HNO3 299 

anion exchange chromatography.  300 

The resulting Re and Os fractions were loaded onto Nickel and Platinum wire 301 

filaments, respectively, and their isotopic compositions measured on a Thermo 302 

Scientific TRITON Negative Thermal Ionisation Mass Spectrometer housed at the 303 

Arthur Holmes Laboratory, Durham University. Rhenium isotopic composition was 304 

measured via static collection mode in Faraday cups, with Os measured via ion-305 

counting through a secondary electron multiplier (SEM) in a peak-hopping mode. 306 

Total procedural blanks during this study were 14.6 ± 0.16 pg Re and 50 ± 0.01 fg 307 

Os, with an 187Os/188Os value of 0.22 ± 0.08 (n = 4). In-house standards for both Re 308 

(Restd; Selby, 2007) and Os (DROsS; Nowell et al., 2008) were run with every batch 309 

of samples to monitor instrument reproducibility and ensure data quality. The Re 310 

standard solution yields an average 185Re/187Re ratio of 0.59843 ± 0.00193 (n = 7) 311 

that is similar to the established natural 185Re/187Re ratio of 0.59739 ± 0.00039 312 

(Gramlich et al., 1973), and was used to correct for mass fractionation in the 313 

measured Re data. The average 187Os/188Os ratio of the in-house Durham Romil 314 

Osmium Standard (DROsS) was 0.16089 ± 0.00056 (n = 7), consistent with values 315 

reported in previous studies from the same lab (e.g., Cumming et al., 2012; Liu and 316 

Selby, 2018, and references therein), and also in excellent agreement with values 317 
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reported by other laboratories (0.16078 ± 0.00024, Liu and Pearson, 2014; 318 

0.16091 ± 0.00015, van Acken et al., 2019). The Re-Os isotopic data, calculated 2σ 319 

uncertainties for 187Re/188Os and 187Os/188Os and the associated error correlation 320 

function (rho; Ludwig, 1980), were regressed using the beta version of the Isochron 321 

program (Li et al., 2019) which incorporates the benchmark Isoplot algorithm 322 

(Ludwig, 2012) and a new approach that employs the Monte Carlo sampling method 323 

for error propagation. In the Isoplot program, a Model 1 age assumes that the 324 

assigned 2σ uncertainties and calculated error correlations are the only reason the 325 

data-points scatter from the regression line whereas a Model 3 age assumes that the 326 

scatter about the isochron line may be linked to both the assigned analytical errors 327 

and other geological factors that produce variation in the initial 187Os/188Os values 328 

(Ludwig, 2012). The Isoplot program separates the two scenarios based on the 329 

probability of how well the data fit the regression line. By contrast, the Monte Carlo 330 

method makes no prior assumption about the possible causes of scatter in the 331 

geochronological results and propagates uncertainties (2σ) from both analytical 332 

measurements and model assumptions in a consistent manner irrespective of the 333 

probability of fit (Li et al., 2019). 334 

4. Results and discussion 335 

4.1 Kerogen type and maturity 336 

The bulk pyrolysis data for the Orui-1A, Taylor White and Angora Road samples 337 

(Table 1; Fig. 3) are consistent with published results for the Waipawa and Whangai 338 

formations in the East Coast Basin (Tayler, 2011; Field et al., 2018; Naeher et al., 339 

2019). The TOC within the Waipawa Fm in the Orui-1A core and Taylor White 340 

section is highly variable, generally ranging from 0.4–5 wt.% with a mean of 2.2 wt.% 341 
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(Fig. 3a; Naeher et al., 2019). TOC is very high (∼10 wt.%) in the Blacks Quarry 342 

sample from the North Slope Basin (Fig. 3a). By contrast, the Whangai Fm at Angora 343 

Road exhibits low TOC content (mostly <1 wt.%, Fig. 3a). All samples presented here 344 

are thermally immature as indicated by Tmax values ranging from 396–428 °C (Fig. 345 

3b; Tissot and Welte, 1984), and thus, the observed kerogen types within the two 346 

formations are representative of the initial kerogen types which, based on the 347 

modified van Krevelen diagram (Fig. 3c), varies from Type II to Type III. The wide 348 

variations in Tmax, HI and OI values displayed by the Waipawa Fm samples in the 349 

complete Taylor White sample set in Fig. 3b and c are a result of stratigraphic 350 

variations in kerogen type, in part resulting from changing redox conditions within the 351 

depositional environment, rather than to variations in maturity or sample weathering 352 

(Field et al., 2018; Naeher et al., 2019). Similar stratigraphic variations in kerogen 353 

type also occur within the Waipawa Fm in the Orui-1A core (Field et al., 2018), but 354 

are not reflected amongst the Orui-1A samples because these were selected from a 355 

thin (3.2 m) stratigraphic interval with relatively uniform Tmax, HI and OI values. In 356 

both the Taylor White Section and Orui-1A core, OI is consistently low (≤50 mg 357 

CO2/g TOC) in the upper part of the Waipawa Fm despite high variability in TOC, S2, 358 

and HI (Field et al., 2018; Naeher et al., 2019). Palynofacies analyses indicate that 359 

the organic matter in the Waipawa Fm is mainly terrestrial woody plant matter 360 

whereas marine-sourced amorphous organic matter dominates in the Whangai Fm 361 

(Field et al., 2018; Naeher et al., 2019).  362 

4.2 Re and Os concentrations 363 

The Waipawa Fm samples from Orui-1A core, Taylor White section and Blacks 364 

Quarry are all enriched in both Re (22.5–85.9 ppb) and Os (397.9–598.6 ppt [192Os 365 

153.8–254.9]; Table 2) relative to the average concentrations of these elements in 366 
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the upper continental crust (0.2–2 ppb Re and 30–50 ppt Os; Esser and Turekian, 367 

1993; Sun et al., 2003). The Whangai Fm samples from the Angora Road section are 368 

only slightly enriched in Re (3.6–11.8 ppb) and Os (141.8–228.1 ppt [192Os 55.4–369 

89.0]) compared to the upper continental crust. Three Waipawa Fm samples from the 370 

Taylor White section are particularly enriched in Re (TW-17 = 85.9 ppb, TW-29 = 371 

72.9 ppb and TW-51 = 56.3 ppb). The high and variable Re concentrations in the 372 

Waipawa Fm, especially in the Taylor White samples (Table 2), may indicate some 373 

form of water mass restriction with varying degrees of replenishment of the water 374 

column by Re-rich water from the open ocean (McArthur et al., 2008; van Acken et 375 

al., 2019). This is supported by biomarker evidence which suggests that there was 376 

persistent water column stratification during the deposition of the formation in the 377 

East Coast Basin (Naeher et al., 2019), as well as suggestions of restricted shallow 378 

marine depositional setting for Waipawa organofacies in other sedimentary basins 379 

such as the Great South and Canterbury basins (Schiøler et al., 2010). Sample TW-380 

17 and TW-29 show elevated OI values of 131 mg CO2/g TOC and 68 mg CO2/g 381 

TOC, respectively, compared to the other Taylor White samples studied here, which 382 

are very consistent between 25 and 29 mg CO2/g TOC (Table 1, Fig. 3c). This 383 

suggests that these two samples either contain different types of organic matter or 384 

they have been affected by oxidative weathering. The latter appears more likely since 385 

Re-Os isotope data for the two samples also yield negative initial 187Os/188Os (Osi) 386 

values (Table 2), which has been suggested to indicate disturbance to the Re-Os 387 

system through oxidative weathering (Jaffe et al., 2002; Georgiev et al., 2012). We 388 

therefore treat these two samples as outliers and exclude them from further 389 

discussion. 390 

 391 
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4.3 Re and Os uptake and fractionation in the Waipawa and Whangai formations 392 

The association of Re and Os with TOC and sulfur may provide useful information on 393 

the depositional conditions that enhance the uptake of these elements into organic-394 

rich sediments (Cohen et al., 1999; Cumming et al., 2012; Georgiev et al., 2012; 395 

Rooney et al., 2012). Strong positive correlations exist between TOC and Re (R2 = 396 

0.91) and 192Os (R2 = 0.73) in the Orui-1A samples (Fig. 4a, b), suggesting an uptake 397 

mechanism that is linked to the abundance of organic matter (e.g., Georgiev et al., 398 

2012; Rooney et al., 2012 and references therein). The 192Os isotope is plotted to 399 

avoid the effects of radiogenic in-growth of 187Os, allowing for direct comparison of 400 

hydrogenous Os concentrations in the different samples. Samples from the Taylor 401 

White section show no significant correlation between TOC and Re (R2 = -0.04) and 402 

192Os (R2 = 0.08) (Fig. 4a, b), which may indicate possible effects of surficial 403 

weathering in these outcrop samples. The apparent correlations between TOC and 404 

Re and Os concentrations in the Angora Road samples may be spurious because 405 

they rely on one sample that plots away from the other clustered samples (Fig. 4a, 406 

b). In general, the Waipawa Fm, with higher TOC content, exhibits higher 407 

concentrations of Re and Os than the Whangai Fm (Fig. 4a, b). The large proportion 408 

of terrestrial organic matter (66 to 98% degraded phytoclasts) in the Waipawa Fm 409 

(Schiøler et al., 2010; Hollis et al., 2014; Field et al., 2018; Naeher et al., 2019) does 410 

not appear to have impacted the uptake of Re and Os, supporting previous 411 

interpretations that chelating precursors or fundamental binding sites responsible for 412 

the uptake of Re and Os are present in all types of organic matter (Cumming et al., 413 

2012; Harris et al., 2013; Du Vivier et al., 2015). The difference in concentrations of 414 

Re and Os in the two formations might also be a factor of the abundance, variability 415 

and preservation of organisms such as macroalgae that are components of 416 
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sedimentary organic matter and which have recently been shown to accumulate Re 417 

(up to several hundreds of ppb) and Os (Racionero-Gómez et al., 2016; Rooney et 418 

al., 2016; Racionero-Gómez et al., 2017; Ownsworth et al., 2019). The accumulation 419 

of Re by macroalgae has been shown to be syn-life and unidirectional i.e. once the 420 

living macroalgae absorb Re, it does not release it back to the water (Racionero-421 

Gómez et al., 2016). However, the study also suggests that Re may be released 422 

back to the water column once the macroalgae die and break down, and that 423 

depositional conditions which prevent or lower the rate of macroalgal degradation 424 

(such as anoxia and low temperature) may be required for much of the accumulated 425 

Re to be incorporated into sediments (Racionero-Gómez et al., 2016). The hypoxic 426 

conditions during the deposition of the Waipawa Fm, compared to the oxic conditions 427 

in the Whangai Fm (Naeher et al., 2019), might therefore be the reason for its higher 428 

Re and Os concentrations.  429 

The Waipawa Fm is enriched in Stot (1.25–2.31 wt.%) compared to the Whangai Fm 430 

(0.72–0.85 wt.%) (Fig. 5a, b), suggesting deposition under less oxic conditions (Didyk 431 

et al., 1978; Georgiev et al., 2012; Naeher et al., 2019). Stot is also positively 432 

correlated with the abundance of Re (R2 = 0.84) and 192Os (R2 = 0.72), as well as the 433 

187Re/188Os ratio (R2 = 0.66) in samples from this study (Fig. 5a, b, c). This may 434 

suggest that the uptake and fractionation of Re and Os are linked to the redox 435 

conditions of the depositional environment (Colodner et al., 1993; Crusius et al., 436 

1996; Cohen et al., 1999; Morford and Emerson, 1999; Crusius and Thomson, 2000; 437 

Yamashita et al., 2007; Georgiev et al., 2011). However, no simple correlation can be 438 

established between Re and Os concentrations and other indicators of redox 439 

conditions such as HI and OI (Table 1). The sulfur speciation data [normalised to Stot 440 

as there is a high variation in Stot within the Waipawa Fm (Naeher et al., 2019)] also 441 
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show that only organic sulfur (Sorg/Stot) exhibits strong positive correlations with Re 442 

(R2 = 0.75; Fig. 6a) and 192Os (R2 = 0.77; Fig. 6b) concentrations compared to pyritic 443 

sulfur (Spyr/Stot) and sulfate sulfur (Ssul/Stot), which exhibit negative (Re R2 = -0.68; 444 

192Os R2 = -0.80; Fig. 6c, d) and weak-positive (Re R2 = 0.25; 192Os R2 = 0.39; Fig. 445 

6e, f) correlations, respectively. This supports previous findings that suggested that 446 

Re and Os have a greater affinity for organic chelating sites than sulfides (Cohen et 447 

al., 1999; Rooney et al., 2012). 448 

Slow sedimentation, which increases the time of exposure of organic matter to the 449 

sediment-water interface, is another factor that has been considered to play an 450 

important role in enhanced uptake of Re and Os in organic-rich sedimentary rocks 451 

(Lewan and Maynard, 1982; Selby et al., 2009; Cumming et al., 2012; Rooney et al., 452 

2012). The average sedimentation rate for the Waipawa Fm (~10.6 cm/ky) is almost 453 

an order of magnitude higher than that of the Whangai Fm (~1.1 cm/ky) (Naeher et 454 

al., 2019), and also significantly higher than those of several other marine organic-455 

rich rocks previously dated with the Re-Os isotope system (<2 cm/ky) (e.g., Kendall 456 

et al., 2009b; Georgiev et al., 2017; Tripathy et al., 2018). Therefore, if slow 457 

sedimentation rate plays a primary control in Re and Os uptake in organic-rich 458 

sediments, then the Waipawa Fm would be expected to record low levels of Re and 459 

Os. Instead, the average concentrations of Re (38.9 ppb) and 192Os (192.6 ppt) in the 460 

Waipawa Fm are approximately 6 and 3 times higher, respectively, than those of 461 

Whangai Fm (Re = 6.6 ppb; 192Os = 65.6 ppt), indicating that, in this instance, slower 462 

sedimentation rates have not had a significant impact on sequestration of Re and Os. 463 

The relatively low levels of Re and Os in the Whangai Fm, compared to the Waipawa 464 

Fm, may simply be a factor of its low TOC content and different depositional 465 

conditions. However, the Re and Os concentrations in the Waipawa Fm are 466 
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comparable to those reported for other marine shales with similar geochemical 467 

characteristics, albeit with much lower sedimentation rates. For example, the Upper 468 

Jurassic Hekkingen Fm with TOC of 3.08–10.9 wt.%, Type II/III kerogen, anoxic 469 

depositional conditions and a sedimentation rate of 1.83 cm/ky has average Re and 470 

192Os abundances of 46 ppb and 158.4 ppt, respectively, similar to those of the 471 

Waipawa Fm (Langrock and Stein, 2004; Georgiev et al., 2017; Tripathy et al., 2018). 472 

Therefore, based on these results, it appears that a slow sedimentation rate does not 473 

play a significant role in Re and Os enrichment in organic-rich sediments, at least in 474 

the range from 1.1 cm/ky to 10.6 cm/ky. This argument is supported by previous 475 

studies which suggested that the oxidation effects brought about by a slow 476 

sedimentation rate lead to poor preservation of organic matter (Ingall and Cappellen, 477 

1990) and subsequent re-immobilization (precipitation) of Re (Crusius and Thomson, 478 

2000). 479 

4.4 Re-Os geochronology of the Waipawa Formation 480 

The 187Re/188Os values of samples from the Orui-1A core range from 256.4 to 345.1 481 

and are positively correlated to the 187Os/188Os values, which range from 0.527 to 482 

0.612 (Fig. 7a). Regression of the isotope data using the Isoplot algorithm yields a 483 

Model 3 isochron age of 58.1 ± 3.9 Ma (n = 9; Mean Square of Weighted Deviates 484 

[MSWD] = 4.1), with an Osi of 0.28 ± 0.02 (Fig. 7a). When the Monte Carlo method is 485 

used, the age (58.1 ± 4.4 Ma) and Osi (0.28 ± 0.02) are the same as those of the 486 

Isoplot method, except that the age uncertainty is slightly greater in the Monte Carlo 487 

method due to a higher percentage of the uncertainties (61%) being related to the 488 

model age calculation (Li et al., 2019; Fig. 7b). Precise Re-Os dating of sedimentary 489 

rocks requires that: 1) the initial 187Os/188Os ratios (Osi) are identical, 2) there is a 490 

sufficient spread in 187Re/188Os ratios of at least a few hundred units, and 3) the Re-491 
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Os system remains undisturbed (Cohen et al., 1999; Selby and Creaser, 2005a). The 492 

obtained Osi values for Orui-1A samples are all nearly identical, ranging from 0.277–493 

0.286, with a mean of 0.280 ± 0.002 (1SD; Table 2). Only sample Orui-11e shows a 494 

slightly larger deviation from the mean Osi (0.006) and as a result, exhibits the largest 495 

standard error of prediction (0.92%) from the line of best-fit through the data (Fig. 496 

7a). Analytical uncertainties, variation in the composition of Os during deposition and 497 

post-depositional processes such as brecciation and calcite veining that were present 498 

in the core are some of the possible reasons for the variance in the Osi of sample 499 

Orui-11e. Regression of the Re-Os data without this sample (Orui-11e) using the 500 

Isoplot program yields a more precise Model 1 age of 57.4 ± 1.7 Ma (Osi = 0.28 ± 501 

0.01, n = 8, MSWD = 1.5; Fig. 7c). In comparison, the Monte Carlo method yields an 502 

age of 57.5 ± 3.5 Ma (Osi = 0.28 ± 0.02; Fig. 7d), which indicates that the Model 1 503 

scenario of the Isoplot program underestimated the age uncertainties by ∼50%. We 504 

suggest that the larger uncertainties in the obtained Re-Os age may be a result of the 505 

limited spread in both 187Re/188Os (80 units) and 187Os/188Os (0.085 units) displayed 506 

by the Orui-1A samples, in addition to uncertainties from analytical measurements 507 

(Selby et al., 2009; Rooney et al., 2017; Li et al., 2019). Small ranges in Re-Os ratios 508 

have also been reported for other marine and lacustrine organic-rich rocks (Turgeon 509 

et al., 2007; Selby et al., 2009; Finlay et al., 2010; Cumming et al., 2012; Zhu et al., 510 

2013; Tripathy et al., 2018) where a lack of variability in organic matter type coupled 511 

with a relatively homogenous depositional environment (Cumming et al., 2012) and 512 

redox conditions that drawdown Re relative to Os (Turgeon et al., 2007) were 513 

suggested as the main reasons for the low spread in Re-Os ratios. A lack of 514 

variability in organic matter type is a feature of the Waipawa Fm, especially in the 515 
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Orui-1A samples, possibly explaining the observed similarity in the Re-Os ratios of 516 

these samples.  517 

The 187Re/188Os ratios of samples from the Taylor White section range from 283.7 to 518 

498.9 (excluding the two outliers discussed in Section 4.2) and are positively 519 

correlated with their corresponding 187Os/188Os values, which range from 0.551 to 520 

0.767 (Fig. 8a). Regression of the isotope data yields a Re-Os date of 58.3 ± 7.7 Ma 521 

(Osi = 0.29 ± 0.05; MSWD = 28.8) using the Isoplot algorithm and 58.3 ± 6.5 Ma (Osi 522 

= 0.29 ± 0.04; n = 6) using the Monte Carlo method (Fig. 8a, b). These Re-Os dates 523 

agree well with those derived from the Orui-1A samples, but with larger uncertainties. 524 

The high MSWD value associated with the Re-Os date from the Isoplot program, 525 

relative to the ideal value of ∼1, indicates that the final age uncertainty is controlled 526 

by both analytical and geological uncertainties (Ludwig, 2012). This might be 527 

expected given the large stratigraphic interval that the samples represent. However, 528 

the whole ∼80 m of Waipawa Fm in the Taylor White section is estimated to have 529 

been deposited within a relatively short period of time (∼700 ky; Hollis et al., 2014; 530 

Naeher et al., 2019) and thus, temporal variation in Osi is deemed unlikely to fully 531 

explain the uncertainty in the obtained Re-Os date. An alternative explanation is that 532 

the episodic influxes of large amounts of terrestrial material during deposition of the 533 

formation in the Taylor White section (Naeher et al., 2019) may have supplied high 534 

loads of continental-derived Os that introduced localised variation in seawater Osi. 535 

Further, the oxidative weathering that affected the Re-Os systematics of the two 536 

outlier samples discussed above (Section 4.2) may have also caused subtle effects 537 

in the other Taylor White samples. 538 

 539 
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4.5 Comparison of the Waipawa Formation Re-Os and biostratigraphic ages 540 

Dating the Waipawa Fm through biostratigraphy has been challenging mainly due to 541 

poor preservation and scarcity of age-diagnostic fossils. For example, the boundaries 542 

of dinoflagellate (NZDP) or calcareous nannofossil (NP) zones were not precisely 543 

located in the Orui-1A core due to the scarcity of fossils (Field et al., 2018). The 544 

interval of the Orui-1A core sampled in the present study (48.4 to 51.6 m) is also 545 

barren of nannofossils and thus, lacks precise age constraints. However, the base of 546 

the overlying Wanstead Fm, at 36.84 m, is assigned to Zones NZDP8 and NP8 while 547 

the top of Zone NZDP7 is placed at 75.88 m (Fig. 2), which indicates that the Orui-1A 548 

samples studied here are of earliest late Paleocene age (~59 Ma). Dinocyst 549 

assemblages from several sections in eastern New Zealand indicate that the 550 

Waipawa Fm can be correlated with an interval that extends from upper Zone NZDP7 551 

to lower NZDP8 (Crouch et al., 2014; Hollis et al., 2014). Nannofossil biostratigraphy 552 

for the Angora Road section also indicates that the Waipawa Fm is correlated with an 553 

interval that spans lowermost Zone NP6 to upper  Zone NP7 (Fig. 2; Hollis et al., 554 

2014). This biostratigraphy was combined with age control from other sections to 555 

infer that the Waipawa Fm was deposited over a short period of time (∼700 ky) 556 

during the late middle to early late Paleocene (59.4 to 58.7 Ma; Hollis et al., 2014). 557 

The Re-Os depositional age for the Waipawa Fm obtained from the Orui-1A samples 558 

(57.5 ± 3.5 Ma) overlaps with this biostratigraphic age, effectively providing the first 559 

direct radiometric age constraint for this formation. 560 

4.6 Re-Os depositional age of the Whangai Formation 561 

The 187Re/188Os ratios in the Whangai Fm samples from the Angora Road section 562 

range from 121.1 to 264.7 and correlate positively with the 187Os/188Os ratios, which 563 
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range from 0.484 to 0.633 (Fig. 8c). Regression of the isotope data yields imprecise 564 

Re-Os date of 61.9 ± 17.8 Ma (Osi = 0.36 ± 0.06; n = 5; MSWD = 79.7) using the 565 

Isoplot algorithm (Fig. 8c) and 61.9 ± 13.5 Ma (Osi = 0.36 ± 0.05) using the Monte 566 

Carlo method (Fig. 8d). The large uncertainties in the Re-Os date for these samples 567 

reflect the likely variations in Osi over the relatively large time period (∼2 Ma) 568 

represented by the ∼17 m stratigraphic thickness covered by the Angora Road 569 

samples (Kendall et al., 2009b). Over this interval, Osi varies from 0.343–0.369 and 570 

tends to become lower up-section, consistent with an overall decreasing trend in Osi 571 

from the lowest Whangai Fm sample (0.369) to the highest Waipawa Fm sample in 572 

the Taylor White section (0.285). Despite the Re-Os date for the Angora Road 573 

samples being imprecise, the mean value of 61.9 Ma is in good agreement with the 574 

published age model for the section (Hollis et al., 2014), which combines both 575 

calcareous nannofossil and dinoflagellate biostratigraphy (Crouch et al., 2014; 576 

Kulhanek et al., 2015), to infer an age range of ∼62 to 61 Ma for the sampled interval. 577 

4.7 Middle–late Paleocene seawater Os isotope composition  578 

The Osi ratio derived from regression of Re-Os data is interpreted to record the Os 579 

isotope composition of the seawater at the time of deposition (Ravizza and Turekian, 580 

1989; Cohen et al., 1999; Selby and Creaser, 2003; Selby et al., 2009). The 581 

isochron-derived Osi values for the Waipawa Fm in Orui-1A (0.28 ± 0.02) and Taylor 582 

White (0.29 ± 0.04) samples, and the Whangai Fm in Angora Road samples (0.36 ± 583 

0.05) are non-radiogenic, and significantly lower than the present-day seawater 584 

187Os/188Os value of ~1.02 to 1.06 (Woodhouse et al., 1999; Peucker‐Ehrenbrink and 585 

Ravizza, 2000; Gannoun and Burton, 2014). The Osi value (calculated at 58 Ma) for 586 

the one additional Waipawa Fm sample from Blacks Quarry in North Slope Basin 587 

(~0.24 ± 0.01; Table 2) is also non-radiogenic but lower than those of the Waipawa 588 
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Fm samples from the Orui-1A and Taylor White sections in the East Coast Basin 589 

(~0.28–0.29). If this sample represents a closed Re-Os system that has not been 590 

affected by post-depositional processes, then it would suggest that the Waipawa Fm 591 

in the North Slope Basin is either slightly younger or was deposited in a more open 592 

marine setting with less radiogenic Osi. The latter appears more likely because the 593 

sample is from an allochthonous sequence that was emplaced from an everted 594 

marine basin with oceanic volcanic basement, at least 350 km north of its present 595 

location (Ballance and Spörli, 1979; Hollis et al., 2006). The Osi values for the 596 

Waipawa Fm samples from the East Coast Basin are broadly similar to those of time 597 

correlative units from the central Pacific Ocean (0.26–0.33; Fig. 9a), suggesting that 598 

the basin was mixing with, at least, the wider Pacific Ocean. In addition, the observed 599 

Osi values may be indicative of the global seawater 187Os/188Os values at the time 600 

given that paleo-ocean circulation patterns show that the Pacific, Atlantic and Indian 601 

oceans were all connected 59 Ma ago (Fig. 9a; Haq, 1981; Barron and Peterson, 602 

1991; Thomas et al., 2003; Batenburg et al., 2018).  603 

A composite record of 187Os/188Os values from sedimentary rocks spanning the 604 

period between 70 and 50 Ma and including the 187Os/188Os values for the Waipawa 605 

and Whangai formations in the present study (Fig. 9b), provides a broader temporal 606 

context in which the source of the non-radiogenic Os in the Paleocene can be 607 

examined. The 187Os/188Os value for the Waipawa Fm is based on the mean Osi 608 

values [calculated at 59 Ma – the established biostratigraphic age (Hollis et al., 609 

2014); Table 2] for the Orui-1A samples which, unlike the Taylor White samples, 610 

demonstrate an isochronous Re-Os relationship (Fig. 7). The obtained composite 611 

record highlights a progressive shift to low 187Os/188Os ratios from a value of ~0.61 in 612 

the latest Cretaceous (~68 Ma) to ~0.28 in late Paleocene (Fig. 9b). In particular, the 613 
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187Os/188Os value of ~0.28 at ca. 59 Ma during the deposition of the Waipawa Fm 614 

coincides with the minimum before the marine 187Os/188Os trend increases leading up 615 

to the Paleocene-Eocene boundary. Superimposed upon the overall decreasing 616 

trend in 187Os/188Os values from the latest Cretaceous to the late Paleocene is the 617 

abrupt negative excursion at ca. 66 Ma associated with the Cretaceous-Paleogene 618 

(K-Pg) impact event (Fig. 9b; Pegram and Turekian, 1999; Ravizza and VonderHaar, 619 

2012). Extra-terrestrial impact events are distinguished in the marine Os record by 620 

abrupt shifts to low 187Os/188Os values (resulting from a sudden influx of non-621 

radiogenic Os), followed by recovery to pre-impact values over a short duration of 622 

time (Paquay et al., 2008; Ravizza and VonderHaar, 2012). By contrast, the gradual 623 

nature of the long-term decline in 187Os/188Os values from the latest Cretaceous to 624 

late Paleocene indicates either a progressive increase in the supply of non-625 

radiogenic Os or diminished supply of radiogenic Os from continental weathering.  626 

A number of events have been proposed as potential sources of the non-radiogenic 627 

Os during this period. These include emplacement of large igneous provinces such 628 

as the Deccan Traps (Ravizza and Peucker-Ehrenbrink, 2003; Robinson et al., 2009) 629 

and the first eruptive phase of the North Atlantic Igneous Province (Peucker-630 

Ehrenbrink and Ravizza, 2012), as well as weathering of exhumed large ophiolites 631 

such as the Papuan Ultramafic Belt (Fig. 9b; Lus et al., 2004; Peucker-Ehrenbrink 632 

and Ravizza, 2012). It is unclear, however, how much these events contributed to the 633 

187Os/188Os decline given the significant time gaps between them and the long 634 

duration of the decline. Interestingly, though, the 187Os/188Os record is correlated with 635 

global temperature proxies (18O, TEX86) and the carbon isotope (13C) record for 636 

much of the Paleocene and into the early Eocene (Figs 9b, 10). The temperature 637 

records indicate moderate cooling between 64 and 58 Ma followed by a more 638 
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pronounced warming trend (by ~10 °C) to around 53 Ma (Bijl et al., 2009; Hollis et al., 639 

2012; Hollis et al., 2014; Westerhold et al., 2018). The temperature minimum at 640 

around 58.7 Ma coincides with the 187Os/188Os minimum and deposition of the 641 

Waipawa Fm (Fig. 10b, c). The simplest interpretation for these observations is that 642 

the gradual shift to low 187Os/188Os values in the middle–late Paleocene relates to a 643 

reduction in global rates of continental weathering as temperature (and thus, the 644 

hydrological cycle) decreased, whereas the positive shift from the late Paleocene to 645 

early Eocene relates to increased rates of continental weathering in response to 646 

rising temperatures and an accelerated hydrological cycle (Zachos et al., 2008). This 647 

interpretation, although based on an assumption that fluxes of non-radiogenic Os to 648 

the ocean remain relatively constant during this period, is supported by previous 649 

findings that attributed the positive excursion in the 187Os/188Os ratios at the 650 

Paleocene-Eocene Thermal Maximum (PETM) to increased chemical weathering 651 

from an accelerated hydrological cycle, albeit on a much shorter time scale and a 652 

more severe climatic perturbation (Ravizza et al., 2001; Wieczorek et al., 2013; 653 

Dickson et al., 2015).  654 

The 13C record follows a similar trend to those of the 18O and TEX86 records, but 655 

with a maximum at around 58 Ma, ~1 my later than the temperature and 187Os/188Os 656 

minimum (Fig. 10a). Temporal variations in the stable carbon isotope composition 657 

have been attributed to many factors, the discussion of which is beyond the scope of 658 

this paper. However, the broad correlation of 187Os/188Os with 13C is consistent with 659 

the inference that continental weathering patterns may have contributed significantly 660 

to the observed middle Paleocene to early Eocene 187Os/188Os record. This is 661 

because enhanced weathering of isotopically evolved (ancient) organic-rich rocks 662 

would have driven the seawater 187Os/188Os ratios to more radiogenic values and 663 
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shifted the carbon isotope composition to lighter values (Ravizza and Esser, 1993). 664 

This explanation, however, requires that there was an exposure of large amounts of 665 

significantly older organic-rich rocks. It has been suggested that large quantities of 666 

neo-Tethyan (Triassic to Cretaceous) marine sediments were exhumed, oxidised and 667 

eroded during the initial stages of Indian-Asian collision causing the late Paleocene 668 

to early Eocene shift to lighter 13C values and the coeval global warming via the 669 

greenhouse effect (Beck et al., 1995). Using an estimated average 187Re/188Os value 670 

of 517 for organic-rich shales (bootstrapped 95% confidence interval of 468 to 582; 671 

calculated from a geochemical database of organic-rich sediments from 42 different 672 

sources; Dubin and Peucker-Ehrenbrink, 2015) and seawater 187Os/188Os values 673 

ranging from ~0.2 to 0.9 for the Triassic to Cretaceous period (100–250 Ma; Cohen 674 

and Coe, 2007; Porter et al., 2013; Dubin and Peucker-Ehrenbrink, 2015; Them et 675 

al., 2017; van Acken et al., 2019), these exhumed marine sediments would have 676 

contained 187Os/188Os values ranging from 1.1 to 3.1, with an average of 2.1, 677 

significantly more radiogenic than the average 187Os/188Os value of 1.4 for the upper 678 

continental crust. Further, the high abundance of Re and Os in organic-rich 679 

sediments coupled with the propensity of the Os hosted in these sediments to be 680 

readily mobilized during chemical weathering compared to the Os in typical granitic 681 

upper continental crust (Peucker-Ehrenbrink and Hannigan, 2000; Jaffe et al., 2002; 682 

Pierson-Wickmann et al., 2002; Georgiev et al., 2012; Dubin and Peucker-683 

Ehrenbrink, 2015) supports the interpretation that exposure of the neo-Tethyan 684 

organic-rich sediments in the late Paleocene may have had potential to 685 

disproportionately drive seawater 187Os/188Os to more radiogenic values. 686 

 687 

 688 
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5. Conclusions 689 

The Re-Os geochronology of the Waipawa Fm has yielded ages of 57.5 ± 3.5 Ma 690 

from the Orui-1A drill hole and 58.3 ± 6.5 Ma from the Taylor White section that are in 691 

close agreement with the available biostratigraphic age range for the formation (59.4 692 

to 58.7 Ma; Hollis et al., 2014). These are the first radiometric ages for this formation 693 

and demonstrate the potential of the Re-Os method for future dating of correlative 694 

units identified in other sedimentary basins across the Southwest Pacific. However, 695 

the large uncertainties in the Re-Os dates make it difficult to refine the age control 696 

and establish whether all known occurrences of the Waipawa Fm are coeval. Future 697 

Re-Os studies on the formation should target intervals where the spread in Re-Os 698 

ratios is likely to be larger based on variation in organic matter type and other 699 

geochemical features, especially in the upper part of the formation. The results from 700 

the Taylor White section also highlight the benefit of using fresh core material for 701 

such work given the apparent high susceptibility of the Waipawa Fm to oxidative 702 

weathering that may disturb the Re-Os system. 703 

The initial 187Os/188Os values for the Waipawa (~0.28) and Whangai (~0.36) 704 

formations are non-radiogenic and broadly similar to 187Os/188Os values from coeval 705 

pelagic sediments, further constraining the low-resolution marine Os record for the 706 

Paleocene. The broad correlation between the 187Os/188Os record and the global 707 

temperature proxies (18O, TEX86) and carbon isotope (13C) records from the middle 708 

Paleocene to early Eocene suggests that changes in global weathering patterns may 709 

have been the main driver of the Os geochemical cycle during this time. 710 

 711 
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 724 

Figure captions 725 

Fig. 1. a) Map of the study area showing sample locations and distribution of 726 

Waipawa organofacies in the Southwest Pacific. Geological data extracted from 727 

QMAP 1:250K data set (Heron, 2014). Abbreviations: R-NB = Reinga-Northland 728 

Basin; NSB = North Slope Basin; DTB = Deepwater Taranaki Basin; TB = Taranaki 729 

Basin; ECB = East Coast Basin; WCB = West Coast Basin; CB = Canterbury Basin; 730 

GSB = Great South Basin. b) Paleogeographic reconstruction of the New Zealand 731 

region in the late Paleocene (58 Ma), adapted after King (2000), Killops et al. (2000) 732 

and Hollis et al. (2014).  733 

 734 
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Fig. 2. Chronostratigraphic column of the East Coast Basin from the Late Cretaceous 735 

to early Eocene (after King, 2000; Hollis et al., 2014). Nannofossil assemblages are 736 

correlated to the biostratigraphic zonation scheme of Martini (1971), with absolute 737 

ages for events from Gradstein et al. (2012). Calcareous nannofossils zonation 738 

(CNZ) after Crouch et al. (2014). IUGS = International Union of Geological Sciences; 739 

UCM = Upper Calcareous Member.  740 

 741 

Fig. 3. Cross-plots of bulk pyrolysis data identifying the type and maturity of organic 742 

matter present in the Waipawa and Whangai formations. a) TOC vs HI, with the oil- 743 

(1) and gas-prone (2) trends of Naeher et al. (2019). b) OI vs Tmax. c) Modified van 744 

Krevelen diagram showing the general maturation pathways for the main types of 745 

organic matter (after Hunt, 1995). 746 

 747 

Fig. 4. Cross-plots of TOC vs Re (a) and 192Os (b) concentrations in the Waipawa 748 

and Whangai formations. Separate trendlines and correlation coefficients are shown 749 

by locality. Outlier samples TW-17 and TW-29 (unfilled red squares) are excluded 750 

from the trendlines (see text for discussion). 751 

 752 

Fig. 5. Cross-plots of total sulfur vs a) Re concentrations, b) 192Os concentrations 753 

and c) 187Re/188Os for the Waipawa and Whangai formations samples. Outlier 754 

samples TW-17 and TW-29 are excluded from these plots. 755 

 756 
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Fig. 6. Cross-plots of normalised forms of sulfur and Re and 192Os concentrations. 757 

Organic sulfur (Sorg/Stot) vs Re (a) and 192Os (b); pyritic sulfur (Spyr/Stot) vs Re (c) and 758 

192Os (d); sulphate sulfur (Ssul/Stot) vs Re (e) and 192Os (f). Outlier samples TW-17 759 

and TW-29 are excluded from these plots. The legend shown in Fig. 6f is used for all 760 

plots. 761 

 762 

Fig. 7. Re-Os geochronological results for the Waipawa Fm samples from Orui-1A 763 

core. All samples are plotted in (a) and (b) whereas sample Orui-11e is excluded in 764 

(c) and (d). Regression of the Re-Os isotope data together with the 2σ uncertainties 765 

in the isotope ratios and the associated error correlation functions (rho) were done 766 

using the beta version of Isochron program (Li et al., 2019), which incorporates the 767 

Isoplot algorithm (a and c) (Ludwig, 2012) and the Monte Carlo method (b and d). 768 

The Re-Os dates and Osi composition are very similar in both methods, except that 769 

the uncertainties from the Monte Carlo method are higher, especially for the Model 1 770 

scenario of the Isoplot program (c) (Li et al., 2019). See text for discussion. The 771 

bracketed age uncertainty includes the uncertainty in the 187Re decay constant (λ), 772 

where λ = 1.666 ± 0.0031 × 10–11 yr–1 (Smoliar et al., 1996; Selby et al., 2007). 773 

 774 

Fig. 8. Re-Os geochronological results for the Waipawa Fm samples from the Taylor 775 

White section (a and b) and Whangai Fm samples from the Angora Road section (c 776 

and d). The data were regressed using the beta version of the Isochron program (Li 777 

et al., 2019) as described in Fig. 7 and in the text. Outlier samples TW-17 and TW-29 778 

are not included in the regression. Note that the uncertainties from the Monte Carlo 779 

method are lower than those of the Model 3 scenario of the Isoplot method. See text 780 
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for discussion. The bracketed age uncertainty includes the uncertainty in the 187Re 781 

decay constant (λ), where λ = 1.666 ± 0.0031 × 10–11 yr–1 (Smoliar et al., 1996; Selby 782 

et al., 2007). 783 

 784 

Fig. 9. a) A GPlates global paleogeographic reconstruction of the late Paleocene (59     785 

Ma) using the relative finite rotations, continental polygons and coastlines from 786 

Matthews et al. (2016), placed in the global paleomagnetic reference frame of 787 

Torsvik et al. (2012). Ocean circulation patterns are inferred from Haq (1981), Barron 788 

and Peterson (1991), Thomas et al. (2003) and Batenburg et al. (2018). b) composite 789 

187Os/188Os record of the latest Cretaceous to early Eocene period (70–50 Ma). The 790 

187Os/188Os value for the Waipawa Fm is based on mean Osi ratios (calculated at 59 791 

Ma) from Orui-1A samples (see text for discussion) whereas that of the Whangai Fm 792 

is derived from the Angora Road samples isochron. The benthic foraminiferal oxygen 793 

isotope (18O) record from ODP site 1209 is shown for the period between 66 and 50 794 

Ma (Westerhold et al., 2017; 2018). Os isotope data sources: LL44-GPC3 = Pegram 795 

and Turekian (1999); DSDP 549 = Ravizza et al. (2001); CD29-2 = Klemm et al. 796 

(2005); ODP 886C = Ravizza (2007); ODP 690C and ODP 1262B = Ravizza and 797 

VonderHaar (2012) and ODP 865 = Rolewicz (2013). Not shown are initial 798 

187Os/188Os ratios for late Maastrichtian (65.5 to 68.5 Ma) sediments from ODP 690, 799 

DSDP 577 and DSDP 525 (Robinson et al., 2009) that agree well with the data from 800 

Ravizza (2007) and Ravizza and VonderHaar (2012). NAIP = North Atlantic Igneous 801 

Province; Papuan UMB = Papuan Ultramafic Belt; PETM = Paleocene-Eocene 802 

Thermal Maximum. 803 
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Fig. 10. Trends in benthic stable carbon isotope values (13C) (a), benthic oxygen 805 

isotope values (18O) (b) and TEX86 values (c), overlain by a smoothing of the 806 

composite 187Os/188Os data from Fig. 9 (brown line). Data were smoothed using 807 

Origin Pro 2018 v9.5.1 software, employing the 5-point adjacent averaging method. 808 

TEX86 data are from Hollis et al. (2014); benthic foraminiferal 18O and 13C records 809 

are from ODP sites 1209, 1262 and 1263 (Westerhold et al., 2017, 2018), calibrated 810 

to the age model of Westerhold et al. (2017). The 187Os/188Os data points for 811 

Waipawa and Whangai formations are shown by the purple and blue squares, 812 

respectively, with the legends shown applying to all plots. 813 
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Table 1: Bulk pyrolysis and sulphur data for the Waipawa and Whangai formation samples. 

Sample ID *Height/depth TOC Tmax S1 S2 HI OI Stot Ssul Spyr Sorg Ssul/Stot Spyr/Stot Sorg/Stot 

  (m) (wt.%) (
o
C) (mg HC/g rock) (mg HC/ (mg CO2/ (wt.%)       

            g TOC) g TOC)               

    

Orui-1A core – Waipawa Fm.        

Orui-10b 48.4 3.4 404 0.16 8.4 247 29 1.71 0.36 0.80 0.55 0.21 0.47 0.32 

Orui-10c 48.8 2.6 408 0.14 5.2 197 30 1.34 0.36 0.53 0.45 0.27 0.40 0.34 

Orui-10d 49.5 2.5 401 0.15 5.2 210 33 1.56 0.38 0.62 0.56 0.24 0.40 0.36 

Orui-11a 49.9 3.3 402 0.21 8.9 267 27 1.46 0.29 0.63 0.54 0.20 0.43 0.37 

Orui-11b 50.2 3.2 402 0.25 7.7 243 30 1.25 0.36 0.40 0.49 0.29 0.32 0.39 

Orui-11c 50.4 2.7 400 0.16 6.0 221 30 1.30 0.42 0.45 0.43 0.32 0.35 0.33 

Orui-11d 50.9 3.2 401 0.19 7.7 241 31 1.37 0.36 0.54 0.47 0.26 0.39 0.34 

Orui-11e 51.1 3.0 402 0.15 8.3 277 25 1.29 0.27 0.61 0.41 0.21 0.47 0.32 

Orui-11f 51.6 4.2 396 0.28 13.9 333 23 1.61 0.28 0.81 0.52 0.17 0.50 0.32 

                              

Taylor White section – Waipawa Fm.        

TW-51 138.0 2.8 405 0.14 6.1 221 25 2.31 0.28 0.69 1.34 0.12 0.30 0.58 

TW-49 135.5 3.8 405 0.13 8.5 225 27 2.02 0.64 0.82 0.56 0.32 0.41 0.28 

TW-48 134.0 3.3 406 0.07 6.8 207 29 1.53 0.57 0.64 0.32 0.37 0.42 0.21 

TW-47 132.5 1.7 422 0.04 2.9 164 27 1.54 0.46 0.82 0.26 0.30 0.53 0.17 

TW-38 119.0 4.5 405 0.16 9.7 214 27 1.92 0.78 0.59 0.55 0.41 0.31 0.29 

TW-29 105.5 4.0 410 0.11 7.4 186 68 1.21 0.27 0.60 0.34 0.22 0.50 0.28 

TW-25 99.5 2.4 403 0.10 4.0 167 27 1.38 0.43 0.62 0.33 0.31 0.45 0.24 

TW-17 87.5 3.2 420 0.17 4.8 151 131 0.28 0.10 0.09 0.09 0.36 0.32 0.32 

                              

Blacks Quarry – Waipawa Fm.        

BQ02 – 9.7 419 3.35 36.3 375 5 2.70 0.84 1.44 0.43 0.31 0.53 0.16 

                              

Angora Road – Whangai Fm.        

MT3.19 34.6 1.1 428 0.01 1.4 127 32 0.80 0.09 0.65 0.06 0.11 0.81 0.08 

MT3.18 29.0 0.9 424 0.02 2.1 232 29 0.79 0.07 0.71 0.01 0.09 0.90 0.01 

MT3.17 25.4 0.8 425 0.01 1.9 219 31 0.85 0.03 0.82 0.00 0.04 0.96 0.00 

MT3.16 21.8 0.9 428 0.01 1.0 112 31 0.72 0.03 0.68 0.01 0.04 0.94 0.01 

MT3.15 17.8 0.9 424 0.01 1.6 181 30 0.81 0.07 0.74 0.00 0.09 0.91 0.00 

* Stratigraphic height for outcrop samples and drill-hole depth for the core samples. 
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Table 2: Re and Os concentrations and isotope data for the Waipawa and Whangai formation samples. 

Sample ID *Height/depth Re ± Os  ± 
192

Os  ± 
187

Re/
188

Os ± 
187

Os/
188

Os ± rho Osi 
a
 Osi 

b
 

  (m) (ppb)   (ppt)   (ppt)             (58 Ma) (59 Ma) 

                              

Orui-1A - Waipawa Fm. 
 

Orui-10b 48.4 28.35 0.07 543.1 1.7 212.8 0.8 265.0 1.2 0.538 0.003 0.598 0.282 0.278 

Orui-10c 48.8 22.51 0.06 445.1 1.4 174.7 0.7 256.4 1.2 0.527 0.003 0.600 0.279 0.275 

Orui-10d 49.5 23.07 0.06 409.8 1.3 160.2 0.6 286.3 1.3 0.554 0.003 0.600 0.277 0.272 

Orui-11a 49.9 29.83 0.07 486.7 1.6 189.7 0.7 312.9 1.4 0.583 0.003 0.601 0.281 0.276 

Orui-11b 50.2 30.84 0.08 461.9 1.6 179.4 0.7 341.9 1.6 0.609 0.004 0.593 0.279 0.273 

Orui-11c 50.4 25.11 0.06 397.9 1.3 154.9 0.6 322.5 1.5 0.592 0.003 0.601 0.280 0.275 

Orui-11d 50.9 30.64 0.08 478.2 1.6 186.0 0.8 327.6 1.6 0.597 0.004 0.583 0.281 0.275 

Orui-11e 51.1 26.91 0.07 425.5 1.4 165.5 0.7 323.5 1.5 0.598 0.003 0.599 0.286 0.280 

Orui-11f 51.6 36.89 0.09 547.8 1.8 212.7 0.8 345.1 1.6 0.612 0.003 0.596 0.279 0.273 

                              

Taylor White - Waipawa Fm. 
 

TW-51 138.0 56.31 0.14 589.3 1.9 224.5 0.8 498.9 2.1 0.767 0.004 0.574 0.285 0.276 

TW-51 (rpt) 138.0 56.26 0.14 587.2 1.9 223.2 0.8 496.7 2.0 0.764 0.004 0.571 0.284 0.276 

TW-49 135.5 36.42 0.09 578.7 1.8 225.0 0.8 322.1 1.4 0.602 0.003 0.570 0.291 0.285 

TW-49 (rpt) 135.5 36.35 0.09 651.1 1.9 254.9 0.9 283.7 1.2 0.545 0.003 0.564 0.271 0.266 

TW-48 134.0 35.58 0.09 503.6 1.6 194.9 0.7 363.2 1.6 0.640 0.003 0.586 0.289 0.283 

TW-47 132.5 31.60 0.08 400.2 1.3 153.8 0.6 408.7 1.8 0.697 0.004 0.584 0.301 0.295 

TW-38 119.0 23.51 0.06 418.3 1.3 163.5 0.6 286.0 1.2 0.559 0.003 0.571 0.282 0.278 

TW-29 105.5 72.92 0.18 538.7 1.6 210.7 0.7 688.4 2.9 0.551 0.003 0.570 -0.114 -0.126 

TW-25 99.5 26.21 0.06 413.7 1.3 160.7 0.6 324.5 1.4 0.609 0.003 0.582 0.296 0.290 

TW-17 87.5 85.86 0.21 455.4 1.4 177.3 0.6 963.2 4.0 0.588 0.003 0.571 -0.343 -0.359 

                              

Blacks Quarry – Waipawa Fm.  
 

BQ02 — 62.32 0.15 598.6 2.1 228.2 0.8 543.4 2.4 0.764 0.004 0.572 0.239 0.230 

                              

Angora Road - Whangai Fm. (62 Ma) 
 

MT3.19 34.6 11.83 0.03 228.1 0.7 89.0 0.3 264.7 1.2 0.623 0.003 0.584 0.349   

MT3.18 29.0 4.95 0.01 162.9 0.5 64.1 0.3 153.7 0.7 0.502 0.003 0.599 0.343   

MT3.17 25.4 3.64 0.01 151.7 0.5 59.8 0.3 121.1 0.6 0.484 0.003 0.609 0.359   

MT3.16 21.8 7.55 0.02 153.9 0.5 59.7 0.2 251.5 1.1 0.621 0.003 0.593 0.361   

MT3.15 17.8 5.02 0.01 141.8 0.5 55.4 0.2 180.3 0.8 0.555 0.003 0.597 0.369   

                              

Table 2
Click here to download Table: Table 2 - Re-Os abundance and isotope data.doc

http://ees.elsevier.com/chemge/download.aspx?id=618727&guid=abf63bad-eea7-4577-80d5-ca591784a2c7&scheme=1


All uncertainties are stated at 2σ. Rho is the associated error correlation 

rpt = replicate analysis on sample splits of the same sample powder 

*Stratigraphic height for outcrop samples and drill-hole depth for the core samples 

aInitial 187Os/188Os values calculated at 58 Ma for the Waipawa Formation and 62 Ma for the Whangai Formation using the 187Re 
decay constant of 1.666 ×10-11 a-1 (Smoliar et al., 1996) 

bInitial 187Os/188Os values calculated at 59 Ma for the Waipawa Formation 



  

Supplementary online material
Click here to download Background dataset for online publication only: Supplementary information.doc

http://ees.elsevier.com/chemge/download.aspx?id=618725&guid=02540cd7-bef0-40b5-99fe-1bd67002b2de&scheme=1
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