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Abstract. We give a classification of all connected quartic graphs
which are (infinity) curvature sharp in all vertices with respect

to Bakry-Émery curvature. The result is based on a computer
classification by F. Gurr and L. Watson May and a combinatorial
case by case investigation.

1. Introduction

Curvature is a fundamental notion in geometry which goes back to
Gauss and Riemann and was originally defined in the smooth setting
of Riemannian manifolds. A challenging problem is to find meaningful
curvature notions in discrete settings like graphs and networks.

In this paper we focus on a specific curvature notion on a graph
G = (V,E) with a vertex set V and an edge set E, called Bakry-

Émery curvature (at dimension n = ∞). This curvature notion is

based on Bakry-Émery’s Γ-calculus and a curvature dimension inequal-
ity [BE85], and it was first used by Schmuckenschläger [Schm99] in
1999. The crucial ingredient to define this curvature is a natural no-
tion of a Laplacian. In this paper, we choose the non-normalized graph
Laplacian ∆, defined on functions f : V → R by

∆f(x) =
∑
y:y∼x

(f(y)− f(x)).

Bakry-Émery curvature is then a real valued function K∞(x) of the
vertices x ∈ V , where the value K∞(x) is fully determined by the com-
binatorial structure of the (incomplete) 2-ball around x. The precise
definition of K∞(x) is given in Subsection 2.1. For readers interested
in more details about this curvature notion, see, e.g. [CLP17] and the
references therein. Corollary 3.3 of [CLP17] gives the following upper
bound of K∞(x) for a D-regular graph:

K∞(x) ≤ 2 +
#∆(x)

D
,

where #∆(x) is the number of triangles containing x as a vertex. We
call a vertex x (infinity) curvature sharp if this estimate holds with
equality.

1



2 CUSHING, KAMTUE, PEYERIMHOFF, AND WATSON MAY

The main result in the paper is a complete classification of all 4-
regular (quartic) curvature sharp graphs. Before stating our result, let
us briefly discuss the classification of 2-regular and 3-regular (cubic)
curvature sharp graphs. Cycles Cn, n ≥ 3, are the only finite connected
2-regular graphs. Since K∞(C3) ≡ 2.5, K∞(C4) ≡ 2 and K∞(Cn) ≡ 0
for n ≥ 5 (see [CLP17, Example 5.20]), C3 and C4 are the only 2-regular
curvature sharp graphs. For cubic graphs, the only finite connected
graphs with positive curvature are K4, K3,3, K3 × K2 and the cube
Q3 = K2

3 (see Remark at the end of Section 4 in [CKLLS17]). From
[CLP17, Examples 5.17, 5.18 and Theorem 7.9], we derive K∞(K4) ≡ 3,
K∞(K3,3) ≡ 2, K∞(K3×K2) ≡ 2, K∞(Q3) ≡ 2, which implies that K4,
K3,3 and Q3 are the only cubic curvature sharp graphs.

Theorem 1.1. Let G = (V,E) be a connected quartic graph which is

Bakry-Émery curvature sharp in all vertices. Then G is one of the
following:

(i) The complete graph K5 with |V | = 5, K∞ = 3.5, diamG = 1;
(ii) The octahedral graph O with |V | = 6, K∞ = 3, diamG = 2;

(iii) The Cartesian product K3 × K3 of two copies of the complete
graph K3 with |V | = 9, K∞ = 2.5, diamG = 2;

(iv) The complete bipartite graph K4,4 with |V | = 8, K∞ = 2,
diamG = 2;

(v) The crown graph C(10) with |V | = 10, K∞ = 2, diamG = 3;
(vi) The Cayley graph Cay(D12, S) of the dihedral group D12 of

order 12 with generators S = {r3, s, sr2, sr4} with |V | = 12,
K∞ = 2, diamG = 3;

(vii) The Cayley graph Cay(D14, S) of the dihedral group D14 of
order 14 with generators S = {s, sr, sr4, sr6} with |V | = 14,
K∞ = 2, diamG = 3;

(viii) The 4-dimensional hypercube Q4 with |V | = 16, K∞ = 2,
diamG = 4.

The proof of this result is based on a computer classification of all
quartic incomplete 2-balls with non-negative curvature at their centres.
This local classification result was obtained in a 2018 LMS1 Undergrad-
uate Research Bursary by the last author. The revelant local results of
this research can be found in [GW18] and are summarized in Section
2.3 below. They are crucial for the combinatorial arguments given in
Section 3 to derive the global classification result. In fact, the proof of
Theorem 1.1 is a combinatorial case by case investigation starting with
an incomplete 2-ball with a curvature sharp center and extending it to
derive a contradiction or to end up with one of the graphs in the above
classification.

1London Mathematical Society



QUARTIC GRAPHS WHICH ARE BAKRY-ÉMERY CURVATURE SHARP 3

It is conceivable that the results in [GW18] may also have other
applications, for example with regards to the following conjecture about
expander graph families (Conjecture 9.11 in [CLP17]):

Conjecture. Let D ∈ N be fixed. Then there do not exist increasing
D-regular expander graphs {Gk}k∈N which are non-negatively curved in
all vertices.

In the case of cubic graphs, it was shown in [CKLLS17, Theorem 1.1]

that the only finite connected graphs of non-negative Bakry-Émery
curvature are the prism graphs and the Möbius ladders and, therefore,
the conjecture is true for D = 3. It would be an interesting project
to investigate whether the results in [GW18] can be used to verify the
conjecture in the case D = 4. A full classification of all finite connected
non-negatively curved quartic graphs is likely to be out of range due to
the large number of local combinatorial possibilities to construct such
graphs. However, [GW18] might be useful to derive specific properties
contradicting the existence of expander families like, e.g., polynomial
volume growth of metric balls.

Let us finish this introduction with an overview about the structure
of this paper. In Section 2, we introduce Bakry-Émery curvature and
all other relevant notions and present some crucial results needed for
the proof of Theorem 1.1. The proof of Theorem 1.1 is given in Section
3.

2. Bakry-Émery curvature

2.1. Motivation of Bakry-Émery curvature. Readers not familiar
with Riemannian manifolds can skip the following explanation and go
directly to Definition 2.1 below.

Bakry-Émery curvature is a general (Ricci) curvature notion which
can be motivated via the following curvature-dimension inequality on
an n-dimensional Riemannian manifold (M, 〈·, ·〉) whose Ricci curva-
ture at x satisfies Ricx(v) ≥ Kx|v|2 for all tangent vectors v ∈ TxM :

1

2
∆|grad f |2(x)−〈grad ∆f(x), grad f(x)〉 ≥ 1

n
(∆f(x))2+Kx‖grad f(x)‖2.

This pointwise inequality holds for all smooth functions f and is a
straightforward consequence of Bochner’s formula, a fundamental fact
in Riemannian Geometry (for Bochner’s formula see, e.g., [GHL04]).

Using Bakry-Émery’s Γ-calculus, this inequality can be reformulated
as

(1) Γ2(f, f)(x) ≥ 1

n
(∆f(x))2 +KxΓ(f, f)(x) ∀ f,
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where the symmetric bilinear forms Γ and Γ2 of two smooth function
f, g : M → R are defined as

2Γ(f, g) = ∆(fg)− f∆g − g∆f = 2〈grad f, grad g〉,(2)

2Γ2(f, g) = ∆Γ(g, f)− Γ(f,∆g)− Γ(g,∆f).(3)

Note that Γ and Γ2 can be defined for any space admitting a reasonable
Laplace operator ∆. The idea is to use inequality (1) to define lower
Ricci curvature bounds at all points of general spaces admitting Laplace
operators. In the case of an arbitrary (not necessarily regular) graph
G = (V,E) with vertex set V and edge set E, there is a natural way
to introduce a Laplace operator via its adjacency matrix AG, namely

∆ = AG −D · Id,
where D is a diagonal matrix containing the respective vertex degrees.
This operator ∆ is called the non-normalized graph Laplacian and can
also be viewed as a linear operator on the space of functions on the
vertices. It is straightforward to see that the Laplacian of a function
f : V → R is then given by

(4) ∆f(x) =
∑
y:y∼x

(f(y)− f(x)),

where y ∼ x means that the vertices x and y are adjacent.
Note that inequality (1) involves a dimension parameter n, and it

is not clear how to choose the dimension for a given graph G. If we
do not fix the dimension parameter n, (1) induces a lower Ricci cur-
vature notion at a vertex x ∈ V as a function of the dimension. This
viewpoing was taken in [CLP17] and it easy to see that this pointwise
curvature function is monotone increasing in n and assumes a finite
limit as n → ∞. We refer to the limit as the Bakry-Émery curvature
(at infinity) K∞(x) at the vertex x. This limit value can also be directly
obtained by dropping the term involving the dimension parameter in
(1).

Definition 2.1. Let G = (V,E) be a graph and ∆ be the associated
Laplacian defined in (4). Let Γ and Γ2 be the forms defined in (2)

and (3). Then the Bakry-Émery curvature K∞(x) at a vertex x is the
supremum of all values K ∈ R satisfying

Γ2(f, f)(x) ≥ KΓ(f, f)(x) ∀ f : V → R.
Moreover, if we have K∞(x) ≥ K at all vertices x ∈ V for some value
K ∈ R, we say that G satisfies the (global) curvature-dimension in-
equality CD(K,∞).

A natural class of connected regular graphs satisfying CD(0,∞) are
all abelian Cayley graphs (see [KKRT16] and references therein) and a

prominent example with vanishing Bakry-Émery curvature at all ver-
tices is the infinite grid Zn with generators ±ej, j = 1, . . . , n.
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2.2. Fundamental properties of Bakry-Émery curvature. Be-
fore we present some fundamental properties of Bakry-Émery curva-
ture, we need to introduce some relevant notation. All graphs G =
(V,E) are assumed to be connected, i.e., there is a path between any
pair of vertices in V . The degree of a vertex x is denoted by dx ∈ N,
and a graph G is called D-regular if dx = D for all x ∈ V . The com-
binatorial distance d(x, y) between two vertices x, y ∈ V is then the
length of the shortest path from x to y. The diameter of G is defined
as

diam(G) = max
x,y∈V

d(x, y).

Spheres and balls around a vertex x ∈ V are defined via

Sk(x) = {y ∈ V | d(x, y) = k},
Bk(x) = {y ∈ V | d(x, y) ≤ k}.

The 2-ball B2(x) has the following decomposition into spheres

B2(x) = {x} t S1(x) t S2(x).

We call an edge {y, z} ∈ E a spherical edge (w.r.t. x) if d(x, y) =
d(x, z), and a radial edge otherwise. Moreover, the following values
associated a reference vertex x ∈ V are relevant:

d−x (y) = |{z ∼ y : d(x, y) = d(x, z) + 1}|,
d0
x(y) = |{z ∼ y : d(x, y) = d(x, z)}|,

d+
x (y) = |{z ∼ y : d(x, y) = d(x, z)− 1}|,

which we call the in-degree, spherical degree, out-degree of y, respec-
tively. Note that dy = d−x (y) + d0

x(y) + d+
x (y).

Definition 2.2. We say that G is S1-out regular at a vertex x, if all
the vertices y in S1(x) have the same out-degree d+

x (y).

The complete 2-ball around x, denoted by Bcmp
2 (x), is the induced

subgraph of B2(x). Furthermore, the incomplete 2-ball around x, de-
noted by Binc

2 (x), is obtained from Bcmp
2 (x) with all spherical edges

w.r.t. x within S2(x) being removed. It is important to note that

Bakry-Émery curvature K∞(x) at a vertex x ∈ V is a local value, and
it is already determined by the structure of incomplete 2-ball Binc

2 (x).
As explained in [CKLLS17, Section 3.4], the explicit calculation of

Bakry-Émery curvature at a vertex is a semidefinite programming prob-
lem implemented in the interactive curvature calculator which can be
found at http://www.mas.ncl.ac.uk/graph-curvature. The ana-
lytic method for explicit curvature calculation is discussed in Appendix
B for the reader’s convenience.

In [CLP17], the authors give an upper bound for Bakry-Émery cur-
vature at a vertex in a D-regular graph, and then define the notion of
a curvature sharp vertex as follows:

http://www.mas.ncl.ac.uk/graph-curvature
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Theorem 2.3. ([CLP17, Corollary 3.3]) Let G = (V,E) be a D-regular

graph. Then Bakry-Émery curvature (of dimension n = ∞) at any
vertex x ∈ V satisfies

(5) K∞(x) ≤ 2 +
#∆(x)

D
= 2 +

1

2D

∑
y∈S1(x)

#∆({x, y}),

where #∆(x) (resp. #∆(e)) represent the number of triangles contain-
ing x ∈ V (resp. e ∈ E).

Moreover, a vertex x ∈ V is called (infinity) curvature sharp if (5)
holds with equality.

From Corollary 5.11 in [CLP17], curvature sharp at x implies S1-
out regularity at x, which means d+

x (y) is constant for all y ∈ S1(x).
Equivalently, #∆({x, y}) = d0

x(y) = D − 1 − d+
x (y) is also constant.

Therefore the definition of curvature sharpness at x is equivalent to

(6) K∞(x) = 2 +
#∆({x, y})

2
for all y ∈ S1(x).

Moreover, the following proposition asserts that if curvature sharp-
ness is assumed at all vertices, then the graph has constant curvature.

Proposition 2.4. Let G = (V,E) be a connected D-regular graph
which is curvature sharp at all vertices x ∈ V . Then the number #∆(e)
is constant for all e ∈ E and G has constant curvature K∞.

Proof. In view of (6), curvature sharpness at y implies #∆({x, y}) =
#∆({y, z}) for any two incident edges x ∼ y and y ∼ z. Curva-
ture sharpness at all vertices then extends the equality #∆({x, y}) =
#∆({x′, y′}) for any pair of edges in G (due to connectedness). There-
fore, #∆(e) is constant for all edges e ∈ E, and from equation (6), the

curvature K∞(x) = 2 + #∆(e)
2

is also constant for all x ∈ V . �

Finally, we need the following combinatorial analogue of the clas-
sical Bonnet-Myers theorem from Riemannian Geometry (see, e.g.,
[GHL04]) and its associated rigidity result by Cheng [Ch75].

Theorem 2.5. ([LMP17, Proposition 1.3 and Theorem 1.4]) Let G =
(V,E) be a connected D-regular graph with K := infx∈V K∞(x) > 0.
Then G satisfies Bonnet-Myers’ diameter bound

diam(G) ≤ 2D

K
,

which holds with equality if and only if G is a D-dimensional hypercube.

2.3. Incomplete 2-balls with non-negative curvature at centers.
In this subsection, we survey the relevant computational results about
Bakry-Émery curvature from [GW18]. They are based on a computer
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program in Python written by the last author during a 2018 LMS
Undergraduate Research Bursary.

Firstly, we explain the representations of 2-balls in quartic graphs
that were used for these calculations. We fix a vertex v0 and S1(v0) =
{v1, v2, v3, v4} (since in a quartic graph, v0 has four neighbors). The
vertices of the 2-sphere are labeled as follows: S2(v0) = {v5, v6, ..., vm}.
Then a 2-ball B2(v0) centered at v0 is represented by a list of 3 lists:
B2(v0) = [list1, list2, list3]. The first list determines the S1 structure
(i.e., how the vertices in S1 are connected to each other) by list1 =
[a12, a13, a14, a23, a24, a34] where each aij ∈ {0, 1} is a Boolean indicator
whether vertices vi and vj are adjacent or not. The second list list2 =
[a5, a6, ..., am] describes the S1-S2 structure (i.e., which vertices in S2

are adjacent to vertices in S1). For instance, a5 = [123] means that
the vertex v5 is adjacent to v1, v2, v3 but not to v4. Lastly, the list list3
describes the S2 structure (i.e., how the vertices in S2 are connected to
each other). For example, list3 = [[57], [58], [68]] means that v5 ∼ v7,

v5 ∼ v8, and v6 ∼ v8. However, the computation of Bakry-Émery
curvature only requires the information of incomplete 2-balls where no
spherical edge of S2(v0) is present, in which case list3 = [ ]. We refer to
quartic incomplete 2-balls as those which are incomplete 2-balls of some
quartic graph, i.e., every quartic Binc

2 (v0) has dv0 = dv1 = ... = dv4 = 4
and dv5 , ..., dvm ≤ 4.

For example, the incomplete 2-ball Binc
2 (v0) in Figure 1 has the fol-

lowing representation:

Binc
2 (v0) =

[ [
0, 1, 0, 0, 1, 0

]︸ ︷︷ ︸
S1 structure

,
[
[13], [13], [24], [2], [4]

]︸ ︷︷ ︸
S1-S2 structure

,
[ ]]

v0 v1

v2

v4

v3

v5

v6

v7

v8

v9

Figure 1. Binc
2 (v0) =

[[
0, 1, 0, 0, 1, 0

]
,
[
[13], [13], [24], [2], [4]

]
,
[ ]]
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Concerning the S1 structures, we will only consider the 11 standard
representations (given in the second column of Table 1) since all other
S1 structures can be obtained from them via permutations of the ver-
tices v1, v2, v3, v4.

The aim of the computer program is to find all non-isomorphic quar-
tic incomplete 2-balls (see Appendix A) and to identify those with
particular curvature properties (non-negative curvature and curvature
sharpness). The computational results are presented in the following
two propositions below. The first proposition gives the number of all
non-isomorphic quartic incomplete 2-balls as well as the ones with non-
negative curvature at their center. The second proposition gives a list
of all 22 quartic incomplete 2-balls that are curvature sharp at their
center.

Proposition 2.6. There are 365 non-isomorphic quartic incomplete
2-balls Binc

2 (v0). Among them, there are 204 quartic incomplete 2-balls
that have non-negative curvature K∞(v0). For more details, see Table
1.

Index Standard S1 structure S1-out regular Number of
incomplete
2-balls

Number of
incomplete
2-balls with
K∞(v0) ≥ 0

1 [0, 0, 0, 0, 0, 0] True 93 46
2 [1, 0, 0, 0, 0, 0] False 120 55
3 [1, 0, 0, 0, 0, 1] True 40 24
4 [1, 1, 0, 0, 0, 0] False 55 31
5 [1, 1, 1, 0, 0, 0] False 8 8
6 [1, 1, 0, 1, 0, 0] False 10 4
7 [1, 1, 0, 0, 1, 0] False 24 21
8 [1, 1, 0, 0, 1, 1] True 7 7
9 [1, 1, 1, 1, 0, 0] False 5 5
10 [1, 1, 1, 1, 1, 0] False 2 2
11 [1, 1, 1, 1, 1, 1] True 1 1

Total 365 204

Table 1. Number of incomplete 2-balls classified by
their standard S1 structure

In fact the above result is not used in our proof in Section 3. The
following result, however, is crucial for the proof:

Proposition 2.7. There are 22 non-isomorphic quartic incomplete 2-
balls Binc

2 (v0) which are curvature sharp in v0. They are listed in Table
2.
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#∆(e), Incomplete 2-ball Binc
2 (v0) K∞(v0)

v0 ∈ e ∈ E Index S1 structure S1-S2 structure
3 1.1 [1, 1, 1, 1, 1, 1] ∅ 3.5

2.1 [1, 1, 0, 0, 1, 1] [1234]
2.2 [1, 1, 0, 0, 1, 1] [123], [4]
2.3 [1, 1, 0, 0, 1, 1] [12], [3], [4]

2 2.4 [1, 1, 0, 0, 1, 1] [14], [2], [3] 3.0
2.5 [1, 1, 0, 0, 1, 1] [1], [2], [3], [4]
2.6 [1, 1, 0, 0, 1, 1] [12], [34]
2.7 [1, 1, 0, 0, 1, 1] [14], [23]

3.1 [1, 0, 0, 0, 0, 1] [1234], [13], [24]
1 3.2 [1, 0, 0, 0, 0, 1] [13], [13], [24], [24] 2.5

3.3 [1, 0, 0, 0, 0, 1] [13], [14], [23], [24]
3.4 [1, 0, 0, 0, 0, 1] [1234], [1234]

4.1 [0, 0, 0, 0, 0, 0] [1234], [1234], [1], [2], [3], [4]
4.2 [0, 0, 0, 0, 0, 0] [1234], [1234], [12], [3], [4]
4.3 [0, 0, 0, 0, 0, 0] [1234], [1234], [123], [4]
4.4 [0, 0, 0, 0, 0, 0] [1234], [12], [13], [24], [34]

0 4.5 [0, 0, 0, 0, 0, 0] [12], [13], [14], [23], [24], [34] 2.0
4.6 [0, 0, 0, 0, 0, 0] [123], [123], [14], [24], [34]
4.7 [0, 0, 0, 0, 0, 0] [1234], [1234], [12], [34]
4.8 [0, 0, 0, 0, 0, 0] [1234], [123], [124], [34]
4.9 [0, 0, 0, 0, 0, 0] [123], [124], [134], [234]
4.10 [0, 0, 0, 0, 0, 0] [1234], [1234], [1234]

Table 2. Incomplete 2-ball structures with a curvature

sharp center, i.e. K∞(v0) = 2 + #∆(e)
2

3. Proof of the classification theorem

Proof of Theorem 1.1. Let us start with a reference vertex v0 and S1(v0) =
{v1, v2, v3, v4}. We will perform a case-by-case analysis of all 22 possi-
ble (non-isomorphic) Binc

2 (v0)-structures which are curvature sharp at
v0, provided in Table 2.

Since we assume all vertices v to be curvature sharp, any incomplete
2-ball Binc

2 (v) must be one of the 22 possible types, but their types
can differ from vertex to vertex. However, we will see a posteriori that
each globally curvature sharp graph generated by these cases is vertex
transitive and, therefore, the incomplete 2-ball types of all its vertices
coincide.

Moreover, Proposition 2.4 asserts that for every edge e ∈ E the
number of triangles containing e, #∆(e), is uniform. We will therefore
use the number #∆(e) ∈ {0, 1, 2, 3} for our case separation. Table 3
provides an overview about all incomplete 2-ball structures that lead
to globally curvature sharp graphs.

3.1. Case #∆(e) = 3 or #∆(e) = 2. In the case #∆(e) = 3, the S1

structure immediately implies that G is the complete graph K5.
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#∆(e), Incomplete 2-ball Binc
2 (v0) resulting graph(s)

v0 ∈ e ∈ E Index S1 structure S1-S2 structure
3 1.1 [1, 1, 1, 1, 1, 1] ∅ K5

2 2.1 [1, 1, 0, 0, 1, 1] [1234] O
1 3.3 [1, 0, 0, 0, 0, 1] [13], [14], [23], [24] K3 ×K3

4.5 [0, 0, 0, 0, 0, 0] [12], [13], [14], [23], [24], [34] Cay(D14, S) and Q4

0 4.6 [0, 0, 0, 0, 0, 0] [123], [123], [14], [24], [34] Cay(D12, S)
4.9 [0, 0, 0, 0, 0, 0] [123], [124], [134], [234] C(10)
4.10 [0, 0, 0, 0, 0, 0] [1234], [1234], [1234] K4,4

Table 3. Incomplete 2-ball structures leading to glob-
ally curvature sharp graphs

Next we deal with the case #∆(e) = 2. If Binc
2 (v0) is of type 2.1, then

G is immediately the Octahedral graph O. Otherwise, if Binc
2 (v0) is of

type 2.2, 2.3, 2.4, 2.5, 2.6 or 2.7, the S1-S2 structure infers that v2 and
v4 have no common neighbor in S2(v0). Thus we have #∆({v2, v4}) = 1,
namely the triangle {v0v2v4}; contradiction to #∆(e) = 2.

3.2. Case #∆(e) = 1. In the case #∆(e) = 1, we will show that the
incomplete 2-ball Binc

2 (v0) has only one possible structure, which is of
type 3.3. Moreover, it leads to a unique graph G, namely the Cartesian
product K3 ×K3.

3.2.1. Case Binc
2 (v0) is of type 3.1. Denote v5, v6, v7 ∈ S2(v0) with

the patterns

v5 ≡ [1234] v6 ≡ [13] v7 ≡ [24].

Then {v0v1v2} and {v1v2v5} are triangles, so #∆({v1, v2}) ≥ 2; contra-
diction.

We purposedly use “≡” to describe the pattern of a vertex in a 2-
sphere to allow the possibility that two vertices may have the same
pattern e.g., v5 ≡ v6 ≡ [13] even though v5 6= v6.

3.2.2. Case Binc
2 (v0) is of type 3.2. Denote v5, v6, v7, v8 ∈ S2(v0) with

the patterns

v5 ≡ v6 ≡ [13] v7 ≡ v8 ≡ [24].

Note that v1 has four neighbors v0, v2, v5, v6. Since v5 is not a neighbor
of v0 and v2, the fact that #∆({v1, v5}) = 1 implies that v5 is a neighbor
of v6. Now {v1v5v6} and {v3v5v6} are triangles, so #∆({v5, v6}) ≥ 2;
contradiction.

3.2.3. Case Binc
2 (v0) is of type 3.4. Denote v5, v6 ∈ S2(v0) with the

patterns v5 ≡ v6 ≡ [1234]. Then {v0v1v2}, {v1v2v5}, and {v1v2v6} are
triangles, so #∆({v1, v2}) = 3; contradiction.
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3.2.4. Case Binc
2 (v0) is of type 3.3. Denote v5, v6, v7, v8 ∈ S2(v0) with

the patterns

v5 ≡ [13] v6 ≡ [14] v7 ≡ [23] v8 ≡ [24].

Consider v1 as a center with four neighbors v0, v2, v5, v6. Since v5 6∼ v0

and v5 6∼ v2, the fact that #∆({v1, v5}) = 1 implies v5 ∼ v6. Similarly,
by centering at v2, #∆({v2, v7}) = 1 implies v7 ∼ v8.
By centering at v3, #∆({v3, v5}) = 1 implies v5 ∼ v7.
By centering at v4, #∆({v4, v6}) = 1 implies v6 ∼ v8.

Now Binc
2 (v0) with additional edges v5 ∼ v6 ∼ v8 ∼ v7 ∼ v5 results

in a quartic graph, which is in fact the Cartesian product K3×K3 (see
Figure 2).

v0

v1

v2

v3

v5

v7

v4

v6

v8

Figure 2. Cartesian product K3 ×K3

3.3. Case #∆(e) = 0. Lastly, we deal with the most difficult case
where #∆(e) = 0 (i.e. G is triangle-free) and we expect to derive 5
possibilities of G, depending on its incomplete 2-ball structure. Hence-
forth, we restrict ourselves to the “bottom half” of Table 2, that is the
ones indexed by 4.1-4.10.

From now on, we introduce a new notation for S1-S2 structure of
the 2-ball Binc

2 (vi), which is centered around the vertex vi (for i ∈
{1, 2, 3, 4}). To do so, we add a subscript i to the pattern of each
vertex on the two-sphere S2(vi).

For example, assuming v1 has the neighbors v0, v5, v6, v7, the sub-
scripts 1 in the following patterns

v2 ≡ [0567]1 v3 ≡ [0567]1 v4 ≡ [056]1

signifies that they describe vertices in the S1-S2 structure of Binc
2 (v1).

Moreover, as in previous arguments, patterns are written without
subscripts when we describe the S1-S2 structure of Binc

2 (v0).

3.3.1. Case Binc
2 (v0) is of type 4.10. It is straightforward to deduce

that G is the complete bipartite graph K4,4.
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3.3.2. Case Binc
2 (v0) is of type 4.1, 4.2, 4.3, or 4.7. Note that

all these cases have precisely two vertices in S2(v0) with the patterns
[1234]. Let us denote them by v5 and v6.

Consider v1 as a center with three known neighbors v0, v5, v6, and
the other unknown neighbor, which we denote by v7. Now v2, v3, v4 are
in S2(v1) and all of them are neighbors of v0, v5, v6, so they will have
the following patterns:

v2 ≡ [056∗2]1 v3 ≡ [056∗3]1 v4 ≡ [056∗4]1(7)

where (for i ∈ {2, 3, 4}) each ∗i takes value 7 or “empty”, depending
on whether vi is a neighbor of v7 or not.

When comparing the patterns in (7) to the S1-S2 structures in Table
2, we can see that the possible structures of Binc

2 (v1) are of type either
4.3 or 4.10. However, an incomplete 2-ball of type 4.10 previously
led to the resulting graph G = K4,4. In case Binc

2 (v1) is of type 4.3,
two vertices have their patterns [0567]1 and one vertex has its pattern
[056]1. Without loss of generality, let the patterns in (7) take values

v2 ≡ [0567]1 v3 ≡ [0567]1 v4 ≡ [056]1

which means v4 6∼ v7. Now consider v4 as a center, with neighbors
v0, v5, v6, and another neighbor denoted by v8( 6= v7). Note that due to
the S1 structure of v0 being [0, 0, 0, 0, 0, 0], it means that v4 is not a
neighbor of v1, v2, v3. Thus v1, v2, v3 are in S2(v4), and all of them are
neighbors of v0, v5, v6, v7 (but not of v8). Hence, v1, v2, v3 have all the
same pattern [056]4, which does not belong to any S1-S2 structure in
Table 2.

3.3.3. Case Binc
2 (v0) is of type 4.4. Denote the vertices on S2(v0) by

patterns

v5 ≡ [1234] v6 ≡ [12] v7 ≡ [13] v8 ≡ [24] v9 ≡ [34].

Consider v1 as a center with four neighbors v0, v5, v6, v7. Now v2, v3, v4

are in S2(v1) with the patterns

v2 ≡ [056]1 v3 ≡ [057]1 v4 ≡ [05]1,

which does not belong to any S1-S2 structure in Table 2.

3.3.4. Case Binc
2 (v0) is of type 4.8. Denote the vertices on S2(v0) by

patterns

v5 ≡ [1234] v6 ≡ [123] v7 ≡ [124] v8 ≡ [34].

Consider v3 as a center with four neighbors v0, v5, v6, v8. Now v1, v2, v4

are in S2(v3) with the structure

v1 ≡ [056]3 v2 ≡ [056]3 v4 ≡ [058]3,

which does not belong to any S1-S2 structure in Table 2.
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3.3.5. Case Binc
2 (v0) is of type 4.6. From now on, instead of calling

the vertices on S2(v0) as v5, v6 and so on, we call them differently by
names reflecting their patterns.

In this particular case, we will denote the vertices on S2(v0) by pat-
terns

v123 ≡ v′123 ≡ [123] v14 ≡ [14] v24 ≡ [24] v34 ≡ [34].

Consider v1 as a center with four neighbors v0, v14, v123, v
′
123. Hence-

forth, we also describe patterns no longer just by the indices of the
involved vertices but by the vertices themselves. In this case, the ver-
tices v2, v3, v4 are in S2(v1) with patterns

v2 ≡ v3 ≡ [v0v123v
′
123]1 v4 ≡ [v0v14]1,

and according to Table 2, the Binc
2 (v1) must be of type 4.6. That is,

the other two vertices in S2(v1), namely A and B, will have patterns

A ≡ [v123v14]1 B ≡ [v′123v14]1(8)

In principle, it is possible that A or B could coincide with v24 or v34.
However, this can be excluded by the following arguments. If A = v24,
we would have a triangle {v4v14v24}, and if A = v34, we would have a
triangle {v4v14v34}. The same reasoning applies to B = v24 or B = v34.

Next, consider v4 as a center with four neighbors v0, v14, v24, v34. Now
v1, v2, v3, A,B are in S2(v4) with the patterns

v1 ≡ [v0v14]4 v2 ≡ [v0v24]4 v3 ≡ [v0v34]4 A ≡ [v14∗]4 B ≡ [v14∗]4,
where each ∗ represents some unknown vertex/vertices. According to
Table 2, the only possible type of Binc

2 (v4) is 4.6. That is, A and B are
in S2(v4) with patterns

A ≡ B ≡ [v14v24v34]4.(9)

The information (8) and (9) tells us that we have a quartic graph
as in Figure 3, which is indeed a Cayley graph of D12 (see Figure 7 in
Remark 3.1 below).

v0

v1

v2

v3

v4

v123

v′123

v14

v24

v34

A

B

Figure 3. The unique graph arising in case Binc
2 (v0) is

of type 4.6
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3.3.6. Case Binc
2 (v0) is of type 4.5. Denote the vertices on S2(v0) by

patterns

v12 ≡ [12] v13 ≡ [13] v14 ≡ [14] v23 ≡ [23] v24 ≡ [24] v34 ≡ [34].

For each i ∈ {1, 2, 3, 4}, consider vi as a center with four neighbors
v0, vij, vik, vil where {i, j, k, l} = {1, 2, 3, 4} (and from now on, vij = vji
by convention). The vertices vj, vk, vl are then in S2(vi) with patterns

vj ≡ [v0vij]i vk ≡ [v0vik]i vl ≡ [v0vil]i.

According to Table 2, the type of Binc
2 (vi) must be either 4.5 or 4.6

(and we can safely assume the type 4.5, since we previously dealt with
the case where an incomplete 2-ball is of type 4.6).

SinceBinc
2 (vi) is of type 4.5, we suppose S2(vi) = {vj, vk, vl, Aijk, Aijl, Aikl}

with patterns

vj ≡ [v0vij]i vk ≡ [v0vik]i vl ≡ [v0vil]i

Aijk ≡ [vijvik]i Aijl ≡ [vijvil]i Aikl ≡ [vikvil]i.(10)

Here, Aijk and Aikj represent the same vertex.

Note that none of the vertices Aijk, A
i
jl, A

i
kl can coincide with the

vertices vjk, vjl, vkl, since this would always lead to the existence of
some triangle, namely, vsvisvst for some distinct s, t ∈ {j, k, l}. In
conclusion,

Aijk, A
i
jl, A

i
kl ∈ S3(v0).

For every vertex w ∈ S3(v0), we know that

(11) w ∼ vij for some distinct i, j ∈ {1, 2, 3, 4},

and therefore w ∈ S2(vi) ∩ S2(vj). Since w ∈ S2(vi), (10) implies that
w coincides with one of Aijk, A

i
jl, A

i
kl, so it is adjacent to vij by (11) and

vis for some s 6= j.
Similarly, since w ∈ S2(vj), w is also adjacent to vij and vjt for some

t 6= i. Therefore, w has at least 3 different neighbors in S2(v0), namely
vij, vis, vjt, so its in-degree (w.r.t. v0) is

d−v0
(w) ≥ 3 for all w ∈ S3(v0).

On the other hand, for every vertex z ∈ S2(v0), its in-degree is d−v0
(z) =

2, so its out-degree is d+
v0

(z) ≤ 2. Counting edges between S2(v0) and
S3(v0) then gives

12 ≥
∑

z∈S2(v0)

d+
v0

(z) =
∑

w∈S3(v0)

d−v0
(w) ≥ 3|S3(v0)|,(12)

so we have |S3(v0)| ≤ 4. Moreover, since Aijk, A
i
jl, A

i
kl ∈ S3(v0), we

must have 3 ≤ |S3(v0)| ≤ 4.
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• Case |S3(v0)| = 3: then we know that S3(v0) = {Aijk, Aijl, Aikl}.
Observe also that vij has four neighbors, namely S1(vij) =
{vi, vj, Aijk, Aijl}.

Since these arguments hold for all indices i, j, we are allowed
to interchange them, that is

S3(v0) = {Aijk, Aijl, Aikl} = {Ajik, A
j
il, A

j
kl}

S1(vij) = {vi, vj, Aijk, Aijl} = {vi, vj, Ajik, A
j
il}.

which implies that Aikl and Ajkl coincide. By definition, it means
that this vertex Aikl ∈ S3(v0) is connected to vik, vil, vjk, vjl, that
is

S1(Aikl) = {vik, vil, vjk, vjl}.
Since this argument holds for all combinations of i, j, k, l, we
derive the information about all three vertices A1

23, A
1
24, A

1
34 ∈

S3(v0):

S1(A1
23) = {v12, v13, v24, v34},

S1(A1
24) = {v12, v14, v23, v34},

S1(A1
34) = {v13, v14, v23, v24},

which results in a quartic graph as in Figure 4, which is indeed
a Cayley graph of D14 (see Figure 8 in Remark 3.1).

v0

v1

v2

v3

v4

v12

v13

v14

v23

v24

v34

A1
23

A1
24

A1
34

Figure 4. The graph arising in case Binc
2 (v0) is of type

4.6 and |S3(v0)| = 3

• Case |S3(v0)| = 4: We claim that in this case our graph G has

diameter diam(G) ≥ 4. Assume for the sake of contradiction
that diam(G) = 3 and the 4-sphere S4(v0) is empty.

Since |S3(v0)| = 4, the inequality (12) holds with equality,
which implies that for all w ∈ S3(v0), the in-degree d−v0

(w) = 3.
Thus the spherical degree d0

v0
(w) = 1. In particular, each of

the vertices A1
23, A

1
24, A

1
34 must be adjacent to another vertex in

S3(v0). However, note that no pair of vertices A1
23, A

1
24, A

1
34 are

adjacent (otherwise, if A1
jk and A1

jl were connected, then they
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would form a triangle ∆v1jA
1
jkA

1
jl). Thus A1

23, A
1
24, A

1
34 must be

adjacent to the the fourth vertex in S3(v0), which we may denote
by P . Then the spherical degree d0

v0
(P ) = 3, contradiction.

v0

v1

v2

v3

v4

v12

v13

v14

v23

v24

v34

Figure 5. The 4-dimensional hypercube Q4

Therefore we have shown that diam(G) ≥ 4. On the other
hand, Theorem 2.5 gives the following diameter bound for Bakry-
Émery curvature:

diam(G) ≤ 2D

K
=

2 · 4
2

= 4,

as we are working with quartic graphs (D = 4) and K =
inf
x

(K)∞(x) = 2 (see Table 2). Since the graph G has diameter

diam(G) = 4, it must be the 4-dimensional hypercube Q4 (as
illustrated in Figure 5) by the rigidity statement in Theorem
2.5.

3.3.7. Case Binc
2 (v0) is of type 4.9. Denote the vertices on S2(v0) by

patterns

v123 ≡ [123] v124 ≡ [124] v134 ≡ [134] v234 ≡ [234].

For any {i, j, k, l} = {1, 2, 3, 4}, each vertex vijk ∈ S2(v0) has in-
degree d−v0

(vijk) = 3 and spherical-degree d0
v0

(vijk) = 0 (as G is triangle-
free), so vijk must be connected to exactly one vertex on S3(v0) (de-
pending on the choice of i, j, k) which we denote by Aijk ∈ S3(v0). Note
that these vertices Aijk might coincide (in fact, we will see that they
are all the same vertex).

Consider vi as a center with four neighbors v0, vijk, vijl, vikl. The
vertices vj, vk, vl ∈ S2(vi) will have patterns

vj ≡ [v0vijkvijl]i vk ≡ [v0vijkvikl]i vl ≡ [v0vijlvikl]i.

According to Table 2, Binc
2 (vi) must be of

type 4.9 and, therefore, |S2(vi)| = 4. We denote the so far unlabeled
vertex of S2(vi) by Ai and we have S2(vi) = {vj, vk, vl, Ai} and Ai will
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v0

v1

v2

v3

v4

v123

v124

v134

v234

A

Figure 6. The crown graph C(10)

have a pattern

(13) Ai ≡ [vijkvijlvikl]i.

Since d(Ai, vi) = 2 and Aj 6= vj, vk, vl, we have

Ai 6∈ {v0, vi, vj, vk, vijk, vijl, vikl}.

We can also rule out Ai = vjkl (for, otherwise, 2 = d(Ai, vi) = d(vjkl, vi)
would imply thatAi = vjkl is adjacent to one of the neighbors vijk, vijl, vikl
of vi; but any edge between two vertices of vijk, vijl, vikl, vjkl would cre-
ate a triangle and, therefore, a contradiction). These considerations
show that Ai ∈ S3(v0) and Ai ∼ vijk by (13). By definition of the
vertices Aijk, we conclude that

Ai = Aijk for all permutations {i, j, k, l} = {1, 2, 3, 4}.

In particular,

A1 = A123 = A124 = A134

A2 = A123 = A124 = A234,

which means A123, ..., A234 all coincide, and S3(v0) has only one vertex.
As a result, G is the crown graph C(10), as shown in Figure 6.

After consideration of all possible cases we have now completed our
classification result of quartic curvature sharp graphs (8 of them in
total). �

Remark 3.1. Figures 7 and 8 illustrate that the graphs in (vi) and
(vii) of Theorem 1.1 have indeed the stated Cayley graph structure.
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search Bursary. We thank Francis Gurr (Watson May’s co-author in
[GW18]) for his support in creating the relevant Python code and
Riikka Kangaslampi for helpful mathematical discussions.
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Id
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sr4
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s
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sr4
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r4

r

r5

r3

sr2

sr4

sr
sr4

s
sr

s

sr2

sr

sr2 s
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Figure 7. The Cayley graph Cay(D12, S) with S = {r3, s, sr2, sr4}
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Figure 8. The Cayley graph Cay(D14, S) with S = {s, sr, sr4, sr6}

Appendix A. Alogorithm to generate all quartic
incomplete 2-balls

The information in Tables 1 and 2 was derived from the Python
code written by Gurr and the last author, see [GW18]. In this appen-
dix we briefly explain the ideas behind this code which generates all
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non-isomorphic quartic incomplete 2-balls using the three python func-
tions generate all incomp twoballs, generate special twoballs,
and iso.

Before we discuss these functions in more detail, let us recall our
description of an incomplete 2-ball structure Binc

2 (v0) introduced in
Subsection 2.3:[ [

a12, a13, a14, a23, a24, a34

]︸ ︷︷ ︸
list1

,
[

[· · · ]︸︷︷︸
a5

, [· · · ]︸︷︷︸
a6

, ..., [· · · ]︸︷︷︸
am

]
︸ ︷︷ ︸

list2

,
[ ]︸︷︷︸

list3=∅

]
,

where

• list1 describes the S1 structure: each aij ∈ {0, 1} tells whether
vertices vi and vj are adjacent or not).
• list2 describes the S1-S2 structure: for example, a5 = [123]

means that the vertex v5 is adjacent to v1, v2, v3 but not to v4.
• list3 provides information about spherical edges in S2 and is

left empty since we only consider “incomplete” 2-balls.

The above incomplete 2-ball representation is called standardized if

(1) list1 coincides with one of the 11 standard S1 structures (see
the second column of Table 1), and

(2) list2 is lexicographically ordered (for example, the lexicographic
ordering of [[32],[134],[3],[243]] is [[134],[234],[23],[3]]).

A.1. Function generate all incomp twoballs. This function finds
all possible quartic incomplete 2-balls.

First, the function loops through all 11 standard S1 structures. For
each such structure (i.e., fixing list1), the function then finds all possi-
ble list2’s.

Each S1 structure determines an array

avail outdeg = [d+
v0

(v1), d+
v0

(v2), d+
v0

(v3), d+
v0

(v4)]

of available out-degrees of vertices vi, i ∈ {1, 2, 3, 4} from the relation
4 = d+

v0
(vi) + d0

v0
(vi) + d−v0

(vi), where the in-degree d−v0
(vi) = 1 and the

spherical degree d0
v0

(vi) is known from the S1 structure. A vertex vi
is called unsaturated if its available out-degree is more than zero. The
available out-degree of a vertex vi must agree with the total number of
appearances of the entry i in list2 in any incomplete 2-ball representa-
tion.

Next, the function calculates all valid partitions of the total number
n = sum(avail outdeg) of available out-degrees. Each partition de-
termines the lengths of brackets of a5, a5, ...., am in list2. For example,
the partition 332 means that a5, a6, a7 are brackets of length 3, 3, 2,
respectively.

A partition is called valid if it satisfies the following two conditions:
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(1) Each number in the partition must not exceed the number of
unsaturated vertices in S1(v0).

(2) The length of the partition is at least max(avail outdeg).

For example, starting with the S1 structure list1 = [1, 0, 0, 0, 0, 1],
we have avail outdeg= [2, 2, 2, 2], and the valid partitions of n = 8
are given by

44, 431, 422, 4211, 41111, 332, 3311, 3221, 32111, 311111,

222, 22211, 221111, 2111111, 11111111.

After calculating the list of all valid partitions (with respect to a
given list1), the function will consider each of these partitions (which
then determines the bracket structure of list2) and fill up the brackets
with all possibilities. Geometrically, this process adds edges between
vertices in S1(v0) and S2(v0), and it is done using the recursive function
generate special twoballs.

A.2. Function generate special twoballs. Given a valid partition,
this function fills the brackets of list2 with all possibilities. If we choose
the partition 332 in the above example, the first bracket a5 can be
filled with each of the choices 123, 124, . . . , 234. If a5 = [124] is chosen,
avail outdeg is updated to [1, 1, 2, 1] before the next bracket a6 is
filled with all possible choices 123, 124, . . . , 234. If a6 = [134] is chosen,
avail outdeg is updated to [0, 1, 1, 0] before the next bracket a7 is
filled. This time, the only remaining possibility is a7 = [23] (since
v1, v4 are already saturated), finishing the process. Filling of these
brackets is done recursively.

A.3. Function iso. This function checks whether two incomplete 2-
balls G,G′, represented in standardized form by

G = [list1, list2, [ ]], G′ = [list′1, list
′
2, [ ]]

are isomorphic under fixing their centres. We note that G and G′

cannot be isomorphic if they have different numbers of vertices or if
list1 6= list′1. After this preliminary check, we employ all permutations
σ : {1, 2, 3, 4} → {1, 2, 3, 4} that preserve list1, that is

σ(list1) := [aσ(1)σ(2), . . . , aσ(3)σ(4)] = list1,

and apply these permutations to list2, that is

σ(list2) := [σ(a5), . . . , σ(am)].

Here σ(aj) is obtained from the list aj by replacing each entry i in aj by
σ(i). In other words, the permutation of the vertex indices in S1(v0) of
G induces a corresponding relabeling within list2. We then standardize
the new permuted representation σ(list2) by its lexicographic ordering.
Then G and G′ are isomorphic if and only if one of these modifications
of list2 lead to agreement with list′2.
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Appendix B. Explicit curvature calculation

In this appendix we briefly explain the theoretical ideas how to cal-
culate curvature. We refer the reader to [CLP17] for more theoretical
details and [CKLLS17] for information of the curvature calculator im-
plementation.

The quadratic forms Γ(·, ·)(v0) and Γ2(·, ·)(v0) can be represented by
matrices Γ(v0) and Γ2(v0) as follows:

Γ(f, g)(v0) = fΓ(v0)gT

Γ2(f, g)(v0) = fΓ2(v0)gT ,

where f and g are the vector representations of f and g. The matrices
Γ(v0) and Γ2(v0) are symmetric with non-zero entries only in B1(v0)
and B2(v0), respectively.

The entries of Γ(v0) and Γ2(v0) are explicitly given in our case
of quartic incomplete 2-balls as follows (see [CLP17, Subsections 2.2
and 2.3]), where the rows and columns are ordered by the vertices
v0; v1, . . . , v4; v5, . . . , vm:

(14) 2Γ(v0) =


4 −1 −1 −1 −1
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1


and 4Γ2(v0) is given as follows:
(15)

28 −7− d+
v1 −7− d+

v2 −7− d+
v3 −7− d+

v4 d−v5 d−v6 · · · d−vm
−7− d+

v1 13− d+
v1 2− 4a12 2− 4a13 2− 4a14 −2w15 −2w16 · · · −2w1m

−7− d+
v2 2− 4a12 13− d+

v2 2− 4a23 2− 4a24 −2w25 −2w26 · · · −2w2m

−7− d+
v3 2− 4a13 2− 4a23 13− d+

v3 2− 4a34 −2w35 −2w36 · · · −2w3m

−7− d+
v4 2− 4a14 2− 4a24 2− 4a34 13− d+

v4 −2w45 −2w46 · · · −2w4m

d−(v5) −2w15 −2w25 −2w35 −2w45 d−(v5) 0 · · · 0

d−(v6) −2w16 −2w26 −2w36 −2w46 0 d−(v6) · · · 0
...

...
...

...
...

...
...

. . .
...

d−(vm) −2w1m −2w2m −2w3m −2w4m 0 0 · · · d−(vm)


where wij = 1 if vi ∼ vj and wij = 0 otherwise, and d±vi := d±v0

(vi) to
simplify notation. The curvature K∞(v0) is the solution of the following
semidefinite programming :

maximize K(16)

subject to Γ2(v0)−KΓ(v0) ≥ 0.

Note that in the linear combination Γ2(v0)−KΓ(v0), the smaller matrix
Γ(v0) needs to be extended with 0 entries to match the size of Γ2(v0).

The solution K∞(v0) = K of (16) is uniquely determined by the
following characterization (see [CLP17, Corollary 2.7]):

(1) Γ2(v0)−KΓ(v0) is positive semidefinite and
(2) dim ker(Γ2(v0)−KΓ(v0)) ≥ 2.
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We finish this appendix with two examples showing how this character-
ization can be used to verify curvature sharpness of a given incomplete
2-ball.

Example B.1. We consider the quartic incomplete 2-ball with index
2.3 from Table 2, namely

[[1, 1, 0, 0, 1, 1], [[12], [3], [4]], []].

In this case we obtain 2Γ(v0) as in (14) and 4Γ2(v0) as in (15):

4Γ2(v0) =



28 −8 −8 −8 −8 2 1 1
−8 12 −2 −2 2 −2 0 0
−8 −2 12 2 −2 −2 0 0
−8 −2 2 12 −2 0 −2 0
−8 2 −2 −2 12 0 0 −2
2 −2 −2 0 0 2 0 0
1 0 0 −2 0 0 1 0
1 0 0 0 −2 0 0 1


.

Then K∞(v0) = 3 can be verified by checking that

Γ2(v0)− 3Γ(v0) =
1

4



4 −2 −2 −2 −2 2 1 1
−2 6 −2 −2 2 −2 0 0
−2 −2 6 2 −2 −2 0 0
−2 −2 2 6 −2 0 −2 0
−2 2 −2 −2 6 0 0 −2
2 −2 −2 0 0 2 0 0
1 0 0 −2 0 0 1 0
1 0 0 0 −2 0 0 1


.

is indeed positive semidefinite and that dim ker(Γ2(v0) − 3Γ(v0)) = 3
with the nullspace spanned by (1, 1, 1, 1, 1, 1, 1)T , (−1, 1

2
,−1

2
, 0, 0, 0, 1, 1)T ,

and (0, 1
2
, 1

2
, 0, 0, 1, 0, 0)T (found via a MAPLE calculation and easily

checked by hand). The positive semidefiniteness follows from the fact
that the characteristic polynomial of 4(Γ2(v0)− 3Γ(v0)) is given by

x8 − 32x7 + 367x6 − 1800x5 + 3360x4 − 832x3,

and that this polynomial is obviously strictly positive for any value x <
0. This shows that v0 is curvature sharp.

Example B.2. We consider the quartic incomplete 2-ball given by

[[1, 0, 0, 0, 0, 1], [[123], [134], [24]], []].
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Curvature sharpness at v0 requires K∞(v0) = 2.5 by criterion (6). Thus
we have to investigate the matrix

Γ2(v0)− 2.5Γ(v0) =
1

4



8 −4 −4 −4 −4 3 3 2
−4 6 −2 2 2 −2 −2 0
−4 −2 6 2 2 −2 0 −2
−4 2 2 6 −2 −2 −2 0
−4 2 2 −2 6 0 −2 −2
3 −2 −2 −2 0 3 0 0
3 −2 0 −2 −2 0 3 0
2 0 −2 0 −2 0 0 2


.

This matrix is not positive semidefinite since the smallest eigenvalue of
this matrix is −0.148 . . . (found numerically via MAPLE). The non-
positive semidefiniteness can also be proved theoretically by using the
fact that the characteristic polynomial of 4(Γ2(v0)− 2.5Γ(v0)) is given
by

x2(x6 − 40x5 + 543x4 − 3032x3 + 6080x2 − 1216x− 3584)

and that the factor

p(x) = x6 − 40x5 + 543x4 − 3032x3 + 6080x2 − 1216x− 3584

is strictly negative for x = 0 and that limx→−∞ p(x) = +∞. The
Intermediate Value Theorem tells us that the matrix Γ2(v0)− 2.5Γ(v0)
has a negative eigenvalue. Therefore, v0 is not curvature sharp. In
fact, a numerical calculation (using MAPLE) shows that K∞(v0) =
2.139 . . . .
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