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Abstract

We address the issue of semiparametric efficiency in the bivariate regression problem

with a highly persistent predictor, where the joint distribution of the innovations

is regarded an infinite-dimensional nuisance parameter. Using a structural repre-

sentation of the limit experiment and exploiting invariance relationships therein,

we construct invariant point-optimal tests for the regression coefficient of interest.

This approach naturally leads to a family of feasible tests based on the component-

wise ranks of the innovations that can gain considerable power relative to existing

tests under non-Gaussian innovation distributions, while behaving equivalently un-

der Gaussianity. When an i.i.d. assumption on the innovations is appropriate for

the data at hand, our tests exploit the efficiency gains possible. Moreover, we show

by simulation that our test remains well behaved under some forms of conditional

heteroskedasticity.
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1 Introduction

Over the past two decades, inference for the bivariate regression model with a highly

persistent predictor has been well studied under the assumption of bivariate Gaus-

sian innovations. Several procedures have been proposed in the econometric litera-

ture, see Cavanagh et al. (1995), Campbell and Yogo (2006), Jansson and Moreira

(2006), Elliott et al. (2015), and Moreira and Mourão (2016). These inference pro-

cedures are all constructed based on the assumption of Gaussian innovations and,

while their validity has been established under weaker assumptions, the asymptotic

power of all these procedures cannot go beyond the Gaussian power envelope.

In the present paper we show that, when the application supports an additional

assumption of serially independent innovations, sizable power gains are possible be-

yond the Gaussian power envelope. We establish this result by studying in detail the

invariance structures that are present in the limiting experiment associated with the

predictive regression model. This leads to a semiparametric power envelop which,

under non-Gaussian innovation distributions, lies above the Gaussian power enve-

lope. In that case, even without knowing the innovation distribution, our method

dominates existing QMLE-based methods.

Our results precisely quantify the statistical efficiency gains from non-Gaussian

innovation distributions when innovations are serially independent in predictive re-

gression models. Under such, arguably restrictive assumption, we construct semi-

parametrically optimal (in a sense to be made precise later) tests. Whether in

concrete applications the assumption of serially independence is warranted, is an

empirical question. When it is, it can, as our results show, be exploited leading to

sizable power gains (of, as Section 5 shows, up to 30% under Student-t3 innovation

distributions). Symmetrically, to make an informed choice, we study the behavior

of our test when the innovations are not i.i.d. but exhibit conditional heteroskedas-

ticity as often found in (financial) applications. Section 5.2 shows that, for the

deviations studied, our test still has desirable size and power properties.

We note that our conceptual ideas reach further. We could, for instance, allow

for serial dependence along the lines of Zhou et al. (2019) where an AR-type model

on the error is imposed. Conditional heterogeneity could formally be addressed

along the lines of Ling et al. (2003) where a GARCH-type structure on the error is

imposed; or following Boswijk et al. (2005) where the (potentially nonstationary)

volatility is estimated nonparametrically. These relaxations would technically be

non-trivial and are left for future research. Note that, in view of the robustness-

efficiency trade-off (see, e.g., Müller, 2011), an i.i.d. assumption on the innovations
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ultimately driving the error term is not avoidable. Our test gives the empirical

researchers an additional option: an improved power when innovations are i.i.d.

and non-Gaussian.

The study of (optimal) semiparametric inference in the predictive regression

model is complicated by the nonstandard asymptotic behavior induced by the local-

to-unity asymptotics on the persistence parameter. More precisely, the associated

likelihood ratios are of the Locally Asymptotically Brownian Functional (LABF)

form in (see Jeganathan, 1995) and henceforth outside the conventional Locally

Asymptotically Normality (LAN) world. As a consequence, the usual semipara-

metric approach based on projecting the score of the parameter of interest on the

tangent space of nuisance scores is not straightforward. In particular, the model

does not feature an adaptiveness property, which complicates its analysis. Jansson

(2008) deals with the unit root testing problem, which also admits the LABF form,

by guessing and then proving a least favorable direction of parametric submodels.

An alternative approach has been proposed for the unit root testing problem in

Zhou et al. (2019) and generalized to other common types of limiting experiments

in Zhou (2020). In the present paper we apply these techniques to the predictive

regression model.

The key idea is to exploit invariance structures in a so-called “structural” rep-

resentation of the limit experiment. This approach sets us apart from most of

the statistical and econometric literature where invariance arguments are used in

the sequence of experiments. Instead, we obtain procedures which are invariant in

the limit experiment, thereby making the analysis tractable and applicable to many

models. Furthermore, the unique bivariate nature of the predictive regression model

leads to a nonstandard multivariate structure in the associated limit experiment (see

Theorem 3.1). Therefore, we present the approach in detail in the present paper.

Our contribution is twofold. First, we derive the semiparametric power enve-

lope for (asymptotically) invariant tests in case the predictor’s persistence level is

assumed to be known, based on the structural LABF limit experiments. More pre-

cisely, Girsanov’s theorem, combined with the limiting likelihood ratios for LABF

experiments, leads to a description of the limit experiment by stochastic differential

equations (SDEs). The observations in the limit experiment correspond to the lim-

its of partial-sum processes of the innovations and score functions in the predictive

regression model. In this structural representation of the limit experiment, we find

that the nuisance parameters induced by the density function of the innovations

only appear in the drifts of the driving Brownian motions. This leads to an invari-

ance restriction by taking the Brownian bridges (which are invariant with respect to
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these drifts) of these processes, and allows us to remove the nonparametric nuisance

parameter (the density f of the innovations). We show that this also generates

the maximal invariant. In this way, we avoid the problem of explicitly finding the

least-favorable submodel. The likelihood of the maximal invariant immediately, by

the Neyman-Pearson lemma, leads to the semiparametric power envelope.

Second, we propose a family of semiparametric feasible tests that has desirable

properties. These tests are constructed using (asymptotically) sufficient statistics

that are based on the increments of innovations, their component-wise ranks, and a

pair of chosen marginal reference densities for both innovations including a reference

correlation parameter. The ranks appear naturally as rank-based partial-sum score

processes which weakly converge to the Brownian bridge that is invariant w.r.t.

the density perturbation parameters. To further eliminate the remaining nuisance

parameter, namely the predictor’s persistence level, we employ the Approximate

Least Favorable Distribution (ALFD) approach proposed by Elliott et al. (2015).

We also follow their suggestion to switch to standard asymptotic approximations

when the persistence parameter is far from unity. This helps to control the size of our

tests under both non-stationarity and stationarity, see Appendix C. The tests thus

obtained are semiparametric in the sense that, for all (fixed) innovation densities

allowed, the asymptotic size is correct regardless of the choices of the marginal

reference densities or the reference correlation.

Next to their validity, our test are more powerful than existing tests when the

true innovation density is non-Gaussian. In particular, we compare our test to

Elliott et al. (2015) (henceforth denoted as EMW), which is based on Gaussian

likelihood ratios (see also Jansson and Moreira, 2006). Our asymptotic analysis

using invariance arguments shows that, under non-Gaussian innovations, the EMW

test actually is measurable with respect to an invariant in the limit that is not

maximally invariant. As a result, under non-Gaussianity, we can construct tests

that outperform the Gaussian power envelope and, thus, outperform the EMW test;

see Remark 3.2. The power improvement depends on the choices of the marginal

reference densities: when they are “closer” to the true marginal densities, we gain

more power (and, again, while always having the desired size). Additionally, if one

fixes the marginal reference densities to be Gaussian, our test is generally still more

powerful than the EMW test under non-Gaussian innovation density; while under

Gaussian innovation density, our test performs equivalently to the EMW test. This

property is often referred to as the Chernoff-Savage result (see Chernoff and Savage

(1958)). In the present LABF setting we have not been able to formally prove this

Chernoff-Savage result, but our simulations indicate that this property nevertheless
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may hold.

Our rank-based test can be regarded a generalized version of quasi-likelihood

ratio tests which take the reference density to be Gaussian. The extra freedom to

choose the reference density also comes with the cost of actually choosing it. How-

ever, we note that, in line with traditional quasi-likelihood methods, one can always

choose the Gaussian reference density. Based on the classical Chernoff-Savage re-

sult, we conjecture that our rank-based procedure will then always outperform the

quasi-likelihood procedure. This is confirmed by simulations and intuition, but, as

discussed below, given the non-standard limiting experiment structure, we have not

been able to prove this formally. Alternative, one could study a plug-in estimator

where the reference density is nonparametrically estimated. We do not study this

formally in the present paper; however, see Section 5.3 for some simulation results.

Similarly, one may envision an approach where one pre-tests the residuals for, e.g.,

high kurtosis and chooses a references density based on that pre-test result.

The paper is organized as follows. In Section 2, we introduce the model and test-

ing problem under consideration. In Section 3, we develop the asymptotic power

envelope for test that are (asymptotically) invariant with respect to the innovation

density f , assuming the predictor’s persistence parameter γ is known. This devel-

opment is based on the theory of limit experiments (see, e.g., Le Cam (1986) and

Van der Vaart (2000)) and a structural version for models of LABF likelihood ratios

(see Zhou et al. (2019)). In particular, this section explains where our power gains

come from, see Remark 3.2. In Section 4, we employ the ALFD approach proposed

by Elliott et al. (2015), among several available choices in the literature, to elim-

inate the nuisance parameter γ. In Section 5, we report large- and small-sample

performances of our tests under both i.i.d. and conditional heteroskedastic errors.

Section 6 concludes. All proofs are gathered in the appendix.

2 Model

Let yt denote a random variable, observable at time t, that we wish to predict at

time t−1 using an observable explanatory variable xt−1. We consider the predictive

regression model

yt = µ+ βxt−1 + εyt , (1)

xt − α = γ(xt−1 − α) + εxt , (2)
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with x0 = 0.1 The parameter space is given by µ ∈ R, α ∈ R, β ∈ R, and γ ∈ (−1, 1].

We have observations available for t = 1, . . . , T .

Equation (2) features, along the lines of Cavanagh et al. (1995) and Jansson and

Moreira (2006), an intercept α. However, as µ is a nuisance parameter in our model,

the intercept α can be subsumed in µ without affecting inference on β. Indeed, our

test statistics will only depend on the increments of xt, denoted by ∆xt, and their

associated ranks and, thus, they are invariant with respect to α. We therefore omit

α in the rest of this paper.

To eliminate the nuisance intercept parameter µ in (1), one can directly impose

an invariance restriction in the sequence of predictive regression experiments. For

instance, the Jansson and Moreira (2006) test is based on the maximal invariant

statistic (y2 − y1, y3 − y1, . . . , yT − y1)′. In the present paper, our statistic is only

based on yt’s through their ranks and, thus, also enjoys finite-sample invariance

w.r.t. µ. To simplify notation, we set µ = 0 throughout the paper and nowhere

assume Ef (εyt ) = 0. We will need to impose Ef (εxt ) = 0: allowing for deterministic

trends in xt would lead to an entirely different asymptotic analysis.

Summarizing, as outlined in the introduction, we assume that the innovations

εt = (εyt , ε
x
t )′ are independent and identically distributed (i.i.d.) with (bivariate)

density f satisfying the following condition.

Assumption 1. (a) Ef (εxt ) = 0 and Varf (εt) =

 σ2
y ρσyσx

ρσyσx σ2
x

 is a finite

positive-definite matrix.

(b) The density f is absolutely continuous with a.e. derivative ḟ =

ḟy
ḟx

.

(c) The (standardized) Fisher information for location,

Jf =

Jfyy Jfyx

Jfyx Jfxx

 = Ef
(
`f `
′
f

)
,

where `f is the (standardized) location score function

`f =

σy`fy
σx`fx

 =

−σy ḟy/f
−σxḟx/f

 ,

1 Note that this assumption on the initial value x0 could possibly be relaxed to the weaker assumption

T−1/2x0 = oP(1) under β = 0 and γ = 1. One can possibly proceed along the lines of Müller and

Elliott (2003); see also a remark on this point in Section 4 of Jansson and Moreira (2006). We keep

the assumption x0 = 0 for simplicity.
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is finite.2

(d) f > 0. �

Let F denote the set of densities satisfying Assumption 1.

The Fisher information Jf and scores `f for location are standardized in the

sense that they are actually those related to εyt /σy and εxt /σx. As a result, `f and

Jf do not depend on σy or σx. Note, however, that they both still depend on the

correlation between the innovations εyt and εxt , i.e., they still depend on ρ.

We are interested in (optimal) tests for the (composite) null hypothesis

H0 : β = 0, γ ∈ (−1, 1], f ∈ F, (3)

versus the one-sided alternative

H1 : β > 0, γ ∈ (−1, 1], f ∈ F. (4)

As the literature focuses on test derived using an assumed Gaussian innovation

density, we will throughout this paper consider Gaussian densities as a special case.

This will allow us to make explicit where the power improvements come from in the

case of non-Gaussian, serially independent, innovations (εy, εx).

Remark 2.1 (Gaussian f). In case f is zero-mean bivariate Gaussian with correlation

matrix R =

1 ρ

ρ 1

, Assumption 1 is satisfied with `f (εy, εx) = R−1

εy/σy
εx/σx


and Jf = R−1.

2.1 Local perturbations

Following the by now standard approach in the literature, we study the limit exper-

iment in the sense of Hájek-Le Cam by considering local alternatives for all model

parameters, that is, for both the parameter of interest β and the nuisance parame-

ters (γ and f). For β and γ the appropriate rates of convergence are well known, see,

e.g., Elliott and Stock (1994), Campbell and Yogo (2006), or Jansson and Moreira

(2006). More precisely, we consider a T−1-localization rate for β and γ, i.e.,

β = β(T )(b) =
b

T

σy
σx
, γ = γ(T )(c) = 1 +

c

T
, (5)

2 Being a Fisher information for location, Jf is automatically nonsingular and positive definite, see

Mayer-Wolf et al. (1990, Theorem 2.3).
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with b ∈ R and c ∈ (−∞, 0].3 Observe that the local perturbation for b features a

scaling by σy/σx. This ensures that the limit experiment will not depend on σy and

σx (although it still depends on ρ).

The nuisance parameter f is infinite dimensional, so it is somewhat more involved

to describe its relevant local perturbations. Introduce the separable Hilbert space

L0,f
2 = L0,f

2 (R2,B) =
{
h ∈ Lf2 (R2,B) |Efh(ε) = 0, Efε

xh(ε) = 0
}
, (6)

where Lf2 (R2,B) denotes, the space of Borel-measurable functions h : R2 → R

satisfying Efh
2(ε) =

∫
R2 h

2(ε)f(ε)dε < ∞. The model assumption Ef (εxt ) = 0

induces the restriction that local perturbations for f are orthogonal to the first

component of ε: Efε
xh(ε) = 0.

The separability of the Hilbert space L0,f
2 ensures the existence of a count-

able orthonormal basis hk, k ∈ N, such that each hk is bounded and two times

continuously differentiable with bounded derivatives; see, e.g., Rudin (1987, Theo-

rem 3.14). Therefore, any function h ∈ L0,f
2 can be written as h =

∑∞
k=1 ηkhk, for

some η = (ηk)k∈N ∈ `2 = {(zk)k∈N |
∑∞
k=1 z

2
k < ∞}. Besides the space `2, we also

need the space c00 which is defined as the subset of sequences with finite support,

i.e.,

c00 =

{
(zk)k∈N ∈ RN

∣∣∣∣∣
∞∑
k=1

1{zk 6= 0} <∞

}
. (7)

Observe that c00 is a dense subspace of `2. It is introduced only in the asymptotic

analysis to avoid convergence of infinite-dimensional processes and possibly induced

mathematical complications, see Section 2.2. However, the restriction η ∈ c00 will

not affect our conclusions. Indeed, considering η ∈ c00 restricts our analysis to a

subset of all semiparametric models which potentially makes the obtained upper

bound higher. However, as we are able to show that this higher upper bound is

(point-wisely) attainable by feasible tests for arbitrary innovation density in se-

quence, see Remark 3.1, it constitutes the semiparametric power envelope and the

test is semiparametrically optimal.

We model local perturbations to the innovation density f as

f (T )
η (e) = f(e)

(
1 +

1√
T

∞∑
k=1

ηkhk(e)

)
for all e ∈ R2, (8)

3 We use here the common approach in the literature to restrict the nuisance parameter c to (−∞, 0].

We conjecture that all results remain valid, with the obvious modifications, in case one would choose

the larger parameter space c ∈ R; see, e.g., Moreira and Mourão (2016).
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where η ∈ c00. We thus use a standard localization rate T−1/2 for the bivariate den-

sity f . Indeed, Proposition 3.1 below shows that all the above rates are appropriate

in the sense that they lead to contiguous alternatives for the induced probability

measures as T tends to infinity.

In order to show that the above localization of the innovation density is valid,

we need to establish that f
(T )
η ∈ F. This is the content of the next proposition.

Proposition 2.1. Let f ∈ F and η ∈ c00, then there exists a finite integer T̃ such

that for all T ≥ T̃ we have f
(T )
η ∈ F.

The proof uses exactly the same arguments as in the proof of Proposition 3.1 in

Zhou et al. (2019), but with support R2 instead of R. It is therefore omitted.

In terms of the local parameters b, c, and η, the hypothesis of interest becomes

H0 : b = 0, c ∈ R, η ∈ c00, (9)

versus the one-sided alternative

H1 : b > 0, c ∈ R, η ∈ c00. (10)

2.2 Partial-sum processes

In order to derive the limiting experiment for the predictive regression model, we

need to introduce some partial-sum processes and study their asymptotic behavior.

We denote by P
(T )
b,c,η;f the law of (y1, x1)′, . . . , (yT , xT )′ under the model (1)–(2),

where the parameters β and γ are given by (5) and the innovation density is given

by (8). Formally, we define the sequence of experiments of interest as

E(T ) (f) :=
(

Ω(T ),F (T ),
{

P
(T )
b,c,η;f : b, c ∈ R, η ∈ c00

})
, T ∈ N, (11)

where Ω(T ) := R2×T and F (T ) := B(R2×T ). We denote the expectation taken under

the measure P
(T )
0,0,0;f by E(T ).

Let us already mention that we will also introduce a collection of probability

measures Pb,c,η, defined on a probability space (Ω,F), representing the limit exper-

iment E (f) in Section 3.1 below; see (26). We will denote he expectation taken

under the measure P0,0,0 by E. That is, P(T ) and E(T ) refer to finite-sample distri-

butions in the sequence of experiments, while P and E refer to distributions in the

limit experiment.

As a final ingredient for our analysis, we introduce some partial-sum processes

that we use throughout to link the sequence of experiments E(T ) (f) to the limit

experiment E (f). In particular, define, with ∆xt := xt − xt−1, the partial-sum
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processes4

W (T )
ε (s) :=

1√
T

bsTc∑
t=1

∆xt
σx

, (12)

W
(T )
`fy

(s) :=
1√
T

bsTc∑
t=1

σy`fy (yt,∆xt), (13)

W
(T )
`fx

(s) :=
1√
T

bsTc∑
t=1

σx`fx(yt,∆xt), (14)

W
(T )
hk

(s) :=
1√
T

bsTc∑
t=1

hk(yt,∆xt), k ∈ N. (15)

Here we standardize the first three partial-sum processes by the standard deviations

σy and σx in order to make their limits scale invariant. Under P
(T )
0,0,0;f , by the

Functional Central Limit Theorem (see also Lemma A.1), we have
W

(T )
ε (s)

W
(T )
`fy

(s)

W
(T )
`fx

(s)

W
(T )
h (s)

⇒

Wε(s)

W`fy
(s)

W`fx
(s)

Wh(s)

 , s ∈ [0, 1], (16)

where the Brownian motions Wε, W`fy
, W`fx

and Wh are defined on the common

probability space (Ω,F ,P0,0,0). We have to be precise about the notion of weak

convergence adopted in (16) as Wh is infinite dimensional. In line with stochastic

process theory, we mean that all finite-dimensional subprocesses of W
(T )
h weakly

converges in the space DM+3[0, 1] with the uniform topology, where M is the di-

mension of the finite-dimensional subprocess considered. This is precisely because

we take the local parameter η to be in c00. For the sake of convenient notation,

we write the seemingly infinite-dimensional convergence (16). As argued above, we

are ultimately able to attain the semiparametric power envelope induced under the

restriction η ∈ c00 so that we can claim semiparametric optimality.

Next, define the column vectors Jfyh = (Jfyhk)k∈N and Jfxh = (Jfxhk)k∈N,

where Jfyhk := Ef
[
σy`fy (εt)hk(εt)

]
and Jfxhk := Ef [σx`fx(εt)hk(εt)]. As we have

the equalities Ef
[
εxt `fy (εt)

]
= −σy

∫
R2 ε

x ḟy(ε)
f(ε) f(ε)dε = −σy

∫
R2 ε

xḟy(ε)dε = 0 and

Ef [εxt `fx(εt)] = −σx
∫
R2 ε

x ḟx(ε)
f(ε) f(ε)dε = −σx

∫
R2 ε

xḟx(ε)dε = σx
∫
R2 f(ε)dε = σx,

the behavior of the Brownian motions Wε, W`fy
, W`fx

and Wh is described by the

4 One may consider partial sum processes that start at t = 2 in order to make them exactly invariant

to translations in xt. This would, clearly, have no effect on our asymptotic results.
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covariance matrix

Var


Wε(1)

W`fy
(1)

W`fx
(1)

Wh(1)

 =


1 0 1 0

0 Jfyy Jfyx J ′fyh

1 Jfyx Jfxx J ′fxh

0 Jfyh Jfxh I∞

 , (17)

where I∞ denotes the ∞-dimensional identity matrix. The scaling by σx and σy

introduced in (12)–(15) is indeed such that the covariance matrix (17) does not

depend on σx or σy. Again, it still depends on ρ through the various J matrices.

Recall that the functions hk form an orthonormal basis for all zero-mean finite-

variance functions that are orthogonal to εxt . In view of the covariance matrix (17),

we may thus write, for s ∈ [0, 1],

W`fy
(s) = J ′fyhWh(s), (18)

W`fx
(s) = Wε(s) + J ′fxhWh(s). (19)

Consequently, we also have

Var
[
W`fy

(1)
]

= Jfyy = J ′fyhJfyh, (20)

Var
[
W`fx

(1)
]

= Jfxx = 1 + J ′fxhJfxh, (21)

Cov
[
W`fy

(1),W`fx
(1)
]

= Jfyx = J ′fyhJfxh. (22)

We again consider the special case of a Gaussian density f .

Remark 2.2 (Gaussian f). In the situation of Gaussian f as discussed in Remark 2.1,

we may write the decomposition (21) as W`fx
= Wε − ρ√

1−ρ2
W⊥ where W⊥ is the

standard Brownian motion generated by the increments (εy/σy − ρεx/σx) /
√

1− ρ2.

Indeed, Wε and W⊥ are independent (calculate the correlation of the increments

that generate both processes). Thus, we also find J ′fxhWh(s) = −ρW⊥ and the

decomposition (21) becomes Jfxx = 1 + ρ2

1−ρ2 = 1
1−ρ2 = Jfyy . Moreover, we have

W`fy
= 1√

1−ρ2
W⊥ and Jfyx = − ρ

1−ρ2 .

3 Eliminating the nuisance parameter f by invari-

ance

We first focus on eliminating the nuisance parameter f from the testing problem

outlined in Section 2. We will see that this can be handled using invariance argu-

ments in the limit experiment, which we derive in Section 3.1. In Section 4, we

consider the nuisance parameter γ.

We take the following steps in this section:
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1. Provide a structural representation of the limit experiment (Section 3.1).

2. Characterize maximally invariant test statistics in this limit experiment (Sec-

tion 3.2).

3. Provide a structural representation of the invariant limit experiment (Sec-

tion 3.3).

4. Provide a feasible version of the asymptotically invariant test statistics to be

applied in the sequence of predictive regression experiments (Section 3.4).

These steps also show that, to eliminate the nuisance parameter f , instead of study-

ing invariance restrictions in the sequence of finite-sample experiments, we only im-

pose them in the limit experiment. Unlike for the location parameter µ (of εyt ), this

limiting invariance property of the parameter f does not follow directly from ex-

act finite-sample invariance properties. Notably, the existing tests in the literature

share this feature, as they also (implicitly) impose the invariance restriction in the

limit, though not in the sequence; see Remark 3.2. As far as we know, all existing

tests belong to the class of asymptotically invariant (w.r.t. f) tests, while our test

is semiparametrically optimal in the model we study. Section 5 shows that this ap-

proach leads to considerable power gains in case the innovations are non-Gaussian,

while no power is lost under Gaussianity.

3.1 A Structural Representation of the Limit Experiment

We consider the limit experiment corresponding to the predictive regression model (1)–

(2) using the local perturbations (5) and (8), i.e., the limit of the experiments

E(T ) (f) indexed by T , by studying the asymptotic behavior of the induced likeli-

hood ratios. We expand the likelihood ratio around (β, γ, η) = (0, 1, 0) and derive

its limit in the following proposition, which can be interpreted as a generalization

of Lemma 4 in Jansson and Moreira (2006) by including non-Gaussian distributions

and perturbations thereof.5

Proposition 3.1. Fix f ∈ F. Consider the local parameters b ∈ R, c ∈ R, and

η ∈ c00. Then,

(i) Under P
(T )
0,0,0;f , the log-likelihood ratio of the predictive regression experiment

satisfies, as T →∞,

log
dP

(T )
b,c,η;f

dP
(T )
0,0,0;f

= ∆(T )(b, c, η)− 1

2
Q(T )(b, c, η) + oP(1), (23)

5 As preparation for the results in Section 4, we allow in this proposition for local perturbations with

respect to γ even though, in the present section, γ is assumed to be known.
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where

∆(T )(b, c, η) =
b

T

T∑
t=1

xt−1

σx
σy`fy (yt,∆xt) +

c

T

T∑
t=1

xt−1`fx(yt,∆xt)

+
1√
T

T∑
t=1

∑
k

ηkhk(yt,∆xt),

Q(T )(b, c, η) =
(
b2Jfyy + c2Jfxx + 2bcJfyx

) 1

T 2

T∑
t=1

x2
t−1

σ2
x

+
(

2bJ ′fyhη + 2cJ ′fxhη
) 1

T 3/2

T∑
t=1

xt−1

σx
+ η′η.

(ii) Still under P
(T )
0,0,0;f , as T →∞, we have

log
dP

(T )
b,c,η;f

dP
(T )
0,0,0;f

⇒ L(b, c, η) = ∆(b, c, η)− 1

2
Q(b, c, η), (24)

where

∆(b, c, η) = b

∫ 1

0

Wε(s)dW`fy
(s) + c

∫ 1

0

Wε(s)dW`fx
(s) + η′Wh(1)

=

∫ 1

0

Wε(s)
(
bJfyh + cJfxh

)′
dWh(s) + c

∫ 1

0

Wε(s)dWε(s) + η′Wh(1),

Q(b, c, η) =
(
b2Jfyy + c2Jfxx + 2bcJfyx

) ∫ 1

0

Wε(s)
2ds

+ η′η +
(

2bJ ′fyhη + 2cJ ′fxhη
)∫ 1

0

Wε(s)ds

=

∫ 1

0

∣∣(bJfyh + cJfxh
)
Wε(s) + η

∣∣2 ds+ c2
∫ 1

0

Wε(s)
2ds.

(iii) For every b, c ∈ R and η ∈ c00, under P0,0,0, E[exp (L(b, c, η))] = 1.

A proof of Proposition 3.1 is provided in Appendix B, but let us give a brief

sketch here. Part (i) is immediate from an informal Taylor expansion of the log-

likelihood ratios and, formally, follows from Hallin et al. (2015), which provides

generally applicable sufficient conditions for the quadratic expansion of likelihood

ratios with densities that are differentiable in quadratic mean (DQM). This DQM

condition is implied, for location models, by the absolutely continuity of the in-

novation density function and finiteness of the associated Fisher information, i.e.,

precisely the content of Assumption 1. A detailed discussion can be found in Le Cam

(1986, Section 17.3) or Yang and Le Cam (2000, Section 7.3). Part (ii) follows from

the continuous mapping theorem applied to the weak convergence in (16). Both

forms of the central sequence ∆ and quadratic term Q follow from (18) and (19).

Part (iii) follows from standard stochastic calculations concerning Doléans-Dade ex-

ponentials. To see this, note that Wh and Wε are independent in view of (17) and,

thus, have vanishing quadratic covariation.
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Part (iii) of Proposition 3.1 ensures that we can introduce a collection of prob-

ability measures Pb,c,η on the measurable space (Ω,F) (on which the Brownian

motions Wε, W`fy
, W`fx

and Wh are defined) by the Radon-Nikodym derivative

dPb,c,η
dP0,0,0

= expL(b, c, η), (25)

where L(b, c, η) is defined in (24). Then, in the sense of Hájek-Le Cam (see, for

instance, Van der Vaart (2000), Chapter 9), the sequence of predictive regression

experiments, indexed by sample size T , weakly converges to the limit experiment

described by the measures Pb,c,η. We formally define this limit experiment by

E (f) :=
(

Ω,F ,
{
Pb,c,η : b, c ∈ R, η ∈ c00

})
, (26)

where Ω := C[0, 1]×C[0, 1]×C[0, 1]×CN[0, 1] and F := BC ⊗BC ⊗BC ⊗ (⊗∞k=1BC).

The following statement is an immediate consequence of Proposition 3.1.

Corollary 3.1. Let f ∈ F, then the sequence of experiments E(T ) (f) converges to

the limit experiment E (f) as T →∞.

Although the log-likelihood ratios L(b, c, η) formally describe the limiting exper-

iment, it is more insightful to provide, what we call, a structural representation.

This structural representation provides a fixed-horizon continuous-time model for

which the likelihoods are exactly equal to exp (L(b, c, η)). From a statistical point of

view, the induced experiments are thus equal. The result follows from an immediate

application of Girsanov’s theorem to the Radon-Nikodym derivates (24). Its proof

is therefore omitted.

Theorem 3.1. Fix f ∈ F. Let, under P0,0,0, Zε, and Zh be zero-drift Brownian

motions with covariance according to the first and last row and column of (17).

The limit experiment E (f) can be described as: observe {(Wε(s),Wh(s)) : s ∈ [0, 1]}

generated by

dWε(s) = cWε(s)ds+ dZε(s), (27)

dWh(s) = (bJfyh + cJfxh)Wε(s)ds+ ηds+ dZh(s). (28)

A few remarks can be made in relation to Theorem 3.1. First, note that for

b = c = 0 and η = 0, we obtain Wε = Zε and Wh = Zh. Secondly, the theorem

essentially states that while (Wε,W
′
h)
′

is a zero-drift Brownian motion under P0,0,0,

it becomes an Ornstein-Uhlenbeck process under Pb,c,η, where the log-likelihood

ratio log (dPb,c,η/dP0,0,0) equals L(b, c, η). Observe in particular that local pertur-

bations of the innovation density f , as described by η, only affect the drift in (28).

We will consider inference procedures that are invariant with respect to η in the
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limit experiment. In terms of the (sequence of) predictive regression model(s) this

consequently translates into invariance with respect to (local perturbations in) the

innovation density f .

In view of (18)–(19), we may also write

dW`fy
(s) = (bJfyy + cJfyx)Wε(s)ds+ J ′fyhηds+ dZ`fy (s), (29)

dW`fx
(s) = (bJfyx + cJfxx)Wε(s)ds+ J ′fxhηds+ dZ`fx (s), (30)

where Z`fx and Z`fy are zero-drift Brownian motions under P0,0,0. However, these

equations do not contain any additional information, precisely given (18) and (19).

Nevertheless, they will turn out useful when describing the likelihood ratio of the

maximal invariant M to be introduced below in (33).

3.2 Maximal Invariant

In the limit experiment E (f), the parameter b ∈ R is the parameter of interest, while

c ∈ R and η ∈ c00 are nuisance parameters. Observe that the nuisance parameter η

appears only in the drift of the SDEs in Theorem 3.1. This suggests an invariance

restriction in line with the approach in Zhou et al. (2019) for unit root testing.

To be specific, we first introduce, for η ∈ c00, the transformations gη : CN[0, 1]→

CN[0, 1] by

[gη(W )](s) = W (s)− ηs, (31)

for W ∈ CN[0, 1] and all s ∈ [0, 1]. The transformation gη adds a drift s 7→ −ηs

to W . Thus, Theorem 3.1 implies that the law of (Wε, (gη(Wh))′)
′

under Pb,c,0
is the same as the law of (Wε,W

′
h)
′

under Pb,c,η.6 Denote by Gη the group of

transformations gη for η ∈ c00. We can now characterize the maximal invariant

with respect to Gη in the limit experiment E (f).

For any process W , we define the associated bridge process by

BW (s) := W (s)− sW (1), (32)

for all s ∈ [0, 1]. Then, one readily verifies

Bgη(W )(s) = [gη(W )](s)− s[gη(W )](1)

= W (s)− ηs− s(W (1)− η)

= W (s)− sW (1)

= BW (s).

6 By (19) and (18), the same holds for W`fx
and W`fy

.
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As a result, the bridges BWh are invariant under the transformations gη.

Define the mapping M by M(Wε,Wh) := (Wε, B
Wh). It then follows that

statistics that are measurable with respect to the σ-field

M = σ (M(Wε,Wh)) = σ
(
Wε, B

Wh
)
, (33)

are invariant with respect to gη for all η ∈ c00. Moreover, in the following theorem,

we showM to be maximally invariant. Its proof is, again, provided in Appendix B.

Theorem 3.2. In the limit experiment E (f), for η ∈ c00, the σ-field M in (33) is

maximally invariant with respect to Gη.

3.3 A Structural Representation of the Invariant Limit Ex-

periment

Theorem 3.2 implies that any inference invariant with respect to Gη must be mea-

surable with respect toM; see, e.g., Lehmann and Romano (2006, Theorem 6.2.1).

Therefore, by the Neyman-Pearson lemma, inference based on the likelihood ra-

tio with respect to M yields the power envelope for invariant tests in the limit

experiment E (f). The following result provides this likelihood ratio.

Theorem 3.3. Fix f ∈ F. Then the likelihood ratios in the limit experiment E (f)

restricted to the maximal invariant M are given by

expLM(b, c) :=
dPMb,c
dPM0,0

= E
[

dPb,c,η
dP0,0,0

|M
]

= exp

(
∆M(b, c)− 1

2
QM(b, c)

)
, (34)

where

∆M(b, c) =

∫ 1

0

Wε(s)
(
bJfyh + cJfxh

)′
dBWh(s) + c

∫ 1

0

Wε(s)dWε(s) (35)

= b

∫ 1

0

Wε(s)dB`fy (s) + c

(∫ 1

0

Wε(s)dB`fx (s) +Wε(1)Wε

)
,

QM(b, c) =
(
bJfyh + cJfxh

)2 ∫ 1

0

(
Wε(s)−Wε

)2
ds+ c2

∫ 1

0

Wε(s)
2ds (36)

=
(
b2Jfyy + c2(Jfxx − 1) + 2bcJfyx

) (
W 2
ε − (Wε)

2
)

+ c2
(
Wε

)2
,

with W 2
ε =

∫ 1

0
Wε(s)

2ds and Wε =
∫ 1

0
Wε(s)ds.

The proof is provided in Appendix B. The first ways to write ∆M(b, c) and

QM(b, c) make explicit that the likelihood factorizes in a conditional likelihood

given Wε and the marginal likelihood of Wε. Both second ways to write ∆M(b, c)

and QM(b, c) follow from (18)–(19) and (20)–(22). Those are the versions that we

use below to construct our feasible test statistics. Theorem 3.3 also immediately
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yields the semiparametric power envelope, still for fixed c, that we do not present

in detail for brevity.

The restriction to invariant tests removes the nuisance parameter η from the

testing problem. Indeed, the likelihood ratio (34) no longer depends on η. Therefore,

we can formally define the limit experiment restricted to the maximal invariance

M as

EM (f) :=
(

Ω,M,
{
PMb,c : b, c ∈ R

})
. (37)

Again, the likelihood ratios dPMb,c/dPM0,0 can also be interpreted as Girsanov trans-

formations. We state this as a corollary as the result follows immediately from

calculating the bridges corresponding to W`fy
and W`fx

in Theorem 3.3.

Corollary 3.2. Fix f ∈ F. Let, under PM0,0, Zε and Zh be zero-drift Brownian

motions with covariance according to the first and last row and column of (17). The

limit experiment EM (f) can be described as follows: we observe, with BWh(s) =

Wh(s)− sWh(1),
{(
Wε(s), B

Wh(s)
)

: s ∈ [0, 1]
}

with (Wε,Wh) generated by

dWε(s) = cWε(s)ds+ dZε(s), (38)

dWh(s) = (bJfyh + cJfxh)Wε(s)ds+ dZh(s). (39)

The difference between Corollary 3.2 and Theorem 3.1 is twofold. First, besides

the process Wε, the observation in the invariant limit experiment in Corollary 3.2 is

only the Brownian bridge BWh and not the complete Brownian motion Wh. Second,

as a consequence of this, the nuisance parameter η disappeared from (39).

Corollary 3.2 does not provide, as far as we know, a further invariance structure

that can be used to eliminate the nuisance parameter c. As a result, we rely, in

Section 4, on the so-called Approximate Least Favorable Distribution method to

deal with this last nuisance parameter.

We conclude this section by again considering the special case of a Gaussian

innovation density f . This also shows where exactly our power gains, under serially

independent innovations, come from relative to the Gaussian procedures in, for

instance, Jansson and Moreira (2006).

Remark 3.1 (Attainability of the Semiparametric Power Envelope). One may expect

the semiparametric power envelope to be formally attainable by a likelihood-ratio

test constructed using a nonparametric estimate of the score function `f . Intuitively,

the argument is as follows. Rewrite
∫ 1

0
Wε(s)dB`fy (s) =

∫ 1

0

(
Wε(s)−Wε

)
dW`fy

(s).

Hence, even though there is a bias a (at rate
√
T ) in the estimated score function,

this bias will be canceled out automatically since
∫ 1

0

(
Wε(s)−Wε

)
d
(
as+W`fy

(s)
)

=∫ 1

0

(
Wε(s)−Wε

)
dW`fy

(s). The same argument applies to the term
∫ 1

0
Wε(s)dB`fx (s).
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Compare the discussion in Jansson (2008, Section 6) for the unit root testing prob-

lem and Zhou (2020, Section 2) for general LAN, LAMN, and LABF experiments.

Remark 3.2 (Gaussian f). In the situation of Gaussian f , Remark 2.1 and Re-

mark 2.2 imply that B`fy and B`fx are linear combinations of Bε and B⊥ (the

Brownian bridges generated by Wε and W⊥, respectively). As a result, the optimal

invariant procedures are measurable with respect to Wε and B⊥. Using the same

conditional expectation calculation, the associated log-likelihood ratio of the Gaus-

sian σ-field, MGaussian = σ (Wε, B⊥), leads to the Gaussian log-likelihood ratio in

Jansson and Moreira (2006, Lemma 3). As B⊥ is spanned by BWh , the σ-field

MGaussian is also invariant w.r.t η (or f), but it is not maximally invariant. As

a consequence, under non-Gaussianity, this leads to an efficiency loss in statistical

inference.

Note that all existing tests in the literature are (essentially) based on the Gaus-

sian likelihood of the generally non-maximally invariant MGaussian, e.g., Jansson

and Moreira (2006) and Elliott et al. (2015). Therefore, these tests belong to the

class of asymptotically invariant tests. This invariance imposed in the limiting ex-

periment is associated to invariance w.r.t. the innovation density f in the sequence

as η represents local perturbations precisely of f . Indeed, we have the convergence

W
(T )
ε (s) ⇒ Wε(s) and the one associated to W⊥ for all f ∈ F, hence, η will not

enter the associated equation (27) in the limiting experiment. See Müller (2011) for

a more comprehensive analysis of this convergence.

3.4 Rank-based asymptotically invariant statistics

The elimination of the nuisance parameter η is performed in the limit experiment

E (f) and leads to EM (f). We now show how this elimination can be mimicked in

the actual predictive regression model of interest, i.e., in E(T ) (f). It is reasonable

to expect that exploiting the asymptotic invariance structures also works “well” for

the sequence of experiments. The claim will be substantiated by the simulation

results in Section 5.

In line with the vast literature on rank-based inference, the appearance of the

Brownian Bridges B`fx and B`fy in Corollary 3.2, naturally suggests to use statistics

that are based on ranks of the innovations εyt and εxt in the predictive regression

model. Indeed, we will follow that route. However, in the present situation we deal

with bivariate innovations (εyt , ε
x
t ) which complicates the analysis considerably rela-

tive to models with univariate innovations that are mostly studied in the literature.

As the true innovation density f is unknown, we actually base our test statistic
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on an assumed (so-called reference) density g that also satisfies Assumption 1. Let

gy and gx denote the marginal densities for the first, respectively, second component

of g. The bivariate nature of the innovations (εyt , ε
x
t ) implies that we cannot deal

with a completely general reference bivariate density g. Thus, we choose marginal

reference densities gy and gx, and a reference correlation parameter ρg. For the

marginal reference densities, we impose the standard condition in the rank-based

inference literature, see, e.g., Theorem 13.5 in Van der Vaart (2000).

Assumption 2. The marginal reference densities gi, i = {y, x}, are strictly posi-

tive, absolutely continuous with derivative ġi and Jgi :=
∫

(ġi/gi)
2
gi < ∞. More-

over, we have

lim
T→∞

1

T

T∑
t=1

(
− ġi
gi

(
G−1
i

(
t

T + 1

)))2

= Jgi , (40)

where G−1
i is the inverse cumulative distribution function associated to gi.

Moreover, given an additionally chosen reference correlation ρg ∈ (−1, 1), we

define the associated bivariate reference score function

`g(ε
y, εx) :=

(
`gy (εy, εx), `gx(εy, εx)

)′
(41)

where

`gy (εy, εx) = −
(
ġy
gy

(εy)− ρg
ġx
gx

(εx)

)/
(1− ρ2

g),

`gx(εy, εx) = −
(
ġx
gx

(εx)− ρg
ġy
gy

(εy)

)/
(1− ρ2

g).

The linearity of the reference score functions `gy and `gx is key to the analysis

that follows. It implies that, when using component-wise ranks of the innovations

(εy, εx), the resulting rank-based processes converge to a bivariate Brownian bridge.

Despite its seemingly restrictive nature, the linearity allows to fully exploit the in-

variance structures embedded in the predictive regression model of interest, leading

to sizable power gains (see Section 5).

Now, let Ry,t denote the rank of yt (among y1, . . . , yT ), while Rx,t denotes the

rank of ∆xt = xt − xt−1 (among ∆x1, . . . ,∆xT ). Note that the pairs (Ry,t, Rx,t)

equal the (component-wise) ranks of (εyt , ε
x
t ) under β = 0 and γ = 0. We define the

bivariate partial sum process of the rank-based scores by

B
(T )
`g

(s) =
(
B

(T )
`gy

(s), B
(T )
`gx

(s)
)′

:=
1√
T

bsTc∑
t=1

`g

(
G−1
y

(
Ry,t
T + 1

)
, G−1

x

(
Rx,t
T + 1

))
, (42)

for s ∈ [0, 1]. Following the semiparametric literature (see, e.g., Bickel (1982),

Jansson (2008) and Zhou et al. (2019)), we study the limit behavior of B
(T )
`g

for

19



the predictive regression model in Section 2 with fixed, but arbitrary, f ∈ F (i.e.,

η = 0). This, in turn, implies the limit behavior of the rank-based statistic proposed

in Section 4.

First, we establish the limiting behavior of B
(T )
`g

under P
(T )
0,0,0;f for any f ∈ F.

Its proof is organized in Appendix B.

Proposition 3.2. Suppose εt = (εyt , ε
x
t )′ are i.i.d. innovations with density f ∈ F.

Let gy and gx be reference densities that satisfy Assumption 2 and fix the reference

correlation ρg. Then, under P
(T )
0,0,0;f , we have(

W (T )
ε ,W

(T )
`f

, B
(T )
`g

)′
⇒
(
Wε,W`f , B`g

)′
, (43)

where W`f := (W`fy
,W`fx

)′ and B`g is a bivariate Brownian bridge, i.e., B`g (s) :=

W`g (s)− sW`g (1), with W`g a zero-drift Brownian motion. The covariance of W`g

with Wε and W`f is given by

Var


Wε(1)

W`f (1)

W`g (1)

 =


1 e′1 σ′εg

e1 Jf Jfg

σεg Jgf Jg

 , (44)

where

e1 = (0, 1)′,

σεg = (σεgy , σεgx)′ = Ef
[
εxt `g

(
G−1
y (Fy(εyt )), G−1

x (Fx(εxt ))
)]
,

Jfg = J ′gf = Ef

[
`f (εyt , ε

x
t )`g

(
G−1
y (Fy(εyt )), G−1

x (Fx(εxt ))
)′]

,

Jg = Ef

[
`g
(
G−1
y (Fy(εyt )), G−1

x (Fx(εxt ))
)
`g
(
G−1
y (Fy(εyt )), G−1

x (Fx(εxt ))
)′]

.

The above result is classical for univariate rank statistics. In the present paper,

we use component-wise bivariate ranks. One complication is that the matrix Jg

depends on f through its copula. This implies that, like Jg, it will have to be

estimated in applications; see also the discussion of Zhou (2020, Theorem 3.1).

Next, we provide the limit behavior of B
(T )
`g

under the law P
(T )
b,c,0;f , with b ∈ R

and c ∈ (−∞, 0]. A proof is again provided in Appendix B.

Corollary 3.3. Impose the same conditions as in Proposition 3.2. For any f ∈ F,

b ∈ R, and c ∈ (−∞, 0], we have(
W (T )
ε ,W

(T )
`f

, B
(T )
`g

)′
⇒
(
Wε,W`f , B`g

)′
, (45)

under P
(T )
b,c,0;f , where the law of (Wε,W`f , B`g )′ is implied by

dWε(s) = cWε(s)ds+ dZε(s), (46)

dW`f (s) = Jf
(
b, c
)′
Wε(s)ds+ dZ`f (s), (47)

dW`g (s) = Jgf
(
b, c
)′
Wε(s)ds+ dZ`g (s), (48)
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with (Zε, Z`f , Z`g )′ a zero-drift Brownian motion with variance identical to (44).

We use the rank-based processes B
(T )
`g

to replace B`f in the likelihood ratio

in Theorem 3.3; see Section 4.2 for details. In line with Remark 3.1, one could

contemplate to use reference densities f̂ based on a non-parametric estimate of the

true innovation density, but we leave a formal analysis for future work. As we will

see in Section 5, even for incorrectly chosen reference densities (that is, for g 6= f),

our procedure features power gains over existing Gaussian based procedures. These

gains come from the assumption that the error term εt is driven by some i.i.d.

innovations, which may possibly be maintained in empirical work. It is important

to note that choosing a reference density g 6= f does not affect the validity of our

test. The test will be of the appropriate level irrespective of the reference densities

gy and gx chosen (provided they satisfy Assumption 2). But, likelihood ratio tests

based on Theorem 3.3 still feature the nuisance parameter c. We deal with this in

the next section.

Remark 3.3 (Invariance Restriction and Rank Statistics). Consider a reference den-

sity g 6= f as a perturbed version of f with perturbation hg defined by g = f(1+hg).

The expectation of scores based on the reference density g under the true den-

sity f , ξ := Ef [−ġ/g(ε)], is generally not zero. As a consequence, g-based quasi-

likelihood/score inference becomes invalid. When considering local alternatives, i.e.,

g = f
(T )
η (see equation (8)) within our asymptotic framework, we will have ξ = J ′fbη

with Jfb = (Jfyh, Jfxh).

To get valid inference invariant w.r.t. ξ, besides the f̂ -based approach mentioned

in Remark 3.1, one can also consider the use of rank-based statistics. Specifically,

if one replaces the innovations εyt ’s by their rank-based versions as above, i.e., by

G−1
y (Ry,t/(T +1))’s, the average (over all observations) of the associated scores will

be non-random (as each rank simply occurs once) and close to zero (because of

the equally-spaced nature of the ranks). Consequently, an innovation-based partial

sum process will become tied down at s = 1 just as, in the limit experiment, the

Brownian bridge can be seen as a tied down Brownian motion. Note that any

non-zero drift ξ in the partial sum process (as discussed above) will be removed as

well by this transformation. As a result, the inference procedure becomes invariant

with respect to perturbations in the density f . Said differently, the zero-mean (at

s = 1) property of rank-based scores enables us to choose any reference density g

while preserving the validity of the inference procedure. The choice set for g could

also include a nonparametrically estimated density f̂ (see the simulation evidence

in Section 5.3) although a formal analysis is beyond the scope of the present paper.
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4 Eliminating the nuisance parameter γ by ALFD

In the previous section, we have developed the semiparametric power envelope for

tests on b that are invariant with respect to η, under the assumption that c is

known. We now address the question of testing the regression coefficient β in case

γ is treated as a nuisance parameter as well.

As argued in the the discussion following Corollary 3.2, we conjecture that the

nuisance parameter c cannot be dealt with using invariance arguments. Various

alternative methods to deal with nuisance parameters in testing problems have been

used in the literature. In relation to the predictive regression model at hand, we

mention the Bonferroni method (Cavanagh et al. (1995) and Campbell and Yogo

(2006)); tests based on a conditional unbiasedness condition (Jansson and Moreira

(2006)); and tests based on a numerically calculated Approximate Least Favorable

Distribution (ALFD) as more recently proposed in Elliott et al. (2015). All these

techniques apply to the Gaussian likelihood ratio statistic in Remark 3.2.

These approaches have different advantages and disadvantages. Campbell and

Yogo (2006) proposes a modified Bonferroni method to eliminate the nuisance pa-

rameter c, leading to a simple yet more powerful test than the Cavanagh et al.

(1995) test. However, as pointed out by Phillips (2014), inference based on Bonfer-

roni bounds can be severely undersized when the predictor is “far away” from being

a unit root process (γ << 1). In such a case, confidence intervals obtained by invert-

ing the test may end up having essentially zero coverage probability. Jansson and

Moreira (2006) develops an approach conditional on specific auxiliary statistics—

the terms (only) associated with c in the Gaussian likelihood ratio—and derives

an optimal test in the class of conditionally unbiased tests. Nevertheless, such a

conditional unbiasedness constraint narrows the considered class and rules out some

more powerful tests. Consequently, as shown by the simulation results of Jansson

and Moreira (2006), the associated test has relatively low power compared to the

Campbell and Yogo (2006) test under most alternatives.

Recently, Elliott et al. (2015) proposes a numerical algorithm to determine an

ALFD of the nuisance parameter c to optimize weighted average power over some

compact interval (of c). Note that with respect to our parameter of interest b, we

consider point-optimal test and do not use weighted powers over a discretized space

to avoid the induced computational complexities. On one hand, the ALFD yields an

upper bound of the weighted average power for all valid tests. On the other hand,

integrating out the likelihood statistic w.r.t. the ALFD leads to a “nearly optimal”

test whose power is close to the upper bound. Moreover, by switching to standard
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asymptotic approximations in case γ appears to be far from unity, the associated

test can achieve better size and power performances for all c ∈ (−∞, 0] (e.g., across

the parameter space γ ∈ (−1, 1]). Therefore, we employ this ALFD approach in

the present paper, together with the switching mechanism (see Appendix C), to our

rank-based likelihood statistics in (56).7 This leads to tests that are of correct size

for all relevant c and have good power performance. We confirm these properties

by simulations in Section 5.

4.1 The Approximately Least Favorable Distribution (ALFD)

Approach

In Section 3 we used invariance arguments to reduce the predictive regression testing

problem towards log-likelihood ratio of the form (34) where b is the parameter of

interest to be tested and c is a nuisance parameter. We briefly outline, in the present

section, how the Approximate Least Favorable Distribution approach in Elliott et al.

(2015) works in our setting.

Rewrite the log-likelihood ratio of the maximal invariant M in Theorem 3.3 as

LM(b, c) = bS1 + cS2 −
1

2

(
(b, c)Jf (b, c)′ − c2

)
S3 −

1

2
c2S4,

where

S1 =

∫ 1

0

Wε(s)dB`fy (s), S2 =

∫ 1

0

Wε(s)dB`fx (s) +Wε(1)Wε, (49)

S3 = W 2
ε −

(
Wε

)2
and S4 = W 2

ε .

One can thus consider the four-dimensional sufficient statistic S := (S1, S2, S3, S4).

For notational simplicity, in the present section, we denote by Fb,c(S) the distribu-

tion of S under Pb,c. The hypothesis of interest is

H0 : b = 0, c ∈ (−∞, 0] versus H1 : b > 0, c ∈ (−∞, 0]. (50)

Note that, thus, both the null and the alternative hypothesis are composite. We

first discuss elimination of the nuisance parameter c under the alternative and,

subsequently, its elimination under the null.

7 We expect that other approaches based on likelihood ratios, e.g., the approaches of Campbell and

Yogo (2006) and Jansson and Moreira (2006), will apply here as well. This is because (i) the

semiparametric likelihood ratio LM(b, c) in Theorem 3.3 is as the general version of the Gaussian

likelihood ratio in Jansson and Moreira (2006, Lemma 3), thus when the true density is Gaussian,

the former reduces to the latter; (ii) its rank-based proxy in (56) has the same structure (exponential

family); and (iii) the asymptotic behaviors of the associated rank-based processes are known and

consistently estimable.
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To eliminate the nuisance parameter c under the alternative, a standard ap-

proach is to consider a so-called weighted average power (see, e.g., Andrews and

Ploberger (1994))

WAP(ϕ) =

∫
c

(∫
S

ϕ(S)dFb,c(S)

)
dΛ1(c), (51)

where ϕ is some test function for the problem above and Λ1 is a probability weighting

measure for c ∈ (−∞, 0]. The weighting measure Λ1 can be chosen by the researcher

and reflects the weights that she assigns to various values of c under the alternative.

Due to Fubini’s Theorem, we have

WAP(ϕ) =

∫
S

ϕ(S)d

∫
c

Fb,c(S)dΛ1(c), (52)

which leads to the simple alternative hypothesis H1;Λ1
, under which the distribution

of S is given by the mixture Fb;Λ1
(S) =

∫
Fb,c(S)dΛ1(c). In this way, the testing

problem is reduced to testing H0 against H1;Λ1
.

Subsequently, in order to eliminate the nuisance parameter c under the null we

proceed as follows. Again we impose a probability weighting measure Λ0 for c and

introduce the simple null hypothesis, denoted H0;Λ0
, under which the distribution

of S is given by Fb;Λ0
(S) =

∫
Fb,c(S)dΛ0(c). Now we define the test ϕb̄;Λ by

ϕb̄,Λ0
(S) =

 1 if dFb̄,Λ1
(S) > κdF0,Λ0

(S),

0 if dFb̄,Λ1
(S) ≤ κdF0,Λ0(S),

(53)

where the critical value κ is chosen to obtain the desired size. By the Neyman-

Pearson Lemma, ϕb̄,Λ0
is point optimal at b = b̄, for the problem of testing the null

H0;Λ0 against the alternative H1;Λ1 .

The problem of choosing Λ0 is, unfortunately, more complicated than that of

choosing Λ1. The reason is that we want to control the rejection probability of the

test, not only under H0;Λ0
, but for all values of c ∈ (−∞, 0]. In general there is no

reason to expect that a level-α test under H0;Λ0 is of correct size for the entire null

hypothesis H0. However, for some specific choices of Λ0 this statement is true, and

such a distribution is called a least-favorable distribution; see, e.g., Lehmann and

Romano (2006), Theorem 3.8.1. Formally, a distribution Λ∗0 is called least favorable

if the most powerful level-α test (53) for testing H0;Λ∗
0

against H1;Λ1 is of the desired

size for the (entire) null hypothesis H0. Moreover, once more by Theorem 3.8.1 in

Lehmann and Romano (2006), the test ϕb̄,Λ∗
0

is also point optimal (at b = b̄) for this

problem. A least-favorable distribution Λ∗0 exists in most of the usual statistical

problems. conditions that ensure this and associated references can be found in

Section 3.8 of Lehmann and Romano (2006).

24



As, in most cases, the least-favorable distribution Λ∗0 is not easily obtained,

Elliott et al. (2015) propose a numerical method to find, what they call, an “Ap-

proximate Least Favorable Distribution” (ALFD). The ALFD is defined as follows.

Definition 1. An ε-ALFD is a probability distribution Λ∗ε0 over (−∞, 0] satisfying

(i) the Neyman-Pearson test (53) with Λ = Λ∗ε0 and critical value κ = κ∗, i.e.,

ϕb̄,Λ∗ε
0

, is of size α under H0;Λ∗ε
0

and has power π̄ against H1;Λ1 ;

(ii) there exists κ∗ε such that the test (53) with Λ = Λ∗ε0 and κ = κ∗ε, ϕε
b̄,Λ∗ε

0
, is of

level α under H0, and has power of at least π̄ − ε against H1;Λ1
.

The test ϕε
b̄,Λ∗ε

0
(in particular, the ALFD Λ∗ε0 and the critical value κ∗ε) is ex-

actly what we are looking for, once we have set the weights Λ1 of interest for the

alternative hypothesis. Besides the size control under H0, the definition above also

ensures that the test ϕε
b̄,Λ∗ε

0
enjoys a near-optimality property with a relatively small

power loss (less than ε).

Note that even for a given (small) value of ε, the ALFD Λ∗ε0 is not necessarily

“close” to the least favorable distribution Λ∗0. Actually, (possibly infinitely) many

pairs of (Λ∗ε0 , κ
∗ε) may satisfy Definition 1. The details about how to implement the

numerical algorithm to determine a pair of (Λ∗ε0 , κ
∗ε) (henceforth the test ϕb̄,Λ∗ε

0
)

for a small ε can be found in Section 3 and Appendix A of Elliott et al. (2015). As

the nuisance parameter space c ∈ (−∞, 0] is unbounded, we also need to “switch”

back to standard test statistics (i.e., in the stationary case) for large values of |c|.

We provide in Appendix C the details about our test for the standard part of the

limit experiment E (f).

4.2 Putting it all together

Putting everything together, our test for the predictive regression model is based on

applying the ALFD approach to the rank-based counterpart (using Proposition 3.2)

of the asymptotically point-optimal invariant derived in Theorem 3.3.

We thus replace, in the sufficient statistic S = (S1, S2, S3, S4) in (49), Wε, B`fy ,

and B`fx by W
(T )
ε , B

(T )
`gy

, and B
(T )
`gx

, leading to the feasible rank-based statistic

S(T )
g :=

(
S

(T )
g,1 , S

(T )
g,2 , S

(T )
g,3 , S

(T )
g,4

)
, (54)
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where

S
(T )
g,1 =

∫ 1

0

W (T )
ε (s)dB

(T )
`gy

(s),

S
(T )
g,2 =

∫ 1

0

W (T )
ε (s)dB

(T )
`gx

(s) +W (T )
ε (1)

∫ 1

0

W (T )
ε (s)ds,

S
(T )
g,3 =

∫ 1

0

W (T )
ε (s)2ds−

(∫ 1

0

W (T )
ε (s)ds

)2

,

S
(T )
g,4 =

∫ 1

0

W (T )
ε (s)2ds.

To make the log-likelihood ratio LM in (34) fully feasible, we also have to deal with

Jf . From Kagan and Landsman (1999) we know that Jf is diagonalized by the

Cholesky root of the correlation matrix Rg. Therefore, we replace Jf by

Jp =

Jpyy Jpyx

Jpyx Jpxx

 := R
− 1

2
g

′
diag{Jgy , Jgx}R

− 1
2

g , (55)

where Jgy and Jgx are the Fisher information of the chosen marginal reference den-

sities defined in Assumption 2, and Rg is the correlation matrix based on the chosen

reference correlation ρg, i.e., Rg :=
(

1 ρg
ρg 1

)
. We recommend to use a consistent

estimate of ρ as ρg regarding the power of the test, although any choice of ρg would

lead to correct sizes. This leads to our feasible rank-based log-likelihood statistic

L(T )
g (b̄, c) := b̄S

(T )
g,1 + cS

(T )
g,2 −

1

2

(
(b̄, c)Jp(b̄, c)

′ − c2
)
S

(T )
g,3 −

1

2
c2S

(T )
g,4 , (56)

where b̄ serves as a (chosen) fixed alternative point for the quasi-likelihood statistic

(see, e.g., Elliott et al. (1996)). The nuisance parameter c will be removed by the

ALFD approach, which is the reason that we do not need to similarly introduce a

fixed alternative c̄ for it. We provide the limit behavior of L(T )
g (b̄, c) in the following

proposition.

Proposition 4.1. Suppose εt = (εyt , ε
x
t )′ are i.i.d. innovations with density f ∈ F.

Let gy and gx be reference densities that satisfy Assumption 2 and fix the reference

correlation ρg. Then, for b̄ ∈ R, b ∈ R and c ∈ (−∞, 0], under P
(T )
b,c,0;f , we have

L(T )
g (b̄, c)⇒ Lg(b̄, c),

where

Lg(b̄, c) := b̄Sg,1 + cSg,2 −
1

2

(
(b̄, c)Jp(b̄, c)

′ − c2
)
Sg,3 −

1

2
c2Sg,4 (57)

with

Sg,1 =

∫ 1

0

Wε(s)dB`gy (s), Sg,2 =

∫ 1

0

Wε(s)dB`gx (s) +Wε(1)Wε,

Sg,3 = W 2
ε −

(
Wε

)2
and Sg,4 = W 2

ε ,

where the behavior of Wε and W`g is given in (46) and (48), respectively.
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We omit the proof of Proposition 4.1 since it directly follows from the weak

convergence in Corollary 3.3, the continuous mapping theorem, and the rank-based

stochastic integral convergence result in the proof of Zhou et al. (2019, Lemma

4.1). This proposition guarantees the validity of our test under the null b = 0,

c ∈ (−∞, 0]. Together with Corollary 3.3 it also establishes the power under local

alternatives with b > 0.

Although not explicit in the above, observe that the statistic L(T )
g in (56) still

depends on σx through W
(T )
ε defined in (12). We will simply replace σx by its

sample counterpart below. As long as this estimator is consistent, the continuous

mapping theorem shows that this replacement has no asymptotic consequences. The

statistic does not depend on σy, but it does depends on the reference correlation ρg.

Now, applying the ALFD algorithm to L(T )
g (b̄, c), we obtain a distribution Λ∗ε0,g

and critical value κg,n such that the test

ϕg,n(S(T )
g , ρg) =

 1 if
∫
L(T )
g (b̄, c)dΛ1(c) > κg,n

∫
L(T )
g (0, c)dΛ∗ε0,g(c)

0 if
∫
L(T )
g (b̄, c)dΛ1(c) < κg,n

∫
L(T )
g (0, c)dΛ∗ε0,g(c)

(58)

is of size α.

In order to get the appropriate critical values of the test, note that we need

consistent estimates, under the null, of Jg and Jfg.
8 We need these in order to

ensures the feasibility of the numerically determined pair (Λ∗ε0 , κ
∗ε). In applications

Jg and Jfg can easily be estimated, however, in the Monte Carlo study below we

estimate Jg and Jfg based on the known. This is necessary as we cannot afford to

determine a pair (Λ∗ε0 , κ
∗ε) for each repetition in the simulation. That would be too

intensive computationally.

5 A Monte Carlo Study

In this section, we explore by Monte Carlo the size and power properties of our

test (58), combined with the switching approach detailed in Appendix C, (labeled

WZ) relative to the Gaussian quasi-likelihood counterpart in Elliott et al. (2015)

(labeled EMW). From the theoretical results, both tests should enjoy good size

properties but the WZ test should exhibit larger power in case the true innovation

8 A simple consistent estimator for Jg would be the sample covariance of the rank-based scores `g

defined in (41) and a direct rank-based estimator for Jfg can be found in Cassart et al. (2010). It

is worth noting that the consistency automatically also holds under local alternatives due to Le

Cam’s third lemma.
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distribution is not Gaussian. Under Gaussian innovation distribution, both tests

should have similar power.

Section 5.1 provides simulations under the predictive regression model studied

formally in this paper. Section 5.2 provides results of our test under conditional

heteroskedasticity. Finally, Section 5.3 provides results when the reference density

used in the test is estimated.

5.1 Simulations under maintained i.i.d. assumption

We simulate the model (1)–(2) with µ = 2, σy = 3, σx = 3, and ρ = −0.5. All

results reported in this section are based on 10,000 replications.

For the ALFD approach in Elliott et al. (2015), we choose a discrete weighting

distribution Λ1 in (51) where each of the chosen 57 points

c ∈ {0,−0.252,−0.52, . . . ,−142}

of the support have equal weight. The same 57 points are also as the support of

Λ∗ε0 . For the test statistic in (58), we choose a fixed alternative b̄ = B(1.645) where

the power is about 50%. For the reference correlation ρg, we use the simple sample

correlation of ε̂yt and ε̂xt under the null, where ε̂yt = yt−
∑T
t=1 yt and ε̂xt is the residual

of the regression of xt on xt−1.

We present the power curves in two ways. The first presentation follows Elliott

et al. (2015). Specifically, for the data generating process, we let the local nuisance

parameter c (which governs the persistence of the predictor) take 21 values c ∈

{0,−10,−20, . . . ,−200}. And to have roughly similar power for each value of c, we

transform the parameter b by

b = B(δ) := δ

√
−2c+ 6

1− ρ2
, for c < 0. (59)

Alternatives for β are now characterized by different values of δ. The null hypothesis

H0 corresponds to δ = 0, and we let the parameter of interest b take three alterna-

tives: δ ∈ {1, 2, 3}. Secondly, we present power curves where we fix the nuisance

parameter c = −25 and plot the rejection rates for δ ∈ [0, 6]. The significance level

α is chosen to be 5% in all cases.

In Figure 1, we reports the large-sample (T = 2, 000) size and power properties

of our rank-based WZ test and the EMW test, for different combinations of the true

density f and the marginal reference densities gy and gx. The upper-left subplot

reports the case where f is a multivariate t3 density, while gy and gx are both

univariate t3 densities. Both the EMW test and the WZ test are of correct size

for all chosen values of c. Under the alternative hypothesis (i.e., for δ ∈ {1, 2, 3}),
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Figure 1: Rejection rates of the WZ test (solid lines) and the EMW test (dashed lines)

for different values of δ = 0, 1, 2, and 3, corresponding to lines in blue, green, brown,

and red, respectively. For all the four cases, the correlation is −0.5. The sample size is

2,000.

the WZ test is more powerful than the EMW test. Taking the alternative δ = 2 as

example, for most values of c, the power of the EMW test is about 65% while the

WZ test attains about 90% power. In the upper-right subplot, we keep f unchanged

and let gy and gx both be Gaussian. Both tests provide correct size and, again, the

WZ test is more powerful than the EMW test. However, compared to the upper-

left subplot, we observe that the WZ test suffers a small power loss when choosing

reference densities that are further away from the true ones. When f is Gaussian,

the WZ test with Gaussian marginal reference densities shares almost the same size

and power performances as the EMW test, as shown by the bottom-left subplot.

The bottom-right subplot presents the case when f is Gaussian, while the marginal

reference densities gy and gx are univariate t3. In this case, the WZ test is less
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Figure 2: Rejection rates of the WZ test (solid lines) and the EMW test (dashed lines)

for different values of δ = 0, 1, 2, and 3, corresponding to lines in blue, green, brown,

and red, respectively. For all the four cases, the correlation is −0.5. The sample size is

200.

powerful than the EMW test. In practice, we may want to avoid this power loss by

pre-testing the residuals under the null hypothesis. We study this in Section 5.3.

Actually, one can always use Gaussian reference densities as a conservative

choice, which is based on a (numerical) Chernoff and Savage (1958) result — keep-

ing the marginal reference densities gy and gx Gaussian, the WZ test is always

more powerful than the EMW test when f is non-Gaussian, and it works as well

as the EMW test when f is Gaussian. A formal proof of this result in LABF-type

experiments is still an open question, but we show that this property holds in some

more simulations. In Figure 5, we fix gy and gx to be Gaussian, and choose four

different multivariate innovation distributions: (i) Gaussian copula with Laplace

marginal distributions (top-left, labeled Multi-Laplace); (ii) Multivariate Pearson
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Figure 3: Rejection rates of the WZ test (solid lines) and the EMW test (dashed lines)

for fixed value of c = −25 and different values of δ ∈ [0, 6]. For all the four cases, the

correlation is −0.5. The sample size is 2,000.

distribution with skewness 3 and kurtosis 36 (top-right, labeled Multi-Pearson);

(iii) Gaussian copula with t3 distribution for the first dimension and Gaussian dis-

tribution for the second dimension (bottom-left, labeled Multi-combo1); and (iv)

t3 copula with Gaussian for the first dimension and t3 for the second dimension

(bottom-right, labeled Multi-combo2). These simulations support the Chernoff-

Savage result and also show that the further away the true distribution is from

Gaussian, the more power can be gained by the WZ test. Moreover, case (iv) in

the bottom-right subplot shows that actually the power we gain by the WZ test

is from the innovation of the first dimension, εyt . When the distribution of εyt is

Gaussian, we do as well as the EMW test. We conjecture that inference for β in the

predictive regression model (1)-(2) is adaptive with respect to the marginal density

of εxt , when γ is eliminated by the ALFD approach in Elliott et al. (2015).
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Figure 4: Rejection rates of the WZ test (solid lines) and the EMW test (dashed lines)

for fixed value of c = −25 and different values of δ ∈ [0, 6]. For all the four cases, the

correlation is −0.5. The sample size is 2,000.

In Figure 3 and Figure 4, we present the powers of the WZ test and the EMW

test (for fixed c = −15 and for δ ∈ [0, 6]) under the same settings as in Figure 1

and Figure 2, respectively. The results show the power gain of the WZ test over the

EMW test for all alternative values of c.

We also provide some small-sample (T = 200) results for both tests in Figure 2

and Figure 6 (the small-sample counterparts of Figure 1 and Figure 5, respectively).

The conclusions are similar: both tests are of good size (all around 4.5%) using the

same combinations of Λ∗ε0 and κg. The WZ test still gains considerable power

in the case of non-Gaussian densities, though the gain is slightly smaller than in

the large-sample case. This once more shows the additional information present,

when supported by the application at hand, of an i.i.d.-ness assumption on the

innovations. Appendix D provides additional simulation results in Figure D.1 and

32



0 50 100 150 200

-c

0

0.2

0.4

0.6

0.8

1
re

je
ct

io
n 

ra
te

s
f = Multi-laplace, g

y
 = g

x
 = Gaussian

0 50 100 150 200

-c

0

0.2

0.4

0.6

0.8

1

re
je

ct
io

n 
ra

te
s

f = Multi-pearson, g
y
 = g

x
 = Gaussian

0 50 100 150 200

-c

0

0.2

0.4

0.6

0.8

1

re
je

ct
io

n 
ra

te
s

f = Multi-combo1, g
y
 = g

x
 = Gaussian

0 50 100 150 200

-c

0

0.2

0.4

0.6

0.8

1

re
je

ct
io

n 
ra

te
s

f = Multi-combo2, g
y
 = g

x
 = Gaussian

Figure 5: Rejection rates of the WZ test (solid lines) and the EMW test (dashed lines)

for different values of δ = 0, 1, 2, and 3, corresponding to lines in blue, green, brown,

and red, respectively. For all the four cases, ρ = −0.5 and T = 2, 000.

Figure D.2 for Figure 5 and Figure 6 using c = −15 and δ ∈ [0, 6], respectively.

Finally, we repeat the simulations of Figure 1 and Figure 2, but for ρ = −0.9, in

Figure D.3 and Figure D.4 respectively in Appendix D. These simulations confirm

our previous conclusions about the WZ test: correct sizes, power gain under non-

Gaussian f , the Chernoff-Savage result, and decent small-sample performances.

5.2 Simulations under conditional heteroskedasticity

In many (financial) applications the maintained assumption of i.i.d. innovations will

not be satisfied. We therefore study, by simulation, the behavior of the tests when

the innovations exhibit conditional heteroskedasticity. The tests are identical to

those in the previous sections, thus not adapted to deal with possible heteroskedas-

ticity.
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Figure 6: Rejection rates of the WZ test (solid lines) and the EMW test (dashed lines)

for different values of δ = 0, 1, 2, and 3, corresponding to lines in blue, green, brown,

and red, respectively. For all the four cases, ρ = −0.5 and T = 200.

Keeping everything else unchanged, we replace the i.i.d. innovations (εyt , ε
x
t )′, by

a univariate GARCH(1,1) model (i) for εyt only; or (ii) for both εyt and εxt in the

data generating process. Formally, we choose

εyt =
√

1− ρ2ε1,t + ρε2,t,

εxt = ε2,t,

where, for case (ii), ε1,t and ε2,t are independently generated by the GARCH(1,1)

model

εj,t = νj,t
√
hj,t,

hj,t = 1 + 0.07εj,t−1 + 0.92hj,t−1,

for j = 1, 2, where νj,t’s are i.i.d. innovations. For case (i), we let ε2,t be i.i.d. and
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independent of ε1,t. The joint density of ν1,t and ν2,t is denoted by f . The GARCH

parameters are chosen based on common empirical findings.
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Figure 7: Rejection rates of the WZ test (solid lines) and the EMW test (dashed lines)

for different values of δ = 0, 1, 2, and 3, corresponding to lines in blue, green, brown,

and red, respectively, under heteroskedasticity. For all the four cases, T = 2, 000.

In Figure 7, we present case (i) where only the innovations of the response

variable, εy, exhibit conditional heteroskedasticity, while the predictor innovations
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Figure 8: Rejection rates of the WZ test (solid lines) and the EMW test (dashed lines)

for different values of δ = 0, 1, 2, and 3, corresponding to lines in blue, green, brown,

and red, respectively, under heteroskedasticity. For all the four cases, T = 2, 000.

εx are still i.i.d. We show results for three density combinations as mentioned in

the title of each subplot and three different values for the correlation of innovations

(ρ = −0.1, −0.5, and −0.9). In all nine cases, we find that both the EMW and

WZ tests still have decent sizes, i.e., heteroskedasticity appearing only in εy will not
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affect their size performances much. In terms of power, the WZ test outperforms

the EMW test under the t3 distribution, and both tests have similar powers under

Gaussianity. In addition, when εy is exhibits more heteroskedasticity (i.e., when

ρ is close to 0), the WZ test gains more power as heteroskedasticity pushes the

unconditional innovation distribution further away from Gaussianity.

Figure 8 presents the results for case (ii) where both innovations, εy and εx,

are heteroskedastic and correlated as modeled above. When ρ is close to zero, the

size distortion becomes smaller, while for larger (absolute) values of ρ, both tests

become more oversized, especially under heavy-tailed innovation distribution. The

WZ test suffers less size distortion than the EMW test under t3 distributions and,

using t3 reference marginal densities, the size distortion bcomes even smaller (see

the bottom panel).

The small-sample counterparts of Figure 7 and Figure 8 with T = 200 are pro-

vided in Appendix D. We draw conclusions similar to the i.i.d. case in Section 5.1.

Additionally, we find that, when both εy and εx are heteroskedastic and their cor-

relation is close to −1, both the EMW and WZ tests are less over-sized in the

small-sample case.

These conclusions above also apply to other GARCH settings with different value

chosen for parameters. These simulation results are available upon request.

5.3 Simulations under estimated reference density

In this section, we provide simulation results for the WZ test based on nonpara-

metrically estimated reference densities, i.e., gy = f̂y and gx = f̂x, under the i.i.d.

setting as in Section 5.1.

In Figure 9, we compare the WZ test with gy = f̂y and gx = f̂x (dotted lines)

with the EMW test (dashed lines) and with as the WZ test using correctly specified

reference marginal densities (solid lines). When both the true and the reference

densities are Gaussian (right plot), we see that all three tests perform similarly

with decent size and power properties. When the true innovation distribution is

Student-t3, all three tests control the sizes well, while in terms of power, both

WZ tests outperform the Gaussian-based EMW test. The WZ test with estimated

reference densities suffers a small efficiency loss due to the nonparametric estimation.

Figure 10 provides the small-sample results under the same setting but with

sample size T = 200. In general, the smaller sample leads to lower size and power

for the WZ test with estimated reference densities relative to the large-sample case.

But again, when f is heavy-tailed, it can be more powerful than the EMW test.
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Figure 9: Rejection rates of the WZ test (solid lines), the EMW test with Student-t3

marginal reference densities (dashed lines), and the EMW test with nonparametrically

estimated density f̂ (dotted lines) for different values of δ = 0, 1, 2, and 3, corresponding

to lines in blue, green, brown, and red, respectively. For all the four cases, T = 2, 000.
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Figure 10: Rejection rates of the WZ test (solid lines), the EMW test with Student-t3

marginal reference densities (dashed lines), and the EMW test with nonparametrically

estimated density f̂ (dotted lines) for different values of δ = 0, 1, 2, and 3, corresponding

to lines in blue, green, brown, and red, respectively. For all the four cases, T = 200.

6 Conclusion

In this paper, we show that there is significant statistical information, when sup-

ported by the application at hand, in a maintained assumption of serially indepen-
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dent innovations in a predictive regression model. We exploit this information by

deriving the (maximal) invariance structures in the associated limit experiment.

Specifically, we first derive the maximal invariant in the (structural) limit exper-

iment where the predictor’s persistence parameter is assumed to be known. This

leads to the semiparametric power envelope for test that are invariant with respect

to the innovation density. The associated likelihood ratio thus gives the semipara-

metric counterparts of the Gaussian sufficient statistics of Jansson and Moreira

(2006). Under non-Gaussianity, larger powers are possible than under Gaussianity;

a well-known result in many classical statistical models. To eliminate the predictor’s

persistence nuisance parameter, we employ the ALFD approach recently proposed

in Elliott et al. (2015).

Our analysis naturally leads to statistics based on the bivariate component-wise

ranks of the innovations in the model. Our statistics involve a choice of reference

densities that is, subject to some mild regularity conditions, largely arbitrary. Ir-

respective of the choice of reference densities, our test, for any (fixed) innovation

density allowed, has correct asymptotic size. Under non-Gaussianity, even with in-

correctly specified reference densities, our test have better power properties than

existing tests in the literature that are derived under the assumption of Gaussian

innovation densities. These alternative tests do not need serially independent in-

novations and, as a result, we precisely quantify the power improvements possible

when such an assumption is supported by the data. Monte Carlo simulations cor-

roborate our asymptotic results and illustrate that the rank-based tests also work

well in smaller samples.
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