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1 Introduction

Einstein’s general relativity (GR) is the most widely studied theory of gravity, and its

predictions have been tested to very high precision in the infrared (IR) regime, i.e. at large

distances and late times [1]. Despite passing these tests, there are unsolved conceptual

problems which indicate that Einstein’s GR is merely an effective field theory of gravita-

tion: it works very well at low energy but breaks down in the ultraviolet (UV). Indeed

at the classical level the Einstein-Hilbert Lagrangian,
√
−gR, suffers from the presence

of blackhole and cosmological singularities [2] (implying problems in the short-distance

regime), while at the quantum level it is non-renormalisable from a perturbative point of

view (implying problems in the high-energy regime) [3, 4]. Therefore there is a consensus

that ultimately GR will need to be extended.

One possible extension of GR is to add terms that are quadratic in curvature, such

as R2 and RµνRµν . The resulting actions are power counting renormalisable as shown in

ref. [5]. However they are still non-physical because of the presence of a massive spin-

2 ghost degree of freedom which classically causes Hamiltonian instabilities, and which

quantum mechanically breaks the unitarity condition of the S-matrix.

The appearance of ghost modes is related to the presence of higher order time deriva-

tives in the field equations [6]. However it is known that these unwelcome degrees of

freedom can be avoided in higher derivative theories if the order of the derivatives is not

finite but infinite. By introducing certain non-polynomial differential operators into the

action, for example e�/M
2

with M being a new fundamental scale, one can prevent the

appearance of extra poles in the physical spectrum [7–11], because the presence of non-

polynomial derivatives makes the action nonlocal. In fact such nonlocal models were the

subject of very early studies, in which it was noted that they can improve the UV behavior

of loop integrals (see refs. [12–18]).

This promising property motivated deeper exploration of these nonlocal or so-called

infinite derivative field theories. The first relevant applications in the gravitational context
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were made in refs. [19–23] which demonstrated the possibility of constructing a quadratic

curvature theory of gravity that is classically stable and unitary at the quantum level.

It has also been noted that nonlocality can regularise infinities, and many efforts have

been made to resolve black hole [20, 21, 24–36, 67] and cosmological [19, 37–39] singulari-

ties. Furthermore, renormalisability [40–43], causality [44, 45], unitarity [46–50], scattering

amplitudes [51–53], spontaneous breaking of symmetry [54, 55] and counting of initial con-

ditions [56, 57] have also been discussed and analysed. Further applications appear in the

context of inflation [58–63], thermal field theory [64–66], Galilean theories [69], Casimir

effect [70] and neutrino oscillation in curved space [71].

In the present work we are motivated by this kind of nonlocal field theory as an

approximation to string theory. Indeed nonlocal theories have made an appearance in

the context of both string field theory [72–75] and p-adic strings [76–80]. Focussing on

this particular aspect, one may first ask what is the best language in which to formulate

the nonlocal field theory approximation to a particular string theory? In [81, 82] it was

suggested that one should most naturally be working within the worldline formalism [83–

87]. Indeed the immediate outcome of discarding the higher modes of a first-quantised

string theory in order to get a particle approximation is precisely a worldline theory with

corrections that render it nonlocal at the fundamental scale [82].

What particular nonlocal field theories might be legitimate particle approximations to

string theory? There are actually two factors in a string amplitude that can be responsible

for its good UV behaviour and that one might wish to imitate in a nonlocal theory: the

partition function, and the world-sheet Green’s function. Which one is dominant depends

on the kinematics. The partition function governs the regularisation when the external

momenta are low but the corresponding particle diagram would be UV divergent. For

example the effective potential of non-supersymmetric (but non-tachyonic) string theories is

necessarily rendered finite by the partition function. Such regularisation has been mimicked

in particle theories by so-called “minimal length” theories [88]. On the other hand when

the external momenta (or rather their kinematic invariants) are very large compared to

the string scale it is the world-sheet Green’s functions that soften the amplitudes. Their

short distance behaviour is known exponentially to suppress string amplitudes even at tree

level [89, 90].

In the case of closed strings at loop-order, modular invariance can be identified as

the key element that is operating in both cases. This symmetry governs both the par-

tition function and the Green’s function. In the case of the former, modular invariance

induces duality symmetries in the space-time, whose effect can be modelled by making the

aforementioned “minimal-length” adjustment to the partition function [88]. Here we will

instead focus on modelling the softening behaviour of the Green’s function.

In ref. [81] it was suggested that theories with worldline inversion symmetry are the

best way to mimick the regularising properties of modular invariance. To see why, we can

begin by considering a generic two-point one-loop integral in string theory. In the “particle

limit” (i.e. τ2 � 1) it will collapse to the following heuristic form (see [82]):

A ∼
∫ 1

0
dxdy

∫ 1

0
dτ1

∫ ∞
∼1

dτ2
τ22
Z(τ) e−sx(1−x)πα

′τ2+... , (1.1)
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where τ = τ1 + iτ2 is the modular parameter, and z = x+ iy is the displacement between

the two vertices. In the above the exponent is what is left of the Green’s function at large

τ2, while s = k1 · k2 is the kinematic invariant.1 We will ignore the accompanying pre-

factors because these would be the same as in the effective particle theory. In this large

τ2 region of the fundamental domain the y and τ1 integrals become “inert” with the latter

simply enforcing the level-matching of the physical spectrum. The whole integral is then

“projected” to a worldline integral over x (the usual Feynman parameter) and πα′τ2 ≡ t

(the usual Schwinger parameter). In other words the particle limit yields a result directly

in the worldline formalism,

A ∼
∑

i=physical

∫ 1

0
dx

∫ ∞
∼α′

dt

t
e−(sx(1−x)+m

2
i )t+... , (1.2)

where the m2
i term in the exponent drops out of the partition function Z(τ) and where√

α′ is the string-length.

This encapsulates the effective particle theory contribution to the string amplitude.

But note that invariance of the whole amplitude under the τ → −1/τ modular transfor-

mation means that one could equally write the integral in the domain where it approaches

the cusp at τ → 0:

A ∼
∑

i=physical

∫ 1

0
dy

∫ ∼α′

0

dt

t
e−(sy(1−y)+m

2
i )

1
M4t

+... , (1.3)

where we define M2 = 1/πα′. In this limit it is y rather than x that drops out of the

worldsheet Green’s function to end up playing the role of the Feynman parameter. But

since the other variable is inert, the integral as t→ 0 — which is a copy of (1.2) — can just

as well be interpreted as continuing the t-integral into the deep UV, but with t→ 1/(M4t).

In [81] this was used to argued that one can capture the behaviour of the entire amplitude

by writing a nonlocal theory with t replaced by T (t) = t+ 1/M4t and integrating over all

t. This approximation reproduces the asymptotic behaviour at the IR and UV cusps. It

is reminiscent of string theory in the sense that the deep UV is identified as just another

IR, with the difference being that in the full string theory there are an infinite number

of fundamental domains not just two. In summary the gross UV/IR mixing behaviour

of strings (and modular invariance) can be mimicked in the particle context by suitably

modifying the Klein-Gordon propagator so that it exhibits a worldline inversion symmetry,

t→ 1/(M4t) .

In this paper we will explore such string theory inspired nonlocal field theories in the

gravitational context. Our aim is to formulate a gravitational theory whose propagator

around Minkowski space exhibits the above worldline inversion symmetry, and to inves-

tigate some of its consquences. This is possible despite the technicalities of writing the

higher spin components of the theory in the worldline formalism [86]. The only price to

pay is the introduction of nonlocality.

1Having the correct conformal weight for the vertices requires k2
1 = k2

2 = 0 and being on shell would

imply s = 0, so we are implicitly employing the usual trick of slightly violating Lorentz invariance to retain

explicit dependence on s.
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The paper is organized as follows. In section 2 we briefly review how to introduce the

worldline inversion symmetry at the level of the propagator for a simple scalar field, and

also show its regularising properties. In section 3 we formulate a theory of gravity with

worldline inversion symmetry built in and show that such an imposition automatically

requires that the Lagrangian has to be infinite order in derivatives (i.e. nonlocal) but still

ghost-free. In section 4, we solve the linearised field equations in the presence of a static

point-like source and explicitly show how spacetime singularities can be avoided due to

the presence of nonlocality. Finally, in section 5 we draw our conclusions and discuss the

outlook.

Throughout the paper we adopt the mostly positive convention for metric signature,

(−+ ++), and we work in Natural Units ~ = 1 = c.

2 Scalar propagator and worldline inversion symmetry

We begin in this section by recapping and extending the scalar field Euclidean propagator,

which can be defined in a general way in momentum space as an integral over a single real

worldline parameter t as follows [81]:

Π(p2) =

∫ ∞
0

dte−T (t)(p
2+m2) . (2.1)

The proper-time function T (t) uniquely defines the propagator in momentum space. We

can immediately see that T (t) = t gives the standard Schwinger parametrization for the

Klein-Gordon propagator 1/(p2 +m2) .

The parameter t has dimensions of length-squared, and therefore modified propagators

can only be characterised by a non-trivial T (t) at the expense of adding a new fundamental

scale. For instance, the exponential propagator that appears in string theory [74, 75] and

infinite derivative theories [11, 19–21] can be recovered as

T (t) = t+
1

M2
⇒ Π(p2) =

e−(p
2+m2)/M2

p2 +m2
. (2.2)

Note that any modification must have a consistent IR limit, which means that the proper-

time must satisfy

lim
t→∞

T (t)

t
= 1 . (2.3)

In addition we require the propagator to be ghost-free, i.e. we require that no negative

norm states are present. A sufficient condition for this was found in ref. [81]:

Re {T (t)} > 0 ∀t > 0 and tT (t−1) is entire . (2.4)

Following ref. [81] and the introduction, we can mimick the inversion Möbius transformation

of the modular group by imposing inversion symmetry at the level of the proper-time

function:

t → 1

M4t
, (2.5)
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where M is the fundamental scale required for dimensionality. It is straightforward to

prove that the only proper-time function satisfying both (2.3) and the ghost-freeness con-

dition (2.4), that is also invariant under (2.5), is

T (t) = t+
1

M′ 2
+

1

M4t
, (2.6)

where M′ is a second constant parameter with dimensions of mass. We henceforth set

M′ →∞ , so that all information on new physics is encapsulated in a single fundamental

scale M.

We are now able to compute the corresponding the scalar propagator by plugging the

expression (2.6) (with 1/M′2 = 0) into (2.1) to find [81]:

Π(p2) =
2

M2
K1

(
2(p2 +m2)

M2

)
≡ 1

f(p2)

1

p2 +m2
,

f(p2) ≡ M2

2(p2 +m2)K1 (2(p2 +m2)/M2)
,

(2.7)

where K1 (z) is the modified Bessel function of the second kind. At low energy, p2/M2 � 1,

the propagator (2.1) tends to the correct IR limit, i.e. 1/(p2+m2), while in the high energy

regime, p2/M2 � 1, it shows an exponentially suppressed behaviour (recalling that we are

in Euclidean space):

Π(p2)
UV−−→

√
πe−2(p

2+m2)/M2√
p2 +m2

. (2.8)

Note that the UV behaviour of the amplitudes is regularised through exponential suppres-

sion, in accord with the usual string picture.

Moreover, by analyzing the Bessel function in (2.7) we see that no extra pole is present

besides the standard one at p2 = −m2, so the propagator is ghost-free. Indeed, K1(z) is a

holomorphic function in the right-half complex plane and has a branch cut for Re {z} < 0

starting at z = 0 , in agreement with the structure deduced in [81].

As expected the function f(p2) in (2.7) is non-polynomial in the momentum p2, im-

plying a non-polynomial differential operator in coordinate space. In fact, one can define

the corresponding nonlocal action for a scalar field as

S =
1

2

∫
d4xφ(x) Π−1 (−�)φ(x) , (2.9)

where the operator

Π(−�) =
2

M2
K1

(
2(−� +m2)

M2

)
, (2.10)

is made up of infinite order derivatives.
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2.1 Propagator in coordinate space

As a warm-up for the gravitational case, it is useful now to obtain the Euclidean propagator

in coordinate space, and study its short-distance behaviour. This is defined as

Π(x) =

∫
d4p

(2π)4
Π(p)eip·x

=
2

M2

∫
d4p

(2π)4
K1

(
2(p2 +m2)

M2

)
eip·x .

(2.11)

Using polar coordinates in four dimensions, with x =
√
xµxµ, we can recast the integral as

Π(x) =
1

2π2M2x

∫ ∞
0

dp p2 K1

(
2(p2 +m2)

M2

)
J1 (px) , (2.12)

where J1(x) is the ordinary Bessel function. The integral (2.12) cannot be performed

analytically for m 6= 0, but it can in the massless case, which yields

Π(x) =
M2

64π

[
I0

(
M2x2

8

)
− L0

(
M2x2

8

)]
, (2.13)

where I0(x) is a modified Bessel function of the first kind and L0(x) is the modified Struve

function. In the large distance regime, Mx� 1, we recover the propagator2 of the normal

local theory, 1/(4π2x2), while in the short-distance regime, Mx � 1, the propagator is

regularised as

lim
x→0

Π(x) =
M2

64π
. (2.14)

As anticipated the 1/x2 singularity of the standard local field theory is smoothed out and

regulated by the nonlocality. The same phenomenon can be observed in the massive case,

by computing the m 6= 0 integral in eq. (2.12) numerically.

3 Nonlocal gravitational theory

Let us now construct an analogous gravitational theory whose propagator around the

Minkowski background exhibits the same worldline inversion symmetry. In other words,

we will identify the gravitational action whose linearised version gives a modified graviton

propagator that has a similar structure to that in eq. (2.7) for a scalar field.

Since we aim to work with an action containing terms quadratic in the curvature

tensors, let us first introduce some fundamental tools. The most general parity-invariant

and torsion-free quadratic curvature action around a maximally symmetric background

and up to second order variation in the metric perturbation is given by [21–23]:

S =
1

2κ2

∫
d4x
√
−g
{
R+

1

2
[RF1(�)R+RµνF2(�)Rµν +RµνρσF3(�)Rµνρσ]

}
, (3.1)

2In taking the asymptotic limits of the Bessel and Struve functions one encounters Stoke’s phenomenon,

according to which subleading contributions are discontinuous in certain regions of the complex plane.

However, this does not disrupt the consistency of the IR limit which can be checked graphically.
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where κ :=
√

8πG, with G = 1/M2
p being the Newton constant, and Fi(�) being two

differential operators which can be uniquely determined around the Minkowski background

by fixing the form of the graviton propagator [20, 21].

Note that, as we are interested in second order metric perturbations around the

Minkowksi metric, we are always allowed to neglect the Riemann squared term RµνρσF3(�)

· Rµνρσ up to this order. Indeed, one can show that the following relation holds for any

power n of the d’Alembertian:

Rµνρσ�nRµνρσ = 4Rµν�nRµν −R�nR+O(R3) + div ,

where O(R3) stands for higher order contributions O(h3) and div stands for total deriva-

tives. Thus, the gravitational action in eq. (3.1) can be written as

S =
1

2κ2

∫
d4x
√
−g
{
R+

1

2
[RF1(�)R+RµνF2(�)Rµν ] +O

(
R3
)}

, (3.2)

where we have defined

F1(�) = F1(�)− F3(�) , F2(�) = F2(�) + 4F3(�) . (3.3)

By perturbing around the Minkowski metric,

gµν = ηµν + κhµν , (3.4)

where hµν is the metric perturbation, we obtain the following linearised gravitational action

up to order O(h2µν) [21]:

S(2) =
1

4

∫
d4x

{
1

2
hµνf(�)�hµν − hσµf(�)∂σ∂νh

µν

− 1

2
hg(�)�h+ hg(�)∂µ∂νh

µν

+
1

2
hλσ

f(�)− g(�)

�
∂λ∂σ∂µ∂νh

µν

}
≡ 1

4

∫
d4xhµνOµνρσhρσ ,

(3.5)

with the kinetic operator defined as

Oµνρσ ≡ 1

4
(ηµρηνσ + ηµσηνρ) f(�)�− 1

2
ηµνηρσg(�)�

− 1

4
(ηµρ∂ν∂σ + ηµσ∂ν∂ρ + ηνρ∂µ∂σ + ηνσ∂µ∂ρ) f(�)

+
1

2
(ηµν∂ρ∂σ + ηρσ∂µ∂ν) g(�) +

1

2

f(�)− g(�)

�
∂µ∂ν∂ρ∂σ .

(3.6)

Here h ≡ ηµνhµν stands for the trace and � = ηµν∂µ∂ν is the flat d’Alembertian operator,

while the functions

f(�) = 1 +
1

2
F2(�)� , g(�) = 1− 2F1(�)�− 1

2
F2(�)� , (3.7)

are combinations of the two form factors Fi(�) .
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By inverting the kinetic operator in eq. (3.6), and after having introduced a suitable

gauge fixing term, one can obtain the propagator around a Minkowski background whose

saturated part is given by [7, 11, 20, 21]:

ΠGR,µνρσ(p) =
P2
µνρσ

f(p)p2
+

P0
s,µνρσ

(f(p)− 3g(p))p2
, (3.8)

where the spin projection operators P2
µνρσ and P0

s,µνρσ project along the spin-2 and spin-0

components respectively, and are defined as [91, 92]

P2
µνρσ =

1

2
(θµρθνσ + θµσθνρ)−

1

3
θµνθρσ , P0

s,µνρσ =
1

3
θµνθρσ ,

θµν = ηµν − ωµν , ωµν =
kµkν
k2

.

(3.9)

As a consistency check, note that for f = 1 = g we recover the saturated part of the

Einstein-Hilbert propagator [91, 92],

ΠGR,µνρσ(p) =
P2
µνρσ

p2
−
P0
s,µνρσ

2p2
. (3.10)

3.1 Graviton propagator with worldline inversion symmetry

In order to find the gravitational analogue of the propagator in eq. (2.7) we work in the

simplest case in which the only on-shell propagating degrees of freedom are the massless

transverse graviton of Einstein’s general relativity with helicities ±2. This requirement

corresponds to the condition

f(�) = g(�) , 2F1(�) = −F2(�) , (3.11)

which implies

ΠGR,µνρσ(p) =
1

f(p2)

(
P2
µνρσ

p2
−
P0
s,µνρσ

2p2

)
, (3.12)

whose functional form is similar to the one in (2.7): indeed we have the standard local

propagator multiplied by some function 1/f(p2). Therefore, by choosing the function f(p2)

as in (2.7) we obtain the following worldline inversion invariant graviton propagator:

ΠGR,µνρσ(p) =
2

M2
K1

(
2p2

M2

)[
P2
µνρσ −

1

2
P0
s,µνρσ

]
, (3.13)

which again is ghost-free as it possesses only one single pole at p2 = 0 corresponding to

the usual massless graviton degree of freedom. This procedure allows us to circumvent the

technicalities of writing the higher spin components of the theory in the worldline formalism

because the spin-0 part of the propagator necessarily governs the whole structure [86].3 In

3Typically higher spins would be represented on the worldline as a global supersymmetry relevant for

each diagram, with an additional supersymmetry introduced for each half-unit of spin. Even though the

supersymmetry is in principle broken by the periodicity conditions of the diagram, the breaking can be

considered to be a spontaneous one from a one-dimensional point of view (with the parameter T playing

the role of a 1D compactification modulus if it is a one-loop diagram). Hence the tensor structure in front of

any amplitude must be independent of this breaking, implying that back in the usual field theory formalism

the spin-0 component of the graviton propagator then determines the structure for the higher spins.
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fact, by working in the usual Feynman gauge one can show that the graviton propagator

reads:

ΠGR,µνρσ(p) = (ηµρηνσ + ηµσηνρ − ηµνηρσ)
1

M2
K1

(
2p2

M2

)
=

1

2
(ηµρηνσ + ηµσηνρ − ηµνηρσ)

∫ ∞
0

dt e
−
(
t+ 1

tM4

)
p2
,

(3.14)

for which invariance under the wordline inversion (2.5) is now manifest; in the limitM→∞
we recover the GR graviton propagator in the Feynman gauge, as expected.

From the form of the propagator, and so of the function f(�), by using the relations

in eqs. (3.7), (3.11) we obtain

F1(�) = − 1

2
F2(�) =

1

�
+

M2

2�2 K1(−�/M2)
, (3.15)

which gives the following gravitational action up to quadratic curvature terms:

S =
1

2κ2

∫
d4x
√
−g
{
R−Gµν

1

�
Rµν

−M
2

2
Gµν

1

�2 K1(−�/M2)
Rµν

}
,

(3.16)

where we have introduced the Einstein tensor Gµν = Rµν − 1/2gµνR. Hence, the gravita-

tional theory described by the action in eq. (3.16) is a higher (infinite) derivative theory of

gravity which is ghost-free around a Minkowski background, despite the presence of higher

order time derivatives. Up to quadratic curvature terms this is the unique action with

spin-2 graviton propagator which exhibits invariance under the worldline inversion (2.5).

4 Nonsingular gravitational potential

In this section we wish to examine a physical implication of the nonlocality introduced by

requiring the graviton propagator to be invariant under the worldline inversion symmetry

in (2.5). Namely we will demonstrate that the classical linearised spacetime metric in the

presence of a static point-like source for the gravitational action (3.16) is smoothed out.

To begin we compute the linearised field equation for the action (3.16), which is

M2

2�K1(−�/M2)

(
�hµν − ∂σ∂νhσµ − ∂σ∂µhσν

+ηµν∂ρ∂σh
ρσ + ∂µ∂νh− ηµν�h) = 16πGTµν ,

(4.1)

where Tµν is the stress-energy tensor describing the matter sector. By working in the

Newtonian conformal gauge we can express the metric in isotropic coordinates as follows:

ds2 = − (1 + 2Φ)dt2 + (1− 2Φ)(dr2 + r2dΩ2) , (4.2)

so that κh00 = −2Φ, κhij = −2Φδij , κh = −4Φ, with Φ being the gravitational potential.

Moreover, for a static point-like source the stress-energy tensor acquires a very simple form,
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and indeed the only non-vanishing component is the density part: Tµν = mδ0µδ
0
νδ

(3)(~r),

where m is the mass of the object. Simplification due to staticity and spherical symmetry

reveals that the only unknown, Φ(r), satisfies the following modified Poisson equation:

M2

2K1(2∇2/M2)
Φ(r) = 4πGmδ(3)(~r ) . (4.3)

As a consistency check, note that the local limit, M→∞, recovers the standard Poisson

equation whose solution is the Newtonian potential Φ(r) = −Gm/r .
The equation in eq. (4.3) is differential and of infinite order, which makes its solution in

coordinate space quite complicated. It can be solved by Fourier transforming to momentum

space through Fourier method and then transforming back, which gives

Φ(r) = − 4Gm

πM2

1

r

∫ ∞
0

dkk sin(kr) K1

(
2k2

M2

)
=

GmM2π

16
√

2
r

[
I21
4

(
M2r2

16

)
− I2− 1

4

(
M2r2

16

)]
,

(4.4)

where I 1
4
(x) and I− 1

4
(x) are modified Bessel functions of the first kind. By using standard

relations the gravitational potential can also be recast as

Φ(r) = − GmM2

16
rK 1

4

(
M2r2

16

)[
I 1
4

(
M2r2

16

)
+ I− 1

4

(
M2r2

16

)]
. (4.5)

At large distancesMr � 1 we recover the Newtonian behaviour as expected; while at short

distances Mr � 1 the gravitational potential is regularised, and is entirely nonsingular at

the origin:

lim
r→0

Φ(r) = − 4πGmM
Γ2(−1/4)

, (4.6)

where Γ(x) is the Euler gamma function. We conclude that, as in section 2 for the

singularity-free scalar, the presence of nonlocality can be instrumental in resolving the

gravitational singularities that afflict standard local theories.

It is worth mentioning that, as the metric potential is monotonic with minimum at

r = 0, the linear approximation can hold true from r = 0 all the way up to r =∞ provided

the following inequality is satisfied:

2|Φ| < 1 ⇔ 8πGmM
Γ2(−1/4)

< 1 . (4.7)

In figure 1 we plot the gravitational potential (4.5) along with Newton’s potential (which is

singular) and with the potential corresponding to the choice (2.2) of proper-time function,

which gives Φ(t+1/M2)(r) = −GmErf(rM/2)/r [19, 21, 30]. Note that both nonlocal

potentials are strictly monotonic and are regularised at the origin with the only difference

being that, in the case of worldline inversion symmetry, the spacetime metric describes a

less compact gravitational system, namely Φ(0) < Φ(t+1/M2)(0).

One can also check that all curvature invariants are non-singular at r = 0, so that no

curvature singularities appear at all. For instance, the Kretschmann invariant RµνρσRµνρσ
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Figure 1. The nonlocal gravitational potential (blue solid line, t + M−4t−1) generated by a

point-like source in the nonlocal theory described by the action (3.16) and corresponding to the

choice (2.6) with M′ = ∞, compared to the Newtonian potential (red dashed line, t) and to the

nonlocal potential corresponding to the choice (2.2) of the proper-time function (orange dotted-

dashed line, t+M−2). Here we set G = 1 =M and m = 0.5.

for the metric in eq. (4.2), (4.5) is also finite at the origin, contrasting with the GR case

in which it diverges as 1/r6 . Due to its lengthy expression we do not show it, but it is

straightforward to show that the Kretschmann invariant tends to the following finite value

in the short-distance regime:

lim
r→0
RµνρσRµνρσ ∼ G2m2M6 . (4.8)

5 Conclusions

In this paper we have formulated a gravitational theory whose graviton propagator around

the Minkowski background exhibits worldline inversion symmetry, which is a nonlocal par-

ticle mimicking the modular invariance of string theory. We showed that it is possible to

construct such a propagator by following a quite straightforward procedure that circum-

vents the difficulties of writing the higher spin components of the theory in the worldline

formalism [86]; see eq. (3.13). The price to pay is the introduction of non-polynomial differ-

ential operators in the gravitational action which necessarily becomes nonlocal, as shown

in eq. (3.16).

Despite there being higher derivatives, such a nonlocal theory of gravity is ghost-free

at tree level, and indeed the propagator possesses only one pole at p2 = 0, and therefore no

unhealthy degrees of freedom are present. Indeed the presence of infinite order derivatives

ameliorates the short-distance behaviour of the theory entirely, and the modified gravita-

tional potential turns out to be regularised at the origin in contrast to the Newtonian one

which diverges in the limit r → 0, very similar to the results in ghost free infinite derivative

theories of gravity [21].
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