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ABSTRACT  

The ability to predict liquid transport rates on textured surfaces is key to the design and 

optimization of devices and processes such as oil recovery, coatings, reaction-separation, high-

throughput screening, and thermal management. In this work, we develop a fully analytical model 

to predict the propagation coefficients for liquids hemiwicking through micropillar arrays. This is 

carried out by balancing the capillary driving force and a viscous resistive force and solving 

Navier-Stokes’ equation for representative channels. The model is validated against a large dataset 
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of experimental hemiwicking coefficients harvested from literature and measured in-house using 

high speed imaging. The theoretical predictions show excellent agreement with the measured 

values, and improved accuracy compared to previously proposed models. Furthermore, using 

Lattice Boltzmann (LB) simulations, we demonstrate that the present model is applicable over a 

broad range of geometries. The scaling of velocity with texture geometry, implicit in our model, 

is compared against experimental data, where good agreement is observed for most practical 

systems. The analytical expression presented here offers a tool for developing design guidelines 

for surface chemistry and microstructure selection for liquid propagation on textured surfaces. 

 
 
Introduction: 

Wicking is the spontaneous flow of liquid through an enclosed porous medium driven by capillary 

action.1 It is an important surface science phenomenon critical to applications ranging from inkjet 

printing to liquid hydrocarbon recovery. While wicking broadly describes liquid propagation 

through a 3D porous medium, hemiwicking is the spreading of a liquid on a textured surface where 

the wetting of dry regions is accompanied by the increase of liquid-air interfacial area.2, 3 Interest 

in hemiwicking was kindled by early studies showing that the addition of texture to smooth 

substrates significantly enhanced the propagation rates of liquids.4, 5 A number of groups have 

investigated the physics underlying such acceleration by textural addition.6-9 For instance, Ueno et 

al. studied the dynamics of interaction of a planar 3-phase (solid, liquid, air) contact line with a 

single microparticle. They observed that the wetting of this particle induced the formation of a 

meniscus at its base and the high capillary pressure (~ curvature) of this meniscus locally 

accelerated contact line motion by a factor of 100.6 Increased liquid propagation speeds have also 

been observed for both regular textures5 and hierarchical multiscale textures.8, 9 Interestingly, the 
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local acceleration and deceleration on textured substrates yields a ~ t1/2 (t, time) scaling with 

macroscopic propagation distance (z). In contrast the spreading distance on a flat, smooth surface 

is known to follow Tanner’s law, z ~ t1/10.7 As evidence of this scaling difference, Quere et al. 

noted that while a water droplet of 1 mm diameter takes 10 days to spontaneously spread to 2 mm 

on a smooth substrate, with the addition of appropriate texture this process is achieved in as little 

as 10 s.10  

Recent advancements in nano-/micro-patterning technology have enabled the fabrication of 

textures with tunable wettability and transport properties. These developments enabled 

applications exploiting hemiwicking in thermal management,11 liquid-infused surfaces,12, 13 energy 

harvesting,14 and lab-on-a-chip devices.15, 16 The patterned textures have also allowed the 

investigation of interesting flow behavior such as zipping,17 anisotropic/polygonal spreading18, 19 

and large rise heights.20 However, further utilization of fast hemiwicking dynamics in commercial 

applications requires a quantitative understanding of the role of complex liquid-solid interactions 

that dictate liquid propagation and wetting. Specifically, the ability to predict liquid transport rates 

at the macroscopic scale will enable the design and optimization of textures for high performance 

liquid infusion applications. 21-23 

In the 20th century Bell, Cameron,24, 25 Lucas, and Washburn26 recognized that flow through 

porous media followed the “diffusive” scaling law, 𝑧 = (𝐷𝑡)
!
", where z is the wicked distance, t is 

the time, and D is a propagation coefficient determined by the relative strengths of the capillary 

driving force and viscous resistance.27 For flow through a cylindrical tube, D is a function of the 

diameter, d, given by 𝐷 = !"#$%&
'(

, where 𝛾 is the liquid-vapor surface energy, 𝜃 is the equilibrium 

contact angle of the liquid on a smooth surface made from the same solid, and 𝜇 is the liquid 
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viscosity. However, for hemiwicking through a texture, D must be described by a more complex 

function involving at least three geometrical parameters. There have been several efforts (Table 

S1) to arrive at a functional form of D for hemiwicking by incorporating the geometric parameters 

of textured surfaces into models for capillary pressure and viscous resistance.2, 10, 28-31 We note that 

either for the sake of simplicity or as demanded by the end use, the textured substrates used in 

these studies have primarily been periodic micropillar arrays. These arrays are constituted of pillars 

of square or circular cross section arranged in patterns with a characteristic periodicity or pitch, 

p.2, 10, 28-31 

The seminal work by Ishino and Quere et al. identified two structural regimes in which 

dissimilar scaling behaviors were observed owing to different dominant dissipative phenomena.10 

For short and long pillar heights, h, relative to the pitch, p, viscous friction was shown to be 

dominated by either the bottom surface (h≪p) or the pillars (h≫p) themselves, respectively. 

However, the boundaries between these regimes were not clarified and a model describing 

behavior in the broad h ≈ p regime was lacking. Srivastava et al. developed a semi-analytical 

scaling model that used dimensional analysis and finite element simulations to estimate the viscous 

resistance around a single cylindrical pillar.29 While this approach is fruitful, the presented model 

is only valid for a specific pillar geometry and in the design space where multipillar effects are 

negligible. Qiao et al. have demonstrated an empirical model that estimates capillary pressure more 

accurately by simulating the meniscus shape using Surface Evolver (SE).30, 31 The viscous 

resistance was obtained by solving a modified form of the Stokes’ equation. This model was noted 

to be best suited for pillar arrays with a diameter to pitch ratio (d/p) less than 0.57. Further, for 

sparse arrays, additional corrections based on microscale wicking phenomena were required. This 

approach, being semi-analytical, also necessitates significant new model development for new 
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array geometries. Kim et al.28 and Krishnan et al.32 have demonstrated models that capture the 

velocity scaling appropriately, but their models are found to require a fitting factor to match 

measured D values. While other hemiwicking models have been suggested, Kim et al. have 

demonstrated that these other models do not capture the scaling behavior correctly.28 In summary, 

previously suggested forms of the hemiwicking coefficient are only accurate under limited 

conditions.28 Additionally, the breadth of applicability of certain models is restricted by the semi-

analytical or empirical nature of their approach.29-32 A universal analytical model to accurately 

predict liquid propagation rates on patterned surfaces is thus far absent.  

In this work, we sought to build a predictive model that is simple, accurate, and is broadly 

applicable to textured surfaces that contain various pillar geometries, patterns, and relative 

dimension scale. Our model balances the capillary pressure, described previously by Quere et al.,3 

with the viscous resistance estimated by solving Stokes’ equation for a rectangular channel. The 

size of the channel is appropriately selected to capture the frictional contribution of the array 

geometry. Our model provides an analytical expression that accurately predicts the hemiwicking 

coefficient for a wide range of textured geometry generated by micropillars. The final expression 

is validated using extensive data published by others and as well as new measurements captured 

with high speed imaging. In addition, we employed Lattice Boltzmann (LB) simulations to further 

show that the present model is accurate over a much broader range of micropillar geometries 

compared to previously published models. Our model also correctly predicts the scaling of D with 

the geometric parameters describing the micropillar array. 
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Methods 

Model Development 

Consider a micropillar array of roughness factor, r, which is the ratio of the total solid surface area 

to the 2D projected area. We define the purely imbibed state33 as the texture filled  while the tops 

of the pillars remain dry,28, 33 with 𝜑% as the ratio of the dry pillar top area to the projected area. 

The criterion for hemiwicking into such an array was derived by Bico et al.34 to be (see supporting 

information)  

 
𝑐𝑜𝑠 𝜃 ≥

(1 − 𝜑%)
(𝑟 − 𝜑%)

= 𝑐𝑜𝑠 𝜃# 	
(1) 

 

  

Figure 1. (a) Illustration of hemiwicking process through a micropillar array, highlighting the 
assumption of a flat meniscus and coplanarity between the meniscus and tops of the pillars. (b) 
Illustration demonstrating the approximation approach employed to calculated viscous dissipation. 
The width of the rectangular open channel (w) is modified to ensure that the volume of liquid 
contained the unit cell areas are identical. (c) Schematic showing the coordinate system used in 
the derivation of the flow profile. (d) Plot of the term in the summation in Eq. (10) (𝜆)), against n 
for h = 10 µm and w = 25 µm. 
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Equation (1) identifies a critical contact angle, 𝜃#, defined by the texture geometry. Hemiwicking 

is favored for all inherent contact angles smaller than 𝜃#. We note here that this model assumes a 

flat liquid meniscus and coplanarity between the meniscus and the top of the pillar, see Figure 1(a). 

For super hydrophilic substrates (where contact angle 𝜃 = 0º and the spreading coefficient S ≥ 0) 

the pillars tops are also wet at equilibrium. However, during wicking, the velocity of the wicking 

front far exceeds the rate of spreading of a liquid film on the pillar tops.28 Therefore, in our 

calculations we consider the pillar tops as being dry. In Eq. (1), for any surface with texture, r is 

always greater than 1 and 𝜑% is less than 1. Thus, 𝜃# is between 0° and 90°, where 0° is the critical 

contact angle for spreading on a flat plane (r → 1) and 90°	is the critical angle of wicking in porous 

media (r → ∞).  

In hemiwicking the Reynolds numbers (𝑅𝑒 = 𝜌𝑈𝑝
𝜇? , where 𝜌 is the density, U is the 

velocity,	𝜇 is the viscosity, and	𝑝 is the pillar-pillar distance or pitch) are small (~10*') and hence 

inertial effects are negligible. Additionally, the Bond numbers (𝐵𝑜 = 𝜌ℎ+𝑔
𝛾,-? , where g is the 

acceleration due to gravity, 𝛾,- is the liquid-vapor surface tension, and ℎ is the pillar height) are 

small as well (~10*.), indicating gravitational forces can be ignored. Therefore, when the 

hemiwicking criterion in Equation (1) is satisfied, the rate of wicking of liquid into the texture is 

simply dictated by the balance between a driving capillary pressure (∆𝑃,) and a dissipative Darcy-

like viscous pressure (∆𝑃-), resulting in the scaling law, z	=(𝐷𝑡)
!
".	∆𝑃, is the change in interfacial 

free energy per unit volume of liquid wicked. This derivation leads to Eq. (2) (details are in the 

supporting information).  

 ∆𝑃, =
𝛾,-
ℎ H

𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃#
𝑐𝑜𝑠 𝜃#

I	 (2) 
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As is evident and in agreement with Eq. (1), the capillary pressure (the only hemiwicking driving 

force) is only positive when the 𝜃	≤ 𝜃#. The viscous dissipation force per unit area or viscous 

pressure (∆𝑃-) can be estimated,2 from a modification to the classical Poiseuille law for a liquid 

film of thickness, h, flowing on a plane.10  

 
∆𝑃- =

3𝜇𝑈K𝑧	
ℎ+ 𝛽		

(3) 

where 𝑈K is the average velocity of propagation (dz/dt) and 𝛽 is a correction factor to the classical 

Poiseuille law that accounts for enhanced dissipative contributions from the microtexture.h here is 

the same as the pillar height, as during hemiwicking the top of the liquid volume is pinned/confined 

to the top edge of the pillar.28, 33 Balancing the capillary pressure and viscous pressures leads to 

 𝑧+ =
2𝛾,-ℎ
3𝜇 H

𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃#
𝑐𝑜𝑠 𝜃#

I
1
𝛽 	𝑡		

(4) 

Comparing to Eq. (4), the hemiwicking coefficient is thus  

 𝐷 =
2𝛾,-ℎ
3𝜇 H

𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃#
𝑐𝑜𝑠 𝜃#

I
1
𝛽		

(5) 

For a given liquid, a substrate chemistry, and textured geometry all parameters in Eq. (5) are known 

except for	𝛽. 𝛽 can be experimentally determined; however, experimental investigation of the 

effect of the array geometry on the correction factor is tedious and precludes the development of 

a model to fully theoretically predict the value of D.  

To do so, we take inspiration from Hay et al.35 and Mai et al.36, approximating the flow of 

liquid through the micropillar array as flow through an equivalent microchannel (Figure 1b). Here, 

the channel is set to have the same wall height, h, in order to elucidate the role of this geometric 
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parameter. However, the width of the channel, w, is modified to ensure that the maximum volume 

available per unit length (volume/p) is identical between the two systems. The validity of this 

volume approximation is explained from a hydraulic resistance viewpoint in the supporting 

information (Figure S1). For example for a square array of square cross-section pillars 𝑤 =

/0"*""1
0

,	where d is the side of the square and p is the pitch. 

The velocity of the liquid through said microchannel can be obtained by solving Stokes’ 

equation for steady-state, parallel, incompressible flow. 

  
−
∆𝑃,
𝜇𝑧 =

𝜕+𝑈
𝜕𝑥+ +

𝜕+𝑈
𝜕𝑦+ 		

(6) 

where, 𝑈(𝑥, 𝑦) is the velocity profile in the microchannel. We assume no slip on the microchannel 

walls, i.e., the velocity at the walls is zero and free slip at the top surface. By solving the equation 

using these boundary conditions (details of the solution are in the supporting information), we 

obtain the velocity profile in the microchannel as 

 

𝑈(𝑥, 𝑦) =
16∆𝑃,ℎ+

𝜇𝑧𝜋2 U
(−1))

	(2𝑛 + 1)2W1 −
𝑐𝑜𝑠ℎ X(2𝑛 + 1)𝜋𝑥2ℎ Y

𝑐𝑜𝑠ℎ X(2𝑛 + 1)𝜋𝑤4ℎ Y
[ 𝑐𝑜𝑠 \

(2𝑛 + 1)𝜋𝑦
2ℎ ]

3

)45

	
(7) 

and the spatially-averaged velocity (mean velocity) at a given distance z along the channel length 

is  

 
𝑈K =

1
𝑤ℎ^ ^ 𝑈(𝑥, 𝑦). 𝑑𝑥. 𝑑𝑦

5

*6

7/+

*7/+
	

(8) 
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𝑈" =

32∆𝑃!ℎ"

𝜇𝑧𝜋#
,

1
	(2𝑛 + 1)#

31 −
4ℎ

(2𝑛 + 1)𝜋𝑤
𝑡𝑎𝑛ℎ 9

(2𝑛 + 1)𝜋𝑤
4ℎ

:; =
$

%&'

32∆𝑃!ℎ"

𝜇𝑧𝜋#
,𝜆%

$

%&'

	
(9) 

In Eq. (9), due to the 9
	(+)<9)#

	dependence, the value of the terms in the summation (𝜆)) become 

negligibly small for n ≥ 1 (Figure 1d). Therefore the mean velocity can be approximated as  

 
𝑈K ≈ 𝑈K)45𝐶 = 𝐶

32∆𝑃,ℎ+

𝜇𝑧𝜋' H1 −
4ℎ
𝜋𝑤 𝑡𝑎𝑛ℎ c

𝜋𝑤
4ℎdI	

(10) 

where C is a correction factor to account for the contributions from the n > 0 terms. To obtain the 

value of C, we compare the mean velocity obtained here for w→ ∞ against the Poiseuille flow 

velocity over a flat plane. Ideally, these two scenarios are equivalent.  

 
𝐶
32∆𝑃,ℎ+

𝜇𝑧𝜋' =
∆𝑃,ℎ+

3𝜇𝑧 		
(11) 

 
𝐶 =

𝜋'

96 ≈ 1.014		
(12) 

The above indicates that the correction term is only slightly larger than 1, showing that the 

contribution from the n > 0 terms is very small. From Eq. (10) and Eq. (11), we obtain 

 
𝑈K =

∆𝑃,ℎ+

3𝜇𝑧 H1 −
4ℎ
𝜋𝑤 𝑡𝑎𝑛ℎ c

𝜋𝑤
4ℎ dI		

(13) 

Using Eq. (3), substituting for ∆𝑃, in Eq. (14) leads to 

 𝑈K =
𝛾,-ℎ
3𝜇𝑧 H

𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃#
𝑐𝑜𝑠 𝜃#

I H1 −
4ℎ
𝜋𝑤 𝑡𝑎𝑛ℎ c

𝜋𝑤
4ℎdI		

(14) 

Comparing Eq. (14) and Eq. (5), we find  
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 𝛽 =
1

1 − 4ℎ
𝜋𝑤 𝑡𝑎𝑛ℎ c

𝜋𝑤
4ℎ d

	 (15) 

In Eq. (15), as the denominator is always less than one, the correction term to the viscous force is 

always greater than one, showing that more texture leads to more viscous dissipation. From Eq. 

(14) and the “diffusive” scaling law, the hemiwicking coefficient is thus 

 𝐷 =
2𝛾,-ℎ
3𝜇 H

𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃#
𝑐𝑜𝑠 𝜃#

I H1 −
4ℎ
𝜋𝑤 𝑡𝑎𝑛ℎ c

𝜋𝑤
4ℎdI		

(16) 

The equation in this form is not dependent on any specific geometry. The adaptation, as well as 

the validation (Figure S2) of Eq. (16) to specific geometries is demonstrated in the supporting 

information.  

 
Figure 2. (a) 3D rendering of optical profilometry data obtained on the micropillar array (color 
scale refers to height; texture pitch = 20 µm, square cross-section side length = 10 µm, and pillar 
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height = 7 µm) used in our hemiwicking experiments. (b) Snapshots from high speed video (top 
view of array) of hexadecane hemiwicking through the array in (a). Scale bar represents 2.5 mm. 
(c) Plot of hemiwicked distance versus time to the one half power for hexadecane and 
polyalphaolefin-4 (PAO4) on our micropillar array. (d) Top view of LB simulated velocity profile 
in a representative unit cell of a cylindrical micropillar array; all values are represented in 
simulation units. When translated to experimental data the array dimensions (height = 26 µm, 
diameter = 10 µm, pitch = 20 µm) represent those in Kim et al.28 The color bar represents velocity 
and the direction of propagation is indicated by the arrow. 
 
 
High speed imaging: Hemiwicking experiments were performed using a silicon micropillar array 

with a pitch of 20 µm, a square cross-section of side 10 µm, and a pillar height of 7 µm, as 

measured by optical profilometry (Figure 2a). This array of size 1.5 cm × 1.5 cm, was mounted 

vertically onto a micrometer stage and was brought into contact with a reservoir of the 

hemiwicking liquid (Figure 2b). Three hemiwicking fluids of nearly identical surface tensions but 

varying viscosities were employed (See Table S2). The macroscale hemiwicking process was 

observed using a Photron FASTCAM SA1.1 high speed camera, fitted with an Infiniprobe TS-160 

macro lens and pointed normal to the texture surface, capturing images at a frame rate of 500 

frames/second. The Photron FASTCAM Viewer software was used to capture the videos. The 

hemiwicking videos were image processed and thresholded using ImageJ and the wicking front 

was tracked as a function of time. The square of the slope of the distance versus time to the one 

half power is reported as the hemiwicking coefficient, D (Figure 2c). 

Lattice Boltzmann Simulation 

In this work, we do not explicitly simulate the hemiwicking dynamics. Instead, to obtain the 

propagation coefficient D, it is sufficient to solve the flow profile for a unit cell of the micropillar 

array. We carry this out using a standard LB method with a D3Q19 velocity set,37 and the typical 

flow profile is shown in Figure 2(d). To mimic the capillary pressure, we apply a body force 𝑓 =
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−∆𝑃,/𝑧 to the fluid, following the definition of the capillary pressure in Eq. (2) and the Stokes’ 

equation in Eq. (6).  

The unit cell consists of a single square or cylindrical pillar, with periodic boundary 

conditions applied on the sides of the unit cell. Typically, we use a simulation box of p × p × h (all 

in lattice units), in which the pitch p is always set to 50 lattice units and the pillar height h is varied 

between 8 and 100 lattice units. The post diameter d is also varied between 8 and 40 lattice units. 

These variations in h and d allow us to construct contour plots in terms of p/h and p/d. A no-slip 

boundary condition for the solid-liquid interfaces is implemented using a bounce-back boundary 

condition. To represent the liquid-gas interface at the upper boundary of the unit cell a free slip 

boundary condition is employed. The effect of curved liquid-gas interface is not included. 

From the flow profile we are able to compute the average fluid velocity in the unit cell, 𝑈K. 

Balancing Eq. (14) and Eq. (16), we can then express the simulated D value in terms of 𝑈K, the 

capillary pressure ∆𝑃,, and the applied body force 𝑓  

 
𝐷 = 2𝑈"

−∆𝑃𝐿
𝑓 	 (17) 

Results and Discussion: 

Model Validation 

To validate our model, we compare the hemiwicking coefficient values predicted by Eq. (17) 

against experimental data obtained in house (labelled as “This Study”) and those values reported 

in literature.10, 28, 30, 31, 36 The harvested values comprised ~ 45 data points spanning square and 

cylindrical pillar geometries, with pillar densities ranging from p	>	h, p ≈ h, and p < h.10, 28, 30, 31, 

36 Figure 3a shows the comparison between the internal and externally measured D and the values 
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predicted by our model. Fig. 3b displays the comparison between the same experimental results 

and the values obtained by models generated in previous works. The proximity of our predictions 

to the slope of 1 in Figure 3a demonstrates the ability of Eq. (16) to accurately determine the 

experimentally obtained hemiwicking coefficients over a wide range of values (~ 0.05 to 170 

mm2/s). The root mean square error in prediction is calculated to be 0.28 (Table S1). As is evident 

from our model development, we do not consider the effect of pinning/depinning phenomena, such 

as those described by Blow and Yeomans.38 This is because we are primarily focused on low 

equilibrium contact angle systems that favor rapid liquid transport. At these angles (Table S2) 

pinning effects are noted to be negligible.38 

 

Figure 3. Both plots in log-log scale. (a) Plot of the D values predicted by our model against the 
experimentally measured D values.10, 28, 30, 31, 36 (b) Plot of the D values predicted by other models2, 

10, 28, 29, 39 against the experimentally measured D values.  

We note that the range of geometries in the curated data is limited to p/h values between 

0.14 and 3.3 and the majority of p/d values between 1.5 and 4. To probe the breadth of applicability 

of our model we performed LB simulations over an extensive range of geometries. In all cases, we 
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assume a contact angle of 0o in the definition of the capillary pressure. Firstly, the LB simulations 

were validated, as demonstrated by the close agreement between simulated values and the 

experimental data for the curated geometries (Figure S3). Then extensive LB simulations were 

conducted for cylindrical pillar geometries with p/h values from 0.5 to 10 and p/d values between 

1.25 and 6.25. The D values measured from these simulations were then compared against those 

predicted by our analytical expression in Eq. (16) and the absolute error percentage is plotted as a 

function of geometry in Figure 4. We note that over a broad range of geometries the absolute error 

is within 30%. This represents a reasonable error value allowing for uncertainties in measuring 

viscosity, surface tension, geometry, hemiwicking rate, as well as inter- and intra-sample non-

uniformities. The model appears to deviate from the predicted values in the region where the pitch 

is comparable to the diameter, i.e., in very dense arrays. The deviation, in this regime, is due to the 

confinement of the flow primarily within the narrow gap between the pillars. Hence, the effective 

width, w, becomes smaller than our current assumption for the equivalent microchannel in Figure 

1b. That said, the highly dense arrays do not represent practically useful geometries as available 

flow through the narrow spaces is much reduced. 

Having demonstrated the prediction accuracy of D values for a wide range of geometries, 

we now discuss how the limitation of prior models were addressed. We limit our discussion to 

models that present an expression for D. 2, 10, 28, 29, 39 A subset of previously suggested models are 

limited by the assumption that frictional contributions are dominated by specific textural features. 

For example, the Bico2 and Ishino models10 assume drag to arise from the array base alone. 

Another model by Ishino et al.10 assumes friction from only the pillar side-walls. These 

assumptions result in the over-prediction of D as the viscous losses are underestimated (Figure 

3b). While such exclusive contributions to viscous dissipation are likely in extreme scenarios 
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where p≪h or p≫h, in all intermediate situations (p>h, p≈h, p<h) combined contributions from 

the base and pillars need to be accounted for. By approximating the array to a channel, we 

explicitly consider frictional contribution from both the walls and the base, resulting in closer 

predictions. From Figure 4, we note that the Ishino models10 appear to predict well in a band of 

intermediate p/h and p/d, which is mainly within our domain of accuracy, as well as when p/h and 

p/d are very small. These extremes are where Ishino et al.’s assumptions are appropriate.10  

 

 

Figure 4. Contour plot of  error (%) as a function of pitch/diameter and pitch/height for the model 
developed in this work (top-left), the Ishino model (top-right),10 the Kim model28 (bottom-left) and 
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the Srivastava model29 (bottom-right). Several percentage errors are indicated in the plots. We note 
that the Ishino model for p < h is constrained by ln(p/d) > 1.31, beyond which the D values become 
unphysical (negative). This is indicated by the black area in the bottom left corner of the Ishino 
panel. The error shown here is the difference between the simulated and model predicted value 
over the simulated value, expressed in percentages. 

Other models are limited by how they reduce the texture into very simplistic representative 

elements. Srivastava et al. presented a semi-analytical model where the viscous dissipation was 

estimated using finite element (FE) modeling of flow around a single pillar.29 By repeating this 

analysis for various geometries, the authors derived the scaling law shown in Table S1. From 

Figure 3b it is apparent the Srivastava model, which requires a fitting parameter, consistently over 

predicts (~ 3×) D values. We attribute this mismatch in predicted and measured values to the 

exclusion of multipillar effects in their single pillar FE simulations. As noted earlier, multipillar 

effects are implicitly captured in our model by the channel walls. In line with this argument, we 

note from Figure 4 that the Srivastava model29 predicts well for tall pillars with p/d > 2, where 

drag from side walls dominates the dissipation and multi-pillar effects are diminished.  

More recent models have considered the arrays in their full complexity (Kim et al. 28) and 

have further argued for the explicit consideration of the extension length of the wicking front 

(Krishnan et al.32). These models predict scaling correctly for a broad range of geometries. 

However, they require empirically determined correction factors to accurately predict the velocity 

(see Table S1) and are applicable only in the superhydrophilic limit (𝜃 =0º). The empirical nature 

of these recent models limits their universality. In contrast, our model demonstrates the capability 

to predict the absolute value of the hemiwicking coefficient in an ab-initio fashion. That said, with 

a fitting factor applied (~0.24), the Kim model is shown to predict the data closely (Table S1). 

Further from Figure 4, we observe that the envelope of good prediction quality (absolute error < 
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30%) for the Kim model28 (fitting factor applied) extends further into the regime where p/d is small 

and p/h is large when compared with our model.  

 

 

Figure 5. (a) Plot of hemiwicking coefficient (D) versus the height of pillars for liquids of various 
viscosities. The following parameters are not modified: cylindrical cross section, pitch = 10 µm, 
diameter = 2.6 µm, 𝛾,- = 20 mN/m, contact angle = 0º. The circles represent the experimentally 
measured data by Ishino et al.10 and the lines represent the predictions by our analytical 
expression.(b) Plot of hemiwicking coefficient (D) versus the ratio of pitch to diameter for various 
pillar heights. The following parameters are not modified: cylindrical cross section, diameter = 10 
µm, 𝛾,- = 48 mN/m, µ = 18 mPa·s, contact angle = 0º. The schematics show the top view of a unit 
cell of the pillar lattice, highlighting the extreme case of high p/d values.  

We then investigated the velocity scaling predicted by our model. Figure 5a shows a plot 

of the dynamic coefficient versus height for a square array of cylindrical pillars of diameter 2.6 

µm for liquids of various viscosities, all with a contact angle of 0º. These parameters are chosen 

because they represent the conditions for the experiments reported by Ishino et al., where heights 

and viscosities are varied systematically while keeping all other parameters identical (cylindrical 

cross section, pitch = 10 µm, diameter = 2.6 µm, 𝛾,- = 20 mN/m, contact angle = 0º).10 We further 

note that D increases steeply with height for small heights and reaches a saturation value quickly. 

Further, at very small heights (h ~ 0.1p), D appears to bear a quadratic relationship with height. 

For a square array with cylindrical pillars and a contact angle of 0º, Eq. (16) can be written as, 
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𝐷 =

2𝛾,-ℎ
3𝜇 H

𝜋𝑑ℎ
(𝑝+ − 𝜋𝑑+/4)I i1 −

4𝑝ℎ
𝜋(𝑝+ − 𝜋𝑑+/4) 𝑡𝑎𝑛ℎ \

𝜋(𝑝+ − 𝜋𝑑+/4)
4𝑝ℎ ]j	.	

(18) 

Here, when p>>h, '06
?(0"*?""/')

≪ 1, and 𝑡𝑎𝑛ℎ c?/0
"*?""/'1
'06

d~1. Therefore, the term in the 

parenthesis in Eq. (18), becomes ~1. Thus,  

 𝐷 =
2𝜋𝛾,-𝑑

3𝜇(𝑝+ − 𝜋𝑑+/4) ℎ
+	~	ℎ+	.	 (19) 

This scaling is in agreement with Ishino et al.’s model that suggests a quadratic relationship with 

h for h<<p and minimal dependence on h when h>>p. However, in the intermediate scenarios, 

we observe deviations from these dependences. Further, barring some outliers, we note excellent 

agreement between the experimental data and our predictions (Figure 5a), indicating that the 

scaling with h implicit in our expression is correct.  

In Figure 5b, we plot the hemiwicking coefficient scaling as a function of the pitch over 

the pillar diameter (p/d), as predicted by our model. Starting from a ratio of 10, with decreasing 

p/d, D increases, reaches a peak value before decreasing for low p/d values. This trend is in general 

agreement with models proposed earlier. This reduction after a peak p/d is because with further 

texture addition, viscous resistance grows more strongly than capillary driving force. From model 

plots for other heights, we note that the p/d value for the maximum D is relatively insensitive to 

the texture height. On Figure 5b we also plot data from Kim et al, 28 who systematically varied the 

pitch, while keeping all other parameters identical (cylindrical cross section, height = 26 µm, 

diameter = 10 µm, 𝛾,- = 48 mN/m, µ = 18 mPa·s, contact angle = 0º). From the Figure 5b we 

observe that there is reasonable quantitative and qualitative agreement with the scaling up to a p/d 

of ~4. At higher p/d, the measured D decreases more rapidly than the predicted value. This is likely 
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because conduit models such as ours do not work well for high porosity geometries where friction 

drag of flow around objects dominates over viscous resistance. However, arrays with such large 

spacing only permit highly wetting liquids (see wetting criterion in (6), Figure 5b) and represent 

an extreme case of the arrays used for liquid transport, as flow is not much accelerated. 

In summary, we have demonstrated an analytical model that accurately predicts the 

hemiwicking coefficient for macroscale liquid transport on textured surfaces with regular pillar 

arrays. We note that no experimental fitting factors are necessary to improve the prediction quality. 

Furthermore, no explicit consideration of microscale wicking phenomena such as zipping or 

meniscus extension was required. The effects of pinning were also not considered in this work, as 

the systems studied here are highly wetting (in favor of rapid wicking) and the equilibrium contact 

angles are well below the lower bound of depinning critical angles.38 The derived expression is 

demonstrated to be flexible and accurate predictions are obtained over a broad range of textural 

densities for cylindrical and square pillars. We believe our model can be extended to other pillar 

shapes as long as the contact angles remain low, and it will be interesting to verify this in the 

future. The model is observed to breakdown in the extreme case of p>4d where drag (neglected 

here) plays an enhanced role, and in the case of small p/d where the flow is confined in the narrow 

gap between the pillars as demonstrated by LB simulations. Nevertheless, we believe that this 

work sheds light on complex interfacial interactions that dictate spreading behavior in practically 

useful textured surfaces.  
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Supporting Information 

Model Development 

The energetic criterion for the hemiwicking of micropillar arrays was derived by Bico et al. as 

follows.1 Consider a micropillar array of roughness factor r, which is the ratio of the real area of 

the surface, Ar to the area of the surface when projected onto a 2D plane, Ap. The area of the top 

surface of the pillars is At. By definition, in the purely imbibed state, the top of the pillars remain 

dry.2, 3This dry fraction of the projected area At/Ap is labeled 𝜑! (Figure 1). When such an array, 



of unit area into the page, is brought into contact with a liquid reservoir, the change in interfacial 

energy for a propagation distance dz can be written as (2)  

 𝑑𝐸 = 𝐸"#$ − 𝐸%&'	 (1) 

 𝑑𝐸 = (𝛾()(1 − 𝜑!)𝑑𝑧 + 𝛾*((𝑟 − 𝜑!)𝑑𝑧 + 𝛾*)𝜑!𝑑𝑧) − (𝛾*) . 𝑟. 𝑑𝑧)	 (2) 

 𝑑𝐸 = (𝛾*( − 𝛾*))(𝑟 − 𝜑!)𝑑𝑧 + 𝛾()(1 − 𝜑!)𝑑𝑧	 (3) 

where, 𝛾(), 𝛾*) and 𝛾*( are the liquid-vapor, solid-vapor and solid-liquid surface energies 

respectively. Using Young’s equation 

 𝛾*) = 𝛾*( + 𝛾()𝑐𝑜𝑠𝜃	 (4) 

where, 𝜃 is the equilibrium contact angle, equation (3) may be rewritten as  

 𝑑𝐸 = −𝛾() 𝑐𝑜𝑠 𝜃 (𝑟 − 𝜑!)𝑑𝑧 + 𝛾()(1 − 𝜑!)𝑑𝑧	 (5) 

In order for the imbibition of liquid to be energetically favored, 𝑑𝐸 ≤ 0.  This means 

 
𝑐𝑜𝑠 𝜃 ≥

(1 − 𝜑!)
(𝑟 − 𝜑!)

= 𝑐𝑜𝑠 𝜃+ 	
(6) 

In these systems, when the hemiwicking criterion (6) is satisfied, and the rate of imbibition of 

liquid into the texture is simply dictated by the balance between a driving capillary pressure (∆𝑃() 

and a disspative Darcy-like viscous pressure (∆𝑃)).  The interplay between these forces results in 

a diffusion-like scaling for the imbibition distance, known as the Washburn law.4 

 𝑧 = (𝐷𝑡),..	 (7) 

where, D is a hemiwicking coefficient and t is time.  



The capillary pressure (∆𝑃() is the change in energy per unit volume of liquid imbibed (−𝑑𝐸/𝑑𝑉). 

We recognize that 𝑑𝑉 for a propagation distance dz and pillar height h is 

 𝑑𝑉 = (1 − 𝜑!)ℎ. 𝑑𝑧	 (8) 

Combining (5) and (8), we get  

 
∆𝑃( = −

𝑑𝐸
𝑑𝑉 =

𝛾() 𝑐𝑜𝑠 𝜃 (𝑟 − 𝜑!)
(1 − 𝜑!)ℎ	

−
𝛾()
ℎ 	

(9) 

Using (6), (9) can be written as  

 ∆𝑃( =
𝛾()
ℎ =

𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃+
𝑐𝑜𝑠 𝜃+

>	 (10) 

As is evident, the capillary pressure is only positive when the 𝜃	≤ 𝜃+. In other scenarios, there is 

no driving force for hemiwicking. The viscous dissipation force per unit area or viscous pressure 

(∆𝑃)) can be estimated from a modification to the classical Poisuelle law for a liquid film of 

thickness h flowing on a plane.1  

 ∆𝑃) =
3𝜇𝑣𝑧	
ℎ/ 𝛽	 (11) 

where, 𝜇	is the viscosity of the liquid, 𝑣 is the velocity of propagation (dz/dt) and 𝛽 is a correction 

factor to the classical Poisuelle law that accounts for enhanced dissipative contributions from the 

microtexture.  The thickness h here is the same as the pillar height, as during hemiwicking the top 

of the liquid volume is pinned/confined to the top edge of the pillar.2 In the beginning of imbibition, 

i.e., when hydrostatic pressure is negligible, balancing the capillary pressure and viscous pressures 

we get 



 𝛾()
ℎ =

𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃+
𝑐𝑜𝑠 𝜃+

> =
3𝜇𝑣𝑧	
ℎ/ 𝛽	 (12) 

Rearranging (12), 

 𝑣 =
𝑑𝑧
𝑑𝑡 =

𝛾()ℎ
3𝜇𝑧 =

𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃+
𝑐𝑜𝑠 𝜃+

>
1
𝛽	

(13) 

 

 𝑧. 𝑑𝑧 =
𝛾()ℎ
3𝜇 =

𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃+
𝑐𝑜𝑠 𝜃+

>
1
𝛽 . 𝑑𝑡	

(14) 

Integrating (14), 

 𝑧/ =
2𝛾()ℎ
3𝜇 =

𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃+
𝑐𝑜𝑠 𝜃+

>
1
𝛽 . 	𝑡	

(15) 

Comparing (7) and (15), the hemiwicking coefficient is found to be  

 𝐷 =
2𝛾()ℎ
3𝜇 =

𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃+
𝑐𝑜𝑠 𝜃+

>
1
𝛽	

(15) 

To get 𝛽, we approximate the flow of liquid through the micropillar array as flow through 

an equivalent microchannel of the same height and unit cell size (Figure 1b). However, the width, 

w of the channel needs to be modified in order that the viscous dissipation between systems 

remains identical. This can be achieved by equating the volume available for flow between the two 

systems. The rationale behind this approximation is explained below. 

Consider Darcy’s law (16), which relates the volume flux in a porous material to the 

pressure gradient.   



 
𝑄 =

𝑘𝐴
𝜇
𝑑𝑝
𝑑𝑥	

(16) 

 where, 𝑄 is the volume flow per time, 𝐴 is the cross-sectional area of the material, 𝑑𝑝/𝑑𝑥 

is the pressure gradient and 𝑘 is the permeability. The term 01
2

 is called the hydraulic resistance (as 

flux and pressure gradient are fully equivalent to current and voltage in Ohm’s law, respectively). 

For our equivalent systems, the velocity, 𝑄/𝐴, will need to be the identical. Since the driving force 

for spontaneous imbibition is the capillary pressure, the pressure gradient between the systems is 

set to be identical. Thus, for equivalence, our approximation needs to ensure that the permeability 

between the systems is also identical. Now consider a porous medium, of cross-sectional area A, 

comprised of N parallel pipes, of radius b, whose axes are misaligned with the length direction 

(Figure S1a). In other words the flow path through this medium, Le, is larger than the length L. The 

flux through this medium is given by  

 
𝑄 =

𝑁𝜋𝑏3

8𝜇
∆𝑝
𝐿#
	

(17) 

where ∆𝑝 is the pressure gradient. Recognizing, tortuosity, τ, as Le/L, and porosity, 𝜙, as 456
!("

1(
, 

we get 

 
𝑄 =

𝐴
𝜇
𝑏/𝜙
8𝜏/

∆𝑝
𝐿 =

𝐴
𝜇
𝑏/𝜙
8𝜏/

𝑑𝑝
𝑑𝑥	

(18) 

Comparing (18) with (16), we see that  

 
𝑘~𝐶

𝑏/𝜙
𝜏/ 	

(19) 



where C is a pre-factor that varies minimally between 0.3 and 0.4, and will henceforth be 

neglected.5 We introduce a new term hydraulic radius, Rh, which is defined as the pore volume, 

Vp, over the solid-liquid interaction area during the flow, Asl, 

 
𝑅7 =

𝑉8
𝐴!9

=
𝜋𝑏/𝐿#
2𝜋𝑏𝐿#

=
𝑏
2	

(20) 

Substituting (20) into (19), we get 

 
𝑘~

𝑅7/𝜙
4𝜏/ 	

(21) 

Thus for the two systems to have the same permeability, they need to have identical :#
!;
<!

, values. 

This relationship is observed to be relatively robust for various geometries.5 In (21), 𝜏 is typically 

dependent on 𝜙. The relationship between these terms is given by the Archie law as  

 𝜏~𝜙=>	 (22) 

where m is a real number, typically greater than or equal to 1. Thus, from (22) and (21), we observe 

that  

 𝑘~𝑅7/𝜙/>?@	 (23) 

Now, since 𝑅7 is  𝑉8/𝐴!9, and since porosity is the pore volume over the total volume (𝑉$),  

 
𝑘~

𝑉8/>?A

𝐴!9/
1

𝑉$/>?@
	

(24) 

Since we set the same unit cell size and height between the channel and the pillar array, the total 

volume, 𝑉$, is identical between the systems. Thus for equivalence, the necessary condition is  



 𝑉8,+7/>?A

𝐴!9,+7/
=
𝑉8,C&&C'/>?A

𝐴!9,C&&C'/
	

(25) 

In (25), the equivalence criterion is more strongly reliant on the volume of the channel than the 

solid-liquid interaction area, as the volume term is to a much higher. For this reason, it is possible 

to simply approximate the equivalence by forcing the systems to have identical volumes. To 

demonstrate this quantitatively, we calculate the width of the channel, w, for various values of m, 

and plot them against w calculated using the identical volume approximation in Figure S1b. Here, 

we find the w values to be very similar (slope ~ 1), thereby validating our approach. 

 

Figure S1. (a) Illustration of porous system employed to derive the relationship between 
permeability and pore geometry. (b) Plot of w calculated for various values of m versus w 
calculated assuming that the pore volume i.e., volume available for flow is constant.  
 

With the equivalence established, the velocity of the liquid through the microchannel can 

be obtained by solving Navier-Stokes’ equation for steady state, parallel, incompressible flow. 



  
−
∆𝑃(
𝜇𝑧 =

𝜕/𝑈
𝜕𝑥/ +

𝜕/𝑈
𝜕𝑦/ 	

(26) 

where 𝑈(𝑥, 𝑦) is the velocity profile in the microchannel. Since the term on the left hand side is 

independent of x and y, we start by solving Laplace’s equation 

 𝜕/𝑈
𝜕𝑥/ +

𝜕/𝑈
𝜕𝑦/ = 0	

(27) 

Using the method of separation of variables 

 
𝑈(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦), 		𝑈(𝑥, 𝑦) = \𝑋(𝑥)𝑌(𝑦)

D

EF,

	
(28) 

Substituting (28) into (27) 

 𝜕/𝑋
𝜕𝑥/
𝑋 = −

𝜕/𝑌
𝜕𝑦/
𝑌 = 𝜆	

(29) 

 where, 𝜆 is a constant. Now solving for Y 

 𝜕/𝑌
𝜕𝑦/ + 𝜆𝑌 = 0	

(30) 

The standard solution to (30) is  

 𝑌 = 𝑐@ 𝑠𝑖𝑛`√𝜆𝑦b + 𝑐/ 𝑐𝑜𝑠`√𝜆𝑦b	 (31) 

Assuming no slip on the microchannel walls, we have the boundary condition 𝑈(𝑥, 𝑦 = ±ℎ) = 0, 

i.e., 𝑌(±ℎ) = 0 (Figure 1b). Solving equation (31) with the boundary condition in mind, we get 



 
𝑌 = 𝑐/ 𝑐𝑜𝑠 =

(2𝑛 + 1)𝜋
2ℎ 𝑦>	 (32) 

 
𝑈(𝑥, 𝑦) = \𝑋(𝑥) 𝑐𝑜𝑠 d

(2𝑛 + 1)𝜋𝑦
2ℎ e

D

EF,

	
(33) 

Now we expand the left hand side of (26) into a Taylor series 

 
−
∆𝑃(
𝜇𝑧 = \𝐵E 𝑐𝑜𝑠 d

(2𝑛 + 1)𝜋𝑦
2ℎ e

D

EF,

	
(34) 

Multiplying (24) by cos j(/>?@)5'
/7

k and integrating from –h to h we get 

 
l −

∆𝑃(
𝜇𝑧 𝑐𝑜𝑠 d

(2𝑚 + 1)𝜋𝑦
2ℎ e 𝑑𝑦

7

=7
= l 𝐵> 𝑐𝑜𝑠 d

(2𝑚 + 1)𝜋𝑦
2ℎ e

/

𝑑𝑦
7

=7
	

(35) 

 
−
∆𝑃(
𝜇𝑧

2ℎ
(2𝑚 + 1)𝜋𝑦

(−1)> =
(2𝑚 + 1)𝜋𝑦

2ℎ 𝐵>ℎ	
(36) 

 𝐵> = −
4∆𝑃(

𝜇𝑧(2𝑚 + 1)𝜋
(−1)>	 (37) 

 
−
∆𝑃(
𝜇𝑧 = −

4∆𝑃
𝜇𝑧𝜋 \

(−1)>

	(2𝑛 + 1) 𝑐𝑜𝑠 d
(2𝑛 + 1)𝜋𝑦

2ℎ e
D

EF,

	
(38) 

Substituting (38) and (33) into Navier-Stokes’ equation (16), we get 

 
−
4∆𝑃(
𝜇𝑧𝜋 \

(−1)>

	(2𝑛 + 1) 𝑐𝑜𝑠 d
(2𝑛 + 1)𝜋𝑦

2ℎ e
D

EF,

= \n𝑋"(𝑥) − d
(2𝑛 + 1)𝜋𝑦

2ℎ e
/

𝑋(𝑥)p 𝑐𝑜𝑠 d
(2𝑛 + 1)𝜋𝑦

2ℎ e
D

EF,

	

(39) 



i.e., 

 
−
4∆𝑃(
𝜇𝑧𝜋

(−1)>

	(2𝑛 + 1) = n𝑋"(𝑥) − d
(2𝑛 + 1)𝜋𝑦

2ℎ e
/

𝑋(𝑥)p	
(40) 

We now need to solve for X(x). We split X(x) into a homogenous and inhomogeneous component.  

 𝑋(𝑥) = 𝑋7I>(𝑥) + 𝑋JE7I>(𝑥)	 (41) 

Solving for the homogenous part, we get 

 
𝑋7I>"(𝑥) − d

(2𝑛 + 1)𝜋𝑦
2ℎ e

/

𝑋7I>(𝑥) = 0	
(42) 

The solution to 𝑋7I> here is  

 
𝑋7I>(𝑥) = 𝐷𝑐𝑜𝑠ℎ d

(2𝑛 + 1)𝜋𝑥
2ℎ e	

(43) 

Using (43), (41) in (40) 

 
𝑋JE7I> =

16∆𝑃(
𝜇𝑧

(−1)>ℎ/

	(2𝑛 + 1)A𝜋A	
(44) 

Therefore 

 
𝑋(𝑥) = 𝐷𝑐𝑜𝑠ℎ d

(2𝑛 + 1)𝜋𝑥
2ℎ e +

16∆𝑃(
𝜇𝑧

(−1)>ℎ/

	(2𝑛 + 1)A𝜋A	
(45) 

Assuming no slip on the microchannel walls, we have the boundary condition 𝑈(±𝑤/2, 𝑦) = 0, 

i.e., 𝑋(±𝑤/2) = 0 (Figure 1b). Solving equation (45) with this boundary condition, we get 



 

𝑋(𝑥) =
16∆𝑃(
𝜇𝑧

(−1)>ℎ/

	(2𝑛 + 1)A𝜋As1 −
𝑐𝑜𝑠ℎ t(2𝑛 + 1)𝜋𝑥2ℎ u

𝑐𝑜𝑠ℎ t(2𝑛 + 1)𝜋𝑤4ℎ u
v	

(46) 

From (46) and (33), we get the velocity profile in the microchannel 

 

𝑈(𝑥, 𝑦) =
16∆𝑃(ℎ/

𝜇𝑧𝜋A \
(−1)E

	(2𝑛 + 1)As1 −
𝑐𝑜𝑠ℎ t(2𝑛 + 1)𝜋𝑥2ℎ u

𝑐𝑜𝑠ℎ t(2𝑛 + 1)𝜋𝑤4ℎ u
v 𝑐𝑜𝑠 d

(2𝑛 + 1)𝜋𝑦
2ℎ e

D

EF,

	
(47) 

 

Lattice Boltzmann Simulation Validation 

To confirm that the Eq. (14) in the main text represents the appropriate equation for mean velocity 

through a rectangular channel, we perform LB simulations of flow through rectangular channels of 

various geometries and compare the simulated D against that predicted by Eq. (14). The agreement 

between the simulated and predicted values, shown in Figure S2, validates the expression in Eq. (14). 

 

 



 

Figure S2. (b) Plot of hemiwicking coefficients, D, for grooves calculated from Lattice Boltzmann 
simulations vs. those calculated using analytical expression in (14). Inset shows comparison out to higher 
D values. 

 

Figure S3 shows the comparison between D values calculated from lattice Boltzmann simulations 

and those measured experimentally as tabulated in Table S1. It can be seen that the simulated D 

values are in excellent agreement with experimental data, especially for p/d values between 3.3 

and 4, and the p/h values between 0.14 and 3.3 (sparse arrays). Some deviations are observed for 

p/d values are close to 1 (very dense arrays), consistent with the results shown in Fig. 4 of the main 

text. 



 

Figure S3. Plot of natural logarithm of D obtained from LB simulations versus natural logarithm 
of experimentally measured D reported in literature. 

 

 

 

  



Equations for square and cylindrical arrays. 

The equation (16) in the main text is agnostic to the geometry of the texture. However it may be extended 

to various geometries using suitable substitution. For example for a square array of cylindrical pillars, 

with 𝑐𝑜𝑠 𝜃" =
#$!%&!'

($!)*&+%&!)
, and 𝑤 = (𝑝- − 𝑑-)/𝑝, Eq. (16) from the main text takes the form  

 
𝐷 =

2𝛾./ℎ
3𝜇

3
𝑐𝑜𝑠 𝜃 (𝑝- + 𝜋𝑑ℎ − 𝜋𝑑-/4)

(𝑝- − 𝜋𝑑-/4)
− 1831

−
4𝑝ℎ

𝜋(𝑝- − 𝜋𝑑-/4)
𝑡𝑎𝑛ℎ <

𝜋(𝑝- − 𝜋𝑑-/4)
4𝑝ℎ

=8		

(48) 

where, d is the pillar diameter and p is the unit cell size (or pitch). For a square array of square cross-

section pillars, with 𝑐𝑜𝑠 𝜃" =
#$!%0&!/*'

($!)0&+%0&!/*)
, and 𝑤 = (𝑝- − 𝜋𝑑-/4)/𝑝 , Eq. (16) from the main text 

takes the form 

 
𝐷 =

2𝛾./ℎ
3𝜇

3
𝑐𝑜𝑠 𝜃 (𝑝- + 4𝑑ℎ − 𝑑-)

(𝑝- − 𝑑-)
− 1831 −

4𝑝ℎ
𝜋(𝑝- − 𝑑-)

𝑡𝑎𝑛ℎ <
𝜋(𝑝- − 𝑑-)

4𝑝ℎ
=8		

(49) 

where, d is the side of the square cross-section, p is the unit cell size (or pitch).  

  



Table S2. A tabulation of hemiwicking models with proposed analytical expressions for the 
hemiwicking coefficient, conditions where expressions are applicable and parameter proposed to 
best fit experimental data. 

Model Equation Condition Fitting 
Parameter 

Average 
Absolute 
Error  

Bico et al.1  𝐷 =
𝛾./ℎ
𝜇

⎝

⎛
𝜋𝑑ℎ
𝑏-

1 − 𝜋4 B
𝑑
𝑝C

-

⎠

⎞ - - 6.03 

Ishino et al.6 

𝐷 =
𝛾./𝑑
𝜇 F

ℎ
𝑝G

-

	 

 
𝑝 ≫ ℎ - 11.57 

𝐷 =
𝛾./𝑑
𝜇 Fln F

2𝑝
𝑑 G

− 1.31G 
𝑝 ≪ ℎ 

 
𝜃 = 0° 

- 0.59 

Srivastava et al. 
7 

𝐷 =
𝛾./
𝜇
𝑑2.4ℎ2.56(𝑝 − 𝑑)5.77

𝑝[1 − 𝜋4 B
𝑑
𝑝C

-
]

 𝜃 = 0° 
𝜋
15 2.44 

Kim et al.2 * 𝐷 =
𝛾./ℎ
𝜇 F

𝑟 − 1
1 + ℎ(𝑟 − 1)/𝑝G

 𝜃 = 0° ~0.24 
3.96 (0.33 
with fitting 
parameter) 

Kim et al.8* 𝐷 =
𝛾./ℎ
𝜇

(1 − 1/𝑟) 𝜃 = 0° - 3.45 

Krishnan et al9.ǁ 𝐷 =
2𝛾./
𝜇

ℎ𝑝(𝑝 − 𝑑)(𝑟 − 1)2.4

𝑥8-
 𝜃 = 0° ~1/95 

0.79 with 
fitting 
parameter 

*𝑟 = 1 + 5%7
8!

 

ǁ	𝑥I =
78
5%

 

  



Table S1. A tabulation of experimental data used for model validation. 

Source Theta 
(degrees) 

Height 
(µm) 

Diameter 
(µm) 

Pitch 
(µm) 

Viscosity 
(mPa.s) 

	𝜸𝑳𝑽	(mN/
m) 

D 
(mm2/s) 

Mai et al.10 

18 0.75 0.275 1 39.4 33.99 0.07 

18 7 0.3 1 39.4 33.99 0.17 
18 4.2 0.3 1 39.4 33.99 0.13 
18 2 0.3 1 39.4 33.99 0.08 

Ishino et al.6 

0 26 2.6 10 97 20 0.19 
0 26 2.6 10 48 20 0.32 
0 26 2.6 10 19 20 1.00 
0 26 2.6 10 9.5 20 2.00 
0 26 2.6 10 4.6 20 3.55 
0 18 2.6 10 97 20 0.15 
0 18 2.6 10 48 20 0.30 
0 18 2.6 10 19 20 1.80 
0 14 2.6 10 97 20 0.20 
0 14 2.6 10 48 20 0.32 
0 14 2.6 10 19 20 0.85 
0 14 2.6 10 9.5 20 1.55 
0 14 2.6 10 4.6 20 3.50 
0 10 2.6 10 48 20 0.30 
0 10 2.6 10 19 20 0.85 
0 10 2.6 10 9.5 20 1.80 
0 10 2.6 10 4.6 20 2.90 
0 6 2.6 10 97 20 0.10 
0 6 2.6 10 48 20 0.20 
0 6 2.6 10 19 20 0.55 
0 6 2.6 10 9.5 20 1.35 
0 6 2.6 10 4.6 20 1.80 
0 4 2.6 10 48 20 0.13 
0 4 2.6 10 19 20 0.40 
0 4 2.6 10 9.5 20 0.70 
0 4 2.6 10 4.6 20 1.15 

Xiao et al.11, 

12 

38 8.3 2.82 8.1 1 72 70.56 
38 8.3 2.9 5.5 1 72 40.14 
10 17 5 10 1 72 74.13 
10 17 5 20 1 72 105.27 

CSR 
0 7 10 20 43.8 29.5 0.59 
10 7 10 20 8.8 28 3.00 
5 7 10 20 3 26.6 17.28 

Kim et al.2 

0 26 10 40 1.3 72.8 169.00 
0 26 10 40 18 48 6.45 
0 26 10 75 18 48 1.77 
0 26 10 85 18 48 1.14 
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