
Vol.:(0123456789)

Algorithmica (2020) 82:1833–1858
https://doi.org/10.1007/s00453-020-00675-w

1 3

Colouring (Pr + Ps)‑Free Graphs

Tereza Klimošová1 · Josef Malík2 · Tomáš Masařík1,3  · Jana Novotná1,3 ·
Daniël Paulusma4 · Veronika Slívová5

Received: 4 October 2018 / Accepted: 8 January 2020 / Published online: 25 January 2020
© The Author(s) 2020

Abstract
The k-Colouring problem is to decide if the vertices of a graph can be coloured
with at most k colours for a fixed integer k such that no two adjacent vertices are
coloured alike. If each vertex u must be assigned a colour from a prescribed list
L(u) ⊆ {1,… , k}, then we obtain the List k-Colouring problem. A graph G is H-free
if G does not contain H as an induced subgraph. We continue an extensive study
into the complexity of these two problems for H-free graphs. The graph P

r
+ P

s
 is

the disjoint union of the r-vertex path P
r
 and the s-vertex path P

s
. We prove that

List 3-Colouring is polynomial-time solvable for (P2 + P5)-free graphs and for
(P3 + P4)-free graphs. Combining our results with known results yields complete
complexity classifications of 3-Colouring and List 3-Colouring on H-free graphs for
all graphs H up to seven vertices.

Keywords  Vertex colouring · H-free graph · Linear forest

1  Introduction

Graph colouring is a popular concept in Computer Science and Mathematics due
to a wide range of practical and theoretical applications, as evidenced by numer-
ous surveys and books on graph colouring and many of its variants (see, for exam-
ple, [1, 6, 15, 23, 26, 30, 32, 34]). Formally, a colouring of a graph G = (V ,E) is a

T. Masařík, J. Novotná and V. Slívová were supported by the Project GAUK 1277018 and the
Grant SVV–2017–260452. T. Klimošová was supported by the Center of Excellence—ITI, Project
P202/12/G061 of GA ČR, by the Center for Foundations of Modern Computer Science (Charles
Univ. Project UNCE/SCI/004), and by the Project GAUK 1277018. T. Masařík was also partly
supported by the Center of Excellence—ITI, Project P202/12/G061 of GA ČR. V. Slívová was partly
supported by the Project 17-09142S of GA ČR and Charles University Project PRIMUS/17/SCI/9.
D. Paulusma was supported by the Leverhulme Trust (RPG-2016-258). An extended abstract of this
paper has appeared in the proceedings of ISAAC 2018 [24].

 *	 Tomáš Masařík
	 masarik@kam.mff.cuni.cz

Extended author information available on the last page of the article

http://orcid.org/0000-0001-8524-4036
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00675-w&domain=pdf

1834	 Algorithmica (2020) 82:1833–1858

1 3

mapping c ∶ V → {1, 2,…} that assigns each vertex u ∈ V a colour c(u) in such a
way that c(u) ≠ c(v) whenever uv ∈ E. If 1 ≤ c(u) ≤ k, then c is also called a k-col-
ouring of G and G is said to be k-colourable. The Colouring problem is to decide
if a given graph G has a k-colouring for some given integer k.

It is well known that Colouring is ��-complete even if k = 3 [29]. To pinpoint
the reason behind the computational hardness of Colouring one may impose
restrictions on the input. This led to an extensive study of Colouring for special
graph classes, particularly hereditary graph classes. A graph class is hereditary if
it is closed under vertex deletion. As this is a natural property, hereditary graph
classes capture a very large collection of well-studied graph classes. A classical
result in this area is due to Grötschel, Lovász, and Schrijver [18], who proved that
Colouring is polynomial-time solvable for perfect graphs.

It is readily seen that a graph class G is hereditary if and only if G can be
characterized by a unique set HG of minimal forbidden induced subgraphs. If
HG = {H}, then a graph G ∈ G is called H-free. Hence, for a graph H, the class of
H-free graphs consists of all graphs with no induced subgraph isomorphic to H.

Král’, Kratochvíl, Tuza, and Woeginger [25] started a systematic study into
the complexity of Colouring on H-free graphs for sets H of size at most 2. They
showed polynomial-time solvability if H is an induced subgraph of P4 or P1 + P3
and ��-completeness for all other graphs H. The classification for the case where
H has size 2 is far from finished; see the summary in [15] or an updated partial
overview in [12] for further details. Instead of considering sets H of size 2, we
consider H-free graphs and follow another well-studied direction, in which the
number of colours k is fixed, that is, k no longer belongs to the input. This leads to
the following decision problem:

k-Colouring
Instance: a graph G
Question: does there exist a k-colouring of G

A k-list assignment of G is a function L with domain V such that the list of
admissible colours L(u) of each u ∈ V is a subset of {1, 2,… , k}. A colouring c
respects L if c(u) ∈ L(u) for every u ∈ V . If k is fixed, then we obtain the follow-
ing generalization of k-Colouring:

List k-Colouring
Instance: a graph G and a k-list assignment L
Question: does there exist a colouring of G that respects L

For every k ≥ 3, k-Colouring on H-free graphs is ��-complete if H contains
a cycle [14] or an induced claw [21, 28]. Hence, it remains to consider the case
where H is a linear forest (a disjoint union of paths). The situation is far from set-
tled yet, although many partial results are known [3–5, 8–11, 16, 20, 22, 27, 31,
33, 35]. Particularly, the case where H is the t-vertex path Pt has been well stud-
ied. The cases k = 4, t = 7 and k = 5, t = 6 are ��-complete [22]. For k ≥ 1, t = 5

1835

1 3

Algorithmica (2020) 82:1833–1858	

[20] and k = 3, t = 7 [3], even List k-Colouring on Pt-free graphs is polynomial-
time solvable (see also [15]).

For a fixed integer k, the k-Precolouring Extension problem is to decide if
a given k-colouring c′ defined on an induced subgraph G′ of a graph G can be
extended to a k-colouring c of G. Note that k-Colouring is a special case of k-Pre-
colouring Extension, whereas the latter problem can be formulated as a special
case of List k-Colouring by assigning list {c�(u)} to every vertex u of G′ and list
{1,… , k} to every other vertex of G. Recently, it was shown in [9] that 4-Precol-
ouring Extension, and therefore 4-Colouring, is polynomial-time solvable for P6

-free graphs. In contrast, the more general problem List 4-Colouring is ��-com-
plete for P6-free graphs [16]. See Table 1 for a summary of all these results.

From Table 1 we see that only the cases k = 3, t ≥ 8 are still open, although
some partial results are known for k-Colouring for the case k = 3, t = 8 [10]. The
situation when H is a disconnected linear forest

⋃
Pi is less clear. It is known

that for every s ≥ 1, List 3-Colouring is polynomial-time solvable for sP3-free
graphs [5, 15]. For every graph H, List 3-Colouring is polynomial-time solvable
for (H + P1)-free graphs if it is polynomially solvable for H-free graphs [5, 15].
If H = rP1 + P5 (r ≥ 0), then for every integer k, List k-Colouring is polynomial-
time solvable on (rP1 + P5)-free graphs [11]. This result cannot be extended to
larger linear forests H, as List 4-Colouring is ��-complete for P6-free graphs [16]
and List 5-Colouring is ��-complete for (P2 + P4)-free graphs [11].

A way of making progress is to complete a classification by bounding the size
of H. It follows from the above results and the ones in Table 1 that for a graph H
with |V(H)| ≤ 6, 3-Colouring and List 3-Colouring (and consequently, 3-Precol-
ouring Extension) are polynomial-time solvable on H-free graphs if H is a lin-
ear forest, and ��-complete otherwise (see also [15]). There are two open cases
[15] that must be solved in order to obtain the same statement for graphs H with
|V(H)| ≤ 7. These cases are

•	 H = P2 + P5

•	 H = P3 + P4.

1.1 � Our Results

In Sect. 2 we address the two missing cases listed above by proving the following
theorem.

Table 1   Summary for P
t
-free graphs

t k-Colouring k-Precolouring extension List k-Colouring

k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6

t ≤ 5 P P P P P P P P P P P P
t = 6 P P NP-c NP-c P P NP-c NP-c P NP-c NP-c NP-c
t = 7 P NP-c NP-c NP-c P NP-c NP-c NP-c P NP-c NP-c NP-c
t ≥ 8 ? NP-c NP-c NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c

1836	 Algorithmica (2020) 82:1833–1858

1 3

Theorem 1  List 3-Colouring is polynomial-time solvable for (P2 + P5)-free graphs
and for (P3 + P4)-free graphs.

We prove Theorem 1 as follows. If the graph G of an instance (G, L) of List 3-Col-
ouring is P7-free, then we can use the aforementioned result of Bonomo et al. [3].
Hence we may assume that G contains an induced P7. We consider every possibil-
ity of colouring the vertices of this P7 and try to reduce each resulting instance to a
polynomial number of smaller instances of 2-Satisfiability. As the latter problem can
be solved in polynomial time, the total running time of the algorithm will be poly-
nomial. The crucial proof ingredient is that we partition the set of vertices of G that
do not belong to the P7 into subsets of vertices that are of the same distance to the
P7. This leads to several “layers” of G. We analyse how the vertices of each layer are
connected to each other and to vertices of adjacent layers so as to use this informa-
tion in the design of our algorithm.

Combining Theorem 1 with the known results yields the following complexity
classifications for graphs H up to seven vertices; see Sect. 3 for its proof.

Corollary 1  Let H be a graph with |V(H)| ≤ 7. If H is a linear forest, then List
3-Colouring is polynomial-time solvable for H-free graphs; otherwise already
3-Colouring is ��-complete for H-free graphs.

1.2 � Preliminaries

Let G = (V ,E) be a graph. For a vertex v ∈ V , we denote its neighbourhood by
N(v) = {u | uv ∈ E}, its closed neighbourhood by N[v] = N(v) ∪ {v} and its
degree by deg(v) = |N(v)|. For a set S ⊆ V , we write N(S) =

⋃
v∈S N(v) ⧵ S and

N[S] = N(S) ∪ S, and we let G[S] = (S, {uv | u, v ∈ S}) be the subgraph of G
induced by S. The contraction of an edge e = uv removes u and v from G and intro-
duces a new vertex which is made adjacent to every vertex in N(u) ∪ N(v). The iden-
tification of a set S ⊆ V by a vertex w removes all vertices of S from G, introduces w
as a new vertex and makes w adjacent to every vertex in N(S). The length of a path
is its number of edges. The distance dist G(u, v) between two vertices u and v is the
length of a shortest path between them in G. The distance dist G(u, S) between a ver-
tex u ∈ V and a set S ⊆ V ⧵ {v} is defined as min{ dist (u, v) | v ∈ S}.

For two graphs G and H, we use G + H to denote the disjoint union of G and
H, and we write rG to denote the disjoint union of r copies of G. Let (G, L) be an
instance of List 3-Colouring. For S ⊆ V(G), we write L(S) =

⋃
u∈S L(u). We let Pn

and Kn denote the path and complete graph on n vertices, respectively. The diamond
is the graph obtained from K4 after removing an edge.

We say that an instance (G�, L�) is smaller than some other instance (G, L) of
List 3-Colouring if either G′ is an induced subgraph of G with |V(G�)| < |V(G)| ; or
G� = G and L�(u) ⊆ L(u) for each u ∈ V(G), such that there exists at least one ver-
tex u∗ with L�(u∗) ⊂ L(u∗).

1837

1 3

Algorithmica (2020) 82:1833–1858	

2 � The Proof of Theorem 1

In this section we show that List 3-Colouring problem is polynomial-time solvable
for (P2 + P5)-free graphs and for (P3 + P4)-free graphs. As arguments for these two
graph classes are overlapping, we prove both cases simultaneously. Our proof uses
the following two results.

Theorem 2  ([3]) List 3-Colouring is polynomial-time solvable for P7-free graphs.

If we cannot apply Theorem 2, our strategy is to reduce, in polynomial time, an
instance (G, L) of List 3-Colouring to a polynomial number of smaller instances of
2-List Colouring. We use the following well-known result due to Edwards.

Theorem 3  ([13]) The 2-List Colouring problem is linear-time solvable.

We are now ready to prove our main result , namely that List 3-Colouring is pol-
ynomial-time solvable for (P2 + P5)-free graphs and for (P3 + P4)-free graphs. As
arguments for these two graph classes are overlapping, we prove both cases simulta-
neously. We start with an outline followed by a formal proof.

Outline of the proof of Theorem 1. Our goal is to reduce, in polynomial time, a given
instance (G, L) of List 3-Colouring, where G is (P2 + P5)-free or (P3 + P4)-free, to
a polynomial number of smaller instances of 2-List-Colouring in such a way that
(G, L) is a yes-instance if and only if at least one of the new instances is a yes-
instance. As for each of the smaller instances, we can apply Theorem 3, the total
running time of our algorithm will be polynomial.

If G is P7-free, then we do not have to do the above and may apply Theorem 2
instead. Hence, we assume that G contains an induced P7. We put the vertices of
the P7 in a set N0 and define sets Ni (i ≥ 1 ) of vertices of the same distance i from
N0 ; we say that the sets Ni are the layers of G. We then analyse the structure of these
layers using the fact that G is (P2 + P5)-free or (P3 + P4)-free. The first phase of
our algorithm is about preprocessing (G, L) after colouring the seven vertices of N0
and applying a number of propagation rules. We consider every possible colouring
of the vertices of N0. In each branch, we may have to deal with vertices u that still
have a list L(u) of size 3. We call such vertices active and prove that they all belong
to N2. We then enter the second phase of our algorithm. In this phase we show, via
some further branching, that N1-neighbours of active vertices either all have a list
from {{h, i}, {h, j}}, where {h, i, j} = {1, 2, 3}, or they all have the same list {h, i}.
In the third phase, we reduce, again via some branching, to the situation where only
the latter option applies: N1-neighbours of active vertices all have the same list. Then
in the fourth and final phase of our algorithm, we know so much structure of the
instance that we can reduce to a polynomial number of smaller instances of 2-List-
Colouring via a new propagation rule identifying common neighbourhoods of two
vertices by a single vertex.

1838	 Algorithmica (2020) 82:1833–1858

1 3

Theorem 1  (Restated) List 3-Colouring is polynomial-time solvable for (P2 + P5)

-free graphs and for (P3 + P4)-free graphs.

Proof  Let (G, L) be an instance of List 3-Colouring, where G = (V ,E) is an H-free
graph for H ∈ {P2 + P5,P3 + P4}. Note that G is (P3 + P5)-free. Since the problem
can be solved component-wise, we may assume that G is connected. If G contains a
K4, then G is not 3-colourable, and thus (G, L) is a no-instance. As we can decide if
G contains a K4 in O(n4) time by brute force, we assume that from now on G is K4

-free. By brute force, we either deduce in O(n7) time that G is P7-free or we find an
induced P7 on vertices v1,… , v7 in that order. In the first case, we use Theorem 2. It
remains to deal with the second case.

Definition  (Layers) Let N0 = {v1,… , v7}. For i ≥ 1, we define
Ni = {u | dist (u,N0) = i}. We call the sets Ni (i ≥ 0) the layers of G.

In the remainder, we consider N0 to be a fixed set of vertices. That is, we will
update (G, L) by applying a number of propagation rules and doing some (polyno-
mial) branching, but we will never delete the vertices of N0. This will enable us to
exploit the H-freeness of G.

We show the following two claims about layers.

Claim 1 V = N0 ∪ N1 ∪ N2 ∪ N3.

Proof of Claim 1  Suppose Ni ≠ ∅ for some i ≥ 4. As G is connected, we may assume
that i = 4. Let u4 ∈ N4. By definition, there exists two vertices u3 ∈ N3 and u2 ∈ N2
such that u2 is adjacent to u3 and u3 is adjacent to u4. Then G has an induced P3 + P5
on vertices u2, u3, u4, v1, v2, v3, v4, v5, a contradiction.⋄

Claim 2  G[N2 ∪ N3] is the disjoint union of complete graphs of size at most 3, each
containing at least one vertex of N2 (and thus at most two vertices of N3).

Proof of Claim 2  First assume that G[N2 ∪ N3] has a connected component D that
is not a clique. Then D contains an induced P3, which together with the subgraph
G[{v1,… , v5} ] forms an induced P3 + P5, a contradiction. Then the claim follows
after recalling that G is K4-free and connected.⋄

We will now introduce a number of propagation rules, which run in polyno-
mial time. We are going to apply these rules on G exhaustively, that is, until none
of the rules can be applied anymore. Note that during this process some vertices
of G may be deleted (due to Rules 4 and 10), but as mentioned we will ensure that
we keep the vertices of N0, while we may update the other sets Ni (i ≥ 1). We say
that a propagation rule is safe if the new instance is a yes-instance of List 3-Col-
ouring if and only if the original instance is so.

1839

1 3

Algorithmica (2020) 82:1833–1858	

Rule 1	� (no empty lists) If L(u) = � for some u ∈ V , then return no.
Rule 2	� (some lists of size 3) If |L(u)| ≤ 2 for every u ∈ V , then apply Theorem 3.
Rule 3	� (connected graph) If G is disconnected, then solve List 3-Colouring on

each instance (D,LD), where D is a connected component of G that does
not contain N0 and LD is the restriction of L to D. If D has no colouring
respecting LD, then return no; otherwise remove the vertices of D from
G.

Rule 4	� (no coloured vertices) If u ∉ N0, |L(u)| = 1 and L(u) ∩ L(v) = � for all
v ∈ N(u), then remove u from G.

Rule 5	� (single colour propagation) If u and v are adjacent, |L(u)| = 1, and
L(u) ⊆ L(v), then set L(v) ∶= L(v) ⧵ L(u).

Rule 6	� (diamond colour propagation) If u and v are adjacent and share two
common neighbours x and y with L(x) ≠ L(y), then set L(x) ∶= L(x) ∩ L(y)
and L(y) ∶= L(x) ∩ L(y).

Rule 7	� (twin colour propagation) If u and v are non-adjacent, N(u) ⊆ N(v), and
L(v) ⊂ L(u), then set L(u) ∶= L(v).

Rule 8	� (triangle colour propagation) If u, v, w form a triangle, |L(u) ∪ L(v)| = 2
and |L(w)| ≥ 2, then set L(w) ∶=L(w) ⧵ (L(u) ∪ L(v)), so |L(w)| ≤ 1.

Rule 9	� (no free colours) If |L(u) ⧵ L(N(u))| ≥ 1 and |L(u)| ≥ 2 for some u ∈ V ,
then set L(u) ∶= {c} for some c ∈ L(u) ⧵ L(N(u)).

Rule 10	� (no small degrees) If |L(u)| > | deg(u)| for some u ∈ V ⧵ N0, then remove
u from G.

 As mentioned, our algorithm will branch at several stages to create a number
of new but smaller instances, such that the original instance is a yes-instance if
and only if at least one of the new instances is a yes-instance. Unless we explic-
itly state otherwise, we implicitly assume that Rules 1–10 are applied exhaus-
tively immediately after we branch (the reason why we may do this is shown in
Claim 3). If we apply Rule 1 or 2 on a new instance, then a no-answer means that
we will discard the branch. So our algorithm will only return a no-answer for the
original instance (G, L) if we discarded all branches. On the other hand, if we can
apply Rule 2 on some new instance and obtain a yes-answer, then we can extend
the obtained colouring to a colouring of G that respects L, simply by restoring all
the already coloured vertices that were removed from the graph due to the rules.
We will now state Claim 3.

Claim 3  Rules 1–10 are safe and their exhaustive application takes polynomial
time. Moreover, if we have not obtained a yes- or no-answer, then afterwards G is a
connected (H,K4)-free graph, such that V = N0 ∪ N1 ∪ N2 ∪ N3 and 2 ≤ |L(u)| ≤ 3
for every u ∈ V ⧵ N0.

Proof of Claim 3  It is readily seen that Rules 1–5 are safe. For Rule 6, this follows
from the fact that any 3-colouring assigns x and y the same colour. For Rule 7, this
follows from the fact that u can always be recoloured with the same colour as v. For
Rule 8, this follows from the fact that the colours from L(u) ∪ L(v) must be used on

1840	 Algorithmica (2020) 82:1833–1858

1 3

u and v. For Rule 9, this follows from the fact that no colour from L(u) ⧵ L(N(u))
will be assigned to a vertex in N(u). For Rule 10, this follows from the fact that we
always have a colour available for u.

It is readily seen that applying Rules 1, 2 and 4–10 take polynomial time. Apply-
ing Rule 3 takes polynomial time, as each connected component of G that does not
contain N0 is a complete graph on at most three vertices due to the (H,K4)-free-
ness of G (recall that H = P2 + P3 or H = P3 + P4 ). Each application of a rule either
results in a no-answer, a yes-answer, reduces the list size of at least one vertex, or
reduces G by at least one vertex. Thus the exhaustive application of the rules takes
polynomial time.

Suppose exhaustive application does not yield a no-answer or a yes-answer. By
Rule 3, G is connected. As no vertex of N0 was removed, G contains N0. Hence,
we can define V = N0 ∪ N1 ∪ N2 ∪ N3 by Claim 1. By Rules 4 and 5, we find that
2 ≤ |L(u)| ≤ 3 for every u ∈ V ⧵ N0. It is readily seen that Rules 1–10 preserve
(H,K4)-freeness of G. ⋄

Phase 1: Preprocessing (�,�)

In Phase 1 we will preprocess (G, L) using the above propagation rules. To start
off the preprocessing we will branch via colouring the vertices of N0 in every pos-
sible way. By colouring a vertex u, we mean reducing the list of permissible col-
ours to size exactly one. (When L(u) = {c}, we consider vertex coloured by col-
our c.) Thus, when we colour some vertex u, we always give u a colour from its
list L(u). Moreover, when we colour more than one vertex we will always assign
distinct colours to adjacent vertices.

Branching I (O(1) branches)
We now consider all possible combinations of colours that can be assigned to
the vertices in N0. That is, we branch into at most 2 × 36 cases, in which v1,… , v7
each receives a colour from their list. We note that each branch leads to a smaller
instance and that (G, L) is a yes-instance if and only if at least one of the new
instances is a yes-instance. Hence, if we applied Rule 1 in some branch, then
we discard the branch. If we applied Rule 2 and obtained a no-answer, then we
discard the branch as well. If we obtained a yes-answer, then we are done. Oth-
erwise, we continue by considering each remaining branch separately. For each
remaining branch, we denote the resulting smaller instance by (G, L) again.

We will now introduce a new rule, namely Rule 11. We apply Rule 11 together
with the other rules. That is, we now apply Rules 1–11 exhaustively. However,
each time we apply Rule 11 we first ensure that Rules 1–10 have been applied
exhaustively.

Rule 11	� (��-reduction) If u and v are in N3 and are adjacent, then remove u and v
from G.

1841

1 3

Algorithmica (2020) 82:1833–1858	

Claim 4  Rule 11, applied after exhaustive application of Rules 1–10, is safe and
takes polynomial time. Moreover, afterwards G is a connected (H,K4)-free graph,
such that V = N0 ∪ N1 ∪ N2 ∪ N3 and 2 ≤ |L(u)| ≤ 3 for every u ∈ V ⧵ N0.

Proof of Claim 4  Assume that we applied Rules 1–10 exhaustively and that N3 con-
tains two adjacent vertices u and v. By Claim 2, we find that u and v have a com-
mon neighbour w ∈ N2 and no other neighbours. By Rules 4, 5 and 10, we then find
that |L(u)| = |L(v)| = 2. First suppose that L(u) = L(v), say L(u) = L(v) = {1, 2}.
Then, by Rule 8, we find that L(w) = {3}, contradicting Rule 4. Hence L(u) ≠ L(v),
say L(u) = {1, 2} and L(v) = {1, 3}. By Rule 8, we find that L(w) = {2, 3} or
L(w) = {1, 2, 3}. If w gets colour 1, we can give u colour 2 and v colour 3. If w gets
colour 2, we can give u colour 1 and v colour 3. Finally, if w gets colour 3, then we
can give u colour 2 and v colour 1. Hence we may set V ∶= V ⧵ {u, v}. This does not
destroy the connectivity or (H,K4)-freeness of G.� ⋄

We now show the following claim.

Claim 5  The set N3 is independent, and moreover, each vertex u ∈ N3 has |L(u)| = 2
and exactly two neighbours in N2 which are adjacent.

Proof of Claim 5  By Rule 11, we find that N3 is independent. By Claim 2, every
vertex of N3 has at most two neighbours in N2 and these neighbours are adjacent.
Hence, the claim follows from Rules 4, 5, 10 and the fact that N3 is independent.� ⋄

The following claim is an immediate consequence of Claims 2 and 5 and gives a
complete description of the second and third layer, see also Fig. 1.

Claim 6  Every connected component D of G[N2 ∪ N3] is a complete graph with
either |D| ≤ 2 and D ⊆ N2, or |D| = 3 and |D ∩ N3| ≤ 1.

The following claim describes the location of the vertices with list of size 3 in G.

Claim 7  For every u ∈ V , if |L(u)| = 3, then u ∈ N2.

v1 v2 v3 v4 v5 v6 v7
N0

N1

N2

N3

Fig. 1   All possible connected components in G[N2 ∪ N3]

1842	 Algorithmica (2020) 82:1833–1858

1 3

Proof of Claim 7  As the vertices in N0 have lists of size 1, the vertices in N1 have lists
of size 2. By Claim 5, the same holds for vertices in N3.� ⋄

In the remainder of the proof, we will show how to branch in order to reduce
the lists of the vertices u ∈ N2 with |L(u)| = 3 by at least one colour. We formalize
this approach in the following definition.

Definition  (Active vertices) A vertex u ∈ N2 and its neighbours in N1 are called
active if |L(u)| = 3. Let A be the set of all active vertices. Let A1 = A ∩ N1 and
A2 = A ∩ N2. We deactivate a vertex u ∈ A2 if we reduce the list L(u) by at least one
colour. We deactivate a vertex w ∈ A1 by deactivating all its neighbours in A2.

Note that every vertex w ∈ A1 has |L(w)| = 2 by Rule 5 applied on the vertices
of N0. Hence, if we reduce L(w) by one colour, all neighbours of w in A2 become
deactivated by Rule 5, and w is removed by Rule 4.

For 1 ≤ i < j ≤ 7, we let A(i, j) ⊆ A1 be the set of active neighbours of vi that are
not adjacent to vj and similarly, we let A(j, i) ⊆ A1 be the set of active neighbours
of vj that are not adjacent to vi.

Phase 2: Reduce the number of distinct sets �(�, �)
We will now branch into O(n45) smaller instances such that (G, L) is a yes-
instance of List 3-Colouring if and only if at least one of these new instances is a
yes-instance. Each new instance will have the following property:

(P)	� for 1 ≤ i ≤ j ≤ 7 with j − i ≥ 2, either A(i, j) = � or A(j, i) = �.

Branching II ( O
�
n

�
3⋅

⎛⎜⎜⎝

⎛⎜⎜⎝
7

2

⎞⎟⎟⎠
−6

⎞⎟⎟⎠

�
�
= O(n45) branches)

Consider two vertices vi and vj with 1 ≤ i ≤ j ≤ 7 and j − i ≥ 2. Assume without
loss of generality that vi is coloured 3 and that vj is coloured either 1 or 3. Hence,
every w ∈ A(i, j) has L(w) = {1, 2}, whereas every w ∈ A(j, i) has L(w) = {2, q} for
q ∈ {1, 3}. We branch as follows. We consider all possibilities where at most one
vertex of A(i, j) receives colour 2 (and all other vertices of A(i, j) receive col-
our 1) and all possibilities where we choose two vertices from A(i, j) to receive
colour 2. This leads to O(n) + O(n2) = O(n2) branches. In the branches where at
most one vertex of A(i, j) receives colour 2, every vertex of A(i, j) will be deacti-
vated. So Property (P) is satisfied for i and j.

Now consider the branches where two vertices x1, x2 of A(i, j) both received
colour 2. We update A(j, i) accordingly. In particular, afterwards no vertex in
A(j, i) is adjacent to x1 or x2, as 2 is a colour in the list of each vertex of A(j, i).
We now do some further branching for those branches where A(j, i) ≠ �. We con-
sider the possibility where each vertex of N(A(j, i)) ∩ A2 is given the colour of vj
and all possibilities where we choose one vertex in N(A(j, i)) ∩ A2 to receive a
colour different from the colour of vj (we consider both options to colour such

1843

1 3

Algorithmica (2020) 82:1833–1858	

a vertex). This leads to O(n) branches. In the first branch, every vertex of A(j, i)
will be deactivated. So Property (P) is satisfied for i and j.

Now consider a branch where a vertex u ∈ N(A(j, i)) ∩ A2 receives a colour dif-
ferent from the colour of vj. We will show that also, in this case, every vertex
of A(j, i) will be deactivated. For contradiction, assume that A(j, i) contains a
vertex w that is not deactivated after colouring u. As u was in N(A(j, i)) ∩ A2, we
find that u had a neighbour w� ∈ A(j, i). As u is coloured with a colour different
from the colour of vj, the size of L(w�) is reduced by one (due to Rule 4). Hence
w′ got deactivated after colouring u, and thus w′ ≠ w. As w is still active, w has
a neighbour u� ∈ A2. As u′ and w are still active, u′ and w are not adjacent to w′
or u. Hence, u,w′, vj,w, u

′ induce a P5 in G. As x1 and x2 both received colour 2,
we find that x1 and x2 are not adjacent to each other. Hence, x1, vi, x2 induce a P3
in G. Recall that all vertices of A(j, i), so also w and w′, are not adjacent to x1 or
x2. As u and u′ were still active after colouring x1 and x2, we find that u and u′ are
not adjacent to x1 or x2 either. By definition of A(j, i), w and w′ are not adjacent
to vi. By definition of A(i, j), x1 and x2 are not adjacent to vj. Moreover, vi and vj
are non-adjacent, as j − i ≥ 2. We conclude that G contains an induced P3 + P5,
namely with vertex set {x1, vi, x2} ∪ {u,w�, vj,w, u

�}, a contradiction (see Fig. 2 for
an example of such a situation). Hence, every vertex of A(j, i) is deactivated. So
Property (P) is satisfied for i and j also for these branches.

Finally by recursive application of the above described procedure for all pairs
vi, vj such that 1 ≤ i ≤ j ≤ 7 and j − i ≥ 2 we get a graph satisfying Property (P),

which together leads to O
�
n

�
3⋅

⎛⎜⎜⎝

⎛⎜⎜⎝
7

2

⎞⎟⎟⎠
−6

⎞⎟⎟⎠

�
�
= O(n45) branches.

We now consider each resulting instance from Branching II. We denote such
an instance by (G, L) again. Note that vertices from N2 may now belong to N3, as
their neighbours in N1 may have been removed due to the branching. The exhaus-
tive application of Rules 1– 11 preserves (P) (where we apply Rule 11 only after
applying Rules 1–10 exhaustively). Hence (G, L) satisfies (P).

We observe that if two vertices in A1 have a different list, then they must be
adjacent to different vertices of N0. Hence, by Property (P), at most two lists of
{{1, 2}, {1, 3}, {2, 3}} can occur as lists of vertices of A1. Without loss of gener-
ality this leads to two cases: either every vertex of A1 has list {1, 2} or {1, 3} and

vi · · · vk · · · vj
N0

N1

N2

x1 x2

u

w′

u′

w

Fig. 2   The situation in Branching II

1844	 Algorithmica (2020) 82:1833–1858

1 3

both lists occur on A1 ; or every vertex of A1 has list {1, 2} only. In the next phase
of our algorithm, we reduce, via some further branching, every instance of the
first case to a polynomial number of smaller instances of the second case.

Phase 3: Reduce to the case where vertices of ��have the same list
Recall that we assume that every vertex of A1 has list {1, 2} or {1, 3}. In this

phase, we deal with the case when both types of lists occur in A1. We first prove the
following claim.

Claim 8  Let i ∈ {1, 3, 5, 7}. Then every vertex from A1 ∩ N(vi) is adjacent to some
vertex vj with j ∉ {i − 1, i, i + 1}.

Proof of Claim 8  We may assume without loss of generality that i = 1 or i = 3. For
contradiction suppose there exists a vertex w ∈ A1 ∩ N(vi) that is non-adjacent
to all vj with j ∉ {i − 1, i, i + 1}. As two consecutive vertices in N0 have differ-
ent colours, no vertex in A1 has two consecutive neighbours in N0 due to Rules 4
and 5. Hence N(w) ∩ N0 = {vi}. By definition, w has a neighbour u ∈ A2. If
i = 1, then

{
u,w, v1, v2, v3

}
∪
{
v5, v6, v7

}
 induces a P3 + P5 in G. If i = 3, then {

v1, v2, v3,w, u
}
∪
{
v5, v6, v7

}
 induces a P3 + P5 in G. ⋄

Claim 9  It holds that N(A1) ∩ N0 = {vi−1, vi, vi+1} for some 2 ≤ i ≤ 6. Moreover, we
may assume without loss of generality that vi−1 and vi+1 have colour 3 and both are
adjacent to all vertices of A1 with list {1, 2}, whereas vi has colour 2 and is adjacent
to all vertices of A1 with list {1, 3}.

Proof of Claim 9  Recall that lists {1, 2} and {1, 3} both occur on A1. For any two
vertices x ∈ A1 with L(x) = {1, 2} and y ∈ A1 with L(y) = {1, 3}, there exist
indexes i, j such that x ∈ A(i, j) and y ∈ A(j, i) (namely, x is adjacent to some ver-
tex vi with colour 3 and y is adjacent to some vertex vj with colour 2). Note that x
and y share no neighbour in N0. By using Property (P), we find that each vertex of
N(x) ∩ N0 must be adjacent to each vertex of N(y) ∩ N0. We conclude that either
N(A1) ∩ N0 = {vi−1, vi} for some 2 ≤ i ≤ 7, or N(A1) ∩ N0 = {vi−1, vi, vi+1} for some
2 ≤ i ≤ 6.

The case where N(A1) ∩ N0 = {vi−1, vi} for some 2 ≤ i ≤ 7 is not possible due
to Claim 8. It follows that N(A1) ∩ N0 = {vi−1, vi, vi+1} for some 2 ≤ i ≤ 6. We may
assume without loss of generality that vi has colour 2, meaning that vi−1 and vi+1
must have colour 3. It follows that every vertex of A1 with list {1, 3} is adjacent to vi
but not to vi−1 or vi+1, whereas every vertex of A1 with list {1, 2} is adjacent to at least
one vertex of {vi−1, vi+1} but not to vi. As a vertex of A1 with list {1, 3} has vi as its
only neighbour in N0, it follows from Claim 8 that i is an even number. This means
that i − 1 is odd. Hence, every vertex of A1 with list {1, 2} is in fact adjacent to both
vi−1 and vi+1 due to Claim 8.� ⋄

By Claim 9, we can partition the set A1 into two (non-empty) sets X1,2 and X1,3,
where X1,2 is the set of vertices in A1 with list {1, 2} whose only neighbours in N0 are

1845

1 3

Algorithmica (2020) 82:1833–1858	

vi−1 and vi+1 (which both have colour 3) and X1,3 is the set of vertices in A1 with list
{1, 3} whose only neighbour in N0 is vi (which has colour 2), see Fig. 3.

Our goal is to show that we can branch into at most O(n2) smaller instances, in
which either X1,2 = � or X1,3 = �, such that (G, L) is a yes-instance of List 3-Col-
ouring if and only if at least one of these smaller instances is a yes-instance. Then
afterwards it suffices to show how to deal with the case where all vertices in A1 have
the same list in polynomial time; this will be done in Phase 4 of the algorithm. We
start with the following O(n) branching procedure (in each of the branches we may
do some further O(n) branching later on).

Branching III (O(n) branches)
We branch by considering the possibility of giving each vertex in X1,2 colour 2 and
all possibilities of choosing a vertex in X1,2 and giving it colour 1. This leads to O(n)
branches. In the first branch we obtain X1,2 = �. Hence we can start Phase 4 for this
branch. We now consider every branch in which X1,2 and X1,3 are both nonempty.
For each such branch we will create O(n) smaller instances of List 3-Colouring,
where X1,3 = �, such that (G, L) is a yes-instance of List 3-Colouring if and only if
at least one of the new instances is a yes-instance.

Let w ∈ X1,2 be the vertex that was given colour 1 in such a branch. Although
by Rule 4 vertex w will need to be removed from G, we make an exception by tem-
porarily keeping w after we coloured it. The reason is that the presence of w will
be helpful for analysing the structure of (G, L) after Rules 1–11 have been applied
exhaustively (where we apply Rule 11 only after applying Rules 1–10 exhaustively).
In order to do this, we first show the following three claims.

Claim 10  Vertex w is not adjacent to any vertex in A2 ∪ X1,2 ∪ X1,3.

Proof of Claim 10  By giving w colour 1, the list of every neighbour of w in A2 has
been reduced by one due to Rule 5. Hence, all neighbours of w in A2 are deacti-
vated. For the same reason all neighbours of w in X1,2, which have list {1, 2}, are col-
oured 2, and all neighbours of w in X1,3, which have list {1, 3}, are coloured 3. These
vertices were removed from the graph by Rule 4. This proves the claim. ⋄

Claim 11  The graph G[X1,3 ∪ (N(X1,3) ∩ A2) ∪ N3] is the disjoint union of one or
more complete graphs, each of which consists of either one vertex of X1,3 and at most
two vertices of A2, or one vertex of N3.

vi−1 vi vi+1 N0

A1.

X1,2 X1,3

Fig. 3   The situation after Claim 9

1846	 Algorithmica (2020) 82:1833–1858

1 3

Proof of Claim 11  We write G∗ = G[X1,3 ∪ (N(X1,3) ∩ A2) ∪ N3] and first show that
G∗ is the disjoint union of one or more complete graphs. For contradiction, assume
that G∗ is not such a graph. Then G∗ contains an induced P3, say on vertices u1, u2, u3
in that order. As w ∈ X1,2 ⊆ N1, we find that w is not adjacent to any vertex of N3.
By Claim 10, we find that w is not adjacent to any vertex of A2 ∪ X1,3. Recall that
vi−1 and vi+1 are the only neighbours of w in N0, whereas vi is the only neighbour of
the vertices of X1,3 in N0. Hence, {u1, u2, u3} ∪ {v1,… , vi−1,w, vi+1,… , v7} induces
a P3 + P7. This contradicts the (P3 + P5)-freeness of G. We conclude that G∗ is the
disjoint union of one or more complete graphs.

As G is K4-free, the above means that every connected component of G∗ is a
complete graph on at most three vertices. No vertex of N3 is adjacent to a vertex
in X1,3 ⊆ N1. Moreover, by definition, every vertex of N(X1,3) ∩ A2 is adjacent to at
least one vertex of X1,3. As every connected component of G∗ is a complete graph,
this means that no vertex of N3 is adjacent to a vertex of N(X1,3) ∩ A2 either. We con-
clude that the vertices of N3 are isolated vertices of G∗.

Let D be a connected component of G∗ that does not contain a vertex of N3. From
the above we find that D is a complete graph on at most three vertices. By definition,
every vertex in X1,3 has a neighbour in A2 and every vertex of N(X1,3) ∩ A2 has a
neighbour in X1,3. This means that D either consists of one vertex in X1,3 and at most
two vertices of A2, or D consists of two vertices of X1,3 and one vertex of A2. We
claim that the latter case is not possible. For contradiction, assume that D is a trian-
gle that consists of three vertices s, u1, u2, where s ∈ A2 and u1, u2 ∈ X1,3. However,
as L(u1) = L(u2) = {1, 3}, we find that |L(s)| = 1 by Rule 8, contradicting the fact
that s belongs to A2. This completes the proof of the claim. ⋄

Claim 12  For every pair of adjacent vertices s, t with s ∈ A2 and t ∈ N2, either t is
adjacent to w, or N(s) ∩ X1,3 ⊆ N(t).

Proof of Claim 12  For contradiction, assume that t is not adjacent to w and that there
is a vertex r ∈ X1,3 that is adjacent to s but not to t. By Claim 10, we find that w is
not adjacent to r or s. Just as in the proof of Claim 11, we find that {r, s, t} together
with {v1, ,… , vi−1,w, vi+1,… , v7} induces a P3 + P7 in G, a contradiction.� ⋄

We now continue as follows. Recall that X1,3 ≠ ∅. Hence there exists a vertex
s ∈ A2 that has a neighbour r ∈ X1,3. As s ∈ A2, we have that |L(s)| = 3. Then, by
Rule 10, we find that s has at least two neighbours t and t′ not equal to r. By
Claim 11, we find that neither t nor t′ belongs to X1,3 ∪ N3. We are going to fix an
induced 3-vertex path Ps of G, over which we will branch, in the following way.

If t and t′ are not adjacent, then we let Ps be the induced path in G with vertices
t, s, t′ in that order. Suppose that t and t′ are adjacent. As G is K4-free and s is adja-
cent to r, t, t′, at least one of t, t′ is not adjacent to r. We may assume without loss
of generality that t is not adjacent to r.

First assume that t ∈ N2. Recall that s has a neighbour in X1,3, namely r, and
that r is not adjacent to t. We then find that t must be adjacent to w by Claim 12.

1847

1 3

Algorithmica (2020) 82:1833–1858	

As s ∈ A2, we find that s is not adjacent to w by Claim 10. In this case we let Ps be
the induced path in G with vertices s, t, w in that order.

Now assume that t ∉ N2. Recall that t ∉ N3. Hence, t must be in N1. Then, as
t ∉ X1,3 but t is adjacent to a vertex in A2, namely s, we find that t ∈ X1,2. Recall
that t� ∉ X1,3. If t� ∈ N1 then the fact that t� ∉ X1,3, combined with the fact that t′
is adjacent to s ∈ A2, implies that t� ∈ X1,2. However, by Rule 8 applied on s, t, t′,
vertex s would have a list of size 1 instead of size 3, a contradiction. Hence,
t� ∉ N1. As t� ∉ N3, this means that t� ∈ N2. If t′ is adjacent to r, then t ∈ X1,2
with L(t) = {1, 2} and r ∈ X1,3 with L(r) = {1, 3} would have the same lists by
Rule 6 applied on r, s, t, t′, a contradiction. Hence t′ is not adjacent to r. Then,
by Claim 12, we find that t′ must be adjacent to w. Note that s is not adjacent to
w due to Claim 10. In this case we let Ps be the induced path in G with vertices
s, t′,w in that order.

We conclude that either Ps = tst� or Ps = stw or Ps = st�w. We are now ready to
apply another round of branching.

Branching IV (O(n) branches)
We branch by considering the possibility of removing colour 2 from the list
of each vertex in N(X1,3) ∩ A2 and all possibilities of choosing a vertex in
N(X1,3) ∩ A2 and giving it colour 2. In the branch where we removed colour 2
from the list of every vertex in N(X1,3) ∩ A2, we obtain that X1,3 = �. Hence for
that branch we can enter Phase 4. Now consider a branch where we gave some
vertex s ∈ N(X1,3) ∩ A2 colour 2. Let Ps = tst� or Ps = stw or Ps = st�w. We do
some further branching by considering all possibilities of colouring the vertices
of Ps that are not equal to the already coloured vertices s and w (should w be a
vertex of Ps ) and all possibilities of giving a colour to the vertex from N(s) ∩ X1,3
(recall that by Claim 11, |N(s) ∩ X1,3| = 1 ). This leads to a total of O(n) branches.
We claim that in each of these branches, the size of X1,3 has reduced to at most 1.

For contradiction, assume that there exists a branch where X1,3 contains two
vertices y and y′. Let sa and sb be the neighbours of y and y′ in A2, respectively.
By Claim 11, the graph induced by {y, y�, sa, sb} is isomorphic to 2P2. Hence,
the set {sa, y, vi, y�, sb} induces a P5 in G. Recall that Ps = tst� or Ps = stw or
Ps = st�w. As sa and sb have a list of size 3, neither sa nor sb is adjacent to a ver-
tex of Ps due to Rule 5. Neither y nor y′ is adjacent to N(s) ∩ X1,3, as N(s) ∩ X1,3

vi−1 vi vi+1
N0

N1

N2

y′

sb

y

sa

wt

t′

r

s

Fig. 4   The situation in Branching IV if t1 ∈ N1 and if vertices s
a
 and s

b
 exist

1848	 Algorithmica (2020) 82:1833–1858

1 3

is already coloured. By Claims 10 and 11, neither y nor y′ is adjacent to w or s,
respectively. As s received colour 2, vertices t and t′ have received colour 1 or 3
should they belong to Ps. In that case neither t nor t′ can be adjacent to y or y′,
as L(y) = L(y�) = {1, 3}. By definition, vi is not adjacent to s or w. Moreover, vi
can only be adjacent to a vertex from {t, t�} if that vertex belonged to N1. How-
ever, recall that t and t′ were not in X1,3 while s was an active vertex. Hence if t
or t′ belonged to N1, they must have been in X1,2 and thus not adjacent to vi. This
means that the vertices of Ps, together with {sa, y, vi, y�, sb}, induce a P3 + P5 in
G, a contradiction (see Fig. 4 for an example of such a situation). Thus X1,3 must
contain at most one vertex.

Branching V (O(1) branches)
We branch by considering both possibilities of colouring the unique vertex of
X1,3. This leads to two new but smaller instances of List 3-Colouring, in each of
which the set X1,3 = �. Hence, our algorithm can enter Phase 4.

Phase 4: Reduce to a Set of Instances of 2-List Colouring
Recall that in this stage of our algorithm we have an instance (G, L) in which
every vertex of A1 has the same list, say {1, 2}. We deal with this case as follows.
First suppose that H = P2 + P5. Then G[N2 ∪ N3] is an independent set, as other-
wise two adjacent vertices of N2 ∪ N3 form, together with v1,… , v5, an induced
P2 + P5. Hence, we can safely colour each vertex in A2 with colour 3, and after-
wards we may apply Theorem 3.

Now suppose that H = P3 + P4. We first introduce two new rules, which turn
(G, L) into a smaller instance. In Claims 13 and 15 we show that we may include
those rules in our set of propagation rules that we apply implicitly every time we
modify the instance (G, L).

Rule 12	� (neighbourhood identification) If u and v are adjacent, N(v) ⊆ N[u],
N(u) ∩ N(v) ≠ �, and |L(v)| = 3, then identify N(u) ∩ N(v) by w, set
L(w) ∶=

⋂
{L(x) � x ∈ N(u) ∩ N(v)} and remove v from G. If G contains

a K4, then return no.

 We note that the case where u and v are adjacent, N(v) ⊆ N[u], and
N(u) ∩ N(v) = � implies that N(v) = {u}, and thus deg(v) = 1. Therefore, this case
was already handled by one of the Rules 1, 4–5, or 10. Whenever we refer to
Rule 12 we always assume that the previous rules were applied meaning that we
will implicitly assume that N(u) ∩ N(v) ≠ �.

Claim 13  Rule 12 is safe for K4-free input, takes polynomial time and does not affect
any vertex of N0. Moreover, if we have not obtained a no-answer, then afterwards G
is a connected (H,K4)-free graph, in which we can define sets N1,N2,N3,A1,A2 as
before.

Proof of Claim 13  Note that by Claim 3, G is K4-free before the application of Rule 12.
Hence N(u) ∩ N(v) is an independent set. Let w be the new vertex obtained from

1849

1 3

Algorithmica (2020) 82:1833–1858	

identifying N(u) ∩ N(v). Observe that every vertex in the common neighbourhood of
two adjacent vertices must receive the same colour. Hence w can be given the same
colour as any vertex of N(u) ∩ N(v), which belongs to

⋂
{L(x) � x ∈ N(u) ∩ N(v)}.

For the reverse direction, we give each vertex x ∈ N(u) ∩ N(v) the colour of w,
which belongs to L(x) by definition. As |L(v)| = 3 and N(v) ⧵ N(u) = {u}, we have a
colour available for v. The above means that (G, L) is a no-instance if a K4 is created.
We conclude that Rule 12 is safe and either yields a no-instance if a K4 was created,
or afterwards we have again that G is K4-free.

It is readily seen that applying Rule 12 takes polynomial time and that after-
wards G is still connected. As |L(v)| = 3, Claim 7 tells us that v ∈ N2, and thus
N(v) ⊆ N1 ∪ N2 ∪ N3. Thus Rule 12 does not involve any vertex of N0. Hence, as G
is connected, we can define V = N0 ∪ N1 ∪ N2 ∪ N3 by Claim 1.

It remains to prove that G is H-free after applying Rule 12. For contradiction,
assume that G has an induced subgraph P + P� isomorphic to H. Then we find that
the vertex w created by Rule 12 must be in V(P) ∪ V(P�), as otherwise, P + P� was
already an induced subgraph of G before Rule 12 was applied. We assume, without
loss of generality, that w belongs to V(P). By the same argument, we find that w is
incident with two edges wx and wy in P that correspond to edges sx and ty with s ≠ t
in G before Rule 12 was applied (where s and t belonged to the set of the vertices
identified by w). However, then we can replace P by the path xsvty to find again that
G already contained a copy of H before Rule 12 was applied. This copy was induced
since s, t were not adjacent, as otherwise, u, v, s, t would have induced a K4. Hence,
we obtained a contradiction.� ⋄

Let u ∈ A2. We let B(u) be the set of neighbours of u that have colour 3 in their
list.

Claim 14  For every u ∈ A2, it holds that B(u) ≠ � and B(u) ⊆ N2 ∪ N3.

Proof of Claim 14  By Rule 9, there is a vertex v ∈ N(u) such that 3 ∈ L(v). Vertex v
cannot be in N1 ; otherwise the edge uv implies that v ∈ A1 and thus v would have list
{1, 2}. This means that v must be in N2 ∪ N3. � ⋄

We will use the following rule (in Claim 15 we show that the colour q is unique).

Rule 13	� (�� list-reduction) If a vertex v ∈ B(u) for some u ∈ A2 has no neighbour
outside N[u], then remove colour q from L(u) for q ∈ L(v) ⧵ {3}.

Claim 15  Rule 13 is safe, takes polynomial time and does not affect any vertex
of N0. Moreover, afterwards G is a connected (H,K4)-free graph, in which we can
define sets N1,N2,N3,A1,A2 as before.

Proof of Claim 15  Let u be a vertex in A2 for which there exists a vertex v ∈ B(u)
with no neighbour outside N[u]. It is readily seen that Rule 13 applied on u takes

1850	 Algorithmica (2020) 82:1833–1858

1 3

polynomial time, does not affect any vertex of N0, and afterwards we can define
sets N1,N2,N3,A1,A2 as before.

We recall by Claim 14 that v ∈ N2 ∪ N3. As N(v) ⧵ N[u] = �, we find by
Rule 12 that |L(v)| ≠ 3. Then, by Rule 4, it holds that |L(v)| = 2. Thus vertex v has
L(v) = {q, 3} for some q ∈ {1, 2}. If there exists a colouring c of G with c(u) = q
that respects L, then c(v) = 3, and so c colours each vertex in N(v) ∩ N(u) with a
colour from {1, 2}.

We define a colouring c′ by setting c�(u) = 3, c�(v) = q and c� = c for
V(G) ⧵ {u, v}. We claim that c′ also respects L. As N(v) ⧵ N[u] = �, every neighbour
w ≠ u of v is a neighbour of u as well and thus received a colour c�(w) = c(w) that
is not equal to colour q (and colour 3). As v ∈ N2 ∪ N3 by Claim 14, all vertices in
N(u) ⧵ N[v] are in N1 by Claim 2. As u ∈ A2, these vertices all belong to A1 and thus
their lists are equal to {1, 2}, so do not contain colour 3. Hence, c′ respects L indeed.

The above means that we can avoid assigning colour q to u. We may therefore
remove q from L(u). This completes the proof of the claim.� ⋄

We note that if a colour q is removed from the list of some vertex u ∈ A2 due to
Rule 13, then u is no longer active.

Assume that Rules 1–13 have been applied exhaustively. By Rule 2, we find
that A2 ≠ ∅. Then we continue as follows. Let u ∈ A2 and v ∈ B(u) (recall that B(u)
is nonempty due to Claim 14). Let A(u, v) ⊆ N1 be the set of (active) neighbours of
u that are not adjacent to v. Note that A(u, v) ⊆ A1 by definition. Let A(v, u) ⊆ N1
be the set of neighbours of v that are not adjacent to u. We claim that both A(u, v)
and A(v, u) are nonempty. By Rule 13, we find that A(v, u) ≠ �. By Rule 12, vertex
u has a neighbour t ∉ N(v). As v ∈ N2 ∪ N3 due to Claim 14, we find by Claim 2
that t belongs to N1, thus t ∈ A(u, v), and consequently, A(u, v) ≠ �. We have the
following three disjoint situations:

1.	 A(v, u) contains a vertex w with L(w) = {1, 2} that is not adjacent to some vertex
t ∈ A(u, v);

2.	 A(v, u) contain at least one vertex w that is not adjacent to some vertex t ∈ A(u, v),
but for all such vertices w it holds that L(w) ≠ {1, 2}.

3.	 Every vertex in A(v, u) is adjacent to every vertex of A(u, v).

Now we construct a triple (Q,P, x) = (Q(u),P(u), x(u)) such that Q is a set which
contains u, P ⊆ Q is an induced P4 and x is a vertex of Q. In Situation 1, we
let Q = {w, t, u, v}. We say that Q is of Type 1. We let x = u. As P we can take
the path on vertices t, u, v, w in that order. In Situation 2, we let Q = {w, t, u, v}
for some w ∈ A(v, u) that is not adjacent to some t ∈ A(u, v). We say that Q is of
Type 2. We let x = v. As P we can take the path on vertices t, u, v, w in that order.

Finally, we consider Situation 3. Let w be in A(v, u). Recall that u is active,
|L(w)| = 2, and in Situation 3 all vertices of A(u, v) are adjacent to all vertices
in A(v, u), and thus in particular to w. Therefore, u has a neighbour s ∉ A(u, v)
that is not adjacent to w, otherwise Rule 7 would be used, a contradiction with
u being active. If s is in N1, then s is adjacent to v since s is not in A(u, v). If s is

1851

1 3

Algorithmica (2020) 82:1833–1858	

in N2 ∪ N3, then s is adjacent to v by Claim 6. Hence, in both cases we find that s
belongs to N(u) ∩ N(v).

We let Q = {s, t,w, u, v} for some t ∈ A(u, v). We let x = v. We say that Q is of
Type 3. We claim that the vertices s, u, t, w induce a P4 in that order. By defini-
tion, u is not adjacent to w. If sw ∈ E(G), then L(u) = L(w) due to Rule 6. As w
has a list of size 2, u has also a list of size 2. This is a contradiction, as u is an
active vertex. If st ∈ E(G), then L(v) = L(t) due to Rule 6. However, this is also a
contradiction, as L(t) = {1, 2} (since t ∈ A1 ) and 3 ∈ L(v). Hence, as P we can take
the path on vertices s, u, t, w in that order.

In all three situations, we try to extend Q as follows. If A(u, v) contains more verti-
ces than only vertex t, we pick an arbitrary vertex t′ of N(u) ∩ N1 ⧵ {t} and put t′ to Q.

We first observe that if c(x) = 3 no other vertex of Q can be coloured with col-
our 3; in particular recall that t and t′ (if t′ exists) both belong to A1, and as such have
list {1, 2}. Moreover, if Q is of Type 2, then any vertex in A(v, u) with list {1, 2} is
adjacent to t, as otherwise Q is of Type 1.

Branching VI (O(n) branches)
We choose a vertex u ∈ A2 such that |N(u) ∩ N1| is minimal and create (Q, P, x). We
branch by considering all possibilities of colouring Q such that c(x) = 3 and the pos-
sibility where we remove colour 3 from L(x). The first case leads to O(1) branches,
since |Q| ≤ 6. We will prove that we either terminate by Rule 2 or branch in Branch-
ing VII. In the second case we deactivate u directly or by applying Rules 13 and 5.
This is the only recursive branch and the depth of the recursion is |A2| ∈ O(n). Since
the first case in the recursion tree always leads either to termination or to subsequent
branching in Branching VII, the branching tree in Branching VI can be seen as a
path of length O(n), where at each node O(1) branches are created. Hence, we have a
total of O(n) branches in Branching VI.

Now consider a branch where Q is coloured. Although by Rule 4 vertices in Q
will need to be removed from G, we make an exception by temporarily keeping Q in
the graph after we coloured it until the end of Branching VII. The reason is that this
will be helpful for analysing the structure of (G, L). We run only Rules 2, 5 and 8 to
prevent changes in the size of neighbourhood of vertices in A2 for the purposes of
the next claim (Claim 16). Observe that Rules 2, 5 and 8 do not decrease the degree
of any vertex. By Rule 2, A2 ≠ ∅. We prove the following claim for vertices in A2.

Claim 16  There is no vertex in A2 with more than one neighbour in A1. Moreover
N(u) ∩ A1 = �.

Proof of Claim 16  For contradiction, assume that r is a vertex in A2 with two or more
neighbours in A1. By Rule 8, any two distinct neighbours of r in A1 are not adjacent,
that is, the neighbours of r in A1 form an independent set. In particular, for any two
distinct neighbours s and s′ of r in A1, the set {s, r, s�} induces a P3. We denote such a
path by P′

s,s′
. As every vertex in A1 has list {1, 2}, the only possible edges between Q

and P′
s,s′

 are those between {s, s�} and vertex x, the only vertex in Q which has colour 3.
First suppose that Q is of Type 1. Recall that x = u. If t′ does not exists, meaning

|N(u) ∩ N1| = 1, the claim follows. Suppose there exist at least two coloured vertices

1852	 Algorithmica (2020) 82:1833–1858

1 3

t, t� ∈ Q ∩ N(u) ∩ N1. Observe that N(r) ∩ A1 = N(r) ∩ N1. We know that u is adja-
cent to all but one vertex in N(r) ∩ A1, as otherwise there are at least two vertices
s and s′ in N(r) ∩ (A1 ⧵ N(u)) and therefore V(P�

s,s�
) ∪ Q induces a P3 + P4, which

would be a contradiction. This situation is captured in Fig. 5. Hence, we find that
|N(u) ∩ N1| ≥ |N(r) ∩ N1| − 1 + 2, which contradicts the choice of u. Thus, if Q is of
Type 1, |N(u) ∩ N1| = 1, so N(u) ∩ A1 = �.

Now suppose that Q is of Type 2. Recall that x = v. Recall also that if v is adja-
cent to a vertex in A1, then this vertex must be adjacent to another vertex from Q
(either u or t) as well, since otherwise Q would be of Type 1. This is not possible
since all vertices in Q are already coloured by colour in {1, 2}. Therefore we obtain
an induced P3 + P4, a contradiction.

Finally, suppose that Q is of Type 3. Recall that x is not in P, thus there is no
vertex with a list {1, 2} adjacent to P. Therefore we obtain an induced P3 + P4, a
contradiction.

If Q is of Type 2 or 3, vertex u obtained a colour from the set {1, 2}. Hence,
N(u) ∩ A1 = �.� ⋄

We now run reduction Rules 1–13 exhaustively (and in the right order). Recall,
however, that we make an exception by not deleting the vertices of Q (specifi-
cally, we do not perform the Rule 12 if it would involve identification or deletion
of a vertex in Q).

Remark  Claim 16 still holds after Rules 1–13 were applied.

Proof of the Remark  All vertices in A2 had exactly one neighbour before applying
Rules 1–13, by Claim 16. It is readily seen that only Rule 12 can increase the degree
of vertices and no rule can increase the size of a list of any vertex. This implies that
N(u) ∩ A1 = �.

For contradiction, assume that there is a vertex r in A2 with more than one neigh-
bour in A1. Vertex r was created by Rule 12, i.e., by identification of at least two ver-
tices r1, r2 which are common neighbours of two adjacent vertices s, s′ satisfying the
assumptions of Rule 12, in particular |L(s�)| = 3. Observe that |L(r1)| = |L(r2)| = 3,
as |L(r)| = 3 and L(r) = L(r1) ∩ L(r2) by Rule 12. Therefore, r1, r2, s� ∈ N2 ∪ N3.

N1

N2

w

v

t t′

u

Q

r

s s′

Fig. 5   The situation in Branching VI for Q of Type 1. Dashed line denotes an edge that might or might
not be there

1853

1 3

Algorithmica (2020) 82:1833–1858	

Vertices r1, r2 are non-adjacent, otherwise s, s′, r1, r2 is a K4. This is a contradiction
with Claim 2, as r1, r2, s′ are not a clique.� ⋄

Branching VII (O(n) branches)
We branch by considering the possibility of removing colour 3 from the list of
each vertex in A2, and all possibilities of choosing one vertex in A2, to which we
give colour 3, and all possibilities of colouring its neighbour in A1 (recall that this
neighbour is unique due to Claim 16). This leads to O(n) branches. We show that
all of them are instances with no vertex with list of size 3 and thus Rule 2 can be
applied on them.

In the first branch, all lists have size at most 2 directly by the construction.
Now consider a branch where a vertex r ∈ A2 and its unique neighbour r1 in

A1 were coloured (where r is given colour 3). We make an exception to Rule 4
and temporarily keep vertex r and all its neighbours in G, even if they need to be
removed from G due to our rules.

Recall that before r1 was coloured, L(r1) = {1, 2} and that every vertex in A2
has exactly one neighbour in A1. Before assigning a colour to r, vertex r had
exactly two other neighbours r2 and r3 by Rule 10, which were in N2 ∩ N3, and
which were adjacent by Claim 2. We claim that {r1, r, r2} and {r1, r, r3} induce a
P3, as otherwise {r, r1, r2, r3} induce a K4 or a diamond: the first case is not pos-
sible due to K4-freeness and in the second case we would have applied Rule 12
on r and r2 (if rr2 is an edge), or on r and r3 (if rr3 is an edge). As G is (P3 + P4)

-free, there must be at least one edge between P and {r1, r, r2} and between P and
{r1, r, r3}. We first show that such an edge is not incident to r1.

If there exists an edge between r1 and a vertex from P, then this vertex must be
x (as r1 was in A1 and L(r1) = {1, 2} before it was coloured). First, suppose Q is of
Type 1. Recall that x = u. However, by Claim 16 N(u) ∩ A1 = �. Now suppose Q
is of Type 2. Then x = v. If r1 is adjacent to v, then r1 is adjacent to another vertex
in Q, a contradiction. Finally, suppose that Q is of Type 3. Then x is not in P.
Thus r1 is not adjacent to P. We conclude from the above that both r2 and r3 have a
neighbour in P. We now prove the following claim.

Claim 17  All vertices r, r1, r2, r3 are coloured: r received colour 3, and each of
r1, r2, r3 received either colour 1 or 2.

Proof of Claim 17  We only have to show the claim for vertices r2 and r3. Recall that
both r2 and r3 have a neighbour in P. We claim that neighbourhoods of r2 and r3 in
Q are disjoint. Otherwise r, r2, r3 and a common neighbour d of r2 and r3 in P form a
diamond such that d ∈ Q is coloured, and therefore r was not active due to Rule 6, a
contradiction. Hence, at least one neighbour of r2 or at least one neighbour of r3 has
obtained a colour different from 3. Since r is coloured by 3, the lists of r2 and r3 were
reduced by Rule 5 to {1} or {2} (or the instance is a no-instance).� ⋄

We are now ready to show that no vertex has a list of size 3, and thus apply-
ing Rule 2 will solve the instance. For contradiction assume that there exists a

1854	 Algorithmica (2020) 82:1833–1858

1 3

vertex z with |L(z)| = 3, that is, z ∈ A2. Vertices z1, z2, z3 ∈ N(z) exist as z ∈ A2.
Those vertices are disjoint from r, r1, r2, r3 which are by Claim 17 coloured since
|L(z)| = 3. The same observations as for neighbours of r hold for neighbours of z
by the same arguments as above. Namely, vertex z1 ∈ N(z) ∩ A1 does not have a
neighbour in P and vertices z2, z3 are in N2 ∪ N3 and they induce two P3 s: z1, z, z2
and z1, z, z3. Therefore, z2, z3 have disjoint neighbourhoods in P. Moreover, at least
one edge between r1 and z2, z3 is missing by Rule 6 applied on r1, z, z2, z3. We may
assume without loss of generality that r1z2 ∉ E. Then vertices z1, z, z2, q, where
q is in N(z2) ∩ V(P), induce a new P4. Again at least one vertex from r2, r3 is not
adjacent to q, without loss of generality assume that r2q ∉ E, as r2 and r3 have dis-
joint neighbourhoods in P. As r1 and r2 are coloured by 1 or 2 by Claim 17, they
have no edge to z1 and to z; otherwise z and z1 are not active by Rule 5. Recall that
r1, z1 have no neighbour in P and that r had only one neighbour in A1, thus r is not
adjacent to z1. By Claim 2 there are no edges between r, r2, r3 and z, z2, z3. Hence
r1, r, r2 together with z1, z, z2, q induce a P3 + P4 in G, a contradiction (see Fig. 6
for an example of such a situation).

The correctness of our algorithm follows from the above description. It remains
to analyse its running time. The branching is done in seven stages (Branching I–VII)
yielding a total number of O(n49) branches. It is readily seen that processing each
branch created in Branching I–VII takes polynomial time. Hence the total running
time of our algorithm is polynomial. 	� ◻

Remark  Except for Phase 4 of our algorithm, all arguments in our proof hold for
(P3 + P5)-free graphs. The difficulty in Phase 4 is that in contrary to the previous
phases we cannot use the vertices from N0 to find an induced P3 + P5 and therefore
obtain the contradiction similarly to the previous phases.

3 � The Proof of Corollary 1

By combining our new results from Sect. 2 with known results from the literature
we can now prove Corollary 1.

Q
P

q

z1

z2 z3

z

r1

r3 r2

r

Fig. 6   The situation in Branching VII. The dashed lines denote edges that might or might not be there

1855

1 3

Algorithmica (2020) 82:1833–1858	

Corollary 1  (Restated) Let H be a graph with |V(H)| ≤ 7. If H is a linear forest,
then List 3-Colouring is polynomial-time solvable for H-free graphs; otherwise
already 3-Colouring is ��-complete for H-free graphs.

Proof  If H is not a linear forest, then H contains an induced claw or a cycle, which
means that 3-Colouring is ��-complete due to results in [14, 21, 28]. Suppose H
is a linear forest. We first recall that List 3-Colouring is polynomial-time solvable
for P7-free graphs [8] and thus for (rP1 + P7)-free graphs for every integer r ≥ 0
[5, 15]. Now suppose that H is not an induced subgraph of rP1 + P7 for any r ≥ 0.
If H = P1 + 3P2, then the class of H-free graphs is a subclass of 4P3-free graphs,
for which List 3-Colouring is polynomial-time solvable [5, 15]. Otherwise, H has
at least two connected components, all of which containing at least one edge. This
means that H ∈ {2P2 + P3,P2 + P5,P3 + P4}. If H = 2P2 + P3, then the class
of H-free graphs is a subclass of 4P3-free graphs, for which we just recalled that
List 3-Colouring is polynomial-time solvable. The cases where H = P2 + P5 and
H = P3 + P4 follow from Theorem 1. 	� ◻

4 � Conclusions

By solving two new cases we completed the complexity classifications of 3-Colour-
ing and List 3-Colouring on H-free graphs for graphs H up to seven vertices. We
showed that both problems become polynomial-time solvable if H is a linear for-
est, while they stay ��-complete in all other cases. Chudnovsky et al. improved our
results in a recent arXiv paper [7] that appeared after our paper by showing that List
3-Colouring is polynomial-time solvable on (rP3 + P6)-free graphs for any r ≥ 0. In
the same paper, they also proved that 5-Colouring is ��-complete for (P2 + P5)-free
graphs. Recall that k-Colouring (k ≥ 3) is ��-complete on H-free graphs whenever
H is not a linear forest. For the case where H is a linear forest, the ��-hardness result
of [7] for 5-Colouring for (P2 + P5)-free graphs, together with the known ��-hard-
ness results of [22] for 4-Colouring for P7-free graphs and 5-Colouring for P6-free
graphs, bounds the number of open cases of k-Colouring from above.

For future research, we remark that it is still not known if there exists a linear
forest H such that 3-Colouring is ��-complete for H-free graphs. This is a notori-
ous open problem studied in many papers; for a recent discussion see [17]. It is also
open for List 3-Colouring, where an affirmative answer to one of the two problems
yields an affirmative answer to the other one [16]. In the line of our proof method,
we pose the question if 3-Colouring is polynomial-time solvable on (P2 + Pt−2)-free
graphs for some t ≥ 3 whenever 3-Colouring is polynomial-time solvable for Pt-free
graphs.

For k ≥ 4, we emphasize that all open cases involve linear forests H whose
connected components are small. For instance, if H has at most six verti-
ces, then the polynomial-time algorithm for 4-Precolouring Extension on P6

-free graphs [9] implies that there are only three graphs H with |V(H)| ≤ 6 for

1856	 Algorithmica (2020) 82:1833–1858

1 3

which we do not know the complexity of 4-Colouring on H-free graphs, namely
H ∈ {P1 + P2 + P3,P2 + P4, 2P3} (see [15]).

The main difficulty to extend the known complexity results is that hereditary
graph classes characterized by a forbidden induced linear forest are still not suffi-
ciently well understood due to their rich structure (proofs of algorithmic results for
these graph classes are therefore often long and technical; see also, for example, [3,
9]). We need a better understanding of these graph classes in order to make further
progress. This is not only the case for the two colouring problems in this paper. For
example, the Independent Set problem is known to be polynomial-time solvable for
P6-free graphs [19], but it is not known if there exists a linear forest H such that it is
��-complete for H-free graphs. A similar situation holds for Odd Cycle Transversal
and Feedback Vertex Set and a whole range of other problems; see [2] for a survey.

Acknowledgements  We thank Karel Král for pointing out a mistake in a preliminary version of our
paper. We also thank two anonymous reviewers for their detailed comments and suggestions.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Alon, N.: Restricted colorings of graphs. In: Walker, K. (ed.) Surveys in Combinatorics. London
Mathematical Society Lecture Note Series, pp. 1–33. Cambridge University Press, Cambridge
(1993)

	 2.	 Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Independent feedback ver-
tex set for P5-free graphs. Algorithmica 81(4), 1342–1369 (2019)

	 3.	 Bonomo, F., Chudnovsky, M., Maceli, P., Schaudt, O., Stein, M., Zhong, M.: Three-coloring and list
three-coloring of graphs without induced paths on seven vertices. Combinatorica 38(4), 779–801
(2018)

	 4.	 Broersma, H., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three complexity results on coloring P
k

-free graphs. Eur. J. Comb. 34(3), 609–619 (2013)
	 5.	 Broersma, H., Golovach, P.A., Paulusma, D., Song, J.: Updating the complexity status of coloring

graphs without a fixed induced linear forest. Theor. Comput. Sci. 414(1), 9–19 (2012)
	 6.	 Chudnovsky, M.: Coloring graphs with forbidden induced subgraphs. Proceedings of ICM, vol. IV,

pp. 291–302 (2014)
	 7.	 Chudnovsky, M., Huang, S., Spirkl S., Zhong, M.: List-three-coloring graphs with no induced

P6 + rP3 (2018). arXiv​:1806.11196​
	 8.	 Chudnovsky, M., Maceli, P., Stacho, J., Zhong, M.: 4-Coloring P6-free graphs with no induced

5-cycles. J. Graph Theory 84(3), 262–285 (2017)
	 9.	 Chudnovsky, M., Spirkl, S., Zhong, M.: Four-coloring P6-free graphs. In: Proceedings of SODA

2019, pp. 1239–1256 (2019)
	10.	 Chudnovsky, M., Stacho, J.: 3-Colorable subclasses of P8-free graphs. SIAM J. Discrete Math.

32(2), 1111–1138 (2018)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1806.11196

1857

1 3

Algorithmica (2020) 82:1833–1858	

	11.	 Couturier, J.-F., Golovach, P.A., Kratsch, D., Paulusma, D.: List coloring in the absence of a linear
forest. Algorithmica 71(1), 21–35 (2015)

	12.	 Dabrowski, K.K., Paulusma, D.: On colouring (2P2,H)-free and (P5,H)-free graphs. Inf. Proc. Lett.
131, 26–32 (2018)

	13.	 Edwards, K.: The complexity of colouring problems on dense graphs. Theor. Comput. Sci. 43, 337–
343 (1986)

	14.	 Emden-Weinert, T., Hougardy, S., Kreuter, B.: Uniquely colourable graphs and the hardness of col-
ouring graphs of large girth. Comb. Probab. Comput. 7(4), 375–386 (1998)

	15.	 Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of
colouring graphs with forbidden subgraphs. J. Graph Theory 84(4), 331–363 (2017)

	16.	 Golovach, P.A., Paulusma, D., Song, J.: Closing complexity gaps for coloring problems on H-free
graphs. Inf. Comput. 237, 204–214 (2014)

	17.	 Groenland, C., Okrasa, K., Rzążewski, P., Scott, A., Seymour, P., Spirkl, S.: H-colouring P
t
-free

graphs in subexponential time. Discrete Appl. Math. 267, 184–189 (2019)
	18.	 Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. Ann. Discrete

Math. 21, 325–356 (1984)
	19.	 Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum

weight independent set on P6-free graphs. In: Proceedings of SODA 2019, pp. 1257–1271 (2019)
	20.	 Hoàng, C.T., Kamiński, M., Lozin, V.V., Sawada, J., Shu, X.: Deciding k-colorability of P5-free

graphs in polynomial time. Algorithmica 57(1), 74–81 (2010)
	21.	 Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)
	22.	 Huang, S.: Improved complexity results on k-coloring P

t
-free graphs. Eur. J. Comb. 51, 336–346

(2016)
	23.	 Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley, Hoboken (1995)
	24.	 Klimošová, T., Malík, J., Masařík, T., Novotná, J., Paulusma, D., Slívová, V.: Colouring (P

r
+ P

s
)-free

graphs. In: Proceedings of ISAAC 2018. LIPIcs, vol. 123, pp. 5:1–5:13 (2018)
	25.	 Král’, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs without forbid-

den induced subgraphs. In: Proceedings of WG 2001. LNCS, vol. 2204, pp. 254–262 (2001)
	26.	 Kratochvíl, J., Tuza, Z., Voigt, M.: New trends in the theory of graph colorings: choosability and list

coloring. In: Proceedings of DIMATIA–DIMACS Conference, vol. 49, pp. 183–197 (1999)
	27.	 Le, V.B., Randerath, B., Schiermeyer, I.: On the complexity of 4-coloring graphs without long

induced paths. Theor. Comput. Sci. 389(1–2), 330–335 (2007)
	28.	 Leven, D., Galil, Z.: NP completeness of finding the chromatic index of regular graphs. J. Algo-

rithms 4(1), 35–44 (1983)
	29.	 Lovász, L.: Coverings and coloring of hypergraphs. Congr. Numer. VIII, 3–12 (1973)
	30.	 Paulusma, D.: Open problems on graph coloring for special graph classes. In: Proceedings of WG

2015. LNCS, vol. 9224, pp. 16–30 (2015)
	31.	 Randerath, B., Schiermeyer, I.: 3-Colorability in P for p6-free graphs. Discrete Appl. Math. 136(2–

3), 299–313 (2004)
	32.	 Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs—a survey. Graphs Com-

bin. 20(1), 1–40 (2004)
	33.	 Randerath, B., Schiermeyer, I., Tewes, M.: Three-colourability and forbidden subgraphs. II: polyno-

mial algorithms. Discrete Math. 251(1–3), 137–153 (2002)
	34.	 Tuza, Z.: Graph colorings with local constraints—a survey. Discuss. Math. Graph Theory 17(2),

161–228 (1997)
	35.	 Woeginger, G.J., Sgall, J.: The complexity of coloring graphs without long induced paths. Acta

Cybern. 15(1), 107–117 (2001)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

1858	 Algorithmica (2020) 82:1833–1858

1 3

Affiliations

Tereza Klimošová1 · Josef Malík2 · Tomáš Masařík1,3  · Jana Novotná1 ·
Daniël Paulusma4 · Veronika Slívová5

	 Tereza Klimošová
	 tereza@kam.mff.cuni.cz

	 Josef Malík
	 malikjo1@fit.cvut.cz

	 Jana Novotná
	 janca@kam.mff.cuni.cz

	 Daniël Paulusma
	 daniel.paulusma@durham.ac.uk

	 Veronika Slívová
	 slivova@iuuk.mff.cuni.cz

1	 Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University,
Prague, Czech Republic

2	 Czech Technical University in Prague, Prague, Czech Republic
3	 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
4	 Department of Computer Science, Durham University, Durham, UK
5	 Computer Science Institute, Faculty of Mathematics and Physics, Charles University, Prague,

Czech Republic

http://orcid.org/0000-0001-8524-4036

	Colouring (Pr + Ps)-Free Graphs
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Preliminaries

	2 The Proof of Theorem 1
	3 The Proof of Corollary 1
	4 Conclusions
	Acknowledgements
	References

