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Abstract

In this short note we show that the interconnection networks known
as variational networks of cube-connected cycles form a sub-class of the
recursive cubes of rings.

1 Introduction

An interconnection network is an abstraction of the communications network
of a parallel or distributed system as a graph. More precisely, interconnection
networks come in families, together with generic routing algorithms, in order to
support scalability; that is, the facility to move to a larger network of the same
type and but so as to retain the same fundamental routing algorithm. The
hypercubes and their dimension-order routing algorithm form the archetypal
example of a family of interconnection networks (see, e.g., [4]).

Numerous interconnection networks have been proposed over the last fifty
years or so and new designs continue to emerge. There are various reasons for
this ongoing investigation and these include the following: the changing face
of parallel and distributed systems, which encompass networks-on-chips, super-
computers, clusters and data centre networks, along with new and unforeseen
applications, imposes new demands on the underlying interconnection networks
(see, e.g., [14]); interconnection networks also feature in peer-to-peer and over-
lay networks (see, e.g., [15]), social networks (see, e.g., [16]) and wireless sensor
networks (see, e.g., [2]); and the ‘structured’ graphs into which interconnection
networks sit feature in combinatorial chemistry (see, e.g., [1]), coding theory
(see, e.g., [3]), mathematical physics (see, e.g., [12]) and discrete mathematics
in general (often purely as interesting combinatorial objects as regards the latter
instantiation; see, e.g., [6, 8, 18]).

As illustrations of recently proposed interconnection networks, we point to
the recursive cubes of rings (see [10], building on [13]) and the variational net-
works of cube-connected cycles [17]. The purpose of this short note is to point
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out that the variational networks of cube-connected cycles are, in fact, isomor-
phic to particular recursive cubes of rings; consequently, the algorithm to find a
shortest path joining any two nodes of a variational network of cube-connected
cycles and the derivation of the diameter of the network in [17] are actually
subsumed by the optimal routing algorithm and derivations in [10].

In the next section, we outline basic concepts and notation and give brief
definitions of the recursive cubes of rings and the variational networks of cube-
connected cycles. In Section 3, we prove our main result, namely that the varia-
tional networks of cube-connected cycles are isomorphic to particular recursive
cubes of rings.

2 Basic definitions

We refer the reader to [5, 8, 18] for basic notions relating to interconnection
networks and group theory; we only detail here notions and notation that is
core to what follows.

For any integer n ≥ 1, Zn denotes the group whose set of elements is
{0, 1, . . . , n − 1} and whose group multiplication is addition modulo n. For
r ≥ 1, we denote the bit-strings of {0, 1}r by bold type and we write an r-
bit string x as a tuple of its components (x1, x2, . . . , xr). Alternatively, we can
think of a bit-string of {0, 1}r as an element of the group (Z2)r. For any x ∈ Z2,
we write x̄ = x + 1 (of course, addition is modulo 2). We denote the element
of (Z2)r where every component is 0 as 0 and for any 1 ≤ i ≤ r, we denote the
element of (Z2)r with 1 in the ith component and 0 elsewhere as ei.

We deal with core group theory first, in particular the notions of a semidirect
product and a Cayley graph. Let G be a group and let Ω be a set. Suppose
that for every g ∈ G, there is a permutation ϕg of Ω so that: ϕ1G is the identity
permutation, where 1G is the identity of G; and ϕgh = ϕgϕh. Then we say that
G acts on Ω or that the permutations ϕ = {ϕg : g ∈ G} form an action of G on Ω.
Suppose that Ω consists of the elements of a group Q. We say that G acts on Q
if G acts on Q as a set and also the action respects the group structure of Q; that
is, for each g ∈ G and q1, q2 ∈ Q, we have that ϕg(q1q2) = ϕg(q1)ϕg(q2) (that is,
ϕg is an automorphism of Q). Let G and Q be groups so that G acts on Q via the
action ϕ. The semidirect product QoG is the group whose element set is Q×G
and where the group multiplication is defined via (q, g)(q′, g′) = (qϕg(q′), gg′),
for all g, g′ ∈ G and q, q′ ∈ Q.

A Cayley graph Cay(G; ΓG) is an undirected graph obtained from a finite
group G and a generating set ΓG , where ΓG is closed under inverses and does
not contain the identity element: the vertex set of Cay(G; ΓG) is the set of el-
ements of G; and there is an edge (g1, g2) if, and only if, g2 = g1γ, for some
γ ∈ ΓG . A graph is vertex-transitive if for any distinct vertices u and v, there is
an automorphism of the graph mapping u to v. Vertex-transitivity is an impor-
tant property as, for one thing, when we have an interconnection network whose
underlying communication graph is vertex-transitive, we can deploy the same
routing algorithm at every processor. Cayley graphs feature strongly as inter-
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connection networks as every Cayley graph is necessarily vertex-transitive (see,
e.g., [7, 9] for more on the role of Cayley graphs as interconnection networks).

Recursive cubes of rings originated in [13] but, as defined there, are not
necessarily Cayley graphs. Recently, Mokhtar and Zhou [10] refined recursive
cubes of rings so as to force them to be Cayley graphs and it is their definition
that we give below. Henceforth, we refer to our structures as ‘graphs’ rather than
‘interconnection networks’ as we are not concerned here with routing algorithms
or any other features of interconnection networks.

Let n ≥ 2, n ≥ d ≥ 1 and r ≥ 3 so that dr = 0 (mod n). Let the group
Zr act on the group (Z2)n as follows: for p ∈ Zr, the map ϕp cyclically shifts
the components of (x1, x2, . . . , xn) by pd (mod n) components to the right;
so, for example, if n = 5, d = 2, r = 10 and p = 3 then pd (mod n) = 1
and ϕ3((x1, x2, x3, x4, x5)) = (x5, x1, x2, x3, x4). Note that our condition that
dr = 0 (mod n) ensures that a group action results and we call this action ϕ.

Definition 1 Form the semidirect product (Z2)noZr w.r.t. the action ϕ. The
recursive cubes of rings Qn(d, r) is the Cayley graph of (Z2)n o Zr where the
(inverse-closed) set of generators is {(0, 1), (0, r−1), (e1, 0), (e2, 0), . . . , (ed, 0)}.

Combinatorially, Qn(d, r) can be constructed as follows:

• take 2n copies of a cycle of length r with each copy labelled by an element
of (Z2)n

• for each 0 ≤ i ≤ r − 1, include an edge joining two vertices named i in
different cycles if, and only if,

– the labels of the cycles within which they lie differ in exactly one
component, and

– this component lies in {id+ j + 1 (mod n) : j = 0, 1, . . . , d− 1}.

Consequently, the graph Qn(d, r) is the Cartesian product Qn×Cr, where Qn is
an n-dimensional hypercube and Cr is the cycle of length r but with some edges
removed (as dictated by the action ϕ). (Note that one point of defining intercon-
nection networks in this way is so that the ‘overall structure’ of the Cartesian
product is retained but the degree is significantly reduced, as low degree in-
terconnection networks are beneficial from a practical perspective; moreover,
the group theory leads to succinct descriptions and provides a framework for
routing.) The graphs Q3(2, 3) and Q3(1, 3) can be visualized as in Fig. 1 of [10].

In order to get an appreciation of the edges of a recursive cubes of rings, let
us consider Qn(d, r) where n = 8, d = 3 and r = 8. A vertex 0 of some cycle of
length 8 in Q8(3, 8) that is labelled x ∈ {0, 1}8 is adjacent to the vertex 0 in the
3 cycles whose labels are obtained from x by individually flipping each of the
bits x1, x2, x3; a vertex 1 of some cycle of length 8 in Q8(3, 8) that is labelled
x ∈ {0, 1}8 is adjacent to the vertex 1 in the 3 cycles whose labels are obtained
from x by individually flipping each of the bits x4, x5, x6; a vertex 2 of some
cycle of length 8 in Q8(3, 8) that is labelled x ∈ {0, 1}8 is adjacent to the vertex
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2 in the 3 cycles whose labels are obtained from x by individually flipping each
of the bits x7, x8, x1; and so on.

The variational networks of cube-connected cycles were recently proposed in
[17] as extensions of the well-known cube-connected cycles from [11]. Before we
define these graphs, let us define two automorphisms of the group (Z2)r:

• the left-automorphism ρl acts via

ρl : (x1, x2, . . . , xr−1, xr) 7→ (x2, x3, . . . , xr, x1)

• the right-automorphism ρr acts via

ρr : (x1, x2, . . . , xr−1, xr) 7→ (xr, x1, . . . , xr−2, xr−1)

(note that ρl and ρr are indeed group automorphisms).

Definition 2 The variational network of cube-connected cycles RV CCCr, for
r ≥ 2, has:

• vertex set (Z2)r × Z2r, and

• the edges are of three types:

(A) ((x, p), (ρl(x), p+ 1)), for all x ∈ (Z2)r and p ∈ Z2r

(B) ((x, p), (ρr(x), p− 1)), for all x ∈ (Z2)r and p ∈ Z2r

(C) (((x, xr), p), ((x, x̄r), p)), for all x ∈ (Z2)r−1, xr ∈ Z2 and p ∈ Z2r.

The graph RV CCC3 can be visualized as in Fig. 2 of [17]. Looking at
Definitions 1 and 2, it might appear that recursive cubes of rings and variational
networks of cube-connected cycles are structurally very different. However, we
now prove that this is not the case.

3 The main result

Define the map ψ on the vertices of RV CCCr as follows: for each (x, p) ∈
(Z2)r × Z2r, the vertex (x, p) is mapped to the vertex ψ((x, p)) = (ρp+1

r (x), p).

Lemma 3 The map ψ is a bijection.

Proof Suppose that ψ((x, p)) = ψ((y, q)), for two distinct vertices (x, p) and
(y, q) of RV CCCr; so, (ρp+1

r (x), p) = (ρq+1
r (y), q). Hence, p = q and ρp+1

r (x) =
ρp+1
r (y), with x = y. So, ψ is a bijection.

Proposition 4 The variational network of cube-connected cycles RV CCCr is
isomorphic to the graph G whose:

• vertex set is (Z2)r × Z2r, and
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• whose edges are of one of three types:

(1) ((x, p), (x, p+ 1)), for all x ∈ (Z2)r and p ∈ Z2r

(2) ((x, p), (x, p− 1)), for all x ∈ (Z2)r and p ∈ Z2r

(3) (((x1, . . . , xq, xq+1, xq+2, . . . , xr), p),
((x1, . . . , xq, x̄q+1, xq+2, . . . , xr), p)),

for all (x1, x2, . . . , xr) ∈ (Z2)r and p ∈ Z2r, where q = p (mod r).

Proof Consider an edge of RV CCCr of type (A), with reference to Defini-
tion 2, namely ((x, p), (ρl(x), p + 1)), for some x ∈ (Z2)r and p ∈ Z2r. Under
the map ψ this edge is mapped to the pair

((ρp+1
r (x), p), (ρp+2

r ρl(x), p+ 1)) = ((ρp+1
r (x), p), (ρp+1

r (x), p+ 1)).

Consequently, the type (A) edge ((ρp+1
l (x), p), (ρl(ρ

p+1
l (x)), p+1)) of RV CCCr

is mapped to the type (1) edge ((x, p), (x, p+ 1)) of G.
Consider an edge of RV CCCr of type (B), namely ((x, p), (ρr(x), p−1)), for

some x ∈ (Z2)r and p ∈ Z2r. Under the map ψ, this edge is mapped to the pair

((ρp+1
r (x), p), (ρprρr(x), p− 1)) = ((ρp+1

r (x), p), (ρp+1
r (x), p− 1)).

Consequently, the type (B) edge ((ρp+1
l (x), p), (ρr(ρp+1

l (x)), p−1)) of RV CCCr

is mapped to the type (2) edge ((x, p), (x, p− 1)) of G.
Consider an edge of RV CCCr of type (C), namely (((x, xr), p), ((x, x̄r), p)),

for some x ∈ (Z2)r−1, xr ∈ Z2 and p ∈ Z2r. Under the map ψ, this edge is
mapped to the pair ((ρp+1

r ((x, xr)), p), (ρp+1
r ((x, x̄r)), p))

= (((xr−q, . . . , xr−1, xr, x1, . . . , xr−q−1), p),

((xr−q, . . . , xr−1, x̄r, x1, . . . , xr−q−1), p)),

where q = p (mod r) and if a subscript i of any xi evaluates to 0, then we
replace it with r. So, an edge of RV CCCr of type (C) is mapped to an edge of
G of type (3). The result follows as ψ is a bijection (by Lemma 3).

However, the graph G from Proposition 4 is nothing else than the recursive
cubes of rings Qr(1, 2r). Hence, we have proven the following result.

Theorem 5 For r ≥ 2, the variational network of cube-connected cycles
RV CCCr is isomorphic to the recursive cubes of rings Qr(1, 2r).
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