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Abstract 
The structures associated with the nuclear steam supply system (NSSS) of a pressurized water reactor 

(PWR) include significant epistemic and aleatory uncertainties in the physical parameters, while also being 

subject to various non-stationary stochastic loading conditions over the life of a nuclear power plant. To 

understand the influence of these uncertainties on nuclear reactor systems, sensitivity analysis must be 

performed. This work evaluates computational design of experiment strategies, which execute a nuclear 

reactor equipment system finite element model to train and verify Gaussian Process (GP) surrogate 

models. The surrogate models are then used to perform both global and local sensitivity analyses. The 

significance of the sensitivity analysis for efficient modeling and simulation of nuclear reactor stochastic 

dynamics is discussed. 
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Introduction 
Uncertainty pervades engineering processes for nuclear plants, which span 

across many disciplines from probabilistic risk assessment (PRA) and safety analysis, to 

up-front component design for a new plant (i.e., forcing function development, sub-

scale and start-up testing), the aging management of operating plants (i.e., stress 

corrosion cracking, fracture mechanics, and non-destructive examinations (NDE)), and 

the design of fuel (i.e., core loading pattern optimization, departure from nucleate 

boiling (DNB) correlations).  Furthermore, the contribution of uncertainties in design 

parameters to key outputs of interest is largely unknown in the early stages of design. 

Key outputs may include anything from stress intensities necessary to satisfy allowable 

limits (1) to component reliabilities that directly influence core damage frequencies 

determined in PRA (2), (3).  

The lack of knowledge relating design parameter uncertainty to outputs of 

interest causes the design process to iterate many times; increasing time, effort, and 

cost. An inefficient design process may force constructors to begin construction prior to 

final design of all systems in a nuclear plant, further driving up cost due to in-field design 

changes.  For an operating plant, lack of understanding of parameters can greatly 

increase maintenance costs. Uncertainty quantification (UQ) in the concept design is 

necessary to inform parameter sensitivities.  Neglecting UQ can lead to overdesigned 

components and excessive maintenance and qualification expenses.  Furthermore, 

commercial pressures within the power generation industry are driving engineering 

organizations to challenge the status quo and develop creative ways to keep nuclear 
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energy cost effective and safe.  UQ and sensitivity analysis are necessary first steps 

toward applying computational mechanical analysis of system finite element models 

(SFEMs) for design optimization in the nuclear industry.   

The contribution of parameter uncertainties must be quantified and adopted 

into design (and companion aging management) processes through sensitivity analysis.  

Specifically, global sensitivity analysis (GSA) applied to stochastic dynamic models of 

nuclear reactor structures provides measures of relative importance amongst multiple 

system/loading parameters to outputs of interest. If the influence of parameter 

uncertainties can be properly understood early in the engineering analysis, then the 

(intertwined) design, analysis, construction, operations, and maintenance processes 

may become more parsimonious. 

Variance-based GSA, such as described in (4), (5), (6), and (7), requires running a 

model a large number of times (8).  It is therefore of interest to either reduce the 

number of full-order runs (i.e., SFEM realizations) required to characterize sensitivity, or 

to replace the full-order model with a surrogate model that runs with minimal 

computational expense yet captures the relevant trends in the model performance.  In 

recent years, reduced-order modeling techniques (e.g. (9), (10)) and surrogate modeling 

methods (e.g., (11)) have gained popularity for random vibration problems.  

Furthermore, several works have already applied surrogate models for sensitivity 

analysis, successfully reducing the computational expense significantly such as (12), (13), 

(14).  Specific to the nuclear industry, (15) explored surrogate modeling and GSA for 

evaluating an upper internals assembly subjected to stationary flow-induced vibration 
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(FIV), and demonstrated the improvements offered by advanced sampling strategies 

including Latin Hypercube Sampling (LHS) and Latinized Partially Stratified Sampling 

(LPSS).   

Various transient scenarios for which a nuclear plant must be designed are non-

stationary random processes, having time-varying stochastic nature, such as a loss of 

coolant accident (LOCA) or an earthquake.  Engineering simulations of such events often 

constitute a large computational expense, imposing a large financial impact on 

engineering design, operations, and maintenance.  LOCA and seismic simulations can 

often govern the selection and placement of replacement components (e.g., baffle-

former bolts) and also directly impact evaluations of nuclear power plant safety.  

Therefore, evaluation of methods which permit more credible engineering assessments, 

such as permitted by GSA, as well as methods which promote computational efficiency, 

such as surrogate modeling, focused upon non-stationary events are of distinct interest 

to the nuclear industry.  Thus, a rigorous method requiring relatively few evaluations of 

full-order models is of paramount importance towards enhancing credibility, ensuring 

safety, and decreasing costs of modeling and simulation of nuclear reactor stochastic 

dynamics. 

This paper presents the application of surrogate modeling and GSA methods to 

non-stationary stochastic dynamic finite element analysis of a reactor system subject to 

a LOCA scenario.  SFEMs are used ubiquitously throughout the design and analysis of 

key systems, structures, and components within pressurized water reactors (PWRs) 

across the commercial nuclear industry, per (16), (17) and (18), for example.  Despite 
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the centrality of SFEMs to the general mechanical and civil design of such high-

consequence facilities, UQ for such computational models is generally lacking amongst 

nuclear industry practitioners.    As such, this work builds upon that of (19) and (15) by 

considering a non-linear finite element model with multiple outputs, additional input 

parameters, and non-stationary loading.  In the following section, the methodology is 

described including the manner in which non-stationary random vibration was 

simulated using finite element analysis, the Fourier Amplitude Sensitivity Test (FAST) 

used to accomplish the GSA, Gaussian Process surrogate modeling, and then the design 

of experiment sampling strategies employed herein.  Then, the finite element analysis is 

described followed by the GSA results and companion discussion. 

Methodology 
Flow within a nuclear reactor coolant system is highly turbulent.  The high 

turbulence is necessary for core cooling and heat transfer, but also creates substantial 

vibratory forcing on the associated mechanical components and assemblies.  For 

analysis of reactor internals, M.K. Au-Yang developed methods for determining forcing 

functions in a downcomer annulus (20), modeling random vibration induced by 

turbulent flow (21), and summarized the majority of his published work in (22).  

Guidelines for practice are based on these works and others for dynamic analysis of 

nuclear components subjected to flow-induced vibrations (1).  Recent industry efforts, 

such as (23), have sought to improve the methods described in (1). The aim of this work 

is to continue to improve methods of dynamic analysis for reactor structures. 
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The structural systems evaluated within this work involve random vibration due 

to non-stationary excitation, and the objective is to compute sensitivities for key 

parameters and outputs within these systems.  To calculate the sensitivities in a 

computationally efficient manner, surrogate models are used in place of a full-order 

model (i.e., SFEM).  However, to construct surrogate models, it is first necessary to 

efficiently sample the parameter values at which the SFEM will be evaluated to train the 

surrogate models.  The methodology for simulating non-stationary random vibration, 

global sensitivity analysis, surrogate modeling, and sampling are presented in the 

following subsections. 

FULL-ORDER NON-STATIONARY RANDOM VIBRATION ANALYSIS 

Figure 1 and Figure 2 show a typical PWR and an associated SFEM, respectively. 

Recognizing that finite element models for advanced reactor applications possess 

hundreds of thousands of degrees of freedom, the finite element model chosen herein 

to simulate an operating PWR includes approximately 3,000 degrees of freedom 

consisting of various element types (e.g., beam, shell, spring, damper, etc.).  Due to non-

linearities in the SFEM response (16), such as displacement-dependent spring constants, 

and the non-stationary loading conditions associated with loss of coolant accident 

(LOCA) and seismic events (required by nuclear design analysis), the SFEM is executed 

using a dynamic transient finite element analysis with implicit time integration.   
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Figure 1 - Illustration of Typical Pressurized Water Reactor Assembly 

 

Figure 2 - Illustration of System Finite Element Model 
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For purposes of the sensitivity analysis, the model was parameterized as follows.  

The input parameters of interest correspond to model features such as stiffness, 

damping, gap dimensions, and masses, which vary between various otherwise-similar 

PWR Reactor Vessel Internals (RVI) structures.  In some cases, this variation represents a 

true change in the underlying physical parameter, thus constituting an aleatory 

uncertainty.  In other cases, the variation represents the differences imposed to the 

finite element model in order to bound the plausible scatter, so as to achieve 

conservative design margins; these basically represent epistemic uncertainties.  The 

response quantities of interest are related to lateral acceleration of the Reactor Vessel 

Closure Head (RVCH), which is denoted as “Vessel Head’ in Figure 1 and represented by 

a mass element in Figure 2.   

A preliminary GSA was performed with 16 potentially-important input 

parameters, and those 16 parameters were down-selected to the six parameters which 

best account for the variance in the model response of interest.  The choice to use 6 

rather than 16 parameter is intended to more clearly illustrate the surrogate modeling 

and GSA process, although it is recognized that the surrogates could have been trained 

and this GSA performed using all 16 parameters.  The truncated set of parameters is 

briefly described in Table 1.  Specifically, the response quantity of interest for this 

analysis is P17 (acceleration of RVCH) and so 𝑘(𝜃)3, 𝜁, 𝑔(𝑦)5, 𝑘9, and 𝑘10 constitute the 

input parameters most strongly correlated with P17.  For the GSA simulations 

performed with this SFEM, the parameters were varied ±5% about their nominal value 

(sampled from a Uniform distribution), to account for their typical range of variation 
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between many operating PWRs, and the extent to which these parameter can change 

during reactor aging.  A Uniform distribution was employed to represent the assumption 

that the magnitude any of the selected parameters is expected to have an equal 

probability of falling anywhere within the range of ±5% about its nominal value. 

 

Table 1 - SFEM Parameters 

Parameter Number 
(per finite element modeling) 

Description (1) Identifier 

P4 Rotational Stiffness for Core Support 

(Denoted Location 3) 
𝑘(𝜃)3 

P10 Damping 𝜁 

P11 Vertical Gap at Support Flange 

(Denoted Location 5) 
𝑔(𝑦)5 

P12 Number of Features in Upper Plenum 

(Denoted Location 6) 
𝑁6 

P15 Stiffness at Pressure Vessel 

(Denoted Location 9) 
𝑘9 

P16 Stiffness at Piping 

(Denoted Location 10) 
𝑘10 

Note: 

1. The location identifiers are left intentionally generic in this dissertation so as to protect information which may be 

considered proprietary.  It is judged adequate for purposes of this research to merely identify locations with 

generic numbers. 

The loading considered on the system corresponds to a LOCA, which is a non-

stationary event in which the mean value and frequency content of the excitation is 

time varying.  The U.S. N.R.C. defines a LOCA as “Those postulated accidents that result 

in a loss of reactor coolant at a rate in excess of the capability of the reactor makeup 

system from breaks in the reactor coolant pressure boundary, up to and including a 

break equivalent in size to the double-ended rupture of the largest pipe of the reactor 

coolant system.”  Sample load histories and their corresponding power spectra for two 

different power generation units are shown near the reactor vessel inlet and within the 

https://www.nrc.gov/reading-rm/basic-ref/glossary/coolant.html
https://www.nrc.gov/reading-rm/basic-ref/glossary/reactor-coolant-system.html
https://www.nrc.gov/reading-rm/basic-ref/glossary/reactor-coolant-system.html
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core support structure region in Figure 3 and Figure 4, respectively, as determined from 

an un-steady thermal-hydraulic analysis performed using MULTIFLEX (24).  It should be 

noted that, because these histories are non-stationary, the power spectra in Figure 3 

and Figure 4 do not fully describe the process. Given these non-stationary excitations, 

the transient response of the RVCH was evaluated through the SFEM with typical 

response histories shown in Figure 5 for different values of the input parameters. 

 

Figure 3 – Typical LOCA Forcing Function near Reactor Vessel Entrance 
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Figure 4 - Typical LOCA Forcing Function within Core Support Structures 
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Figure 5 - Acceleration Time Histories for RVCH lateral motion, where each line shows a 

different sample of the random parameters. Note that units are not provided due to information 

release restrictions. 

 

Two important metrics of response are extracted from the RVCH lateral 

acceleration time histories. The first is the peak acceleration. The second is the peak 

first-mode amplitude of the acceleration response spectrum.  The response spectrum 

method is important for understanding the response of components attached to the 

RVCH, but not explicitly modeled in the SFEM. It is the primary approach used for 

characterizing the response of such components in the nuclear industry, such as 

described in Paragraph N-1110(d) of (1). 

In practice, response spectra are used in dynamic analyses of nuclear power 

plants (25), and can be computed using such software as (26).  Upon completion of the 
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transient (i.e., time-domain) finite element analysis, the lateral acceleration response of 

the RVCH is used as base excitation for a single degree-of-freedom (SDOF) system 

having natural frequency 𝜔0 and the absolute maximum acceleration of the SDOF 

system is retained.  This calculation is repeated for a range of natural frequencies, and 

the absolute maximum acceleration at each frequency is plotted as a function of 

frequency.  The resultant plot is the acceleration response spectrum. Sample 

acceleration response spectra for different values of the input parameters are shown in 

Figure 6. Here, we are specifically interested in the peak first-mode response of the 

acceleration response spectrum. That is, we study the sensitivity of the magnitude of 

the first peak (corresponding to the lowest frequency) in Figure 6 to the six input 

parameters presented above. 
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Figure 6 - Acceleration Response Spectra Overlay of RVCH Lateral Motion, where each line 

shows a different sample of the random parameters. Note that units are not provided due to 

information release restrictions. 

 

GLOBAL SENSITIVITY ANALYSIS WITH THE FOURIER AMPLITUDE 

SENSITIVITY TEST 

While many methods of sensitivity analysis exist (27), GSA is employed herein as 

a variance-based technique, which surveys the full parameter space by evaluating all 

values each parameter could have with respect to one another, considering the 

probability distribution defined for each parameter.  For this application, GSA provides 

insight as to the relative importance of multiple parameters (e.g., stiffness, gap 
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dimension, damping), which mutually influence the forced response of interest.  

Furthermore, GSA accounts for uncertainty in the input parameter space so that each 

plausible combination of relative parameter variations is considered.   

First-order sensitivity indices for output 𝑦 = 𝑓(𝑷) given input parameters 𝑷 =

(𝑝1, 𝑝2, … , 𝑝𝑛) are defined as (4):   

𝑆𝑖 =
𝑉[𝐸(𝑦|𝑝𝑖)]

𝑉(𝑦)
 (1) 

where 𝑉[] denotes the variance operator and 𝐸 denotes the expected value.  The 

variance of 𝑦 may be taken from the span of results across the parameter space.  The 

expected value of 𝑦 can be evaluated by the 𝑛 dimensional integral: 

𝐸(𝑦) = ∫ 𝑓(𝑷)𝑑𝑷
𝐼𝑛

 (2) 

in which 𝐼𝑛 is the 𝑛 dimensional unit hypercube.  The Fourier amplitude sensitivity test 

(FAST) method is one of the methods used for the present study to approximate 

Equation (2). 

The essence of FAST is to generate a curve in the parameter space that is a 

periodic function of each parameter, with a different frequency for each.  The 

contribution of each input is measured by the contribution of its characteristic 

frequency Ω𝑖 to the outputs per (28) and (27), and implemented into software tools 

such as (7).  FAST involves the computation of Fourier coefficients which can be 

estimated by numerical integration of: 

𝐶𝑘𝑖
=

1

2𝜋
∫ 𝑓(𝑠)𝑒−𝑗2𝜋𝑘𝑖Ω𝑖𝑠𝑑𝑠

𝜋

−𝜋

 (3) 
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The number of discrete intervals used to evaluate this integral is defined by variable 𝑀, 

corresponding to the number of model evaluations, which is used as 𝑠 =
2𝜋𝑞

𝑀⁄ ,    𝑞 =

1,2, … , 𝑀.  Per (29), the choice of 𝑀 and the number of inputs 𝑘 govern the number of 

model runs used to compute the global sensitivity indices.  Finally, the numerator of 

Equation (1) needed for computing the global sensitivity indices is calculated as: 

𝐸(𝑦|𝑝𝑖) = ∑|𝐶𝑘𝑖
|

𝑖

 (4) 

Substituting Equation (4) into Equation (1) provides first-order global sensitivity indices: 

𝑆𝑖 =
𝑉[∑ |𝐶𝑘𝑖

|𝑖 ]

𝑉(𝑦)
 (5) 

SURROGATE MODELING WITH GAUSSIAN PROCESS REGRESSION 

This study also utilized Kriging, otherwise known as Gaussian process modeling 

or Gaussian process regression, for the surrogate modelling component, as it has been 

shown to be effective for stochastic structural dynamics (30).  In particular, Kriging has 

the advantage of providing an error metric in the variance of the surrogate model, and 

has also been successfully integrated into methods of sensitivity analysis (5). 

A Kriging model, ℳ𝐾, serving as a surrogate for the full-order model ℳ (e.g., 

the peak acceleration from the random vibration finite element model, �̈�𝑝), is expressed 

as outlined in (31), (32), and (33), by: 

ℳ𝐾(𝑥) = 𝚿(𝒙) + 𝜎2𝒁(𝒙, 𝜉) (6) 
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in which bold-faced variables indicate vector quantities, 𝚿(𝒙) is the mean value (or 

trend) constructed from regression coefficients 𝜷 and basis functions 𝒇(𝒙), which is 

computed as the summation: 

𝚿(𝒙) = ∑ 𝛽𝛼𝑓𝛼(𝒙)

𝛼∈𝑨𝑀,𝑃

 
(7) 

where the basis functions were taken as multivariate polynomials of the form 𝑓𝛼(𝒙) =

∏ 𝑥𝑖 
𝛼𝑖𝑀

𝑖=1  , 𝜶 = {𝛼1, 𝛼2, … , 𝛼𝑀} is a vector of indices, and 𝑨𝑀,𝑃 = {𝜶: |𝜶|1 ≤ 𝑃} that 

yield polynomials in the 𝑀 input variables up to degree 𝑃.   

The second term in Eq. (6), 𝑍(𝒙, 𝜃) is a zero-mean stationary Gaussian random 

process with variance 𝜎2 and autocorrelation function 𝑅(𝒙; 𝜽) with which a correlation 

matrix 𝑹 is populated.   

Maximum Likelihood Estimation (MLE) is used with a specified trend and 

correlation function, and a Kriging surrogate is established by estimating parameters 𝛽 

(for trend), and 𝜎2, 𝜃 (for correlation) which maximize the likelihood of realizing the 

actual (known) function evaluations (i.e., from full-order model ℳ).  The operations by 

which MLE is used to perform this calculation are detailed in (33) or (34). 

DESIGN OF EXPERIMENT SAMPLING 

A critical component to creating any surrogate model, including Gaussian 

Process Regression, is the training dataset.  The surrogate model is only as good as the 

training dataset, and therefore, the dataset should be ensured to contain the important 
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features of the system of interest.  However, it is also important to attempt to minimize 

the size of the training dataset required, as generating this data is typically the most 

computationally demanding aspect of the problem.  Different variants of stratified 

sampling are studied herein.  In stratified sampling, the sample space for an input 

parameter is divided into strata, and input values are obtained by sampling separately 

from within each stratum instead of from the distribution as a whole, as is done for 

random Monte Carlo sampling.  It has been shown that stratified sampling methods, 

such as LHS, can yield substantially improved sampling errors in terms of properly 

characterizing a probability density function with a given number of samples (35).  In 

fact, for univariate analysis it has been shown that the sampling error of Monte Carlo 

goes down as the order of 
1

√𝑁
, whereas the sampling error for LHS decreases as the 

order of 
1

𝑁
 per (36) and (37), for example. 

Specifically, the training data sets were generated by exercising a full-order SFEM 

for which computational DOEs were constructed using Latin Hypercube Sampling (LHS) 

and a generalized Latin Hypercube sampling method called Latinized Partially Stratified 

Sampling (LPSS) (38).   

Latin Hypercube Sampling 

In contrast to random Monte Carlo sampling, LHS aims to spread the sample 

points evenly across all possible values (39).  One of its first implementations was in a 

Sandia National Laboratory computer program simply titled “Latin Hypercube Sampling” 
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(35).  As a version of stratified sampling, LHS partitions each input parameter 

distribution into intervals of equal probability, and selects one sample from each 

interval, and shuffles the sample for each input so that there is no correlation.   

Latinized Partially Stratified Sampling 

The LPSS method developed in (38) performs simultaneous Latin hypercube 

sampling of all variables and stratified sampling of subsets of variables, and has been 

shown to provide variance reduction in the context of parameter interactions (38).   

LPSS is achieved by first defining a partially stratified sampling (PSS) design, as 

described in Section 3 of (38), and as follows.  Let Θ𝑖 , 𝑖 = 1, … , 𝑁𝑆 denote 𝑁𝑆 disjoint 𝑁𝑖-

dimensional orthogonal subspaces of the 𝑁-dimensional sample space.  PSS divides 

each subspace Θ𝑖  into a collection of 𝑀𝑖  disjoint subsets Ξ𝑖𝑘; 𝑘 = 1,2, … , 𝑀𝑖.  Lower 𝑁𝑖 

dimensional random samples 𝒑𝑖𝑘 = {𝑝𝑖𝑘1, 𝑝𝑖𝑘2, … , 𝑝𝑖𝑘𝑁𝑖
} are generated within each 

stratum Ξ𝑖𝑘 of subspace Θ𝑖  according to the stratified sampling method.  Then, full 𝑁-

dimensional samples 𝒑 are assembled by randomly grouping the lower-dimensional 

samples generated in each subspace.  The most significant challenge to PSS is to identify 

the optimal subspace decomposition.  In some cases, it may be clear which variables are 

interacting which will inform the PSS subspace definitions, but such cases are the 

exception.  Indeed, the variables which are interacting are not known a priori in the 

present work applied to nuclear reactor internals structural dynamics.  Coupling PSS 

with “Latinized” stratified sampling (LSS) helps to alleviate this concern. 



 

20 

 

LSS permits one to simultaneously reduce variance associated with both the 

main and interaction effects by constructing, on a given 𝑁𝑖-dimensional subspace, a true 

stratified sampling design that is at the same time an LHS design.  The procedure for 

accomplishing this is described in Table 2.   

Table 2 - LSS Method Procedure 

Step Description 

1 Draw an LHS from the subspace 

2 
Stratify the domain as desired ensuring that the stratification is consistent with 

an LHS design 

3 

For each stratum, randomly select a point 𝑝𝑖 from each component of the LHS 

(without replacement) such that the sample 𝑝 = {𝑝1, 𝑝2, … , 𝑝𝑁} lies within the 

stratum 

4 Repeat for each stratum of the design. 

 

Finally, LPSS involves the use of LSS in combination with PSS.  Following the 

definition of a PSS design, samples from the lower-dimensional subspaces are then 

drawn according to the LSS method.  Thus, with LPSS, it is sufficient to stratify a set of 

variables together simply based on the possibility that they may interact.  If the chosen 

parameters do interact then the savings, in terms of variance reduction (and associated 

accuracy of surrogate model and GSA, in this application), will be amplified by reduction 

in both the main effects and interactions.  If the chosen parameters do not interact, 

there will be no increase in variance since the main effects are also being filtered thanks 

to LSS. 
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SFEM-based PWR Global Sensitivity Analysis 
Given the six parameters which most influence the model result of interest, a 

fractional-factorial DOE (40) was constructed in order to quickly identify which 

parameters possess interactions to thus inform the subdomain arrangement for LPSS. 

Given those observations, the subdomains for LPSS were set up as shown in Table 3.   

Table 3 – Subdomain Composition for LPSS of SFEM 

Model parameters 
sub-domain 

dimension (𝑁𝑖) 

P4 𝑘(𝜃)3 

P15 𝑘9 

P16 𝑘10 

3 

P10 𝜁 

P11 𝑔(𝑦)5 

P12 𝑁6 

3 

 

From the subdomains defined in Table 3, the number of strata Ξ𝑖𝑘 were set to 3, 

4, 5, 8, 10, and 12.  Therefore, the resultant number of samples was 𝑁𝑖
Ξ𝑖𝑘 = 27, 64, 125, 

512, 1,000, and 1,728, respectively. 

Sensitivity Analysis 
Having demonstrated in (15) the successful use of a Surrogate model to perform 

GSA for a reactor upper internals (UI) flow-induced vibration (FIV) model, a similar 

approach is employed for the SFEM, as illustrated in Figure 7.  This approach is similar in 

principle to that applied to the stationary UI FIV finite element analysis in the sense that 

Kriging surrogates were developed through LHS and LPSS.  Hence, the objective of this 

study is to rigorously compare GSA performed using sparsely sampling (LHS and  LPSS) 

based surrogate models with more direct full-order model driven FAST GSA.  
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Figure 7 - Flow Diagram of Surrogate Modeling, Sensitivity Analysis, and Error Evaluations 

As previously noted, GSA requires that a model be executed numerous times 

through a computational DOE to permit direct computation via FAST, or the training of 

surrogate models for use in GSA calculations.  As such, it could be argued that the 

insight provided by GSA is somewhat diluted by the computational expense of 

performing GSA, relative to simply varying one factor at a time.  Therefore, in the 

interest of motivating the use of GSA for this application, of preliminary interest is 

quantification of the percent change in model outputs when a single input parameter is 

varied as a one factor at a time (OFAAT) sensitivity analysis.  Figure 8 shows how the 

lateral RVCH motion changes, relative to the nominal values of three stiffness 
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parameters listed in Table 1.  It may be seen that the structural dynamic system 

behavior is indeed non-linear with respect to the ±10% range of variation on the three 

selected input parameters, 𝑘(𝜃)3, 𝑘9, and 𝑘10.  Examination of Figure 8 could lead one 

to conclude input parameter 𝑘(𝜃)3 to be of far higher relative importance to 𝑘9 and 

𝑘10.  While such a conclusion would be true if varying one factor at a time, that 

inference may not necessarily be true for cases in which multiple factors possess 

uncertainty, and thus could vary from their nominal value.  That is, interaction and 

combinatorial effects could produce significant non-linearities in model output trends 

which would motivate one to consider GSA which surveys the full parameter space 

considering all possible combinations of input parameters.  Such a GSA is presented in 

the following sections.   
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Figure 8 - Single Factor Sensitivity of Lateral RV Motion with respect to Three Stiffness 

Parameters Varied by ±10% 

SENSITIVITY ANALYSIS OF FULL-ORDER MODEL USING FAST 

Prior to evaluating the effectiveness of model training approaches on GSA results 

computed from a surrogate model, we establish a benchmark set of GSA results using 

the FAST algorithm directly applied to the SFEM.  Figure 9 shows the full-order SFEM 

GSA first-order sensitivities using FAST with 5,000 and 8,000 samples from which it can 

be seen that the difference in sensitivities upon changing sample size is negligible, 

indicating convergence of the sensitivity indices.  Unlike the GSA results presented in 

(15) in which three of the six parameters imparted nearly zero variance to the model 
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output of interest, five of the six parameters included in the SFEM GSA contribute at 

least 5% variance to the model output of interest (P17, peak lateral acceleration of the 

RVCH).  Referring to Table 1 for the parameter identifiers, it may be seen that stiffness 

between two components in the reactor system 𝑘9 (P15) carries the greatest sensitivity, 

following by the number of components, 𝑁6 (P12).  Terms 𝑘9 and 𝑁6 are local features 

of the system associated with specific components, but they impart a significant 

influence on results of interest. Meanwhile, damping (𝜁) which is a system level 

parameter, shows a non-negligible sensitivity, but is appreciably smaller than the local 

features 𝑘9 and 𝑁6.  This insight on the relative sensitivity of damping is somewhat 

unexpected in the sense that damping is often perceived to impart greater variations 

than such local quantities, which was not the case here. 

 

Figure 9 Full-Order Model GSA Results for SFEM using FAST 
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SURROGATE-BASED SENSITIVITY ANALYSIS 

Having thus established stable GSA results for comparison to those computed 

from surrogate models, Figure 10 shows the Kriging-based GSA results with bars and the 

associated full-order model based FAST GSA results shown with black circles. The figure 

shows results using both LHS and LPSS for increasing sample sizes, from which it may be 

seen that, even for small sample sizes (as low as 27 samples), the sensitivity indices are 

approximately correct and very accurate sensitivity indices can be obtained with very 

small sample sets (64 or 125 samples).  Note that sample sizes were determined by the 

stratification of the domains for LPSS, as shown in Table 3. 

In order to better visualize the surrogate-based GSA error indicated in Figure 10, 

Figure 11 and Figure 12 show the difference between the surrogate-based GSA results 

and those from the full-order model as a bar graph and line plot, respectively.  While the 

accuracy associated with LHS and LPSS is nearly equivalent at sample sizes of 125 or 

greater, the LPSS results appear to show generally lower error for sample sizes of 27 and 

64 – although the difference is not particularly large.   

The shape of this response surface may serve to clearly illustrate the value of 

GSA as opposed to single-factor sensitivities (i.e., the line plots shown in Figure 8), as 

the two terms have a compounding and non-linear effect with respect to one another.  

That is, 𝑘9 (P15) and 𝑁6 (P12) have a combined effect on the RVCH acceleration (P17) 

which is complex, and which could easily be misunderstood if all factors were held 

constant except for one.  This effect is further illustrated by considering the combined 
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influences that 𝑘9 and 𝑘10 have on the same result, as shown in Figure 13, where the 

effect that P16 imparts on output P17 depends on the value of P15. 

 

  

Figure 10 - Surrogate-based GSA Results for SFEM Maximum Acceleration, Compared to Full-

Order GSA Results (indicated using diamond symbols), using LHS (Left) and LPSS (Right) 
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Figure 11 - Difference between Kriging-based and Full-Order GSA Results of SFEM Maximum 

Acceleration (Bar Graph) using LHS (Left) and LPSS (Right) 
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Figure 12 - Difference between Kriging-based and Full-Order GSA Results of SFEM (Line Graph) 
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Figure 13 - Illustration of Kriging Surface Variation for RVCH Lateral Acceleration (P17) with 

respect to 𝒌𝟏𝟎 (P16) and 𝒌𝟗 (P15) 
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SURROGATE MODEL ACCURACY 

Having thus established that both LHS and LPSS provides sampling strategies 

from which accurate GSA results may be computed from a surrogate model, it is of 

interest to quantify the verification error associated with the surrogate model itself.  

Provided 𝑚 values of the finite element model result 𝑦 and surrogate model result �̂�, 

define Relative Root Mean Squared (RMS) error as √
1

𝑁
∑ (

𝑦𝑖−�̂�𝑖

𝑦𝑖
)

2
𝑚
𝑖=1 , and Maximum 

Relative Residual error as max
𝑖=1:𝑚

(|
𝑦𝑖−�̂�𝑖

𝑦𝑖
|).  Using the Relative RMS and Maximum Relative 

Residual error metrics for the SFEM surrogate models, Figure 14 illustrates how the 

surrogate model accuracy generally improves with an increasing number of samples, 

considering a relatively small ±5% range of variation on the input parameters.  

Consistent with prior observations, the surrogate model verification error associated 

with LPSS is lower than that for LHS at the lower sample sizes of 27 and 64. 

Figure 15 then shows a plot of surrogate model accuracy, but with a larger ±25% 

range of variation on the same input parameters.  The improvement in surrogate model 

accuracy with LPSS compared to LHS is even more significant than for the larger range of 

parameter variation.  For example, at 27 samples the surrogate verification error is 

approximately 50% lower for LPSS than for LHS with ±25% parameter variation, whereas 

the surrogate verification error is approximately 20% lower for LPSS than for LHS with 

±5% parameter variation.  The difference between the ±5% and ±25% case is consistent 

with the interaction effects also being more significant with a larger range of variation.  

Such consistency is considered reasonable as the stronger interaction effects manifest 
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themselves in effective variance reduction provided by LPSS, and therefore a greater 

degree to which surrogate model accuracy is improved for smaller sample sizes, when 

compared with LHS. 

Even at the lowest sample size of 27, the surrogate model verification error for 

LPSS was less than 1.5% and 3% for the Relative RMS and Maximum Relative Residual 

error metrics, respectively.  For most practical purposes, these errors are small enough 

to render such a surrogate acceptable, which suggests that a mere 27 sample 

computational DOE can prove quite useful for this application. 

 

Figure 14 - Verification of Kriging Surrogate for SFEM with ±5% Input Parameter Variation 
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Figure 15 - Verification of Kriging Surrogate for SFEM with ±25% Input Parameter Variation 

 

The decrease in both surrogate verification and GSA error with respect to 

increased sample size may be visualized in Figure 16 within which the RRMS surrogate 

verification error, as a percentage, is compared with the absolute value of GSA error.  

Thus, per Figure 16, the rate of improvement of both error metrics with respect to 

increasing the number of samples is comparable.   
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Figure 16 - Overlay Comparison of Surrogate Verification RRMS Error and GSA Error for 

LHS (top) and LPSS (bottom) 
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COMPARISON STUDY TO EVALUATE ACCELERATION RESPONSE 

SPECTRA SENSITIVITY 

While the maximum RVCH acceleration from the transient analysis is used in 

practice for ASME Code design analysis of reactor equipment and is therefore the model 

output of interest chosen to evaluate within the preceding subsections, the magnitude 

of the acceleration response spectrum is also of practical engineering interest.  

Particularly for a SFEM which is used to develop loading for detailed sub-model stress 

evaluations (e.g., reactor components not explicitly resolved in the SFEM itself such as 

the control rod drive mechanism, and piping attached to the inlet or outlet nozzles, or 

components of a simplified head assembly), spectral amplitudes are important if a 

particular sub-model is attached the system and has a resonant frequency coincident 

with the amplified portion of the acceleration response spectrum.  Therefore, the 

following explores the surrogate-based sensitivity analysis for the case in which the 

output of interest is the amplitude of the first vibration mode observed from the 

acceleration response spectrum. 

Whereas the majority of the SFEM analyses presented in this work focus upon an 

output which is a maximum over time, this section seeks to explore the performance of 

these same methods but with respect to a spectral output.  Figure 5 provides a typical 

acceleration time-history response.  The acceleration value of interest from this plot is 

the maximum value which occurs at approximately a time of 1.07 seconds. 
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Maintaining parameter variations of ±5%, and focusing on the magnitude of the 

first resonant frequency of the acceleration response spectrum as the output of 

interest, Figure 17 shows the first-order FAST global sensitivities from the full-order 

SFEM using 8000 samples.  Comparing these sensitivities to those for the maximum 

acceleration over time per Figure 9 reveals that the importance of parameters 𝜁 and 𝑁6 

are significantly increased while 𝑘9 is decreased dramatically. The remaining parameters 

are of near-negligible importance, and while their sensitivities were small in the 

maximum acceleration case, they are almost completely inconsequential for the 

acceleration response spectrum.  The change in relative importance between the 𝜁, 𝑁6, 

and 𝑘9 terms likely has to do with the similarity between reactor system resonant 

frequencies of the associated components (i.e., the specific RVI components at location 

6 or 9) and the frequency of the mode at which the maximum acceleration occurs.  That 

is, the maximum acceleration occurs at approximately 25 Hz, and the resonant 

frequency of sub-components near location 6 (which pertain to 𝑁6 in the upper region 

of the reactor) fall closer to 25 Hz than those at location 9 (which pertain to 𝑘9 in the 

lower region of the reactor), and so variance in 𝑁6 imparts greater variance in the 

acceleration response at that frequency than variance in 𝑘9.  Furthermore, the vibration 

amplitude is known to vary in inverse proportion to the square root of the damping 

ratio 𝜁 (41), and so that parameter would likewise be expected to strongly influence the 

magnitude of the spectral response. 
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Figure 17 - Global Sensitivity Indices for System Finite Element Model Response Spectra 

 

Similar to Figure 10 and Figure 11, but for the spectral acceleration response, 

Figure 18 shows the GSA results and convergence thereof for SFEM.  Figure 19 shows 

convergence of the first-order sensitivities when Kriging surrogates are trained with LHS 

and LPSS for a series of training set sizes.  It is apparent that at low sample sizes of 27 

and 64, the GSA error associated with Kriging surrogates trained by LPSS is lower than 

the error for those trained by LHS.  The improvement offered by LPSS makes some 

intuitive sense because the frequency, 𝜔, which may be simply viewed as a function of 

√
𝑘

𝑚
 and damping, would be directly affected by combinations of parameters that affect 

the mass, stiffness, and damping (all six parameters studied here), and thus establishing 
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subdomains in which such terms are grouped according to their interactions via LPSS 

could result in lower errors as compared to LHS which does not establish such 

subdomains.   

 

 

Figure 18 - Surrogate-based GSA Results for SFEM Spectral Acceleration, Compared to 

Full-Order GSA Results (indicated using diamond symbols), using LHS (Left) and LPSS (Right) 
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Figure 19 - Convergence of Surrogate-based Global Sensitivity Indices for System Finite 

Element Model Acceleration Response Spectra  
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Conclusion 
This work demonstrates the extensibility of the surrogate-based GSA 

methodology shown useful for a reactor subassembly subjected to stationary random 

vibration in (15) to a reactor equipment SFEM, for which the finite element model 

included non-linearity and was subjected to non-stationary loading.  The SFEM was 

parameterized with a total of sixteen model parameters for which there are plant-to-

plant variations or for which the magnitude changes over the course of the reactor life 

due to aging.  Of these sixteen, the six most dominant parameters were chosen to 

explore for the GSA studies.  As a baseline case, a parameter variation range of ±5% 

about nominal was chosen to represent the normal amount of variation for these 

parameters amongst the operating fleet of PWRs, and a larger parameter variation 

range of ±25% was additionally studied to represent further departure from nominal 

values that some parameters may experience due to nuclear plant aging-related 

degradation mechanisms.  Interaction effects were observed between those six 

parameters from a factorial DOE, which were used to determine the arrangement of the 

subdomains for LPSS. 

The LPSS and LHS methods were employed to sample the parameter space from 

which Kriging surrogates were constructed and used to estimate GSA indices.  The use 

of LPSS was again shown to be particularly effective at providing accurate surrogate 

models for very low sample sizes.  For the smallest number of samples explored, and 

using LPSS, the magnitude of the surrogate model verification error was approximately 

0.3% Maximum Relative Residual when using ±5% variation about the nominal values of 

model parameters (Figure 14), and less than 3% when using ±25% about nominal 
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(Figure 15).  The corresponding Maximum Relative Residual errors associated with LHS 

increased to approximately 0.5% and 5%, for the ±5% and ±25% parameter variation 

cases, respectively.  Although LHS provides a less accurate surrogate model at small 

sample sizes, the resultant errors may be considered acceptable for many practical 

engineering applications.  Thus, the relatively accurate surrogate models obtained 

through both LHS and LPSS provides confidence in the stability of the result.  Such 

stability in the surrogate model verification metrics suggests that the choice of sampling 

method is largely inconsequential if the error requirements do not demand the highest 

possible accuracy. 

Along with the low surrogate verification errors at low sample sizes, the GSA 

error is correspondingly very low, measured as the difference between that computed 

directly from the full-order model versus that computed from surrogate models.  For 27 

samples, the maximum error in GSA indices was ±0.03 when evaluating the maximum 

acceleration of the RVCH (Figure 10), or ±0.08 when evaluating the spectral response of 

the RVCH (Figure 18).  In either case, it is noteworthy that at such a small sample size, 

reasonable engineering insight can be drawn from GSA results with such small error.  

Similar to the surrogate model verification metrics, the GSA error likewise decreases 

upon increases in sample size.  The agreement between surrogate model verification 

metrics and GSA error provides confidence that, provided a verified surrogate model, 

the GSA results derived from that surrogate have a low risk of inaccuracy.  It is 

recognized that, in some situations, a benchmark model may not be practically available 

against which to verify surrogate model performance.  This may be thought of as 
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somewhat analogous to situations where a computational model lacks empirical data 

against which it may be validated.  In such situations, model credibility may be 

evaluated, to some extent, using methods in the field of computational modeling 

maturity theory described in (42), such as the predictive capability maturity method and 

assessment (43), (44).  Nonetheless, the lack of benchmark data poses a non-negligible 

challenge to demonstrating credibility for computational modeling and simulation, and 

thus constitutes an avenue for potential future research. 
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