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Abstract

We address the evaluation of highly oscillatory integrals, with power-law and log-
arithmic singularities. Such problems arise in numerical methods in engineering. No-
tably, the evaluation of oscillatory integrals dominates the run-time for wave-enriched
boundary integral formulations for wave scattering, and many of these exhibit sin-
gularities. We show that the asymptotic behaviour of the integral depends on the
integrand and its derivatives at the singular point of the integrand, the stationary
points and the endpoints of the integral. A truncated asymptotic expansion achieves
an error that decays faster for increasing frequency. Based on the asymptotic analysis,
a Filon-type method is constructed to approximate the integral. Unlike an asymp-
totic expansion, the Filon method achieves high accuracy for both small and large
frequency. Complex-valued quadrature involves interpolation at the zeros of polyno-
mials orthogonal to a complex weight function. Numerical results indicate that the
complex-valued Gaussian quadrature achieves the highest accuracy when the three
methods are compared. However, while it achieves higher accuracy for the same num-
ber of function evaluations, it requires significant additional cost of computation of
orthogonal polynomials and their zeros.
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1 Introduction

In this paper, we shall consider four kinds of highly oscillatory singular integrals: with

singular non-oscillatory component,

I[f ] =

∫ b

0
x−αf(x)eiωg(x)dx, (1.1)

I[f ] =

∫ b

0
log xf(x)eiωg(x)dx, (1.2)

and where the singularity appears in the phase function [22]

I[f ] = p

∫ b

0
x−αf(x)eiωx−pdx, α ∈ (0, 1), p > 0, (1.3)

I[f ] =

∫ b

0
log xf(x)eiω log xdx, (1.4)

where f and g are sufficiently smooth functions, independent of |ω| � 1.

Oscillatory integrals are encountered in a wide range of applications in science and

engineering. In cases where the integrand exhibits a singularity of one of the above types,

this further complicates the evaluation of the integral. Such integrals arise in applications

in electromagnetics [17, 18] and electromagnetic shielding problems [10]. In the present

work we focus on the frequency-domain, wave-enriched boundary integral formulations as

a particular example to motivate this work.

Acoustic wave propagation problems in 2-D unbounded regions are governed by the

Helmholtz differential equation

∆u(p) + ω2u(p) = 0, p ∈ R2\Ω,

where u ∈ C is the acoustic potential sought as the solution, p is the position, λ is the

wave length, ω = 2π/λ, Ω is a bounded obstacle with a boundary Γ and Ω = Ω∪Γ. Three

classical numerical methods that are widely used in industry for the analysis of wave prop-

agation problems are the Finite Difference Method (FDM), Finite Element Method (FEM)

and Boundary Element Method (BEM). However, complications arise for wave scattering

problems in infinite domains. In particular, FDM and FEM discretisations require trun-

cation of the domain and the application of some non-reflecting boundary conditions on

the artificial exterior boundary. BEM formulations are therefore often preferable to volu-

metric discretisations for these problems since the meshing is restricted to the boundary

of the scatterer(s), leading to the efficient solution of problems in unbounded geometries.

The first step of the BEM is to transform the Helmholtz equation into a boundary

integral equation. The Robin boundary condition

∇u(q) · n(q) = γu(q) + β, q ∈ Γ

is imposed, where γ and β may be derived from the impedance characteristics of the

material(s) forming the scatterer boundaries, and n(q) is the unit normal at q pointing

outward from the solution domain. Applying Green’ second theorem and Sommerfeld

radiation conditions yields the boundary integral equation

u(p)

2
+

∫
Γ

[
∂G(p, q)

∂n(q)
− γG(p, q)

]
u(q)dΓq =

∫
Γ
βG(p, q)dΓ(q) + ui(p),
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where G is the Green’s function for the Helmholtz equation and ui is the incident wave.

The source point is p ∈ Γ and the observation point is q. To discretise the boundary

integral equation, the boundary (line) Γ is partitioned into Ne elements and each element

e is mapped onto the parametric space, Γ =
∑Ne

e=1 Γe, Γe = {q(ξ) : ξ ∈ [−1, 1]}. The

traditional boundary element expansion for the potential at a point q on an element e is

J∑
j=1

Nj(ξ)ûj ,

where J is the number of nodes of the element and Nj is the usual Lagrangian polynomial

shape function for node j. Applying the collocation method results in the linear algebraic

system

(C + S +D) û = f̂,

where C is the identity matrix. Each entry of matrices S = {Sej} and D = {Dej} can be

represented by the integrals

Sej =

∫ 1

−1
H

(1)
1 (ωr(ξ))Nj(ξ)

∂r(ξ)

∂n(ξ)
|J |dξ,

Dej =

∫ 1

−1
H

(1)
0 (ωr(ξ))α(q(ξ))Nj(ξ)|J |dξ,

where H
(1)
0 (·) and H

(1)
1 (·) are the Hankel functions of the first kind and order 0 and 1,

respectively. The distance is denoted by r = |q − p|, while J is a Jacobian defined by

dΓ = J(ξ)dξ. Once the coefficient matrices are determined, application of an iterative

method yields the numerical solution.

However, if the parameter ω is very large, the wavelength under consideration is much

less than the dimension of the scatterer. A consequence of this is that a greater degree

of discretisation is required to accurately determine the oscillatory solution u using tradi-

tional quadrature methods. The dimension of the collocation matrices therefore increases

with the parameter ω as O
(
ωd
)
, where d is the dimension of the problem.

To reduce the dependence on ω, high-frequency BEMs have been presented. These

methods select the product of a polynomial and oscillatory functions as the basis, replacing

Nj . The new basis can approximate the oscillatory solution more accurately. One effective

method is the Hybrid Numerical Asymptotic BEM (HNA-BEM) [4, 8]. However, this

requires some properties of the solution to be known in advance. An alternative is the

Partition of Unity Boundary Element Method (PUBEM) [21], whereby the plane wave

enrichment

J∑
j=1

Nj(ξ)

M∑
m=1

Ajmeiωdjm·q(ξ),

djm = (cos θjm, sin θjm) , θjm =
2π(m− 1)

M
+ θI

is proposed, where Ajm is the unknown amplitude of the basis function Nj(ξe)e
iωdjm·q and

θI is the incident angle. This has been shown to bring about a large reduction in the

requirement size for short-wave scattering problems, from 10 degrees of freedom to 2–3

per wavelength. However, this reduction comes at the cost of a requirement to evaluate a

large number of highly oscillatory integrals of the form

− iγ

4

∫ 1

−1
H

(1)
0 (ωr)Nj(ξ)e

iωdm·q(ξ)J(ξ)dξ.
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A numerical steepest descent method was successfully applied for this integral in [11]

to reduce the computational effort. Yet, this approach needs careful implementation in

order to be robust in the presence of singularities in the integrand in the complex plane

formed on a real axis aligned with ξ. To design a robust and effective quadrature method,

we are interested in the asymptotic analysis of this kind of integral. Note that as the

distance r goes to zero, the Hankel function behaves as

H
(1)
0 (ωr) ∼ 2i

π
log(ωr),

referenced from the website http://dlmf.nist.gov/10.7. This calls for asymptotic anal-

ysis of a highly oscillatory integral with a logarithmic singularity.

The computation of the highly oscillatory integrals, even without singularity, by con-

ventional quadrature methods is exceedingly expensive and inefficient: essentially, the

number of quadrature points [5] must be O (ω) and this becomes prohibitive for large |ω|.
Unlike traditional quadrature methods, based upon local Taylor expansions, a new type of

highly oscillatory quadrature algorithms – asymptotic expansions and Filon-type methods

introduced by Iserles and Nørsett [13, 14], Levin methods [7, 16, 20] and the numerical

steepest descent methods of Huybrechs and Vandewalle [12] – excel in the presence of

high oscillation. All such methods are based upon asymptotic expansions and their accu-

racy scales like O
(
ω−p−1

)
for some p ≥ 1. In other words, their precision increases with

growing frequency, while cost remains constant. Furthermore, complex-valued Gaussian

quadrature studied in [2, 6] attains an optimal asymptotic order and exceedingly small

error. All such methods build upon an asymptotic expansion [7] of the solution in inverse

(but not necessarily integer) powers of ω. The existing theory of highly oscillatory quadra-

ture, however, does not extend to the presence of singular integrands. The extension is

nontrivial because the weak singularity at the origin interacts with other aspects of the

asymptotic expansion.

We note in passing that the computation of singular highly oscillatory integrals has

been already considered in literature [1, 9, 15, 19]. For the weak singularities mentioned in

this paper, although there are some estimates provided, such as [24], asymptotic analysis

is incomplete, as is the design of effective quadrature methods. The theme of this paper is

the development of efficient quadrature schemes for integrals of the form of (1.1–1.4). This

is not a straightforward generalisation of standard theory and it compels us to commence

from asymptotic analysis of highly oscillatory singular integrals to provide insight into the

subsequent development of quadrature schemes.

We explore three typical quadrature schemes for highly oscillatory integration with

singularities. Their asymptotic properties and related expansions are formulated in Sec-

tion 2. Based on this analysis, Filon methods are constructed in Section 3. Both sections

are accompanied by relevant numerical examples. Section 4 displays the numerical results

for complex-valued Gaussian quadrature.

The main ideas that have inspired modern analysis of highly oscillatory integrals – in

particular asymptotic expansions and Filon-type methods – form the cornerstone of this

paper. While these ideas are not new and the analysis of this paper follows along similar

signposts as [7], the analysis is considerably more demanding and presence of singularities

calls for much extra care.

Before we commence asymptotic analysis, we first define generalised moments of I[f ]
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in (1.1) and (1.2)

µj(α, ω) =

∫ b

0
xj−αeiωg(x)dx,

νj(ω) =

∫ b

0
xj log xeiωg(x)dx.

2 Asymptotic analysis of highly oscillatory integrals with
power-law and logarithmic singularities

In this section we are concerned with the asymptotic analysis of highly oscillatory power-

law integrals (1.1, 1.3) and logarithmic integrals (1.2, 1.4). Given that the presence of a

stationary point is a game changer in asymptotic analysis, we will present the theory first

without and subsequently with stationary points.

2.1 Asymptotic analysis of power-law singularity

We commence with the case g′(x) 6= 0 for the integral (1.1). In contrast to the non-singular

oscillatory integral [14], our first step is to examine the behaviour of the moment function

µ(α, ω), an essential ingredient in asymptotic analysis. Firstly, the moment function is

bounded,

|µ0(α, ω)| =
∣∣∣∣∫ b

0
x−αeiωg(x)dx

∣∣∣∣ ≤ ∫ b

0
x−αdx =

b1−α

1− α
.

To get a sharper upper bound, we separate the interval of integration into∫ b

0
x−αeiωg(x)dx =

∫ ε

0
x−αeiωg(x)dx+

∫ b

ε
x−αeiωg(x)dx,

where a small number ε > 0 will be set momentarily. Different choices of ε determine

different upper bounds and in the next lemma we choose an optimal value of ε to get the

lowest upper bound.

Lemma 1. Given ω � 1 and g′(x) 6= 0, x ∈ [0, b], the zeroth moment function µ0(α, ω)

satisfies

|µ0(α, ω)| =
∣∣∣∣∫ b

0
x−αeiωg(x)dx

∣∣∣∣ ∼ O(ω−(1−α)
)
.

Proof. Assume a small number ε > 0. We write the moment in the form∫ b

0
x−αeiωg(x)dx =

∫ ε

0
x−αeiωg(x)dx+

∫ b

ε
x−αeiωg(x)dx.

The first integral on the right side is O
(
ε1−α). The remaining integral is non-singular and

can be calculated using integration by parts,∫ b

ε
x−αeiωg(x)dx =

1

iω

[
b−α

g′(b)
eiωg(b) − ε−α

g′(ε)
eiωg(ε)

]
− 1

iω

∫ b

ε

d

dx

(
x−α

g′(x)

)
eiωg(x)dx ∼ O

(
ω−1ε−α

)
.

Together then, the integral is bounded by O
(
ε1−α) + O

(
ω−1ε−α

)
. We take ε = ω−1 to

get the desired result.
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It directly follows from Lemma 1 that∣∣∣∣∫ b

0
x−αf(x)eiωg(x)dx

∣∣∣∣ ≤ C1ω
−(1−α), (2.1)

where f is a sufficiently smooth function and the constant C1 is related to the upper bound

of f .

Based on (2.1), we deduce the following theorem.

Theorem 2. Assume that f is a smooth function and g′(x) 6= 0. Then for s ∈ N and

ω � 1, the first 2s terms of the asymptotic expansion of I[f ] are

QA,s[f ] ∼ µ0(α, ω)
s−1∑
k=0

1

(−iω)k
σk[f ](0)−

s∑
k=1

1

(−iω)k
σk−1[f ](b)− σk−1[f ](0)

bαg′(b)
eiωg(b),

where

σ0[f ](x) = f(x),

σk+1[f ](x) = xα
d

dx

σk[f ](x)− σk[f ](0)

xαg′(x)
, k ≥ 0.

The corresponding asymptotic error is

I[f ]−QA,s[f ] ∼ O
(
ω−s−(1−α)

)
, |ω| � 1. (2.2)

The proof is given in Appendix A.1.

In particular, in the important case of the Fourier oscillator g(x) = x with ω � 1, we

have∫ b

0
x−αf(x)eiωxdx ∼ µ0(α, ω)

s−1∑
k=0

1

(−iω)k
σk[f ](0)−

s∑
k=1

1

(−iω)k
σk−1(b)− σk−1(0)

bα
eiωb,

where

σk(x) =
∞∑
j=0

(j + k − α) · · · (j + 2− α)(j + 1− α)

(j + k)!
f (j+k)(0)xj , k ≥ 0.

Also in the case of a stationary point the key to asymptotic analysis is repeated inte-

gration by parts. Once g′(x) = 0 at one or more points in [0, b], the form of the asymptotic

expansion depends on the stationary points, the endpoints and the order of the singular-

ity. Assume for simplicity that the integral (1.1) possesses just a single stationary point

at ξ ∈ [0, b]. (The extension to the case of more stationary points is straightforward.)

In addition, we only explore the asymptotic analysis for ξ = 0 since the case ξ > 0 is

very similar but somewhat easier. To start with, we analyse the asymptotic order of the

moment µj(α, ω) based on the method of stationary phase [3, p. 279], generalising the

familiar van der Corput lemma [23] to the setting of integrands with singularities.

Lemma 3. Suppose that ω � 1 and g(x) has a stationary point of order r at x = 0, that

is g′(0) = · · · = g(r)(0) = 0, g(r+1)(0) 6= 0, then

|µj(α, ω)| =
∣∣∣∣∫ b

0
xj−αeiωg(x)dx

∣∣∣∣ ∼ O(ω−min( j+1−α
r+1

,1)
)
. (2.3)
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Proof. We separate µj into two terms:∫ b

0
xj−αeiωg(x)dx =

∫ ∞
0
−
∫ ∞
b

.

Using integration by parts, the second integral on the right behaves as∫ ∞
b

xj−αeiωg(x)dx ∼ O
(
ω−1
)
,

since it is a proper integral without a stationary point in the interval [b,∞].

Here, without loss of generality, we assume g(0) = 0. To obtain the essential behaviour

of the first integral on the right, we expand the function g(x) in a Taylor series

g(x) ∼
r∑

m=0

g(m)(0)

m!
xm +

g(r+1)(x)

(r + 1)!
xr+1 + · · · = g(r+1)(ξ)

(r + 1)!
xr+1

for some ξ ∈ [0, x], since g(m)(0) = 0, m = 0, 1, · · · , r, and g(r+1)(0) 6= 0. This gives∫ ∞
0

xj−αeiωg(x)dx ∼
∫ ∞

0
xj−αe

iω
g(r+1)(ξ)
(r+1)!

xr+1

dx.

Then we rotate the contour of integration from the real-x axis by an angle π
2(r+1) if

g(r+1)(ξ) > 0 and make the substitution

x = e
iπ

2(r+1)

[
(r + 1)!u

ωg(r+1)(ξ)

]1/(r+1)

,

where u is real (we rotate by an angle −π
2(r+1) if g(r+1)(ξ) < 0 with x = e

−iπ
2(r+1)

[
(r+1)!u

ω|g(r+1)(ξ)|

]1/(r+1)
).

This yields∫ ∞
0

xj−αe
iω
g(r+1)(ξ)
(r+1)!

xr+1

dx ∼ Cω−
j+1−α
r+1

∫ ∞
0

e−uu
j+1−α
r+1

−1du

∼ Cω−
j+1−α
r+1 Γ

(
j + 1− α
r + 1

)
∼ O

(
ω−

j+1−α
r+1

)
.

Comparing the two orders, it follows that

|µj(α, ω)| ∼ O
(
max

(
ω−

j+1−α
r+1 , ω−1

))
.

Thus, we arrive at the exponent min
(
j+1−α
r+1 , 1

)
. This completes the proof of (2.3).

Based on Lemma 3, it follows that∣∣∣∣∫ b

0
x−αf(x)eiωg(x)dx

∣∣∣∣ ≤ C2ω
− 1−α
r+1 , (2.4)

where the constant C2 is related to the bound of the smooth function f as ω →∞.

We commence from the basic case g′(0) = 0, g′′(0) 6= 0: progression to the general

setting will be easy.
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Theorem 4. Assume that g′(0) = 0, g′′(0) 6= 0 and g′(x) 6= 0, x ∈ (0, b]. For every

smooth function f and ω � 0, it is true that

I[f ] ∼ µ0(α, ω)

s−1∑
k=0

ρk[f ](0)

(−iω)k
+ µ1(α, ω)

s−1∑
k=0

ρ′k[f ](0)

(−iω)k

−
s∑

k=1

1

(−iω)k
ρk−1[f ](b)− ρk−1[f ](0)− ρ′k−1[f ](0)b

bαg′(b)
eiωg(b) (2.5)

with an error of O
(
ω−s−(1−α)/2

)
, where

ρ0[f ](x) = f(x),

ρk[f ](x) = xα
d

dx

[
ρk−1[f ](x)− ρk−1[f ](0)− ρ′k−1[f ](0)x

xαg′(x)

]
, k ≥ 1.

Letting s→∞ we obtain the asymptotic expansion of I[f ].

Proof. Following along the same lines as Theorem 2 and Lemma 3. We omit the details

for the sake of brevity.

Integrals with higher-order stationary points are important and common in applica-

tions [23]. The asymptotic expansion in Theorem 2 can be readily extended to the case of

g(x) having a single stationary point of order r ≥ 1 at 0, in other words

0 = g(0) = g′(0) = · · · = g(r)(0) = 0, g(r+1)(0) 6= 0

and g′(x) 6= 0 for x ∈ (0, b]. If g(0) 6= 0, we can simply transform the integral into the

form

I[f ] =

∫ b

0
x−αf(x)eiωg(x)dx = eiωg(ξ)

∫ b

0
x−αf(x)eiω[g(x)−g(ξ)]dx.

Consequently, setting

ρ0[f ](x) = f(x),

ρk+1[f ](x) = xα
d

dx

ρk[f ](x)−
r∑
j=0

ρ
(j)
k [f ](0)

j! xj

xαg′(x)
, k ≥ 0,

we obtain the general form of the asymptotic expansion,

I[f ] ∼
r∑
j=0

µj(α, ω)

j!

s−1∑
k=0

ρ
(j)
k [f ](0)

(−iω)k
−

s∑
k=1

eiωg(b)

(−iω)k

ρk−1[f ](b)−
r∑
j=0

ρ
(j)
k−1[f ](0)

j! bj

bαg′(b)
, (2.6)

the remainder term being O
(
ω−(s+ 1−α

r+1
)
)

.

As we have shown in our analysis, evaluating the integral by computing a truncation

of (2.6) can reduce the asymptotic error very effectively indeed for |ω| � 1. However, it

does not work for a small |ω|. We consider the integral without stationary points∫ 1

0
x−αf(x)eiωxdx (2.7)
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where f(x) = (1 +x)−1 and α = 1
2 , which also will be considered as a test example for the

Filon method and complex-valued Gaussian quadrature, which will be considered in the

sequel. This is a form of singularity in the PUBEM integrals. The terms in the truncated

expansion for s = 1, 2, 3 are

QA,1[f ](ω) = µ0(α, ω) +
i

2ω
eiω,

originating in f(0), f(1);

QA,2[f ](ω) = QA,1[f ](ω)− i

2ω
µ0(α, ω) +

eiω

2ω2
,

originating in f(0), f ′(0), f(1), f ′(1);

QA,3[f ](ω) = QA,2[f ](ω)− 3

4ω2
µ0(α, ω)− 7i

8ω3
eiω,

originating in f(0), f ′(0), f ′′(0), f(1), f ′(1), f ′′(0),

and their asymptotic error is O
(
ω−s−

1
2

)
. In Fig. 2.1 we depict the magnitude of the

error, log10

∣∣QA,s[f ]− I[f ]
∣∣, s = 1, 2, 3. As we mentioned, the error blows up near ω = 0

and decreases rapidly when ω > 10. Needless to say, an inclusion of more terms in the

expansion produces a better error for |ω| � 1.

Figure 2.1: The error log10

∣∣QA,s[f ]− I[f ]
∣∣ with x−

1
2 and g(x) = x. The colours are navy

blue (the top, dotted), dark red (the middle, dashed) and dark green (the bottom, solid)
for s = 1, 2, 3.

We now consider the same example but with an order-1 stationary point, i.e. calculate

the integral ∫ 1

0
x−αf(x)eiωx2dx (2.8)

where f(x) = (1 + x)−1, α = 1
2 . Throughout this paper, this integral will be calculated

as an example with a stationary point to illustrate the performance of different numerical

quadratures. We truncate the expansion in Theorem 2 as QA,s[f ], s = 1, 2, 3 with the

9



asymptotic error O
(
ω−s−

1
4

)
,

QA,1[f ](ω) = µ0(α, ω)− µ1(α, ω)− i

4ω
eiω,

originating in f(1), f (j)(0), j = 0, 1;

QA,2[f ](ω) = QA,1[f ](ω) +
i

4ω
µ0(α, ω)− 3i

4ω
µ1(α, ω) +

eiω

4ω2
,

originating in f(1), f ′(1), f (j)(0), j = 0, · · · , 3;

QA,3[f ](ω) = QA,2[f ](ω) +
−5

16ω2
µ0(α, ω) +

21

16ω2
µ1(α, ω) +

31i

64ω3
eiω,

originating in f(1), f ′(1), f ′′(1), f (j)(0), j = 0, · · · , 5.

Fig. 2.2 demonstrates the error order of the asymptotic expansion for different terms.

Similar error behaviour has been observed in Figs. 2.1 and 2.2 and it is evident that

the stationary point is not detrimental to the performance of the asymptotic method,

provided that we subtract the singularity originating in both the stationary point and

singular points.

Figure 2.2: The error log10

∣∣QA,s[f ]− I[f ]
∣∣ with x−

1
2 and g(x) = x2, for s = 1 (navy blue,

the top, dotted), s = 2 (dark red, the middle, dashed), s = 3 (dark green, the bottom,
solid).

2.2 Asymptotic analysis for logarithmic singularity

Our second instance of a singular oscillatory integral originates in the logarithmic singu-

larity (1.2). Our analysis is similar to the case of a power-law singularity, hence we present

it with greater brevity. As before, we commence with the case without a stationary point,

i.e g′ 6= 0, x ∈ [0, b]. In that case

I[f ] =

∫ b

0
log xf(x)eiωg(x)dx

=

∫ b

0
log x [f(x)− f(0)] eiωg(x)dx+ f(0)

∫ b

0
log xeiωg(x)dx

10



=

∫ b

0
log x [f(x)− f(0)] eiωg(x)dx+ f(0)ν0,

where

νk =

∫ b

0
xk log xeiωg(x)dx, k ≥ 0.

The function log x [f(x)− f(0)] is non-singular and analytic in the interval [0, b]. We define

σ0[f ](x) = f(x),

σj [f ](x) =
d

dx

[
σj−1[f ](x)− σj−1[f ](0)

g′(x)

]
, j = 1, . . . , k + 1.

Integrating by parts,

I[f ] =

∫ b

0
log x [f(x)− f(0)] eiωg(x)dx+ f(0) ν0

= f(0)ν0 +
1

iω

∫ b

0
log x

(f(x)− f(0))

g′(x)
deiωg(x)

= f(0)ν0 +
1

iω

[
log x

f(x)− f(0)

g′(x)

]
eiωg(x)

∣∣∣∣b
0

− 1

iω

∫ b

0

f(x)− f(0)

xg′(x)
eiωg(x)dx

− 1

iω

∫ b

0
log xσ1[f ](x)eiωg(x)dx.

Iterating the procedure results in the asymptotic expansion

I[f ] = ν0(ω)

s−1∑
k=0

σk[f ](0)

(−iω)k
−

s∑
k=1

eiωg(b)

(−iω)k
log b (σk−1[f ](b)− σk−1[f ](0))

g′(b)

+
s∑

k=1

1

(−iω)k

∫ b

0

σk−1[f ](x)− σk−1[f ](0)

xg′(x)
eiωg(x)dx

+
1

(−iω)s

∫ b

0
log xσs[f ](x)eiωg(x)dx, (2.9)

provided that

lim
x→0

[
log x

(σk−1[f ](x)− σk−1[f ](0))

g′(x)

]
= 0.

Note the presence of non-singular highly oscillatory integrals in the expansion.

Before determining the asymptotic order of (2.9), we need to estimate the behaviour

of the zeroth moment. The following lemma clarifies this issue.

Lemma 5. Given ω � 1 and g′(x) 6= 0, x ∈ [0, b], the function ν0(ω) satisfies

|ν0(ω)| =
∣∣∣∣∫ b

0
log xeiωg(x)dx

∣∣∣∣ ∼ O(ω−1 logω
)
.

Proof. Similar to that of Lemma 3. Consider a small positive number ε→ 0 and separate

the integral into two parts ∫ b

0
log xeiωg(x)dx =

∫ ε

0
+

∫ b

ε
,

where ∫ b

ε
log xeiωg(x)dx ∼ O

(
ω−1 log ε

)
11



and ∣∣∣∣∫ ε

0
log xeiωg(x)dx

∣∣∣∣ ≤ −∫ ε

0
log xdx ∼ O (ε log ε) .

Comparing both error bounds, an optimal upper bound isO
(
ω−1 logω

)
, once ε = ω−1.

It follows at once that∫ b

0
log xf(x)eiωg(x)dx ∼ O

(
ω−1 logω

)
.

Likewise, in the expansion (2.9), truncating after the first s terms the asymptotic error

is O
(
ω−(s+1) logω

)
. Note however that nonsingular oscillatory integrals in the asymp-

totic expansion (2.9) must be calculated with an error which is consistent with the above

asymptotic decay. We denote the number of truncation terms in the nonsingular oscil-

latory integral by Lk noting its dependence on the index k. These oscillatory integrals

without logarithmic integrands are expanded by the asymptotic expansion from [14],∫ b

0

σk−1[f ](x)− σk−1[f ](0)

xg′(x)
eiωg(x)dx

∼ −
Lk−1∑
`=0

1

(−iω)`+1

[
γk−1,`[f ](b)

g′(b)
eiωg(b) −

γk−1,`[f ](0)

g′(0)
eiωg(0)

]
(2.10)

with a truncation error of O
(
ω−Lk−1

)
, where

γk−1,0[f ](x) =
σk−1[f ](x)− σk−1[f ](0)

xg′(x)
,

γk−1,j [f ](x) =
d

dx

γk−1,j−1[f ](x)

g′(x)
, j = 1, . . . , `.

Inserting (2.10) into the expansion (2.9) gets rid of the highly oscillatory integrals there

and yields a complete asymptotic expansion,

I[f ] ∼ ν0(ω)
s−1∑
k=0

σk[f ](0)

(−iω)k
−

s∑
k=1

eiωg(b)

(−iω)k
log b (σk−1[f ](b)− σk−1[f ](0))

g′(b)

−
s∑

k=1

1

(−iω)k

Lk−1∑
`=0

1

(−iω)`+1

[
γk−1,`[f ](b)

g′(b)
eiωg(b) −

γk−1,`[f ](0)

g′(0)
eiωg(0)

]

−
s∑

k=1

1

(−iω)k
O
(
ω−(Lk+1)

)
+O

(
ω−(s+1) logω

)
. (2.11)

To ensure an error of O
(
ω−s−1 logω

)
, the index Lk must satisfy the inequality Lk ≥ s−k.

We summarize the above analysis into one theorem as follows:

Theorem 6. Assume that g′(x) 6= 0. Then for s ∈ N, ω � 1, the integral (1.2) can be

expanded into the asymptotic expansion

QA,s[f ] ∼ ν0(ω)
s−1∑
k=0

σk[f ](0)

(−iω)k
−

s∑
k=1

eiωg(b)

(−iω)k
log b (σk−1[f ](b)− σk−1[f ](0))

g′(b)

−
s∑

k=1

1

(−iω)k

Lk−1∑
`=0

1

(−iω)`+1

[
γk−1,`[f ](b)

g′(b)
eiωg(b) −

γk−1,`[f ](0)

g′(0)
eiωg(0)

]
,

12



where

σ0[f ](x) = f(x),

σ1[f ](x) =
d

dx

[
σ1[f ](x)− σ0[f ](0)

g′(x)

]
,

...

σk+1[f ](x) =
d

dx

[
σk[f ](x)− σk[f ](0)

g′(x)

]
,

γk−1,0[f ](x) =
σk−1[f ](x)− σk−1[f ](0)

xg′(x)
,

γk−1,1[f ](x) =
d

dx

γk−1,0[f ](x)

g′(x)
,

...

γk−1,`[f ](x) =
d

dx

γk−1,`−1[f ](x)

g′(x)
.

For each k, k = 1, 2, · · · , s, if Lk ≥ s− k, then the corresponding truncation error is

I[f ]−QA,s[f ] ∼ O
(
ω−(s+1) logω

)
.

Next, we intend to derive the asymptotic expansion for the more complicated oscil-

latory case with stationary points. If the stationary point is located at ξ 6= 0, we can

separate the integral into two parts∫ b

0
log x f(x)eiωg(x)dx =

∫ ξ/2

0
+

∫ b

ξ/2
,

whereby the first integral has no stationary points and can be expanded with (2.9) and the

second has no singularity and is amenable to a standard expansion from [14]. Therefore

in the following subsection we assume that ξ = 0, thus

g(0) = g′(0) = g(2)(0) = · · · = g(r)(0) = 0, g(r+1)(0) 6= 0.

Let us assume that the moments νj can be calculated explicitly. The function f being

analytic, we use the subtraction technique again to remove the logarithmic singularity,

I[f ] =

∫ b

0
log xf(x)eiωg(x)dx

=

r∑
j=0

f j(0)

j!
νj(ω) +

∫ b

0
log x

f(x)−
r∑
j=0

f j(0)

j!
xj

 eiωg(x)dx.

Therefore, integrating by parts,

1

iω

∫ b

0
log x

f(x)−
r∑
j=0

fj(0)
j! xj

g′(x)
deiωg(x) =

1

iω

log x

f(x)−
r∑
j=0

fj(0)
j! xj

g′(x)
eiωg(x)


∣∣∣∣∣∣∣∣∣
b

0

− 1

iω

∫ b

0

d

dx

log x

f(x)−
r∑
j=0

fj(0)
j! xj

g′(x)

 eiωg(x)dx.

13



Iterating this process results in an asymptotic expansion,

I[f ] ∼
s−1∑
k=0

r∑
j=0

νj
j!

ρ
(j)
k [f ](0)

(−iω)k
−

s∑
k=1

eiωg(b)

(−iω)k
log b

g′(b)

ρk−1[f ](b)−
r∑
j=0

ρ
(j)
k−1[f ](0)

j!
bj



+

s∑
k=1

1

(−iω)k

∫ b

0

ρk−1[f ](x)−
r∑
j=0

ρ
(j)
k−1[f ](0)

j! xj

xg′(x)
eiωg(x)dx+

1

(−iω)s
I[ρs[f ](x)], (2.12)

where

ρ0[f ](x) = f(x), ρk[f ](x) =
d

dx


ρk−1[f ](x)−

r∑
j=0

ρ
(j)
k−1[f ](0)

j! xj

g′(x)

, k ≥ 1,

and

lim
x→0

ρk[f ](x)−
r∑
j=0

ρjk[f ](0)

j! xj

g′(x)
= 0.

Prior to determining the error involved in truncating the expansion, we need to examine

the behaviour of the generalized moments νj .

Lemma 7. Assuming g(0) = g′(0) = · · · = g(r)(0) = 0, g(r+1)(0) 6= 0, we have

|νj(ω)| =

∣∣∣∣∫ b

0
xj log xeiωg(x)dx

∣∣∣∣ ∼ O(ω−(j+1)/(r+1) logω
)
, j ≤ r, (2.13)

|νj(ω)| ∼ O
(
ω−1

)
, j ≥ r + 1, (2.14)

Proof. Since g is an analytic function, it may be written as a Taylor series about x = 0,

g(x) =
r∑

m=0

g(m)(0)

m!
xm +

g(r+1)(τ)

(r + 1)!
xr+1 =

g(r+1)(τ)

(r + 1)!
xr+1,

where τ ∈ [0, x] is an intermediate point. We may thus assume that g(x) = cxr+1 for some

c 6= 0.

To prove (2.13) we proced similarly to the proof of Lemma 5, setting a small positive

number ε > 0 and decomposing the integral of νj ,

νj(ω) =

∫ ε

0
+

∫ b

ε
,

where ∫ b

ε
xj log xeiωcxr+1

dx ∼ O
(
ω−1εj−r log ε

)
,

since xr+1 is a non-singular function in [ε, b]. For the first integral on the right, we deduce

that ∣∣∣∣∫ ε

0
xj log xeiωg(x)dx

∣∣∣∣ ≤ ∫ ε

0
xj log xdx =

∫ ε

0
xjd(x log x− x) ∼ O

(
εj+1 log ε

)
.

Comparing the two error bounds, we determine the error bound to beO
(
ω−(j+1)/(r+1) logω

)
by equating ω−1εj−r = εj+1.
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When j ≥ r + 1 the formula (2.14) can be derived by integration by parts,

νj(ω) =

∫ b

0
xj log xeiωg(x)dx =

1

iω

∫ b

0

xj log x

g′(x)
d
(

eiωg(x)
)

=
1

iω

[
xj log x

g′(x)
eiωg(x)

]∣∣∣∣b
0

−O
(
ω−

3
2

)
∼ O

(
ω−1
)
.

It follows from Lemma 7 that the asymptotic order of the expansion in (2.12) is

O
(
ω−(s+ 1

r+1) logω
)

. This indicates the asymptotic order of expansion of the oscillatory

integrals in (2.12). Setting

ηk−1,0[f ](x) =

ρk−1[f ](x)−
r∑
j=0

ρ
(j)
k−1[f ](0)

j! xj

xg′(x)
,

ηk−1,j [f ](x) =
d

dx


ηk−1,j−1[f ](x)−

r−1∑
n=0

η
(n)
k−1,j−1[f ](0)

n! xn

g′(x)

, j = 1, . . . , `+ 1,

we have∫ b

0
ηk−1,0[f ](x)eiωg(x)dx =

Lk−1∑
`=0

1

(−iω)`

r−1∑
n=0

µn(0, ω)

n!
η

(n)
k−1,`[f ](0)

−
Lk∑
`=1

1

(−iω)`


ηk−1,`−1[f ](x)−

r−1∑
n=0

η
(n)
k−1,`−1[f ](0)

n! xn

g′(x)
eiωg(x)


∣∣∣∣∣∣∣∣∣
b

0

+
1

(−iω)Lk

∫ b

0
ηk−1,Lk [f ](x)eiωg(x)dx. (2.15)

Recalling that µ0 ∼ O
(
ω−

1
r+1

)
, we confirm that the error order of the integral on the left

side of (2.15) is O
(
ω−Lk−

1
r+1

)
.

Putting together the expansions (2.12) and (2.15), we obtain an asymptotic expansion

for the integral (1.2) with an order-r stationary point at x = 0, which is formulated into

the following theorem:

Theorem 8. Assume that g(0) = g′(0) = · · · = g(r)(0) = 0, g(r+1)(0) 6= 0. Then for

s ∈ N, ω � 1, the integral (1.2) can be expanded into the asymptotic expansion

I[f ] ∼ QA,s[f ] =

s−1∑
k=0

1

(−iω)k

r∑
j=0

νj
j!
ρ

(j)
k [f ](0)−

s∑
k=1

eiωg(b)

(−iω)k
log b

g′(b)

ρk−1[f ](b)−
r∑
j=0

ρ
(j)
k−1[f ](0)

j!
bj


+

s∑
k=1

1

(−iω)k

Lk−1∑
`=0

1

(−iω)`

r−1∑
n=0

µn(0, ω)

n!
η

(n)
k−1,`[f ](0)

−
s∑

k=1

1

(−iω)k

Lk∑
`=1

1

(−iω)`


ηk−1,`−1[f ](x)−

r−1∑
n=0

η
(n)
k−1,`−1[f ](0)

n! xn

g′(x)
eiωg(x)


∣∣∣∣∣∣∣∣∣
b

0

, (2.16)
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where

ρ0[f ](x) = f(x),

ρk[f ](x) =
d

dx


ρk−1[f ](x)−

r∑
j=0

ρ
(j)
k−1[f ](0)

j! xj

g′(x)

, k ≥ 1,

ηk−1,0[f ](x) =

ρk−1[f ](x)−
r∑
j=0

ρ
(j)
k−1[f ](0)

j! xj

xg′(x)
,

ηk−1,1[f ](x) =
d

dx


ηk−1,0[f ](x)−

r−1∑
n=0

η
(n)
k−1,0[f ](0)

n! xn

g′(x)

,
...

ηk−1,`+1[f ](x) =
d

dx


ηk−1,`[f ](x)−

r−1∑
n=0

η
(n)
k−1,`[f ](0)

n! xn

g′(x)

.
Furthermore, for each k, k = 1, 2, · · · , s, when Lk ≥ s− k, then the corresponding trunca-

tion error is

I[f ]−QA,s[f ] ∼ O
(
ω−s−

1
r+1 logω

)
.

As an example of the asymptotic expansion method for the logarithmic highly oscilla-

tory integral, consider the integral ∫ 1

0

log x

1 + x
eiωxdx. (2.17)

The expansion (2.11) is truncated to s = 1, 2, 3 with the associated asymptotic error

O
(
ω−s−1 logω

)
. The truncated expansions are

QA,1[f ](ω) = ν0(ω),

QA,2[f ](ω) = QA,1[f ](ω)− i

ω
ν0(ω) +

− eiω

2 + 1

ω2
,

QA,3[f ](ω) = QA,2[f ](ω) +
−2

ω2
ν0(ω) +

i
(

eiω

4 − 1
)

ω3
+

i
(

3
4eiω − 2

)
ω3

.

Fig. 2.3 displays the error for the asymptotic methods QA,s, s = 1, 2, 3 for increasing ω.

Again, inclusion of more terms results in a reduced error.

In the stationary-point case we consider the same integral but with g(x) = x2,∫ 1

0

log x

1 + x
eiωx2dx. (2.18)

Asymptotic expansion terms are calculated based on formula (2.16) for s = 1, 2, 3,

QA,1[f ](ω) = ν0(ω)− ν1(ω),
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Figure 2.3: The error, log10

∣∣QA,s[f ]− I[f ]
∣∣, as a function of ω with g(x) = x. The colours

are navy blue (the top, dotted), dark red (the middle, dashed) and dark green (the bottom,
solid) for s = 1, 2, 3.

QA,2[f ](ω) = QA,1[f ](ω) +
i

2ω
ν0(ω)− i

ω
ν1(ω) +

i

2ω
µ0(0, ω) +

− eiω

8 + 1
4

ω2
,

QA,3[f ](ω) = QA,2[f ](ω)− 3

4ω2
ν0(ω) +

2

ω2
ν1(ω)− 1

ω2
µ0(0, ω)

+
i
(
−3eiω

32 + 1
4

)
ω3

+
i
(
−7eiω

32 + 1
2

)
ω3

.

The order of the error is O
(
ω−s−

1
2 logω

)
, s = 1, 2, 3. As is evident from Fig. 2.4 (and

expected from our analysis), the error of an asymptotic expansion method for the loga-

rithmic oscillatory integral with stationary points decreases with increasing |ω| but blows

up for small |ω|.

2.3 Asymptotic analysis of a power-law singularity in the phase function

Applying the variable transformation x−p = t, the integral (1.3) is transformed into

I[f ] = p

∫ 1

0
x−αf(x)eiωx−pdx =

∫ ∞
1

t
α−1
p
−1
f
(
t
− 1
p

)
eiωtdt =

∫ ∞
1

t
α−1
p
−1
h(t)eiωtdt

=

∫ ∞
1

t−βh(t)eiωtdt = I[h],

where h(t) = f
(
t
− 1
p

)
and β = −α−1

p + 1. Since asymptotic analysis is fundamental to the

quadrature methods, we commence from the asymptotic expansion for the integral (1.3).

Assuming
∣∣∣f(t− 1

p

)∣∣∣ ≤ C3, the integral is bounded by

|I[f ]| ≤ C3

∣∣∣∣∫ ∞
1

t−βdt

∣∣∣∣ = C3 |Ei (β,−iω)| ,
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Figure 2.4: The error, log10

∣∣QA,s[f ]− I[f ]
∣∣, as a function of ω with g(x) = x2. Navy blue

(the top, dotted), dark red (the middle, dashed) and dark green (the bottom, solid) plots
correspond to s = 1, 2, 3, respectively.

where Ei is the exponential integral, with the asymptotic expansion

Ei (β,−iω) ∼ eiω

(−iω)

∞∑
`=0

(−1)`
(β)`

(−iω)`
, ω � 1 (2.19)

(cf. http://dlmf.nist.gov/8.20), where (β)` = β(β + 1) · · · (β + ` − 1) is the Pochhammer

symbol. Thus, for fixed β and ω →∞, this yields |I[f ]| ∼ O
(
ω−1

)
.

We construct the asymptotic expansion by integration by parts,

I[h] =

∫ ∞
1

t−βh(t)eiωtdt

= −h(1)eiω

iω
− 1

iω

∫ ∞
1

t−β
(
−βt−1h(t) + h′(t)

)
eiωtdt

= −h(1)eiω

iω
− 1

iω

∫ ∞
1

t−βρ1(t)eiωtdt,

where

ρ1(t) = −βt−1h(t) + h′(t)

is analytic functions in [1,∞). Repeating the process s times, we obtain the following

theorem.

Theorem 9. For two real numbers 0 < α < 1, p > 0, setting β = 1− α−1
p , the asymptotic

expansion of I[f ] is

QA,s[h] ∼
s∑

k=1

ρk−1[h](1)eiω

(−iω)k
+

(−1)s

(iω)s

∫ ∞
1

t−βρs[h](t)eiωtdt

for any smooth function h, where

ρ0[h](t) = h(t),
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Figure 2.5: The error, log10

∣∣QA,s[h](ω)− I[h](ω)
∣∣, with h(t) = et

−1
and α = 1

3 . Navy
blue (the top, dotted), dark red (the middle, dashed) and dark green (the bottom, solid)
correspond to s = 1, 2, 3, respectively.

ρk+1[h](t) = tβ
d

dt

(
t−βρk[h](t)

)
, k ≥ 0.

The corresponding truncation error is

I[h]−QA,s[h] ∼ O
(
ω−s−1

)
. (2.20)

We deduce that the singularity in the phase function does not affect the asymptotic

order.As an example, the integral (1.3) is considered with f(x) = ex, α = 1
3 , p = 1. The

corresponding asymptotic expansions for s = 1, 2, 3 are

QA,1[h] = −h(1)eiω

iω
,

QA,2[h] = QA,1[h] +
(−βh(1) + h′(1))eiω

(iω)2 ,

QA,3[h] = QA,2[h]− [−β(−βh(1) + h′(1)) + βh(1)− βh′(1) + h′′(1)]eiω

(iω)3 .

We plot the errors
∣∣I[h]−QA,1[h]

∣∣(navy blue, the top),
∣∣I[h]−QA,2[h]

∣∣ (dark red, the

middle),
∣∣I[h]−QA,3[h]

∣∣(dark green, the bottom) in Fig. 2.5. It is confirmed that the

asymptotic order is O
(
ωs−1

)
.

2.4 Asymptotic analysis for the logarithmic singularity in the phase
function

Integration by parts the expression (1.4),

I[f ] =

∫ 1

0
log xf(x)eiω log xdx =

∫ 0

−∞
tf(et)e(iω+1)tdt

= − 1

iω + 1

∫ 0

−∞
f(et)e(iω+1)tdt− 1

iω + 1

∫ 0

−∞
tf ′(et)e(iω+2)tdt.
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Figure 2.6: The graphs of log10

∣∣QA,s[f ](ω)− I[f ](ω)
∣∣, for f(x) = ex, g(x) = log(x). The

navy blue (the top, dotted), dark red (the middle, dashed) and dark green (the bottom,
solid) are for s = 1, 2, 3.

Continuing in this vain, we prove

Theorem 10. An asymptotic expansion of (1.4) for analytic f is

I[f ] = −
s∑

k=1

(−1)k−1

(iω + 1)k

s−k∑
`=0

(−1)`f (k+`−1)(1)

(iω + k)`+1
+O

(
1

ωs+1

)
, (2.21)

where the symbol (z)k denotes the Pochhammer symbol z(z + 1) · · · (z + k − 1).

A detailed proof can be found in Appendix A.2.

We apply the above asymptotic expansion methodto f(x) = ex. The errors of the first

three asymptotic expansions

QA,1[f ] = − f(1)

(iω + 1)2
,

QA,2[f ] = QA,1[f ] +

(
1

(iω + 1)2(iω + 2)
+

1

(iω + 1)(iω + 2)2

)
f ′(1),

QA,3[f ] = QA,2[f ] +

(
1

(iω + 1)2(iω + 2)(iω + 3)
+

1

(iω + 1)(iω + 2)2(iω + 3)

+
1

(iω + 1)(iω + 2)(iω + 3)2

)
f ′′(1)

are plotted in Fig. 2.6: the asymptotic order is consistent with Theorem 10.

3 The Filon method for singular highly oscillatory integrals

3.1 A Filon method for a power-law singularity in (1.1)

Filon-type methods constitute a powerful alternative to asymptotic expansion: they are

as good as the latter for |ω| � 1 while delivering good accuracy for small |ω| [7]. The
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essence of the technique is to replace the non-oscillatory function f(x) by a polynomial

subject to interpolation conditions that are determined by the asymptotic expansion.

Given interpolation nodes c1 = 0 < c2 < · · · < cν = b with multiplicities m1,m2, · · · ,mν ∈
N, respectively, we interpolate f(x) by pn(x) =

∑n
m=0 dmx

m, n =
∑ν

`=1m` − 1 and

determine the coefficients dm by the Hermite interpolation conditions

p(j)
n (c`) = f (j)(c`), ` = 1, · · · , ν; j = 0, 1, · · · ,m` − 1.

A Filon method is defined by

QF [f ] =

∫ b

0
x−αpn(x)eiωg(x)dx =

n∑
m=0

dmI[xm], (3.1)

where I[xm] is the mth moment.

Theorem 11. Letting ν ≥ 2, c0 = 0, cν = b, min{m1,mν} ≥ s, we have

I[f ]−QF [f ] ∼ O
(
ω−s−(1−α)

)
.

The proof is relegated to Appendix A.3.

Once x = 0 is an order-r stationary point for the integral, the interpolation conditions

for a Filon method are based on the expansion (2.6).

Theorem 12. Given ν ≥ 2 and c0 = 0, cν = b and letting m1 ≥ s(r+ 1) and mν ≥ s, we

have

I[f ]−QF [f ] ∼ O
(
ω−s−(1−α)/(r+1)

)
.

The proof is given in Appendix A.4.

While inheriting the asymptotic behaviour of its counterparts from Section 2, a Filon

method reduces to Hermite–Birkhoff quadrature as ω = 0 [7], thereby being very effective

uniformly for all ω ∈ R.

To illustrate our theoretical analysis, we revisit the example (2.7) and construct a

Filon-type method as follows

QF,1[f ](ω) = −µ1(α, ω)

2
+ µ0(α, ω),

with f(0) = pn(0), f(1) = pn(1),

QF,2[f ](ω) = −µ3(α, ω)

4
+

3µ2(α, ω)

4
− µ1(α, ω) + µ0(α, ω),

with f (j)(0) = p(j)
n (0), j = 0, 1, f (j)(1) = p(j)

n (1), j = 0, 1,

QF,3[f ](ω) = −µ5(α, ω)

8
+
µ4(α, ω)

2
− 7µ3(α, ω)

8
+ µ2(α, ω)

− µ1(α, ω) + µ0(α, ω),

with f (j)(0) = p(j)
n (0), j = 0, 1, 2, f (j)(1) = p(j)

n (1), j = 0, 1, 2.

We display the error log10

∣∣QF,s − I∣∣ in Fig. 3.1 for s = 1, 2, 3. Unlike in Fig. 2.1, the error

does not blow up when ω is near 0, while when ω → ∞, the error of the Filon method

behaves better than that of the asymptotic method with the same s.

Next we consider the same integral with g(x) = x2. Again, three Filon methods are

presented,

QF,1[f ](ω) =
µ2(α, ω)

2
− µ1(α, ω) + µ0(α, ω),
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Figure 3.1: The error, log10

∣∣QF,s[f ]− I[f ]
∣∣, as a function of ω with g(x) = x, for s = 1

(navy blue, the top, dotted), s = 2 (dark red, the middle, dashed) and s = 3 (dark green,
the bottom, solid).

with f (j)(0) = p(j)
n (0), j = 0, · · · , 1, f(1) = pn(1),

QF,2[f ](ω) =
µ5(α, ω)

−4
+

3µ4(α, ω)

4
− µ3(α, ω) + µ2(α, ω)− µ1(α, ω) + µ0(α, ω),

with f (j)(0) = p(j)
n (0), j = 0, · · · , 3, f (j)(1) = p(j)

n (1), j = 0, 1,

QF,3[f ](ω) =
µ8(α, ω)

8
− µ7(α, ω)

2
+

7µ6(α, ω)

8
− µ5(α, ω) + µ4(α, ω)− µ3(α, ω)

+ µ2(α, ω)− µ1(α, ω) + µ0(α, ω),

with f (j)(0) = p(j)
n (0), j = 0, · · · , 5, f (j)(1) = p(j)

n (1), j = 0, 1, 2.

The error log10

∣∣QF,s − I∣∣ is plotted in Fig 3.2, for s = 1, 2, 3. Note that the error of the

Filon method is substantially smaller than the asymptotic method even for large ω.

3.2 A Filon method for the logarithmic singularity in (1.2)

Similarly to (3.1), for a logarithmic integral without a stationary point we let

QF [f ] =

∫ b

0
log x pn(x)eiωg(x)dx =

n∑
m=0

dmI[xm].

Theorem 13. Supposing that g′(x) 6= 0, x ∈ [0, b], then

I[f ]−QF [f ] ∼ O
(
ω−s−1 logω

)
,

for q ≥ 2, where c1 = 0, cq = b, m1 ≥ s, mq ≥ s.

The proof is presented in Appendix A.5.

We consider the same example as in (2.17). The interpolation function pn is formed

in a similar manner to that in Section 3.1 except that µm(α, ω) is replaced by νm(ω). In

22



Figure 3.2: The error, log10

∣∣QF,s[f ]− I[f ]
∣∣, as a function of ω with g(x) = x2. The

colours are navy blue (the top, dotted), dark red (the middle, dashed) and dark green (the
bottom, solid) for s = 1, 2, 3.

Figure 3.3: The error, log10

∣∣QF,s[f ]− I[f ]
∣∣, as a function of ω with g(x) = x and ω ∈

[1, 100]. Navy blue (the top, dotted), dark red (the middle, dashed) and dark green (the
bottom, solid) correspond to s = 1, 2, 3 respectively.

Fig. 3.3, we depict the error function log |QF,s − I| for s = 1 (navy blue, dotted), s = 2

(dark red, dashed) and s = 3 (dark green, solid). All the plots are consistent with an error

of O
(
ω−s−1 logω

)
.

Next we consider the case with stationary points.
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Figure 3.4: The error, log10

∣∣QF,s[f ]− I[f ]
∣∣, as a function of ω for the highly oscillatory

integral with g(x) = x2 and ω ∈ [1, 100]. The colours navy blue, dark red, dark green
correspond to s = 1 (the top, dotted), 2 (the middle, dashed), 3 (the bottom, solid)
respectively.

Theorem 14. Given q ≥ 2, let c1 = 0, cq = b, m1 ≥ s(r + 1) and mq ≥ s. Then

I[f ]−QF [f ] ∼ O
(
ω−(s+1/(r+1)) logω

)
, where QF [f ] =

n∑
m=0

dmI[xm].

The proof is presented in Appendix A.6. Our example is (2.18): we form the inter-

polation polynomial pn with νm(ω) instead of µm(α, ω). The plot in Fig. 3.2 displays

the logarithmic error of Filon methods QF,1, QF,2 and QF,3. The asymptotic order is

O
(
ω−(s+ 1

2
) logω

)
and our numerical results are in complete agreement with Theorem 14.

3.3 A Filon method for the singular oscillatory integral (1.3)

There are two issues that need be analysed to construct a Filon method from the asymp-

totic expansion (2.20). One is the connection between the asymptotic order and the deriva-

tives of f(t). It follows by induction from (2.20) that ρk[f ](1) is a linear combination of

f (j)(1), j = 0, 1, · · · , k. As long as the interpolating polynomial Pn(t) =
∑n

m=0 dmt
−m/p

satisfies

P (j)
n (1) = f (j)(1), j = 0, 1, · · · , s− 1, (3.2)

the asymptotic expansion gives the asymptotic order O
(
ω−s−1

)
.

Theorem 15. If the polynomial Pn(t) is constructed by the Hermite interpolation condi-

tions (3.2) then the quadrature QF [f ] =
∑s−1

m=0 dmI
[
t−m/p

]
results in an error

I[f ]−QF [f ] ∼O
(
ω−s−1

)
.

The second ingredient required for the Filon method is the computation of the moments

I
[
t−m/p

]
, m = 0, 1, · · · , s − 1. They are calculated explicitly in terms of exponential
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Figure 3.5: The error, log10

∣∣QF,s[f ]− I[f ]
∣∣, with g(x) = x−1 and ω ∈ [1, 100]. The colours

navy blue, dark red, dark green correspond to s = 1 (the top, dotted), s = 2 (the middle,
dashed), s = 3 (the bottom, solid).

integrals,

I
[
t−m/p

]
=

∫ ∞
1

t−m/p−βeiωtdt = Ei

(
m

p
+ β,−iω

)
.

As an example, consider f(t) = et, α = 1
3 and p = 1. We have

QF1 [f ] = e Ei (β,−iω) ,

QF2 [f ] = e Ei

(
1

p
+ β,−iω

)
,

QF3 [f ] =
e

2
Ei (β,−iω) +

e

2
Ei

(
2

p
+ β,−iω

)
.

The errors are depicted in Fig. 3.5 for s = 1 (the top), s = 2 (the middle) and s = 3 (the

bottom), respectively. Compared to the Fig. 2.5, it is noted that the error is uniformly

smaller, another demonstration of the advantage of Filon method.

3.4 Filon method for the integral (1.4)

The two vital steps in the construction of Filon method are the computation of the mo-

ments and the determination of interpolation conditions from an asymptotic expansion. It

follows from (2.21) that interpolation at f (j)(1), j = 0, 1, · · · , s− 1 ensured an asymptotic

order of O
(
ω−s−1

)
. The moments are are simple integrals,

µm(ω) =

∫ 1

0
xm log(x)eiω log(x)dx =

∫ 0

−∞
te(iω+m+1)tdt = − 1

(iω +m+ 1)2
.

For the same example as in Section 2.4, the Filon method QF,s[f ] =
∑s−1

m=0 dmµm is

constructed for s = 1, 2, 3, as follows:

QF,1[f ] = eµ(0, ω), QF,2[f ] = eµ(1, ω), QF,3[f ] =
e

2
µ(2, ω) +

e

2
µ(0, ω).
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Figure 3.6: The error, log10

∣∣QF,s[f ]− I[f ]
∣∣, with g(x) = log x and ω ∈ [1, 100]. The

colours navy blue, dark red, dark green correspond to s = 1 (the top), s = 2 (the middle),
s = 3 (the bottom).

In Fig. 3.6 the error graphs log10

∣∣QF,s[f ]− I[f ]
∣∣ are presented, conforming that the asymp-

totic order decays with increasing ω and s.

4 Complex-valued Gaussian quadrature

A powerful alternative to standard methods of quadrature for highly oscillatory functions

is complex-valued Gaussian quadrature. While an early analysis has been presented in [6]

for the integral
∫ 1
−1 f(x)eiωxdx, our understanding of this approach is incomplete. Yet,

this should not prevent a practical use of this technique. In this section, we are concerned

with complex-valued Gaussian quadrature for singular highly oscillatory integrals of the

form

I[f ] =

∫ b

0
f(x)h(x)eiωg(x)dx, ω � 1,

where either h(x) = x−α or h(x) = log x is weakly singular at x = 0 and f is an analytic

function. We seek an n-point Gaussian quadrature formula

I[f ] ∼
n∑
j=1

wjf(xj) = QG,n[f ](ω) (4.1)

where xj , j = 1, · · · , n are the zeros of an nth-degree monic orthogonal polynomial pωn(x)

in [0, b] with the complex weight function h(x)eiωg(x),∫ b

0
pωn(x)xjh(x)eiωg(x)dx = 0, j = 0, · · · , n− 1, n ∈ Z+,

and wj are the corresponding weights. Note that the existence of pωn is not assured for

every n and ω and that, once it exists, its zeros are complex.
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Figure 4.1: log10

∣∣QG,n[f ](ω)− I[f ](ω)
∣∣ as a function of ω for the integral with a power-law

singularity. The left: g(x) = x. The colours are navy blue (the top, dotted), dark red (the
middle, dashed) and dark green (the bottom, solid) for n = 2, 4, 6; The right: g(x) = x2

and the same colour scheme for n = 3, 6, 9.

We first construct pωn . To do this, consider the Hankel matrix formed by the moments

µj for power singularity (or νj for logarithmic singularity).

Hn =


µ0 µ1 · · · µn
µ1 µ2 · · · µn+1
...

...
...

µn µn+1 · · · µ2n

, hn = detHn, n ∈ N.

Then

pωn(x) =
1

hn−1
det


µ0 µ1 · · · µn−1 1
µ1 µ2 · · · µn x
...

...
...

...
µn µn+1 · · · µ2n−1 xn

.
While the properties of polynomials orthogonal with respect to the complex weight

eiωx are discussed in detail [2, 6] in this paper, we are concerned just with the accuracy of

complex Gaussian quadrature. A more comprehensive analysis is bound to await better

theoretical understanding of this new construct. We note that, while easy to construct (and

difficult to analyse!), complex-valued Gaussian quadrature is significantly more expensive

than, say, the Filon approach. Yet, as will be evident in the sequel, it is significantly more

accurate.

To compare complex-valued quadrature to Filon methods from Section 3, we set n equal

to the number of the interpolation conditions (hence, the number of function evaluations)

in a corresponding Filon method.

4.1 Numerical experiments for power-law singularity

We apply the complex-valued Gaussian quadrature to the integrals in (2.7) and (2.8) and

display the error log10

∣∣QG,n[f ]− I[f ]
∣∣ in Fig. 4.1. The case without stationary points is

on the left and the case of one stationary point is on the right. We set n = 2, 4, 6 on the

left and n = 3, 6, 9 on the right. When n = 2, we obtain the two zeros of p2(x) = 0 and the

quadrature in (4.1) involves two function evaluations. Counting function evaluations, this
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Figure 4.2: log10

∣∣QG,n[f ](ω)− I[f ](ω)
∣∣ as a function of ω for the integral with a logarith-

mic singularity. The left plot: g(x) = x. The colours are navy blue (the top, dotted), dark
red (the middle, dashed) and dark green (the bottom, solid) for n = 2, 4, 6; The right:
g(x) = x2 and the same colour scheme for n = 3, 6, 9.

is equivalent to QF,1, which involves function evaluations at x = 0 and x = 1. However,

when the results in Fig. 4.1 are compared to those in Fig. 3.1, it can be seen that the

error of QG,2 is considerably smaller. Similarly, although QG,4 involves the same number

of function evaluations as QF,2, its accuracy is greater than even QF,3. Next consider

the case with a stationary point. We examine the result for n = 3. The number of

function evaluations for QG,3 is the same as QF,1 as both involve three function evaluations.

However, when the result in Fig. 4.1 is compared to that in Fig. 3.2, the size of the error

is similar to that of QF,3 clearly indicating its superior accuracy for the same number of

function evaluations. Similar conclusions can be drawn for n = 6.

4.2 Numerical experiments for logarithmic singularity

We calculate the integrals in (2.17) and (2.18). The logarithmic errors log10

∣∣QG,n − I[f ]
∣∣

are displayed in Fig. 4.2: n = 2, 4, 6 for g(x) = x are on the left and n = 3, 6, 9 for

g(x) = x2 on the right. The difference between the precision of the complex-valued Gaus-

sian quadrature and Filon method is again striking. Complex-valued Gaussian quadrature

delivers substantially higher accuracy for the same number of function evaluations. How-

ever, it should be noted that in complex quadrature there is the additional cost of the

computation of the orthogonal polynomial and its zeros. In other words, a simple compar-

ison of function evaluations is incomplete, because it disregards the considerably higher

price tag of linear algebra for complex-valued Gaussian quadrature.

5 Conclusions

In this paper, motivated by numerical problems in wave inverse scattering, we have ex-

tended the modern theory of highly oscillatory integrals and their computation to the

realm of singular integrals. Specifically, we have presented three general approaches. The

first is a truncated asymptotic expansion. While this method is accurate for high fre-

quencies, it fails for low frequencies, yet it is fundamental in underpinning our second

approach, Filon-type methods. They overcome the divergence at low frequencies and nu-
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merical results confirm their superiority vis-à-vis the asymptotic expansion method. The

final method is complex-valued Gaussian quadrature. While it is poorly understood from

an analytic standpoint, numerical results indicate that this approach achieves by far the

least error throughout the full range of frequencies.

The main thrust of this paper is in demonstrating that existing theory of highly oscil-

latory quadrature can be extended to the singular case, although this requires great care

and attention to detail. Once correct quadrature methods are employed, singular highly

oscillatory integrals can be approximated by affordable and precise computations. We

expect this to have a significant impact in accelerating computational schemes to simulate

wave propagation.
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A Proofs of theorems

In this section, we give the detailed proofs of our theorems.

A.1 Proof of Theorem 2

Proof. Firstly, use subtraction to remove the singularity of x−α,∫ b

0
x−αf(x)eiωg(x)dx = f(0)

∫ b

0
x−αeiωg(x)dx+

∫ b

0
x−α[f(x)− f(0)]eiωg(x)dx

= f(0)µ0(α, ω) +

∫ b

0
x−α[f(x)− f(0)]eiωg(x)dx

= f(0)µ0(α, ω) + I2,

where µ0(α, ω) is bounded and

I2 =

∫ b

0
x−α[f(x)− f(0)]eiωg(x)dx.

The first term in the expansion of I2 is determined from

I2 =

∫ b

0
x−α[f(x)− f(0)]eiωg(x)dx =

1

iω

∫ b

0

f(x)− f(0)

xαg′(x)
deiωg(x)

=
1

iω

f(b)− f(0)

bαg′(b)
eiωg(b) − 1

iω

[
lim
x→0

f(x)− f(0)

xαg′(x)

]
eiωg(0)

− 1

iω

∫ b

0

d

dx

f(x)− f(0)

xαg′(x)
eiωg(x)dx

=
1

iω

f(b)− f(0)

bαg′(b)
eiωg(b)

− 1

iω

∫ b

0
x−α

f ′(x)g′(x)− [f(x)− f(0)][αg
′(x)
x + g′′(x)]

g′2(x)
eiωg(x)dx

provided that the function f(x)−f(0)
xαg′(x) is continuous and that lim

x→0

f(x)−f(0)
xαg′(x) = 0. Since

σk−1(x)− σk−1(0)

xαg′(x)
|x=0 = lim

x→0

σk−1(x)− σk−1(0)

xαg′(x)
= 0,
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we deduce the remaining terms using integration by parts,

I[f ] ∼ µ0(α, ω)
s−1∑
k=0

1

(−iω)k
σk[f ](0)−

s∑
k=1

1

(−iω)k
σk−1[f ](b)− σk−1[f ](0)

bαg′(b)
eiωg(b)

+
1

(−iω)s

∫ b

0
x−ασs[f ](x)eiωg(x)dx.

The result (2.17) follows.

A.2 Proof of Theorem 10

Proof. Commencing from the formula∫ 0

−∞
f (k−1)

(
et
)

e(k+iω)tdt =

L−1∑
`=0

(−1)`f (k+`−1)(1)

(iω + k)`+1
+

(−1)L−1

(iω + k)L−1∫ 0

−∞
f (k+L−1)

(
et
)

e(iω+k+L)tdt

∼
L−1∑
`=0

(−1)`f (k+`−1)(1)

(iω + k)`+1
+O

(
1

ωL

)
,

and integrating (1.4) by parts, we get

I[f ] = −
s∑

k=1

(−1)k−1

(iω + 1)k

∫ 0

−∞
f (k−1)

(
et
)

e(iω+k)tdt

+
(−1)s

(iω + 1)s

∫ 0

−∞
tf (s)

(
et
)

e(s+1+iω)tdt

∼ −
s∑

k=1

(−1)k−1

(iω + 1)k

[
L−1∑
`=0

(−1)`f (k+`−1)(1)

(iω + k)`+1
+O

(
1

ωL

)]
+O

(
1

ωs+1

)
.

To get the asymptotic order O
(
ω−s−1

)
, the truncation parameter L should be chosen so

that L ≥ s− k + 1. This completes the proof.

A.3 Proof of Theorem 11

Proof. Let r = f − pn, whereby

I[r(x)] ∼ µ0(α, ω)

s−1∑
k=0

σk[r](0)

(−iω)k
−

s∑
k=1

1

(−iω)k
σk−1[r](b)− σk−1[r](0)

bαg′(b)
eiωg(b)

+
1

(−iω)s

∫ b

0
x−ασs[r](x)eiωg(x)dx,

where we recall from Theorem 1 that

σ0[f ](x) = f(x),

σk+1[f ](x) = xα
d

dx

σk[f ](x)− σk[f ](0)

xαg′(x)
, k ≥ 0,

is determined from the error function r(x). If

σk[r](0) = 0, σk[r](b) = 0, k = 0, 1, · · · , s− 1, (A.1)
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then the error is O
(
ω−s−(1−α)

)
.

Next we determine the requirements for meeting these conditions. Following from its
definition, σ1[f ](0) depends on f ′(0). Let

f(x) =
∞∑
j=0

f (j)(0)

j!
xj , g(x) =

∞∑
j=0

g(j)(0)

j!
xj , σk[f ](x) =

∞∑
j=0

σ
(j)
k [f ](0)

j!
xj , k ≥ 0.

Since σk[f ] is analytic,

σ2[f ](x) =
(1− α)σ′1[f ](0)

g′(0)
+O(x)

indicating that σ2[f ](0) is determined by f ′(0) and f ′′(0). Similarly, σk[f ](0) is a linear

combination of f ′(0), f ′′(0), · · · , f (k)(0). In addition, for x 6= 0, it may be shown easily

that each σk[f ](x), is a linear combination of f(x), f(0), f ′(x), f ′(0), · · · , f (k−1)(x),

f (k−1)(0), f (k)(x). Therefore, the conditions in (A.1) are met if

r(0) = r′(0) = · · · = r(s−1)(0) = 0,

r(b) = r′(b) = · · · = r(s−1)(b) = 0.

Setting
p(j)
n (c`) = f (j)(c`), ` = 1, · · · , ν; j = 0, 1, · · · ,m` − 1.

the conditions in (A.1) follow and the error is therefore O
(
ω−s−(1−α)

)
.

A.4 Proof of Theorem 12

Proof. Substituting r = f−pn into (2.6),we observe that if ρ
(j)
k [r](0) = 0, k = 0, · · · , s−1,

j = 0, · · · , r and ρk[r](b) = 0, k = 0, 1, · · · , s − 1, then the error is O
(
ω−s−(1−α)/(r+1)

)
.

We examine in detail the calculation of ρk[f ](x) in (2.6) and show that it depends on f(x),

f ′(x), · · · , f (k)(x), x 6= 0. Let

f(x) =

∞∑
j=0

f (j)(0)

j!
xj , g(x) =

∞∑
j=r+1

g(j)(0)

j!
xj ,

then

ρ1[f ](x) = xα
d

dx

f(x)−
r∑
j=0

f (j)(0)
j! xj

xαg′(x)

=

∞∑
j=r

f (j+1)(0)
j! xj

∞∑
j=r

g(j+1)(0)
j! xj

− α

∞∑
j=r+1

f (j)(0)
j! xj

∞∑
j=r+1

gj(0)
(j−1)!x

j

−

[
∞∑

j=r+1

f (j)(0)
j! xj

][
∞∑

j=r−1

g(j+2)(0)
j! xj

]
[
∞∑
j=r

g(j+1)(0)
j! xj

][
∞∑
j=r

g(j+1)(0)
j! xj

] .

It follows that

ρ1[f ](0) =

(
1− r + α

r + 1

)
f (r+1)(0)

g(r+1)(0)
.

Moreover,

ρ
(1)
1 [f ](0) = lim

x→0

ρ1[f ](x)− ρ1[f ](0)

x

is a linear combination of f (r+1)(0) and f (r+2)(0). We thus deduce that ρ
(j)
1 [f ](0) depends

on f (`), ` = r+1, r+2, · · · , r+1+j. Similarly, assuming ρ1[f ](x) =
∞∑
j=0

ρ
(j)
1 [f ](0)
j! xj , ρ2[f ](0)
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is determined by ρ
(r+1)
1 [f ](0), that is, the derivatives f (`)(0), ` = r+ 1, r+ 2, · · · , 2(r+ 1)

determine the value of ρ2[f ](0). Likewise, the r-th order derivative ρ
(r)
2 [f ](0) is a linear

combination of f (`)(0), ` = r + 1, r + 2, · · · , 2(r + 1) + r. Thus, we conclude that ρk[f ](0)

involves f (`)(0), ` = r + 1, r + 2, · · · , k(r + 1) and ρ
(j)
k [f ](0) is a linear combination of

f (`)(0), ` = r + 1, r + 2, · · · , k(r + 1) + j. Hence the theorem follows by setting

r(`)(0) = 0, ` = 0, 1, · · · , (s− 1)(r + 1) + r,

r(`)(b) = 0, ` = 0, 1, · · · , s− 1,

or, equivalently,

ρ
(j)
k [r](0) = 0, k = 0, · · · , s− 1, j = 0, · · · , r, ρk[r](b) = 0, k = 0, 1, · · · , s− 1.

A.5 Proof of Theorem 13

Proof. In the asymptotic expansion (2.11) we have for every k ≥ 0 and p = 0, · · · , k

σk[f ](x) =
k∑
p=0

σk,p(x)f (p)(x) + σ0,p(x)f(0),

where σk,k(x) 6= 0 and σk,p is a combination of derivatives of g(x). We compute

γk−1,0[f ](x) =
k−1∑
p=0

σk−1,p(x)f (p)(x)− σk−1,p(0)f (p)(0)

xg′(x)
+ [σ0,p(x)− σ0,p(0)]f(0),

γk−1,1[f ](x) =
d

dx

(
γk−1,0[f ](x)

g′(x)

)
.

Hence, we deduce that σs−1[f ](b) and γs−1,`[f ](b) are a linear combination of f (j)(b),

j = 0, · · · , s− 1. Also σs−1[f ](0) and γs−1,`[f ](0) can be expressed in terms of the f (j)(0),
j = 0, 1, · · · , s − 1. Hence, with nodes cj and multiplicities mj , j = 1, 2, · · · , q, if we
substitute the error function r(x) = f(x) − pn(x) into the asymptotic expansion, the

result is an error of O
(
ω−(s+1) logω

)
.

A.6 Proof of Theorem 14

Proof. Consider a first-order stationary point at x = 0. We need to analyse the rela-
tionships among ρk−1[f ](x), ηk−1,`−1[f ](x), f and its derivatives in (2.16). Based on the

definitions, it can be deduced that ρk−1[f ](b) is a combination of f (j)(b), j = 0, 1, · · · , k−1.

Likewise, ηk−1,`−1[f ](b) is also determined by f (j)(b), j = 0, 1, · · · , k+`−2 for k = 1, · · · , s
and ` = 1, · · · , Lk, Lk = s− k+ 1. Thus, the values of ρk−1[f ](b) and ηk−1,`−1[f ](b) in the

asymptotic expansion depend upon f (j)(b), j = 0, 1, · · · , s− 1.
Now consider the endpoint x = 0. Let

f(x) =
∞∑
j=0

f (j)(0)

j!
xj , g(x) =

∞∑
j=r+1

g(j)(0)

j!
xj .

Incorporating this into the definition of ρk yields

ρ1[f ](0) =
d

dx


∞∑

j=r+1

f (j)(0)
j! xj

∞∑
j=r

g(j+1)(0)
j! xj


∣∣∣∣∣∣∣∣∣
0

=
f (r+1)(0)

(r + 1)g(r+1)(0)
,
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which implies that ρ
(k)
1 [f ](0) depends on f (j)(0), j = r + 1, r + 2, · · · , r + 1 + k. Since

ρ2[f ](0) =
ρ

(r+1)
1 [f ](0)

(r + 1)g(r+1)(0)
,

it follows that ρ2[f ](0) is a linear combination of f (j)(0), j = r + 1, r + 2, · · · , 2(r + 1).

An immediate consequence is that ρk−1[f ](0) is a combination of f (j)(0), j = r + 1, r +
2, · · · , (k − 1)(r + 1). In addition,

ηk−1,0[f ](0) =

∞∑
j=r+1

ρ
(j)
k−1[f ](0)

j! xj

∞∑
j=r+1

g(j)(0)
(j−1)!x

j

∣∣∣∣∣∣∣∣∣
0

=
ρ

(r+1)
k−1 [f ](0)

(r + 1)g(r+1)(0)
,

in which ρ
(r+1)
k−1 [f ](0) depends on f (j)(0), j = r + 1, r + 2, · · · , k(r + 1). Applying the

same technique to ηk−1,1[f ], we observe that ηk−1,1[f ](0) depends linearly on η
(r)
k−1,0[f ](0)

and η
(r+1)
k−1,0[f ](0) which involves a linear combination of f (j)(0), j = r + 1, r + 2, · · · , (k +

1)(r + 1). More generally, it is deduced that ηk−1,`[f ](0) is a linear combination f (j)(0),

j = r + 1, r + 2, · · · , (k + `)(r + 1) and η
(n)
k−1,`[f ](0) is a linear combination of f (j)(0),

j = r + 1, r + 2, · · · , (k + `)(r + 1) + n.
Hence the theorem follows once we substitute the error function r = f − pn into the

asymptotic expansion (2.16).
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