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ABSTRACT
A sequential data assimilation (DA) method is developed for pressure determination of turbulent velocity fields measured by particle image
velocimetry (PIV), based on the unsteady adjoint formulation. A forcing term F, which is optimized using the adjoint system, is added to
the primary Navier–Stokes (N–S) equations to drive the assimilated flow toward the observations at each time step. Compared with the
conventional unsteady adjoint method, which requires the forward integration of the primary system and the backward integration of the
adjoint system, the present approach integrates the primary-adjoint system all the way forward, discarding the requirement of data storage
at every time step, being less computationally resource-consuming, and saving space. The pressure determination method of integration
from eight paths [J. O. Dabiri et al., “An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements,”
J. Exp. Biol. 217, 331 (2014)] is also evaluated for comparison. Using synthetic PIV data of a turbulent jet as the observational data, the
present DA method is able to determine the instantaneous pressure field precisely using the three-dimensional velocity fields, regardless
of the observational noise. For the two-dimensional three-component (3C) or two-component (2C) velocity fields, which are not sufficient
for pressure determination by the integration method due to the lack of off-plane derivatives, the present DA method is able to reproduce
pressure fields whose statistics agree reasonably well with those of the referential results. The 3C and 2C velocity fields yield quite similar
results, indicating the possibility of pressure determination from only planar-PIV measurements in turbulent flows. The tomography PIV
measurements are also used as observational data, and a clear pressure pattern is obtained with the present DA method.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5143760., s

I. INTRODUCTION

Pressure fluctuations in turbulent flow fields are closely associ-
ated with flow-induced vibrations and sound emissions.1 Although
pressure signals can be acquired using pointwise measurement
devices such as pressure transducers and microphones, the deter-
mination of two- or three-dimensional pressure fields inside the
flow field is critically important for the analysis of turbulence–
acoustic coupling mechanisms2 and flow control strategies for noise
reduction.3 Currently, there are no reliable and efficient measure-
ment techniques to directly acquire instantaneous pressure fields

within turbulent flow fields. The development of time-resolved
tomography particle image velocimetry (tomo-PIV) enables acqui-
sition of three-dimensional velocity fields in turbulent flows,4,5 and
pressure fields can be indirectly obtained from tomo-PIV data by
spatial integration of the pressure gradients or by solving the Pois-
son equation.6,7 This strategy has numerous successful applications
in various flow conditions.8–10 However, due to the high noise
level of tomo-PIV measurements, and the requirements on domain
size, resolution, and sampling rate for pressure determination, this
method has limitations in complex flow situations.11,12 Therefore,
the development of a reliable alternative method for the accurate
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and efficient determination of unsteady pressure fields is highly
desirable.

Pressure determination from velocity fields enables a nonintru-
sive measurement, at high spatial resolution, of the pressure field
that matches the state of art of PIV measurements. In the integra-
tion method, given a time-resolved velocity field typically measured
by PIV, the pressure gradient field can be recovered by coupling the
velocity data with Navier–Stokes (N–S) equations,6

∇p = −ρDU
Dt

+ μ∇2U = −ρ∂U
∂t
− ρ(U ⋅ ∇)U + μ∇2U , (1)

where DU/Dt is the material acceleration treated from either
Lagrangian or Eulerian perspectives, ρ is the fluid density, and
μ denotes the dynamic viscosity. The pressure can, thus, be deter-
mined by spatially integrating the pressure gradient from a reference
point in a specified path. Alternatively, the pressure field can also be
obtained by solving the Poisson equation

∇2p = −ρ∇ ⋅ (U ⋅ ∇)U (2)

under the assumption that the flow field is divergence free. Although
these two approaches are equivalent in theory, their implementa-
tion and computational procedures have significant effects on their
resultant pressure distributions, due to their different properties of
error propagation and accumulation.13 These differences have con-
siderable influence on pressure determination. Liu and Katz14 pro-
posed a virtual boundary omni-directional integration algorithm
for pressure determination to minimize the effect of local random
errors. This approach requires large computational efforts, which are
prohibitive in large-scale three-dimensional computations. Alterna-
tively, selecting only eight integration paths15 substantially reduces
the computational cost and has good accuracy in pressure deter-
mination for certain flow configurations. Although the integration
and Poisson approaches are successful at instantaneous pressure
field determination from PIV measurements,16–19 several difficul-
ties that prevent their wide application are rarely considered. First,
due to the three-dimensional nature of turbulent flows, instanta-
neous pressure fields cannot be accurately recovered from planar-
or stereo-PIV measurements.6,20 Equations (1) and (2) demonstrate
that off-plane derivatives give non-negligible contributions to the
pressure gradient or Laplacian, and thus, fully three-dimensional
measurement techniques are required such as tomo-PIV.7,21 Sec-
ond, a high sampling rate of the PIV measurement is needed for the
determination of the time-derivative term. Indeed, the error of the
time-derivative term increases with a decrease in the sampling rate.
Meanwhile, the time-derivative and thus the pressure fluctuation are
usually overpredicted due to PIV noise along the time direction.11

Third, these approaches are subject to effects of the boundary con-
dition, especially when only a small region of flow field is obtained,
which is common in tomo-PIV measurements, or when the instan-
taneous pressure on the boundaries cannot be considered constant.
These issues limit the application of the integration method to flows
with large-scale organized patterns and much higher pressure vari-
ations than those resulting from computational error. These limita-
tions must be properly addressed before this method can be widely
used.

Rather than calculating the pressure field based on Eqs. (1)
and (2) from existing velocity data such as PIV measurements, data
assimilation (DA) can be used to recover the global velocity field

from existing local data and the pressure field can be determined
simultaneously using the standard velocity–pressure coupling algo-
rithm in computational fluid dynamics (CFD). DA is a mathematical
technique that was initially developed for numerical weather predic-
tion.22 It gathers observational (experimental) data at a given time
and uses equations from flow dynamics and thermodynamics to
estimate the future atmospheric state. It can also be used for the
uncertainty quantification and improvement of the turbulence clo-
sures.23–25 The adjoint-based DA technique has received increasing
attention for flow predictions within which the adjoint equation sys-
tem, including the corresponding boundary conditions, are derived
and solved together with the primary equation system.26,27 The time-
averaged flow and pressure fields can, thus, be accurately predicted
within constraints from local measurement data. Lemke and Sester-
henn28 could compute instantaneous pressure fields from synthetic
velocity data (without noise) using an unsteady continuous adjoint
formulation. When applied to real PIV data, lower recovery accu-
racy was observed, due to the two-dimensional assimilation of the
three-dimensional flow.29 For an unsteady adjoint system, integra-
tion should be performed forward for the primary equations and
backward for the adjoint equations. Therefore, data must be saved
for all time steps,30 resulting in large storage space requirements and
slow processing speeds.

As a follow-up study of the mean-flow DA techniques based on
the continuous adjoint formulation,26 this study proposes a sequen-
tial DA scheme for instantaneous turbulent flow and pressure fields.
The adjoint system is designed without the requirement of the back-
ward integration, and thus, data can be saved at large time intervals.
The formulation is implemented in the open-source code Open-
FOAM (http://openfoam.org). Synthetic data of a circular turbu-
lent jet,31 which simulates the planar-, stereo-, and tomo-PIV mea-
surements, are used as observations. We then compare the resul-
tant instantaneous velocity and pressure fields and their statistical
properties. Finally, three-dimensional data from tomo-PIV mea-
surements are used to test the pressure determination capacity of
the method.

II. MATHEMATIC FORMULATION
The present adjoint-based DA formulation is derived from

the time-dependent Navier–Stokes (N–S) equations, where a forc-
ing term F is added and is optimized to minimize the discrepancy
between the observational data and the predictions,

∂U
∂t

+ (U ⋅ ∇)U = 1
ρ
∇p − ν∇2U + F, (3)

∇ ⋅U = 0. (4)

Here, ν denotes the kinematic viscosity of the fluid. For turbulent
flows, this formulation approaches an implicit large-eddy simula-
tion (LES), where the contribution of the subgrid vortical structures
has been partially absorbed in F. Importantly, this strategy is differ-
ent from that used in the steady-state DA formulation,26 where the
S-A model is used and a correcting coefficient is determined. The
underlying reason is that the use of the eddy-viscosity model enables
a robust computation of the primary and adjoint equation systems
in steady-state cases, while a forcing term added directly to the N–S
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equation facilitates a quick response of the flow to the optimization
procedure in unsteady cases. Indeed, the turbulence model can also
be used without modification, by replacing ν with ν + νt in Eq. (3),
where νt denotes the turbulent or subgrid eddy viscosity.

The present DA technique can be achieved by minimizing
the cost function J subject to the governing equations, using an
optimized distribution of F. This is expressed as

minimise J = ξ∫
T

t0
∫

Ω
M(U −UExp

U∞
)

2
dΩdt,

subject to R(U , p,F) = 0.

(5)

Here, t0 and T are the initial and terminal times between which
DA is performed. Ω represents the computational domain. A mask-
ing function M is defined to specify the region where the observa-
tional data are obtained. ξ is a dimension converter of dimensions
[L2⋅T−3] and value unity to cope with the dimensional inconsistency.
R = (RNS,RC) denotes the incompressible unsteady N-S equations
and the continuity equation. We, thus, obtain a constraint optimiza-
tion problem solvable by introducing a Lagrange function L such
that

L = J + ∫
T

t0
∫
Ω
(V , q)RdΩdt. (6)

Here, the adjoint velocity V and the adjoint pressure q are intro-
duced as the Lagrange multipliers. The determination of the optimal
F distribution can be achieved by obtaining the sensitivities of the
Lagrange function L with respect to the state variables. The total
variation of L can be calculated as

δL = δUL + δpL + δFL. (7)

This can be simplified by choosing the appropriate adjoint variables
V and q to deplete the variation with respect to the state variables,

δUL + δpL = 0. (8)

The sensitivities can be obtained using the variation in L with
respect to F,

δL = δFJ + ∫
T

t0
∫

Ω
(V , q)δFRdΩdt. (9)

According to Eq. (8), the adjoint equations associated with the
adjoint state variables V and q can be derived as

δUJ+δpJ+∫
T

t0
∫

Ω
(V , q)δURdΩdt+∫

T

t0
∫
Ω
(V , q)δpRdΩdt = 0

(10)
with

δURNS =
∂δU
∂t

+ (δU ⋅ ∇)U + (U ⋅ ∇)δU − ν∇2δU , (11)

δURC = −∇ ⋅ δU , (12)

δpRNS =
1
ρ
∇δp, (13)

δpRC = 0. (14)

Therefore, the adjoint equations and the corresponding boundary
conditions are shown as follows:

A. Adjoint equations
∂V
∂t

+ (V ⋅ ∇)U − (U ⋅ ∇)V − ν∇2V +
1
ρ
∇q + 2ξM

U −UExp

U2
∞

= 0,

(15)
∇ ⋅V = 0. (16)

B. Adjoint boundary conditions
For the inflow, the wall and far-field boundaries where the

primary state variable U is specified, the boundary conditions are

Vτ = 0, Vn = 0, (17)

n ⋅ ∇q = 0. (18)

For the outflow boundaries where the zero-gradient condition is
used for the primary state variables U , the conditions are

Un ⋅ Vτ + ν(n ⋅ ∇)Uτ = 0, (19)

Un ⋅ Vn + ν(n ⋅ ∇)Un − q = 0. (20)

Here, the subscripts n and τ denote the normal and tangential com-
ponents of the variables, respectively. n is the unit normal vector at
the boundaries.

C. Terminal condition
When t0 = T in Eq. (10), the terminal condition at t = T can be

derived as

V(T) = 0. (21)

As noted previously,26 Eq. (19) provides a tangential compo-
nent condition that is highly sensitive to the primary velocity, which
induces serious instability for the adjoint equations. Fortunately, this
outflow boundary condition contributes little to the adjoint flow
field inside the domain. The zero-gradient condition for the adjoint
velocity on the outflow boundary is a good choice to significantly
improve the numerical stability without deterioration of the results.
The second numerical stability issue noted previously26 was from the
adjoint transpose convection (ATC) term, and thus, the first-order
upwind scheme was applied for the convection term of the adjoint
momentum equations. However, this stability issue does not occur
in the solution of the present unsteady equations, and thus, all of the
equations retain second-order accuracy.

Once the adjoint state variables are obtained, the sensitivities
of the Lagrange function L with respect to the forcing F can be
computed from Eq. (9) as

∂L
∂F
= −V . (22)

As the sensitivity with respect to the state variables is forced to
vanish [Eq. (8)], the forcing F can be adjusted gradually accord-
ing to Eq. (22) to minimize the cost function. This is achieved
using the steepest descent algorithm32 at each iteration (the iteration
procedure is shown in Fig. 1). F can then be determined as

F = F − λ∂L
∂F

, (23)

where λ is the step length, estimated as

λ = α/(∂L
∂F
)

max
. (24)
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FIG. 1. Iteration procedure of the primary-adjoint system. n
is the iterative loop number, and t denotes the physical time.

Here, α = (0.01–0.1)[L−1]. It is important to note that Eq. (24) is only
a rough estimation of λ according to the results of the first several
time steps. A larger λ leads to rapid convergence of the computation
but is less robust, while a smaller λ results in a more robust conver-
gence in computation but requires more iteration steps to reduce the
residual [defined in Eq. (25)] to the same level,

εU = ∫
Ω

∣U −UExp∣
∣UExp∣

dΩ. (25)

However, the selection of λ is not critical in this study. A slightly
smaller λ value can be used to enhance the numerical stability, as
the residual keeps decreasing with time even with a fixed itera-
tion number. For PIV measurements with high noise levels, smaller
residuals yield an assimilated flow closer to the measurements,
indicating that high noise levels are contained in the results as
well. In this situation, using a smaller λ to slightly increase the
residual is workable to reduce the noise in the assimilated global
flows.

Conventional unsteady adjoint methods require forward inte-
gration for the primary equations, but backward integration for the
adjoint system in the duration [t0, T]. This necessitates the use of a
small time interval, and saving the data at all time steps, as each iter-
ation is conducted with a forward and a backward loop. To reduce
the time and space requirements for the storage and reading–writing
processes, the time duration in which the adjoint optimization is
performed is reduced from [t0, T] to [t0, t1], where t1 (t1 ≪ T)
denotes the next adjacent time step with respect to t0. This sug-
gests that the adjoint optimization process is performed for each
time step individually, rather than for a large duration with all of the
data. Therefore, Eq. (15) can be modified using the Euler difference
scheme for the time derivative,

(V −VTer

Δt
) + (V ⋅ ∇)U − (U ⋅ ∇)V − ν∇2V

+
1
ρ
∇q + 2ξM

U −UExp

U2
∞

= 0. (26)

Here, VTer = 0 is the terminal condition of the adjoint velocity
according to Eq. (21). The adjoint N–S equation, thus, becomes

V
Δt

+ (V ⋅ ∇)U − (U ⋅ ∇)V − ν∇2V +
1
ρ
∇q + 2ξM

U −UExp

U2
∞

= 0.

(27)

This produces steady adjoint equations that are solvable with the
unsteady primary equations at each iterative loop.

It is noted that Eq. (27) is derived using the Euler scheme, which
is first-order accurate in time.

However, this Euler scheme induces little effect on the accu-
racy of the final results since the temporal discretization of primary
equations still remains second-order accurate. The error induced
by this Euler scheme finally enters the residual plateau [Eq. (25)],
which only denotes the gap between the predictions and the obser-
vations but not the credibility of the results themselves. Thus, the
time step in the computation can be determined according to the
Courant number Co ≈ 1–2. The spatial discretization keeps second-
order accurate for both primary and adjoint equations. According to
the synthetic jet case in Sec. III B where the results are written every
20 time steps, 95% storage space and the reading/writing time can be
saved compared to the conventional unsteady adjoint formulation.

The iteration procedure is demonstrated in Fig. 1. The primary
equations (3) and (4) are solved using an initial condition with the
forcing term F = 0. If the observational data are present, the con-
vergence (whether the residual εU is lower than a specified value ε)
is evaluated once the primary equations are solved. Otherwise, the
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FIG. 2. Instantaneous streamwise veloc-
ity at different time steps. λ = 10−4, nt
denotes the time step number, left col-
umn: DA, and right column: Reference.
Referential data in the dashed box are
used as the observation in DA.

computation skips the adjoint system and directly starts the next
time step of the primary equations, which is identical to conven-
tional CFD procedures. If the convergence criterion is reached or
the iteration number n is larger than a specified value N for a time
step when the observational data are present, the computation jumps
to the next time step and starts a new time loop. Otherwise, the
steady adjoint equations (27) and (16) are solved and the forcing
term F is updated according to Eq. (23). Thus, the primary equa-
tions are solved again, and the computation starts a new iterative
loop. The total computational cost of this DA process is less than
10% higher than conventional CFD simulations using the same grid
in the present study.

III. RESULTS AND DISCUSSION
A. Two-dimensional cylinder wake

A two-dimensional cylinder wake is used to demonstrate the
basic performance of the present DA method and to compare the
pressure field reconstruction ability of the method with the con-
ventional integration approach. The computational domain has a
width of 20D, where D is the diameter of the cylinder. The inflow
boundary is located 5D upstream of the cylinder and the outflow
boundary extends to 30D downstream. A structured grid is used
with the element number 160 distributed azimuthally on the cylin-
der. The Reynolds number of the flow is fixed at Re = 100 so that
the flow is two-dimensional. The direct numerical simulation (DNS)
is performed with the maximum Courant number approximately 1,
and the results at each time step are stored. The flow (both com-
ponents of the velocity) is selected in a rectangular window with
width 3D at 0.75 ≤ x/D ≤ 4.75, to be representative of a PIV field
of view, and is used as the referential observational data (“Ref”).
In the DA computation, the primary velocity is initialized using
the instantaneous field, which exhibits different phases compared
with the corresponding observational data. A quite small targeted
residual is set, and the maximum iteration loop number is fixed at

20. This forces the primary-adjoint system to be iterated for 20 loops
before switching to the next time step when the observational data
are present.

Figure 2 shows the instantaneous streamwise velocity fields of
the reference DNS (Ref) and those obtained by the DA method
at different time steps using a λ value of 10−4 (the selection of λ
will be discussed below in reference to Fig. 3). The black solid box
in the left column represents the region where the observational
data are involved in DA. There is no constraint outside of the solid
box, and thus, the flow develops freely. It can be determined from
Figs. 2(a) and 2(b) by comparing the flow in the solid and dashed
boxes that a significantly different phase of the wake is used as the
initial condition in the first steps. Despite this, rapid convergence
enables the flow in the observational window to develop almost
identically with the flow in the reference field, as shown in Figs. 2(c)

FIG. 3. Time series of the streamwise velocity at x/D = 3 and 6 on the centerline.
Different λ values are used for the evaluation of the present DA method. nt = 1, 6,
and 100 are marked to show the time step number.
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FIG. 4. Streamwise component of the forcing at different time steps.

and 2(d). The adjoint system drives the assimilated flow to be closer
to the reference data specifically in the observational window, as
the flow outside of the window remains significantly different. The
flow downstream of the window in Fig. 2(c) still maintains the his-
torical information inherited from the initial field, while long-term
development of the flow enables the assimilated information to be
advected downstream, causing the flow downstream of the window
to approach that of the referential field as shown in Figs. 2(e) and
2(f). This is an important property of the present DA method, where
the observational data and the prediction model (the N–S equation
in this case) combine to produce better results than can be obtained
by the individual usage of either method alone.

The downstream extension of the assimilated information can
be clearly seen in Fig. 3, where time series are shown with the
streamwise velocity on the centerline at x/D = 3 (inside the observa-
tional window) and x/D = 6 (outside the observational window). For
λ = 10−4, rapid convergence of the DA process is observed at the time

step nt = 6 and the location x/D = 3. The discrepancy between the DA
result and the reference field at x/D = 6 remains significant for tU0/D
< 3 due to the lack of observational data. This assimilated veloc-
ity becomes closer to the reference data at larger times and finally
overlaps due to the free convection. The λ value has effects on the
convergence speed but has little influence on the long-term results
for a given range. This is also demonstrated in Fig. 3, where both
λ = 10−3 and λ = 10−4 yield rapid convergence of the DA process, but
λ = 10−5 leads to convergence only after a long period of adaptive
iterations. This suggests that to a certain extent the non-strict selec-
tion of the λ value in a DA process is acceptable, even if the number
of iteration loops is fixed.

In the assimilation process, the predicted flow is driven toward
the observations by the forcing term F. F decreases as the pre-
dicted flow gets closer to the observations, as can be seen in Fig. 4.
If the numerical model is able to recover the flow individually, F
only works in the early stages [see Fig. 4(a)] due to the discrepancy
between the initial conditions and the observations and becomes sig-
nificantly small at large time. If the numerical model is not accurate
in predicting the flow, due to either the low grid resolution or the
turbulence model defects, F prevails even at large time serving as an
additional turbulence or subgrid Reynolds stress to compensate for
the discrepancy. This can be observed in the following jet flows, as
the grid resolution is low and the numerical model cannot account
for the disturbances and the measurement noise.

The accurate recovery of the flow field in the DA process is
a prerequisite of instantaneous pressure field determination. For a
two-dimensional flow, the flow field also serves as the sufficient con-
dition once the velocity–pressure coupling process has converged
when solving the primary equations. For the conventional methods
of integration from the velocity gradient or solving the Poisson equa-
tion, the size of the observational window is an important parameter
and needs to be large enough to eliminate boundary effects. Figure 5
shows the pressure distributions obtained by the reference DNS, the
DA technique, and the integration method, respectively. Here, the
code developed by Dabiri et al.15 is used for pressure field deter-
mination, as shown in Figs. 5(c) and 5(d). Pressure is obtained by
integration of the gradient from eight paths including the vertical,
horizontal, and diagonal directions. As the velocity field is recovered
in the DA process, the pressure is accurately determined as shown in
Figs. 5(a) and 5(b), even though only a small observational window
(the solid box) is used. This accuracy is quantitatively demonstrated

FIG. 5. Pressure distributions deter-
mined by (a) referential DNS, (b) the DA
process, (c) integration from the pres-
sure gradient using the whole domain,
and (d) integration from the pressure gra-
dient using the observational field. The
solid box denotes the window in which
the observational data have been used
in computation, where the dashed box is
shown in the same location for compari-
son.
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FIG. 6. Pressure distributions along the centerline determined by different methods
(data are extracted from Fig. 5).

in Fig. 6. The integration method also has good accuracy when the
flow field in the whole domain is used, as shown in Fig. 5(a), except
for a slight discrepancy (see Fig. 6) due to the smoothing process
after calculating the velocity gradients. However, this method can
only determine the pressure distribution qualitatively using a small
observational window, as shown in Fig. 5(d). The discrepancy of the
pressure distribution along the centerline is quantitatively presented
in Fig. 6.

B. Three-dimensional circular jet
The three-dimensional circular jet at Re = 6000 is employed

to demonstrate the present DA properties using different observa-
tional fields. The observational data were obtained from a fine-scale
LES simulation.31 The grid, of approximately 9 million nodes, in
this LES is generated by two-level refinement based on a struc-
tured O-type grid. The grid information and computational setup
are described elsewhere.31 In this DA process, the grid is obtained
by one-level refinement only, with approximately 1 million nodes.
A steady mean flow is imposed on the inflow boundary, rather than
the fluctuating condition used in the LES simulation. Therefore, the
grid resolution and the inflow conditions used in the present DA
process are unable to reproduce the flow field with the same accu-
racy as the previous LES simulation if the observational data are not
present.

The computational domain used in the present DA process is
shown in Fig. 7. Different observation regions are used, with ranges
0.2 ≤ x/D ≤ 12 and −2.5 ≤ y/D ≤ 2.5 across different z-direction
ranges. Observation I denotes the full region, in the range of −2.5
≤ z/D ≤ 2.5, where the whole jet’s cross section is covered, repre-
senting the large-domain tomo-PIV measurement. Observation II
denotes the thin region, in the range of −0.25 ≤ z/D ≤ 0.25, rep-
resenting a thin layer and which is more common in tomo-PIV
measurements due to limitations in depth of field and laser inten-
sity. Observation III denotes a two-dimensional slice on which the
two-component (2C) and three-component (3C) velocity fields are

FIG. 7. Computational domain and the observation region used in the present DA
process.

considered, denoting the planar- and stereo-PIV measurements,
respectively. In the present DA process, the primary velocity is ini-
tialized from the rest state. Observational data are used every 20
time steps (the time step used for the DA process is 0.005 s, but
the time interval of the observational data are 0.01 s). Only the pri-
mary equations are solved with F = 0 if the observational data are
absent.

This DA process uses a λ = 1 × 105 [can be estimated using
Eq. (24), several orders larger than that in the cylinder case; smaller
or larger λ also works], and 20 iteration loops are used for all of
the observation regions, which yields good stability and reasonable
convergence for both velocity assimilation and pressure determi-
nation. For the large observation region I, both clear LES results
and those with maximum 20% white noise are used as the obser-
vational data. The observation with 20% white noise data serves as
an analog of the true PIV data with noise contamination. Figure 8
presents an instantaneous velocity field both with and without noise.
Note that this field is obtained in an instance for which the obser-
vational data are present, and the residual reaches a low plateau.
The velocity can be recovered accurately by this DA process, regard-
less of the noise contamination of the observations, even if a steady
inflow condition is imposed. Moreover, this DA process has noise
reduction effects, which can be seen when comparing Fig. 8(d) with
Fig. 8(b).

The DA-based pressure determination process is usually
straightforward once the three-dimensional velocity is accurately
recovered, as demonstrated in Fig. 9, for observations both with
and without noise. In this DA process, the pressure determination
is based on the assimilated velocity fields rather than on the obser-
vations themselves, and thus, the noise contamination from obser-
vations does not directly spread into the pressure fields, as shown in
Figs. 9(b) and 9(c) when compared with Fig. 9(a). This is also par-
tially attributed to the noise reduction effects of the velocity assimi-
lation process. It is also important to note that the pressure determi-
nation in DA is based on the zero-pressure condition at the outflow
boundary, which is identical to the reference LES simulation. There
will be a uniform shift of the pressure distribution if different pres-
sure references are used, and this does not induce difficulties for
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FIG. 8. Instantaneous velocity fields
obtained by [(a) and (b)] LES and [(c)
and (d)] DA. The observation region is
located downstream of the dashed line.

applications. Moreover, as the observational data are provided once
every 20 time steps, the accurate determination of the pressure fields
requires that the velocity fields at the present instance and at the pre-
vious time step are also recovered precisely. When the observational
data are absent, the assimilated velocity relies solely on the N–S
equations. Figure 9(d) presents the pressure field determined from
the integration method, using the code developed by Dabiri et al.15

and modified by counting for the components in the z-direction.
Two observational fields without noise are used for the calculation
with time intervals of 0.005 s (equal to the time step in the DA pro-
cess). Integration is performed through eight separate paths in the
x-y plane. We observe that the pressure signals display a high degree
of randomness throughout the whole region, even in the ambient
field. The pressure signals remain at the same level as those of both
the reference LES and DA results, but the typical spatial pattern is
missing. Several factors can be considered to explain this. First, the
fine-scale turbulence induces high-level noise in the pressure gradi-
ent determination, even when the smoothing process is used for both
pressure and its gradients, and also accumulates in the ambient field
after the integration procedure. Second, the method of integration
through eight paths (which is the same for omni-directional inte-
gration) requires a homogeneous condition of pressure on all the
integration-starting boundaries, which is not valid in the present jet.
The pressure signals for this integration method are even less accu-
rate (data not shown) when the velocity fields have a time interval of
0.01 s, such as the observations used in the DA process.

Figure 10 provides a quantitative view of the velocity and pres-
sure along the horizontal profile at y/D = 0.5 and z/D = 0. Note that,

for the clear observations, the assimilated velocity almost overlaps
with the observational data, as demonstrated in Fig. 10(a), while the
slight discrepancy between the pressure distributions results from
the different grid resolutions used in the reference LES and the
present DA process, as shown in Fig. 10(c). When higher levels
of noise are involved, the assimilated velocity approaches the clear
observational data, while random discrepancies can be observed
between the contaminated observational data and the clear data,
as shown in Fig. 10(b). Indeed, the assimilated velocity can be fur-
ther driven toward the noise-contaminated observational data by
increasing the iteration number in each iterative loop and thus
decreasing the residual plateau. However, this requires more com-
putational effort due to the incoherence of the flow structures in
space and time and induces noise in both velocity and pressure fields,
which deteriorates the assimilation results. The selection of the iter-
ation number is a tradeoff, considering the computational cost, the
assimilation accuracy, and the noise level. When 10 and 50 itera-
tions in the iterative loop were tested, they yielded results with no
major differences (results not shown). For this assimilation process,
the determination of the pressure is reasonably accurate, as shown in
Fig. 10(d), with discrepancies in the thin shear layer due to the high
shear strain. The computation of the residual defined as Eq. (25), for
the cases with and without noise in the observational data, is plotted
in Fig. 11. Both computations reach the residual plateau after only
five time steps, but the residual with the observational noise remains
significantly higher than that without noise, even when using the
same iteration parameters. As noted previously, further reduction
of the residual plateau in the case with noise requires much more

FIG. 9. Instantaneous pressure fields
obtained by (a) LES, [(b) and (c)] DA, and
(d) integration from pressure gradients
without observational noise. The obser-
vation region is located downstream of
the dashed line.
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FIG. 10. Instantaneous velocity distribution along the hor-
izontal profile at y/D = 0.5 and z/D = 0. The observation
region is located downstream of the dashed line.

computational effort and is thus not beneficial for noise removal in
this DA process.

Other important features of the present DA approach, com-
pared with the conventional integration method, are the determi-
nation of the pressure fields using only two-dimensional velocity
fields and the improvement of the velocity and pressure predic-
tions outside of the observation region. Here, observations II and
III (2C or 3C) are used for demonstration. These results are pre-
sented in Fig. 12, together with those determined by the LES on
the DA grid (i.e., coarse LES). As shown in Figs. 12(a), 12(c), 12(e),
12(g), and 12(i), all of these simulations yield the precise assimila-
tion of the flow field on the x-y plane when the observational data
are present. On the x-z planes, there is no guarantee of recovery for
the instantaneous velocity distribution, due to the lack of observa-
tional constraint. The flow develops under the limited effects of the
observation region and according to its intrinsic properties. In fact,

FIG. 11. Computation of the residual of DA with and without observational noise.

the predictions of the flow on x-z planes are improved, as shown in
Figs. 12(d), 12(f), and 12(h), compared with the coarse LES shown
in Figs. 12(i) and 12(j). This can be discerned from the fine-scale
turbulence structures developed in the jet shear layer, while only
breakdown of the large-scale structures can be observed in the coarse
LES.

Indeed, the pressure determination on the x-y plane relies
on the recovery of the three-dimensional velocities. Observation II
meets this requirement, and the instantaneous pressure field can
be determined very well (data not shown). This situation is quite
similar to the integration method using the tomo-PIV measure-
ments. Statistical data are plotted in Figs. 13(a) and 13(b), and obser-
vation II yields the mean and fluctuating pressures, which agree
quite well with the reference LES. For two-dimensional observa-
tional fields, these calculations are beyond the ability of the inte-
gration method due to the lack of a velocity normal gradient. In
this circular jet, the velocity gradient in the z-direction cannot be
neglected due to its comparable amplitude with other components
and thus has a large contribution to the pressure field. For this
DA method, however, z-direction components can be predicted
with the help of the primary N–S equations. The use of the in-
plane observational data yields significant improvements in deter-
mining the mean and fluctuating pressures. In contrast, the result
obtained by the coarse LES exhibits significant differences from
the reference LES data, especially for the pressure fluctuations in
the jet shear layer. This is attributed to the failure of the large-
scale vortex breakdown and thus the induction of excessive ampli-
tudes in the flow and pressure fluctuations. Importantly, the 2C
observations yield results with little difference from those deter-
mined using the 3C observations, which indicates that planar-PIV
measurements can be used instead of stereo-PIV measurements
as the observations in the DA process to improve the prediction
significantly.
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FIG. 12. Comparison of the instanta-
neous streamwise velocity distributions
on the [(a), (c), (e), (g), and (i)] x-y and
[(b), (d), (f), (h), and (j)] x-z planes. [(a)
and (b)] Referential LES, [(c) and (d)]
DA with Observation II, [(e) and (f)] DA
with Observation III and 3C velocity, [(g)
and (h)] DA with Observation III and 2C
velocity, and [(i) and (j)] coarse LES.
Observation regions are indicated by the
dashed lines.

The prediction of the global pressure field is also inspected for
the case where the observations are located in or near the x-y plane.
Considering the cylinder wake in which the flow downstream of the
observational window has been precisely recovered, the global fields
of the jet flow are also expected to be improved, due to the spa-
tial correlation of the assimilated flow under the influence of the
local observations. Here, the azimuthal averaged mean and fluc-
tuating streamwise velocity distributions at different downstream
locations are presented in Fig. 14. The fluctuations are scaled by a
factor of 20 to plot the profiles in the same figure. It can be seen
that the observation II (0.5-D-thick domain) achieves reasonably
good agreement with the results of the reference LES, while the two-
dimensional observation region III, with 3C and 2C velocities, yields

discrepancies at x/D = 4 and 6. Indeed, the accuracy of the azimuthal
averaged quantities strongly relies on the normal thickness of the
observational domain, which can also be observed in Fig. 12(d) when
compared with Figs. 12(f) and 12(h). The two-dimensional observa-
tions with 3C and 2C velocities also yield simulation results that are
much better than that of the coarse LES. The azimuthal averaged
mean and fluctuating pressure distributions are plotted in Fig. 15.
These results have similar trends to the velocity distributions. It is
also noted that when using the 3C and 2C velocities on the same
two-dimensional plane as the observations, the same accuracy can
be achieved for the assimilation results. This suggests that the usage
of planar-PIV measurements as the observations in the present DA
process, rather than stereo-PIV measurements, could simplify the

FIG. 13. Comparison of the (a) mean
and (b) fluctuating pressure distributions
along the horizontal profiles at y/D = 0.5
and z/D = 0. Referential LES, DA with
observation II, DA with observation III
and 3C velocity, DA with observation III
and 2C velocity, and coarse LES results
are shown.
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FIG. 14. Azimuthal averaged mean
(upper half) and fluctuating (lower half)
streamwise velocity distributions. Refer-
ential LES, DA with observation II, DA
with observation III and 3C velocity, DA
with observation III and 2C velocity, and
coarse LES results are shown.

FIG. 15. Azimuthal averaged mean
(upper half) and fluctuating (lower half)
pressure distributions. Referential LES,
DA with observation II, DA with observa-
tion III and 3C velocity, DA with observa-
tion III and 2C velocity, and coarse LES
results are shown.
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FIG. 16. Experimental setup of the tomo-PIV measurement.

measurement procedure but retain similar accuracy. Indeed, fur-
ther improvement of the assimilation results using non-full-region
observations can be achieved by increasing the grid resolution. This
will be considered in future work.

C. Tomo-PIV measurements
Sections III A and III B discussed the properties of this DA

method using numerical results as the observations to serve as

analogs for tomo-, stereo-, and planar-PIV measurements. Here,
real tomo-PIV measurements of a circular jet are tested as the
observational data. The experiment is conducted in an octagonal
tank (each side, 250 mm; height, 900 mm) filled with tap water, as
shown in Fig. 16. A circular nozzle with diameter D = 40 mm is
installed at the bottom of the octagonal tank, with the exit 100 mm
above the bottom surface to minimize the wall effect on the flow
field. The jet fluid is supplied by a frequency-conversion pump and
first enters a stabilizing chamber located below the bottom surface
of the octagonal tank before nozzle ejection. The Reynolds num-
ber is based on the bulk velocity U0 in the nozzle and the nozzle
exit diameter D and is fixed at Re = 2400. The global seeding of
the complete tank is performed with 20-μm hollow glass particles,
and illumination is realized by a 25 W continuous-wave laser at
532 nm (Millennia EV25S, USA) with a compacted combination
of cylindrical lenses to produce a 25-mm-thick volumetric light on
the jet longitudinal plane. Two 12-bit complementary metal-oxide-
semiconductor (CMOS) cameras (PCO, Germany) with a spatial
resolution of 2000 × 2000 pixels are used to capture the particle
images with a frequency of 25 image pairs per second and a time
interval of 1 ms between the frames in each image pair, which yields
a time interval of 0.04 s between two successive snapshots. Each
camera is split into two views, as shown by the yellow dashed line
in Fig. 16, using an appropriate combination of prismatic and pla-
nar mirrors. This results in four different views along the radial
direction, each with an image resolution of 1000 × 2000 pixels.
The velocity vectors are calculated from the raw particle volumes
using a TOMOpro code developed in-house.33,34 In post-processing,
the size of the reconstructed volume is 200 mm (x direction) ×
80 mm (y direction) × 25 mm (z direction) and is centered at
the nozzle axis. The multiplicative algebraic reconstruction tech-
nique (MART) is used to reconstruct the three-dimensional distri-
butions of the particle grayscales, with a resolution of 8 voxels/mm.
A sub-pixel-accurate PIV algorithm is used, based on the iterative
multigrid volumetric cross-correlation approach with a final (mini-
mum) pass and an interrogation volume size of 24 × 24 × 24 voxels
and 50% overlap. This yields a resolution of 26 vectors per nozzle
diameter D.

FIG. 17. Instantaneous streamwise velocity distributions on
the center plane. Results are interpolated on the same grid.
Isosurfaces of U/U0 = 0.9 are shown.
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In this DA process, the computational domain and grid are
scaled from that used with the previous reference LES (see Fig. 7).
The observations are set in the region 0.25 ≤ x/D ≤ 5, −1 ≤ y/D
≤ 1, and −0.5 ≤ z/D ≤ 0.5 being interpolated from the tomo-PIV
grid (comparable resolution with the DA grid) and are recorded
every eight time steps in DA. λ = 1 × 103 [can be estimated using
Eq. (24), several orders larger than that in the cylinder case; smaller
or larger λ also works], and 20 iteration loops are used for all of the
observation regions, yielding reasonable convergence and accept-
able noise removal for velocity assimilation and pressure determi-
nation, respectively. Figure 17 presents the instantaneous velocity
fields obtained by tomo-PIV and DA methods, respectively, after the
computation reaches the residual plateau. As observed, most of the
field details have been recovered, including small-scale structures,
after the vortex breakdown at x/D > 3. Due to the noise contam-
ination in the tomo-PIV results, the converged forcing term F, as
shown in Fig. 18, remains significantly larger compared with the
case of the cylinder wake. This phenomenon was also observed in
the LES jet, where the case with noise yields a higher forcing term
than that with the clear observational data. It is also observed that
a larger magnitude of F is clustered in the jet shear layer, which
is similar to the distributions of the turbulent eddy or subgrid
viscosities.

The instantaneous pressure fields at three successive instances,
determined by the present DA process, are shown in Fig. 19 where
the organized pressure patterns induced by the vortex rings are
clearly seen (black circles). The most significant pattern in the flow
field is the fluid puff at x/D ≈ 3, which results from the fluid accel-
eration in the center of the vortex ring and also yields low-pressure
regions both in the ring core (inside the black circles) and advected
downstream. Another low-pressure region is also observed at
1 < x/D < 2 upstream of the pinched-off vortex ring. The pressure
in this region keeps decreasing with time, indicating the growth of
another vortex ring, before undergoing the pinch-off process. All of

FIG. 18. Distribution of the magnitude of the forcing F.

FIG. 19. Instantaneous flow (contour) and pressure (isolines) fields determined by
the present DA approach. Three successive instances with time interval 0.2 s are
shown.

these results suggest that the instantaneous pressure fields have been
reasonably recovered using the present DA approach.

The pressure field determined by the conventional integration
method is also shown in Fig. 20. Two adjacent three-dimensional
instantaneous velocity fields with a time interval 0.04 s (the time
interval of the tomo-PIV measurements) are used for the calculation.
Note that high-level measurement noise is contained in the tomo-
PIV results, deteriorating both the spatial and temporal coherence.
This results in a substantial overprediction of the pressure magni-
tude, even when the spatial-temporal smoothing process is used.
In fact, the results are sensitive to the noise levels, as the gradients
must be calculated in this determination process, and the smoothing
does not have much help, except inducing the correlation that is not
strictly correct. This pressure pattern is totally different from that
in Fig. 19, and this method fails to capture the low-pressure regions
induced by the vortex rings.

FIG. 20. Instantaneous pressure field (isolines) determined by the conventional
integration with spatial-temporal smoothing. Velocity field (contour) measured by
tomo-PIV at the same instance is also shown.
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IV. CONCLUDING REMARKS
An adjoint-based sequential data assimilation (DA) method

was proposed to determine the instantaneous pressure distributions
from turbulent velocity fields. The pressure determination method
of integration from eight paths,32 modified by considering the off-
plane derivatives for three-dimensional flows, was also used for com-
parison. The DNS data of a laminar cylinder wake, the fine-scale LES
data of a turbulent circular jet, and the tomo-PIV measurements of
a jet flow were used as the observational data to test the properties of
this DA method.

In the present DA formulation, a forcing term F was added to
the primary Navier–Stokes (N–S) equations to drive the assimilated
flow toward the observations at each time step. Compared with the
conventional unsteady adjoint method, which required the forward
integration of the primary system and the backward integration of
the adjoint system, the present approach converted the unsteady
adjoint equations to steady versions, by performing the optimization
process at each time step interval separately. Thus, the computation
integrated the primary-adjoint system all the way forward, discard-
ing the requirement of data storage for every time step and also being
less demanding on computational resources and space. The adjoint
system was solved once the observations were present; otherwise,
only the primary equations were solved with F = 0, being identical
to a pure numerical simulation.

The eight-path integration method was shown to be sensitive
to the pressure boundary condition and observational noise con-
tamination and was subject to the effects of large accumulated error
through each path. Using the synthetic data of the turbulent jet as the
observational data, the present DA method was able to determine the
instantaneous pressure field precisely using the three-dimensional
velocity fields, regardless of the observational noise. For the two-
dimensional 3C or 2C velocity fields, which were not sufficient for
pressure determination with the integration method due to the lack
of the off-plane derivatives, the present DA method was able to
reproduce pressure fields whose mean and fluctuating fields of both
velocity and pressure agreed reasonably well with those of the refer-
ence LES results. The 3C and 2C velocity fields yielded quite simi-
lar results, indicating the possibility of pressure determination from
planar-PIV measurements in turbulent flows. Tomo-PIV measure-
ments were also tested as the observational data, with a clear pressure
pattern induced by the vortex ring obtained with the present DA
method, while the eight-path integration method failed to determine
the pressure pattern induced by the vortex ring due to the high-level
measurement noise.
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