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1 Introduction

The discovery of the Higgs boson [1, 2], a remnant of the mechanism that spontaneously
breaks the electroweak symmetry of the Standard Model, firmly established the existence
of a scalar sector at the electroweak scale. Higgs interactions with itself and other particles
has profound consequences in particle theory for the structure of the scalar potential and of
the electroweak vacuum. It is also well-known that the concept of spontaneous symmetry
breaking of gauge theories was first observed and described in superconductive condensed
matter systems [3], before being applied to quantum field theories relevant to high-energy
physics [4–6].

Skyrmions are energetically stable static field configurations that can describe new
particle degrees of freedom in QFT and have at least as long history as the Higgs boson
itself. Skyrmions were first introduced in [7] to represent baryons as topological solitons
emerging in an effective field theory of mesons [7, 8]. To ensure that the soliton is energet-
ically stable, a higher-derivative operator, the so-called Skyrme term, was introduced and
added to the non-linear sigma model of mesons. Inclusion of such a term in the effective
Lagrangian effectively bypasses Derrick’s theorem [9] and allows the skyrmion to be realised
as a spatially localised soliton field configuration with finite size. In this context, as the
low-energy description of nucleons in strong interactions, the Skyrme model predictions
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are within 30% of experimental values [10, 11], but there have been no direct experimental
evidence for skyrmions in particle physics.1

This is to be contrasted with condensed matter systems where skyrmion-like field
configurations have been observed. As vortex-like textures of magnetic moments, skyrmions
were experimentally observed and studied in magnetically ordered materials [12–15], for
a review see [16]. Due to their small size and long lifetime these magnetic skyrmions
have received much attention as a promising avenue to facilitate low-energy magnetic data
storage devices. Thus, skyrmions are realised in nature and can be studied in a range of
condensed matter systems in vivo.

Motivated by the striking parallels between the Higgs boson and skyrmion histories in
particle physics and in condensed matter, we would like to reexamine skyrmions in particle
physics, and in particular, skyrmions in the electroweak theory of the Standard Model.

Electroweak skrymions have been studied previously assuming an infinitely heavy non-
dynamical Higgs field [17–23], but, interestingly, despite the discovery of the Higgs boson,
to our knowledge, they have never been studied in light of the electroweak vacuum and
scalar potential as realised in the Standard Model and its extensions. Thus, the profound
consequences a dynamical Higgs field has on the properties of electroweak skyrmions have
not been investigated so far. This is important for two reasons. First, in the presence of
a dynamical Higgs field the candidate skyrmion field configuration could rapidly unwind
and decay into elementary Higgs bosons. We find that electroweak skyrmions with masses
MSk . 10 TeV readily co-exist with dynamical Higgs and gauge fields as non-topological
solitions. Secondly, if one takes the lowest-order 4-derivative operator needed to stabilise
the skyrmion in the non-dynamical-Higgs case, and naively introduces a dynamical Higgs,
one gets a dimension-12 operator. However, we find that skyrmion-stabilising operators
appear already at dimension 8 of the perturbative series of the effective theory, e.g. for
Standard Model particle content and symmetries the so-called Standard Model Effective
Field Theory framework (SMEFT) [24]. In turn, the possible existence of an electroweak
skyrmion and its phenomenological implications to collider phenomenology, dark matter
and early Universe physics underline the importance of including dimension-8 operators in
global EFT analyses.

In section 2 we outline how electroweak skyrmions arise and can be energetically sta-
bilised in the presence of a dynamical Higgs field. This includes a discussion of stabilising
dimension-8 operators and how skyrmion production and decay relate to B+L violating
processes in the Standard Model. In section 3 we calculate the skyrmion energy using
novel machine-learning techniques. That the skyrmion-stabilising dimension-8 operators
are induced rather generically in a wide range of Standard Model extensions we show in
section 4. In section 5 we give a brief overview on the possibility to study skyrmions or
the operators required to stabilise them at current and future colliders. We note that elec-
troweak skyrmions can be viable dark matter candidates. Finally in section 6 we offer a
summary and conclusions.

1Of course, this does not contradict the original statement that in strong interactions skyrmions provide
a correct description of qualitative features of baryons in the effective meson theory below the confinement
scale of QCD.
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2 Electroweak Skyrmion theory

2.1 Preliminaries

We start with the Lagrangian for the SM Higgs scalar coupled to the SU(2)L gauge fields,

L = − 1
2g2 trWµνWµν + 1

2tr
(
(DµΦ)†DµΦ

)
− λ

4
(
tr
(
Φ†Φ

)
− v2

)2
. (2.1)

The gauge fields are written in the usual matrix notation Wµ = gW a
µ τ

a/2 where τa are the
Pauli matrices, and our normalisation for the gauge fields includes the coupling constant
g. Hence the canonically normalised kinetic term for the gauge fields is ∝ 1/g2, with the
field strength and the covariant derivatives given by,

Wµν = ∂µWν − ∂νWµ − i[Wµ,Wν ] , DµΦ = (∂µ − iWµ)Φ . (2.2)

The SM Higgs doublet we choose to write in an equivalent form, as a unitary two by two
matrix of complex scalar fields φ0(x) and φ1(x),

Φ(x) =
(
φ∗0 φ1
−φ∗1 φ0

)
, (2.3)

which can also be readily decomposed into the real scalar field s(x) times the SU(2) matrix
field U(x),

Φ(x) = s(x)U(x) , where U(x) ∈ SU(2) , s(x) ∈ R . (2.4)

The neutral Higgs field of the SM is obtained by shifting s(x) by its vacuum expecta-
tion value,

s(x) = 1√
2

(v + h(x)) , with mh = 125 GeV . (2.5)

Our choice of the slightly unusual 2× 2 matrix conventions for the SM Higgs in (2.3)–(2.4)
is dictated, following [21], by the simplicity of its connection to electroweak skyrmions.
As we will explain below, the skyrmion solution of the SM Lagrangian with an additional
EFT 4-derivative operator, is naturally described in terms of the SU(2) matrix field U(x)
in (2.4). It is straightforward to switch from the notation (2.3) to the conventional SM and
EFT notation in terms of the complex Higgs doublet

φ(x) =
(
φ1
φ0

)
, (2.6)

using the representation Φ(x) =
(
φ̃, φ

)
, where we have defined φ̃ = ε · φ∗(x). For more

detail, we refer to sections 3.
The Lagrangian (2.1) describes the bosonic sector of weak interactions of the SM, it is

invariant under SU(2)L transformations,2

Φ(x)→ UL(x) Φ(x) , Wµ(x) → UL(x) (Wµ + i∂µ)U†L(x) . (2.7)
2The global symmetry is the SU(2)L × SU(2)R transformations of the scalar field Φ→ UL ΦUR.
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In order to look for topological and non-topological solitons and other vacuum config-
urations of the theory we impose the requirement of finiteness of the energy,

EH,W =
∫
d3x

{
− 1

2g2 trWijWij + 1
2tr

(
(DiΦ)†DiΦ

)
+ λ

4
(
tr
(
Φ†Φ

)
− v2

)2
}
< ∞ ,

(2.8)
computed in the W0 = 0 gauge on the static field configurations Wi(x) and Φ(x) i.e. the
fields at fixed t which can be taken t = 0. The requirement of EH,W <∞ implies that, as
|x| → ∞ the gauge fields should approach a pure gauge configuration, while s(x) and U(x)
should go respectively to its vev and a constant SU(2) matrix U∞. One can then always
choose a gauge in which the following boundary conditions are satisfied [25]:

lim
|x|→∞

Wi(x) = 0, lim
|x|→∞

s(x) = v/
√

2, lim
|x|→∞

U(x) = 12×2. (2.9)

Since all the fields are single-valued at spatial infinity, R3 can be compactified in this setting
to S3 ∼= R3 ∪ {∞}.

The topology of a field configuration can be partly characterized using the Higgs wind-
ing number nH and the Chern-Simons number nCS, given by

nH = 1
24π2 εijk

∫
d3x tr

[
(U †∂iU)(U †∂jU)(U †∂kU)

]
, (2.10)

nCS = 1
16π2 εijk

∫
d3x tr

[
WiWjk + 2i

3 WiWjWk

]
. (2.11)

The finiteness of the energy integral in (2.8) requires that the Φ is continuous, otherwise
the derivative term on the r.h.s. of (2.8) would result in delta functions giving an infinite
contribution to the integral. Then, if s(x) does not vanish for any x, U must be continuous,
implying that nH is a finite integer number, which characterizes the homotopy class of U :

U : S3 → SU(2) ∼= S3, π3(S3) = {nH} = Z. (2.12)

On the other hand, nCS does not need to be an integer for a general field W . However,
when W is a pure gauge Wi(x) = iU(x)−1∂i U(x) for some SU(2)-valued function U ,

nCS = 1
24π2 εijk

∫
d3x tr

[
(U−1∂i U)(U−1∂j U)(U−1∂k U)

]
(2.13)

is an integer characterising the homotopy class of U : S3 → S3.
The fact that nH is a homotopy invariant for continuous U does not guarantee or even

imply the existence of solitons in our model. In fact, there are three independent reasons
for why topological solitons3 do not exist in the weak sector of the SM described by the
Lagrangian (2.1). We will now list and then address these reasons in turn:

1. Fluctuations of dynamical s(x) field (i.e. interactions with the SM Higgs);
3Topological solitons here refer to extended particles with non-zero finite mass (energy) that are protected

by the topological conservation law — their charge given by the winding number n is strictly conserved.
As a result there is an infinite energy barrier separating topological solitons of different charges from each
other and from the perturbative vacuum.
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2. Derrick’s theorem;

3. Presence of the SU(2)L gauge fields Wµ(x).

The existence of a dynamical degree of freedom s invalidates the assumption of continuity
of the SU(2) field U on which the topological conservation of the winding number nH is
based. In other words, the SU(2)-valued U field cannot pass through zero, but the s(x)
singlet can. When this happens, Φ(x) = 0 for some x and nH can safely unwind and change
its value without resulting in infinite energy. Only if s(x) was frozen at its expectation
value v, the zeros of s would be impossible. But for the neutral Higgs field with a finite
mass, in (2.5), the zeros of s are possible and the winding number is no longer a conserved
quantity. At best there are only finite energy barriers separating U -fields with different
values of nH .

2.2 Skyrme term as a dimension-8 SMEFT operator

The consequence of the Derrick’s theorem is that even a non-topological soliton is impos-
sible in the model (2.1), unless we add an appropriate higher-dimensional term to stabilise
the soliton size [7]. The leading-order term capable of stabilising the skyrmion solution is,
the dimension-8 operator,

L S = 1
8Λ4 tr

(
(DµΦ)†DνΦ − (DνΦ)†DµΦ

)2
. (2.14)

In the idealised regime of an infinitely heavy Higgs field, the s(x) field is frozen at
s→ v/

√
2 and in this limit the effective operator above reduces to the corresponding four-

derivative term in the gauged non-linear sigma model. If we now also decouple the gauge
fields in the covariant derivatives in (2.14), we find,

L S →
v4

32Λ4 tr
(
(∂µU)†∂νU − (∂νU)†∂µU

)2
. (2.15)

Since U †U = 1, we have U †∂µU = −(∂µU †)U and use this to represent the expression in
brackets in (2.15) in the form of a commutator, as follows,

(∂µU †)(∂νU)− (∂νU †)(∂µU) = −
[
U †DµU , U

†DνU
]
. (2.16)

This expression on the right hand side of (2.15) then takes the form

1
32 e2 tr

[
U †∂µU , U

†∂νU
]2
, (2.17)

which is recognised as the famous 4-derivative commutator squared Skyrme term [7], that
allows one to bypass the Derrick’s theorem and to stabilise the skyrmion solution. We used
here the standard in the skyrmion literature convention [10] for the normalisation factor

1
32 e2 in front of the Skyrme term. In our setting, it is related to the Wilson coefficient in
front of the EFT operator in (2.14) via,

e2 := (Λ/v)4 . (2.18)
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We will treat e2 as a free parameter with the constraint that e2 � 1 to guarantee the
applicability of our EFT construction.

To summarise our discussion so far, we have established that in the limit of the frozen
out Higgs field and the decoupled gauge field,

s(x)→ v/
√

2 , Wµ → 0 , (2.19)

our electro-weak Lagrangian with the dimension-8 EFT operator (2.14) reduces to the
Lagrangian of the Skyrme model [7],

LSkyrme = v2

4 tr
(
∂µU †∂µU

)
+ 1

32 e2 tr
[
U †∂µU , U

†∂νU
]2

. (2.20)

This model has topological solitons — the skyrmions. These are classical solutions for
the U(x) field configurations, with the Higgs and gauge fields being frozen out as dictated
by (2.19). A single skyrmion has the winding number n = 1, an anti-skyrmion has n = −1
and the perturbative vacuum with no skyrmions corresponds to n = 0. Due to their
topological stability, skyrmions with different charges n ∈ Z are separated by infinite energy
barriers from one another and from the perturbative vacuum. Skyrmion solitons of the
model (2.20) are found using the Skyrme ansatz, i.e. the so-called hedgehog configuration [7]

U
(0)
Sk (x) = exp[iτax̂aF (r)] , (2.21)

where τa are the Pauli matrices, x̂a is the unit radius-vector and r = |x|. The skyrmion
function F (r) has the boundary conditions F (r)→ nπ at r → 0 and F (r)→ 0 at r →∞,
and is found numerically. n ∈ Z is the skyrmion number, and it can also be computed
by evaluating the integral on the r.h.s. of (2.10) on (2.21). The mass and size of a single
skyrmion (n = 1) are known [10] and in our notation given by,

M
(0)
Sk ' 73 v

e
= 73 v

3

Λ2 , and R
(0)
Sk '

2
ve

= 2v
Λ2 . (2.22)

The superscript(0) indicates that the idealized settings (2.19) were applied in computing
these quantities using the classical solution of the model (2.20) (and the quantum correc-
tions arising from skyrmion quantisation were also neglected).

Historically, in particle physics, skyrmions were successfully identified with baryons,
specifically nucleons, emerging as topological solitons in the non-linear sigma model de-
scription of strong interactions [7, 8, 10, 11, 26],

L strong
Skyrme = F 2

π

16 tr
(
∂µU †∂µU

)
+ 1

32 e2 tr
[
U †∂µU , U

†∂νU
]2

, (2.23)

where U(x) are the meson (pion) fields, and Fπ is the pion decay constant. The sin-
gle skyrmion is a topological soliton of (2.23) that carries one unit of the topological
charge (2.10). The latter is identified with the baryon number or the nucleon charge [26]
in the model (2.23).

In our case skyrmions arise instead in the electroweak sector of the SM in the EFT
description that includes the dimension-8 operator (2.14), which in the idealised decoupling
limit resulted in the model (2.20).

– 6 –
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We now return to the general case described by the Lagrangian (no longer assuming
the decoupling limit),

L = − 1
2g2 trWµνWµν + 1

2tr
(
(DµΦ)†DµΦ

)
− λ

4
(
tr
(
Φ†Φ

)
− v2

)2

+ 1
8Λ4 tr

(
(DµΦ)†DνΦ − (DνΦ)†DµΦ

)2
. (2.24)

On general grounds we expect that there are skyrmion solutions in this model but the
skyrmions are not topological solitons. Both, the presence of the gauge fields Wµ and
the presence of the dynamical Higgs field s(x) (or h(x)), lift the topological protection of
skyrmions. The Higgs winding number (2.10) is no longer a conserved quantity, as the
skyrmion configuration with a non-vanishing nH can unwind itself via interactions with
gauge and Higgs fields, for example when the Higgs field s(x) = 0. The energy barrier sep-
arating the non-topological skyrmion from the perturbative vacuum is finite. Electroweak
skyrmions can in principle be produced and they can decay as well in interactions involving
vector and Higgs bosons.

Ambjorn and Rubakov [17] considered the effect of gauge interactions on the skyrmions
in the model with a non-dynamical Higgs field. Ref. [17] showed that interactions with
gauge fields destroys the skyrmion if the parameter ξ = 4e2/g2 is less than a critical value
ξ∗ ' 10.35. On then other hand, for the values of 4e2/g2 greater than 10.35, the skyrmion
exists as a local minimum and it is separated by a finite barrier from the trivial perturbative
vacuum along the gauge field direction in the configuration space. This translates into the
gauge stability of the skyrmion requirement [17],

MSk . 6.0mW

αw
∼ 15 TeV. (2.25)

Skyrmions with higher masses are unstable with respect to decays into gauge bosoins.
Here, for the first time, we include the effects of the dynamical Higgs field, and will

provide the description of electroweak skyrmions including the gauge-field and Higgs-field
interactions in the context of the electroweak theory (2.24). We will find that stability
condition for the electroweak skyrmion against rapid decays into dynamical Higgs and
gauge bosons becomes (cf. eq. (3.12)),

MSk . 10 TeV, (2.26)

and, as such, is not dramatically lowered by the inclusion of physical Higgs fields, thus
allowing for the existence of meta-stable and exponentially long-lived electroweak skyrmions
with masses below 10TeV.

2.3 Comment on the uniqueness of the Skyrme term in EFT

One can ask what was special about selecting the dimension-8 operator in (2.14) from a
multitude of other possible choices available in the EFT. The main point here is that we
require our non-topological soliton to become topologically protected in the limit where

– 7 –
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we have decoupled the gauge and the singlet Higgs fields.4 In this case we have to be able
to find stable minima of the action for the theory described by the U(x) field. Since the
U -field is dimensionless, the general EFT description is the derivative expansion. The term
with two derivatives is the kinetic term in (2.20) that is already canonically normalised.
The next term in the derivative expansion has to be a term with four derivatives. Witten
argues in [26] that the Skyrme term is the unique four-derivative term that leads to a
positive-definite Hamiltonian, and as such, is suitable for stabilising the energy functional
of the skyrmion. Our expression (2.14) is the lowest-dimensional embedding of the Skyrme
term into the full EFT with dynamical gauge and singlet Higgs fields.

There exist higher-dimensional EFT operators that can stabilise skyrmions, but they
would give subleading corrections to (2.14). To find them, one can either search for the suit-
able six-derivative operators, or alternatively find a higher-dimensional embedding of the
four-derivative Skyrme term (2.14). An instructive example is provided by the dimension-
12 operator,

L S12 = 1
2Λ8 tr

[
Φ†DµΦ , Φ†DνΦ

]2
, (2.27)

which is an obvious direct embedding of (2.14) in the full theory. This operator, however is
suppressed by 4 extra powers of the high scale Λ relative to our dimension-8 operator (2.14).

2.4 The vacuum structure, skyrmions and (B + L) non-conservation

To find skyrmion solutions we should search for local minima of the energy E over all static
configurations in the field space of the model (2.24). This is the approach we will follow in
the next section, using numerical methods. Here we would like to first outline the general
expected structure of the energy landscape in our theory.

We consider those fields configurations that minimize the energy for fixed nH and nCS.
Neither nH nor nCS, defined in (2.10)–(2.11), are gauge-invariant. They both change by an
integer number under large gauge transformations, as nH → nH +N and nCS → nCS +N .
Small gauge transformations cannot change either of them. Thus, it is the difference
between the two,

nSk = nH − nCS , (2.28)

that is invariant under (large and small) gauge transformations. We will call the quantity
nSk on the right hand side of (2.28) the skyrmion number, since the 1-skyrmion configura-
tion has nSk ' 1 (or more precisely, nSk = 1 in the limit where the skyrmion is a topological
soliton, decoupled from the gauge and neutral Higgs fields).

There are several distinguished points in the (nH , nCS) field space. The trivial vacuum
sits at nH = nCS = 0 and is known as the perturbative vacuum. The well-known gauge-
transformed versions of it can be found at integer nH = nCS ∈ Z and are referred to as
the large-pure-gauge vacua (all with the same degenerate vacuum energies). The unstable
configuration at the mid point between any two neighbouring pure-gauge vacua is the
electroweak sphaleron [27]. Moving away from nSk = 0, one finds local minima of the

4While, a priori, one cannot exclude an occurrence of metastable minima of the energy that are not
related to any symmetry or topology arguments in any limit, such hypothetical configurations would be
accidental in the sense that they have no reason to exist and are not what we call skyrmions here.
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Figure 1. The energy profile of finite-energy field configurations parameterised by the (nH , nSk)
coordinates in the plot on the left figure and by (nCS, nSk) in the figure on the right. Green dots
are the pure-gauge vacuua with nH = nCS ∈ Z and nSk = 0, red dots are the sphalerons, blue
dots are the skyrmion and anti-skyrmion configurations nSk = ±1 along with their large gauge
transformations. Orange dots indicate the barriers at nSk = ±1/2 between the vacua and the
(anti-)skyrmions. The energy axis E resides at the origin, nH = nSk = nCS = 0.

energy functional: the skyrmion at nSk ' 1, the anti-skyrmion at nSk ' −1, and multi-
skyrmion configurations at higher values of |nSk|.

A schematic picture of the energy functional and some of the distinguished points is
shown in figure 1. In the plot on the left panel of figure 1 we use nH and nSk to parameterise
the field space, so the large-pure-gauge vacua (shown in green) are located at nSk = 0 and
integer nH , with the sphalerons (shown in red) being at half-integer values of nH and
nSk = 0.5 The skyrmion and anti-skyrmion configurations (shown as blue dots) correspond
to nSk = ±1 and there is a new sphaleron-like saddle-points (in orange) separating the
perturbative from the (anti)-skyrmion vacuum sectors.

The picture on the right panel of figure 1 depicts the same energy profile over the
field configuration space with an alternative parameterisation, now in terms of (nCS, nSk).
In these coordinates, the pure-gauge vacua are at (0, 0), (±1, 0), . . . , the single-skyrmion
vacua are at (0, 1), (±1, 1), . . . , the usual sphaleron is at (±1/2, 0) and the new sphaleron-
like barrier is at (±1/2, 1/2). It follows from this picture that the minimal finite energy
path between the perturbative vacuum (0, 0) and the skyrmion (−1, 1) passes through the
saddle point (−1/2, 1/2). We will compute this finite-energy trajectory numerically in the
following section, see figure 3.

As Λ increases, the energy of the static skyrmion configuration (the skyrmion mass)
approaches zero. When the Skyrme term is not present, the skyrmion becomes a texture, a
rapidly shrinking configuration that decays into one of the pure-gauge vacua with nSk = 0
through the (un)winding of either nH or nCS [28, 29].

We can use the gauge freedom (2.7) to select the unitary gauge, UL(x) = U(x)†, so that
the Higgs field Φ(x) in (2.4) is given just by the singlet field s(x). Static field configurations

5Indeed, it is easy to see that both, the pure-gauge vacua nH = nCS ∈ Z and the sphaleron at nH =
nCS = 1/2 have vanishing skyrmion number nSk = 0.
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in the unitary gauge are:

W0(x) = 0 , Wi(x) , Φ(x) = s(x)12×2 . (2.29)

If s(x) > 0 for all x, then nH = 0, and thus, the skyrmion, having nSk = 1, is found for
nCS = −1. The trivial vacuum is at nCS = 0 and nSk = 0.

Transitions over or under the barriers that separate minima with different nCS will
necessarily lead to baryon plus lepton number (B + L) violation, since the B + L current
in the Standard Model satisfies the anomalous Ward identity,

∂µJ
µ
B+L = 3

8π2 trWµνW̃
µν = 6 ∂µJµCS, (2.30)

where JµCS = εµνρσ tr [WνWρσ + i(2/3)WνWρWσ]/16π2 is the Chern-Simons current. The
charge associated with the Chern-Simons current is just the Chern-Simons number nCS =∫
d3xJ0

CS, and so, a change ∆nCS in the Chern-Simons number implies a change in B +L,

∆(B + L) = 6 ∆nCS. (2.31)

For all SM fermions that are lighter than the skyrmion mass scale, a skyrmion production
(or a skyrmion decay) in our theory,

(nCS, nSk)space : (0, 0) ↔ (−1, 1) , (2.32)

will be accompanied by the fermion number for each fermion changing by one unit. When
the skyrmion disappears, one net anti-fermion of each species will be produced, and if
the skyrmion is produced, it will be accompanied by the newly minted SM fermion for
each species.

If, on other hand, a given SM fermion (e.g. a top quark), is heavy relative to the
skyrmion, no net change in the number of these fermions will occur. Instead the light
skyrmion will itself carry the fermion number charge of the heavy fermion [21]. The cri-
terium for distinguishing between light and heavy fermions is

mfRSk � 1 , or mfRSk � 1 , (2.33)

where mf is the fermion mass and RSk is the skyrmion size.

3 The skyrmion field and the energy profile in configuration space

We now switch to the conventional complex doublet notation for the Higgs field (2.6) and
write down the Lagrangian of our theory (2.24) in the form,

L = − 1
2g2 trWµνW

µν + |Dµφ|2 − λ
(
φ†φ− v2

2

)2

+ 1
Λ2OSk , (3.1)

where

OSk = (D(µφ
†Dν)φ)2 − |Dµφ|2. (3.2)
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We have used parentheses to denote symmetrisation of indices as 2t(µν) ≡ tµν + tνµ. The
energy for a static configuration is

E =
∫
d3x

{ 1
2g2 trWijW

ij + |Diφ|2 + v2m2
h

8

( 2
v2φ

†φ− 1
)2

− 1
Λ4

(
(D(iφ

†Dj)φ)2 − |Diφ|4
)}

. (3.3)

We work in the unitary gauge, in which we use the parametrisation

φ(x) = vσ(x)√
2

(
0
1

)
, (3.4)

so that σ(x) is a dimensionless field. In implementing the search for single-skyrmion (or
anti-skyrmion) configurations, along with the with the finite-energy trajectories in the field
configuration space connecting them to the perturbative vacuum, we impose the spherical
ansatz [30], and write σ = σ(r) and

Wi = Λ2

v
τa

(
εijanj

f1(r)
r

+ (δia − nina)
f2(r)
r

+ nina
b(r)
r

)
, (3.5)

where r2 = (Λ2/v)2∑
i x

2
i , ni = (Λ2/v)xi/r, and τi are the Pauli matrices. In terms of

these variables the energy is

E = 4πv3

Λ2 Enat, (3.6)

where the dimensionless quantity Enat is the energy functional in natural units,

Enat =
∫ ∞

0
dr

{
Λ4

v2m2
W

[(
f ′1 − 2f2

b

r

)2
+
(
f ′2 − (2f1 − 1) b

r

)2
+ 2
r2 (f2

1 + f2
2 − f1)2

]

+ r2

2 (σ′)2 + σ2
(
f2

1 + f2
2 + b2

2

)
+ m2

hv
2r2

8Λ4 (σ2 − 1)2

+ (f2
1 + f2

2 )
[
(σ′)2 + σ2

r2

(
b2 + f2

1 + f2
2

2

)]}
. (3.7)

In order to explore the energy functional in the direction of increasing nSk we define
the following new coordinate in field space [17],

nW = 1
24π2

∫
d3x εijk tr (iWiWjWk) = 2

π

∫ ∞
0

dr
b

r
(f2

1 + f2
2 ), (3.8)

where in the second equality we have used the spherical ansatz. This is a simplified version
of the Chern-Simons number: we have nW = nCS when Wi is a pure gauge. So they
both assign the same integer label to each pure-gauge configuration, but give different
interpolations between them.

Concerning the boundary conditions for the f1, f2, b and σ functions, regularity of Φ
and Wi at r = 0 requires that

f1(0) = f ′1(0) = f2(0) = b(0) = f ′2(0)− b′(0) = σ′(0) = 0. (3.9)
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At large r, we impose

f1(r) ∝ f2(r) ∝ b(r) ∝ e−r, σ − 1 ∝ e−rmh/mW , (3.10)

which is sufficient to ensure that the boundary conditions (2.9) are satisfied.
Using the numerical method described in appendix A, we search for the minimal energy

configuration with fixed values of nW and Λ. Some examples of the solutions we obtain are
shown in figure 2. We find that, for Λ & 100 GeV, there is a minimum at nW ' 1, the anti-
skyrmion; and a barrier at nW ' 1/2, separating the vacuum and the anti-skyrmion. This
is shown in figure 3 for several values of Λ. The massMSk of the skyrmion is approximately
the energy E at nW = 1. In figure 4, we show that the mass scales as MSk ∝ v3/Λ2 for
large Λ. This is the same scaling as in eq. (2.22), and it is equivalent to Enat(nW = 1)
being approximately constant in Λ. We find that

MSk ' Enat(nW = 1)4πv3

Λ2 ' 0.354πv3

Λ2 . (3.11)

For low values of Λ, we get slight oscillation of Enat(nW = 1) around its limiting value,
with it being higher than the limiting value for Λ ' 100 GeV and lower for Λ ' 200 GeV.
We also check the value of MSk in the decoupling limit by taking the Higgs mass to be very
large (mh = 105 GeV). We get Enat(nW = 1)|decoupling ' 6, in agreement with ref. [17].

Below the critical value Λ = Λcrit ' 100 GeV there is no local minimum at nW ' 1
and only the perturbative vacuum remains. This implies an upper bound on the mass of
the single skyrmion or single anti-skyrmion:

MSk . Enat(nW = 1,Λ = Λcrit)
4πv3

Λ2
crit
' 10 TeV. (3.12)

In order to compute the size RSk of the skyrmion, we take the average
〈
r2〉 of the

squared radius, with distribution given by the gauge-winding-number density as

R2
Sk =

(
v

Λ2

)2 〈
r2
〉

=
(
v

Λ2

)2 1
24π2

∫
d3x r2 εijk tr (iWiWjWk) (3.13)

=
(
v

Λ2

)2 ∫
dr rb(f2

1 + f2
2 ), (3.14)

where in the last equality we have used the spherical ansatz. From our numerical solutions,
we obtain

RSk ' 0.6 v

Λ2 . (3.15)

It is worthwhile to note that the spherical ansatz is consistent with the symmetry
properties of single skyrmions, anti-skyrmions and the sphaleron-like saddle-point configu-
rations at the top of the barrier. However, we should not expect to find energetically stable
multi-skyrmion solutions using the form dictated by the spherical ansatz. The point is that
multi-skyrmion solutions with nW ≥ 2 would be O(3) symmetric only if the positions of the
constituent single skyrmions were to coincide. Such configurations are known to be unsta-
ble and, in fact, they were shown in [19] to have higher energies than nW single skyrmions
at infinite separations. Hence, in the above we concentrated on single (anti)-skyrmion
configurations and the energy profile in figure 3 is the interval 0 ≤ |nW | . 1.2.
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Figure 2. Field configurations for nW = 1/2 and nW = 1 at fixed Λ = 200 GeV as functions of r.
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Figure 3. Energy as a function of nW for different values of Λ. The figure on the left shows the
dimensionless quantity Enat and the figure on the right gives the corresponding physical E in TeV.
The (anti)-skyrmion solution corresponds to the local minimum in the vicinity of nW ' 1 and the
new spaleron-like barrier is around nW ' 1/2. Perturbative vacuum is the global minimum at
nW = 0.

4 UV completions of the electroweak Skyrme EFT

Since the Skyrme term appears in the SMEFT as a non-renormalizable operator OSk, one
might wonder whether there are UV completions of the SMEFT that generate it. It turns
out that it generically appears in simple renormalizable weakly-coupled extensions of the
SMEFT with extra fields. An example, in which OSk is the only dimension-8 four-derivative
operator that is generated, is a SU(2) triplet vector boson V with the following Lagrangian:

LUV = 1
2
(
DµV

a
ν D

νV aµ −DµV
a
ν D

µV aν +M2V a
µ V

aµ
)

+ gV V
a
µ 2 Im

(
φ†σaDµφ

)
. (4.1)
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Figure 4. Energy in natural Enat and physical E units, at nW = 1, as a function of Λ for
mh = 125 GeV and mh = 105 GeV.

The mass term is written here explicitly, but it could be generated by the Higgs mechanism
using an extra scalar. Integrating out V gives:

Leff = 2g2
V Im(φ†σaDµφ)

[ 1
M2 η

µν + 1
M4

(
DνDµ −D2ηµν

)
+O

( 1
M6

)]
Im(φ†σaDνφ)

(4.2)

= g2
V

2M2 [Im(φ†σaDµφ)]2 + g2
V

M4 (OSk + 2T ) +O

( 1
M6

)
, (4.3)

where T is defined as

T ≡ εabcW a
µν Im(φ†σbφ) Im(φ†σcφ) +

[
Im(φ†σaD2φ)

]2
+ Im(φ†σaD2φ) tr(Dµφ

†σaDµφ)

+ Im(φ†σaDµφ) Im(Dµφ†σaD2φ) + Im(φ†σa[Dµ, Dν ]φ) Im(Dµφ†σaDνφ)
+ tr(Dµφ

†σa[Dµ, Dν ]φ) tr(φ†σaDνφ) + tr([Dµ, Dν ]φ†σaDµφ) tr(Dνφ†σaφ)
+ tr(φ†σaD2Dνφ) tr(φ†σaDνφ). (4.4)

All of the operators in T can be eliminated in favor of others with less derivatives using field
redefinitions (for those containing D2Φ) and the relation [Dµ, Dν ] ∼ Fµν . The order-1/M2

part of the effective Lagrangian is, in terms of Warsaw-basis operators [31]:

Leff = 8g2
Vm

2
Wκ

2

M2 (φ†φ)2 − 8g2
Vm

2
Wκ

2

v2M2 (φ†φ)3 − 3g2
V

2M2 (φ†φ)�(φ†φ)

− g2
V

M2

∑
ψ

[
y∗ψ(φ†φ)(ψ̄LφψR) + h.c.

]
+O

( 1
M4

)
. (4.5)

The strongest bound comes from the (φ†φ)�(φ†φ) operator, because its coefficient is neg-
ative in this model, and the current limits almost rule out negative values. The 2σ-limit
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on this coefficient from ref. [32] implies

Λ
√
gV
' M

gV
& 1.2 TeV . (4.6)

Other UV models might generate the Skyrme term in a similar way, but extra 4-derivative
order-1/M4 operators are generated. For example, a scalar singlet with Lagrangian

LUV = −1
2S(D2 +M2)S + κSS|φ|2, (4.7)

generates the effective Lagrangian

Leff = κ2
S

2M2 |φ|
4 − κ2

S

2M4 |φ|
2�|φ|2

+ κ2
S

2M6

(
−OSk + (D(µφ

†Dν)φ)2 + (φ†D2φ+ h.c.)2 + (φ†D2φ+ h.c.)|Dµφ|2
)
.

(4.8)

Not only bosons can give rise to the Skyrme term. Models with vector-like leptons,
similar to the one proposed in [33], can induce this term as well. Specifically, by extending
the Standard Model by three heavy vector-like lepton multiplets

ΣL,R =
(
η

ξ

)
L,R

: (1, 2,−1/2), η′L,R : (1, 1, 0), ξ′L,R : (1, 1,−1), (4.9)

where the quantum numbers are depicted in SU(3)C × SU(2)L × U(1)Y convention. The
most-general gauge-invariant renormalizable Lagrangian with such vector-like leptons can
be written as

LVLL = Σ̄(i /DΣ −mΣ)Σ + η̄′(i /Dη′ −mη′)η′ + ξ̄′(i /Dξ′ −mξ′)ξ′

−
{

Σ̄φ̃(Yη
L
PL + Yη

R
PR)η′ + Σ̄φ(Yξ

L
PL + Yξ

R
PR)ξ′ + h.c.

}
, (4.10)

where, Yi’s are the complex Yukawa couplings, mΣ ,mη′ , andmξ′ are the masses of Σ, η′ and
ξ′, respectively. PL(PR) are the left (right) chiral projection operator. The contribution to
the Skyrme term from this UV model at 3-loop level can be captured pictorially in figure 5.

Thus, the Skyrme term can be induced rather generically by Standard Model extensions
with particles of spins 0, 1/2 or 1. The presence of any of the particles introduced here,
i.e. singlet scalar, vectorlike leptons or triplet vector bosons, would give rise to the Skryme
term, respectively.

5 Electroweak Skyrmion phenomenology

Following the discussion of section 2.4 the skyrmion production must be accompanied by
B+L violation in the same way as for the electroweak instanton / sphaleron transitions. If
a skyrmion could be produced at collider experiments, it would provide a striking signature
that could be easily separated from Standard Model backgrounds. Unfortunately, the direct
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Figure 5. Diagramatic contribution to the Skyrme term before integrating out the heavy degrees
of freedom Σ and ξ′ defined in eqs. (4.9) and (4.10). D refers to the covariant derivative.
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Figure 6. 4-Higgs production in association with 0–2 W bosons, through the dimension-8 skyrmion
operator OSk, which is denoted by a dot in the diagrams.

production of electroweak skyrmions in a collider experiment is highly unlikely for the
same reasons as inducing electroweak transitions across the sphaleron barrier in 2 particle
collisions is expected to be exponentially suppressed at any energies, below or above the
sphaleron barrier [34, 35]. Unsuppressed B+L violating processes in the Standard Model
should have of order 1/αw � 1 particles in the initial as well as the final states. This implies
that such inter-vacua transitions for the vacua separated by the electro-weak sphaleron-size
barriers will most likely be unobservable at future colliders at arbitraryly high energies, in
agreement with the calculations in [35] and [36].

5.1 Probing the Skyrme term at collider experiments

The SMEFT dimension-8 realization (2.14) of the Skyrme term can be probed at colliders
through processes involving Higgs and electroweak gauge bosons. Both at hadron and lep-
ton colliders, one can generate a pair of vector bosons that interact through OSk, producing
Higgs and/or vector bosons. The signal-to-background ratio is expected to be optimal for
those processes with multiple Higgs bosons in the final state. The corresponding diagrams
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are shown in figure 6, for the case of a hadron collider. The weak-boson fusion (WBF)
production cross sections for them can be parametrized as

σ = A

( √
s

14 TeV

)B (1 TeV
Λ

)8
, (5.1)

where
√
s is the center-of-mass energy of the two beams. We simulate the pp → jjhhhh

process using MadGraph for different values of
√
s and Λ. We use the cuts mjj > 400 GeV,

pT,j > 30 GeV, |ηj | < 5, ∆Rjj > 0.8 and |ηj1 − ηj2 | > 2.5, where mjj is the invariant mass
of the two jets, pT,j and ηj are the transverse momentum and rapidity of any of the two,
and ∆Rj1j2 is the distance between them in the space of rapidity and azimuthal angle. To
reconstruct all the Higgs bosons, we apply b-tagging to each of the 6 b-jets, assuming a
tagging efficiency of 80%. We obtain

A = 2.70 pb and B = 8.93. (5.2)

For fixed
√
s, only low-enough values of Λ will allow this process to be observable.

We consider the channel in which three of the Higgs bosons decay into bb̄ and one into
γγ, and require that 300 events are produced. We consider this a conservative estimate
for the number of signal events to show a statistically significantly excess over Standard
Model background events in this final state. Inclusive Di-Higgs production in bb̄γγ shows
sensitivity over backgrounds with a similar number of events [37, 38]. Thus, the process
with WBF cuts for the tagging jets and four Higgs resonances should provide enough
handles to control the backgrounds.

A high-energy muon collider of
√
s = 14TeV has a sizeable WBF cross section.

Due to its much cleaner environment and reduced QCD background, we only require 10
events for the discovery of Skyrme-term-induced processes. We, however, impose again 6
tagged b-jets.

We find limits on Λ for various collider energies and luminosities:

Λ < 58 GeV for
√
s = 14 TeV, ∫ dtL = 300 fb−1, (5.3)

Λ < 77 GeV for
√
s = 14 TeV, ∫ dtL = 3000 fb−1, (5.4)

Λ < 320 GeV for
√
s = 50 TeV, ∫ dtL = 3000 fb−1, (5.5)

Λ < 690 GeV for
√
s = 100 TeV, ∫ dtL = 3000 fb−1. (5.6)

corresponding to LHC, HL-LHC and hh-FCC, respectively. For a 14TeV muon collider in
the process µ+µ− → νµν̄µhhhh we obtain

Λ < 650 GeV for
√
s = 14 TeV, ∫ dtL = 3000 fb−1. (5.7)

Consequently, in the final state with 6 b-quarks and two photons a higher-energy collider
than the LHC is needed to probe values of Λ that allow the formation of a skyrmion. If
backgrounds can be confidently reduced in all-hadronic final states, see e.g. [39–41], larger
branching ratios can be exploited and higher scales Λ surveyed.
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5.2 Skyrmions as dark matter candidates

Although the skyrmion can unwind through electroweak instanton-like processes, such
processes are highly suppressed, thereby rendering the lifetime of a freely propagating
skyrmion likely to be longer than the lifetime of the Universe [42]. Consequently, an
electroweak skyrmion can constitute a dark matter candidate. In a freeze-out scenario, the
skyrmion abundance is set to

Ωh2 ' 3× 10−27 cm3s−1

〈σannv〉 , (5.8)

where 〈σannv〉 is the thermally-averaged cross section for the annihilation of two skyrmions
into SM particles. As an order-of-magnitude estimate for the annihilation cross section
σann we just take the skyrmion area

σann ' πR2
Sk. (5.9)

One can get an upper bound on Λ by requiring that the skyrmion abundance is at most
the measured value of the dark matter abundance Ωh2 ' 0.1. Taking the velocity of the
skyrmions at the freeze-out temperature to be v = 1/2, we get Λ . 2 TeV. This bound
would be saturated if all of the dark matter was made of skyrmions. Although it depends
on the rough approximation (5.9), it is relatively stable against corrections to it, since it is
proportional to σ−1/4

ann . Allowing σann to be one order of magnitude below the value given
by eq. (5.9), we get the conservative bound

Λ . 3 TeV. (5.10)

6 Conclusions

Skyrmions were originally introduced as topologically stable static field configurations in
relativistic quantum field theory. Their purpose was to explain the existence of baryons
in terms of topological solitons in an effective low-energy theory of mesons. In recent
years, skyrmions of a different type have been experimentally observed in magnetic ordered
materials. These magnetic skyrmions are described by a non-relativistic field theory on a
discretised spin-lattice system. Importantly, these magnetic skyrmions are not protected by
topology, they are separated only by finite energy barriers from the ground state. While the
experimentally observed existence of skyrmions in condensed matter systems has received a
lot of attention, the theoretical investigation of skyrmions in particle physics, in particular
the electroweak skyrmions in the presence of a dynamical Higgs field a was lacking.

In this paper we showed that the interplay between a dynamical Higgs field and the elec-
troweak gauge sector of the Standard Model leads to a non-trivial vacuum structure, that
allows for the formation of electroweak skyrmions under rather generic circumstances. Like
the skyrmions in condensed matter systems, the electroweak skyrmions are non-topological,
they are not absolutely stable but have an exponentially long lifetime. We clarified the rela-
tion between the well-studied electroweak sphalerons that are saddle-points between vacua
with different nCS and the skyrmionic sphalerons that are saddle-points between skrymion
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field configurations with different nSk 6= 0, including the trivial vacuum at nSk = 0. Elec-
troweak skyrmions can unwind through highly-suppressed instanton processes and lead to
striking signatures with ∆(B + L) = 6∆nCS.

We identified dimension-8 operators that stabilise the electroweak skyrmion as a spa-
tially localised soliton field configuration with finite size. To assess how the energy of the
skyrmion depends on the suppression scale of the effective operator Λ, i.e. the Skyrme term,
we use a neural network to calculate the minimum of its energy functional. The mass of
the electroweak skyrmion scales as MSk ' 0.35 4πv3/Λ2 and its radius as RSk ' 0.6 v/Λ2.

The dimension-8 Skryme term can be induced by a large class of UV models. We gave
examples for minimal extensions of the Standard Model by spin-0, spin-1/2 and spin-1
particles which each individually, and as a subset of a more comprehensive extension of the
Standard Model, would contribute to the emergence of a Skyrme term. The Skyrme term
can also have a non-perturbative origin, as it had in the case of strong interactions or in
the technicolour models.

While the electroweak skyrmion production cross section is highly suppressed in col-
lisions of nucleons or leptons, the LHC or future high-energy collider experiments provide
a promising avenue to probe the Skyrme term in multi-Higgs-associated production pro-
cesses. In turn, to be able to give experimentally measured final states an interpretation
in terms of the presence of a Skryme term one needs to extend the SMEFT framework to
operators of dimension-8 in global EFT analyses. Importantly, electroweak skyrmions can
be a viable dark matter candidate and, thus, provide a solution to the dark matter problem.

For the electroweak skyrmion to be heavy and therefore less stable, the Skyrme term
needs a small suppression scale. Here, we only considered weakly-coupled UV theories as
the source of the Skryme term, for which a small Λ is difficult to accommodate. However,
the Skryme term could also be induced by a strongly-coupled dark sector, which would
result naturally in a smaller suppression scale.

Due to the profound implications the electroweak skyrmion can have on early Universe
physics, dark matter and collider phenomenology, and in general on improving our under-
standing of the electroweak vacuum structure further experimental investigations seem not
only warranted but required.
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A Skrymion energy calculation using a neural network

To find the minimum energy for given values of the parameters κ, ξ and n, we follow [43, 44]
to model the set of functions f1, f2, h and b using a neural net with a single 30-unit layer.
That is, we parametrize them as

(f1(r), f2(r), b(r), h(r)) =
30∑
i=1

b(2)
i + w(2)

i

1 + exp
(
−b(1)

i − w
(1)
i r

)
 , (A.1)
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where boldface is used to denote 4-component vectors of parameters. The net is trained
using the Adam minimization algorithm, with loss function given by

L[f1, f2, b, h] = Enat[f1, f2, b, h] + ωBC
∑
k

BCk[f1, f2, b, h]2 + ωn (nW [f1, f2, b, h]− nW )2 .

(A.2)
Here, Enat[f1, f2, b, h] is the energy of the configuration, as defined in eqs. (3.7),
BC[f1, f2, b, h] is a tuple containing the differences between the values of the f1, f2, b
and h functions at the boundaries and the values they are assigned by the boundary con-
ditions, and n[f1, f2, b, h] is the quantity defined in eq. (3.8). The integral for the energy
is computed by averaging over 1000 equally distributed points from r = 0 to r = 10. The
weights ωBC and ωn need to be adjusted depending on the value of κ and ξ. They should be
such that minimizing L amounts to minimizing the energy while satisfying the boundary
and nW [f1, f2, b, h] = nW conditions. This is achieved for ωBC ' ωn ' 104. Higher values
ensure that the conditions are satisfied, but setting them as low as possible gives faster
convergence of the training procedure.

The minimization algorithm is run until the relative improvement of the loss function
is less than 10−5 over 1000 epochs. It typically takes a few ×105 epochs to reach this
condition. To check the consistence of the results, we have repeated several instances of
the same calculation for various values of the parameters obtaining discrepancies in the
energy of the solutions that are less than 5%.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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