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Analysis of a laterally load rigid cylinder embedded in an
elastoplastic material

Salma F. Hashem Ali, Ashraf S. Osman *
A B S T R A C T

An analytical approach has been developed to predict the response of a rigid disc embedded in elastoplastic media. The governing differential equations are obtained
using the principle of minimizing the potential energy. The displacement components in cylindrical coordinates could be represented by Fourier series. The fitted
method is used to determine the Fourier series harmonic coefficients. Validation is made against finite element analysis and previously published solutions.
Introduction

In the practical design of pile foundations, the calculations related to
the determination of the dimensions of piles are divided into two distinct
groups: the stability calculations and the serviceability problems. They
are treated in two separate and unrelated ways. Elasticity theory is used
for displacement calculations while plasticity theory is used to evaluate
the stability of structures.

Conventionally stability calculations of piles subjected to horizontal
loads are based primarily on calculations at failure. In these methods, the
soil is taken to be everywhere in a state of failure under ultimate hori-
zontal load. The failure load of a laterally loaded pile was first treated in
detail by Broms [1], who related the force per unit length P on the pile to
the strength of the soil k. For cohesive soils, a constant limiting pressure
is assumed at the soil-pile interface. Close to the ground surface, the
limiting values were modified to allow for the different mode of defor-
mation. Brom's approach was largely empirical with no theoretical
justification.

Plane-strain conditions are often assumed in the analysis of laterally
loaded piles, and the pile is modelled as a rigid disc. Randolph and
Houlsby [2] used the limit theorems of plasticity to calculate upper and
lower bounds to collapse load of a laterally loaded disc. The upper bound
solution is based on kinematically admissible velocity fields with dis-
continuities. An alternative velocity field with discontinuities is intro-
duced by Martin and Randolph [3] who were able were able to bracket
the exact collapse load with a difference less than 0.65% between the
upper and lower bound solutions. Klar and Osman [4] developed a
continuous flow field for upper bound calculations of laterally loaded
rigid discs with different soil/disc interface.

In pile displacement calculations, Winkler's [5] concept of the
modulus of subgrade reaction is often used in the design. These methods
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compare the pile to a beam on elastic supports, and soil reaction is
assumed to be proportional to lateral deformations and the modulus of
subgrade reaction taken as the coefficient of proportionality. In more
recent work, the moduli of reaction are defined as the slope of the
pressure-deflexion curve. The latter approach is more useful as the sub-
grade modulus is similar, both in dimensions and value, to the stiffness of
the soil.

An attractive alternative to Winkler analysis for displacement of
laterally loaded piles is the use of continuum elastic approach based on
variational method. This approach was first introduced by Vlasov and
Leontiev [6] for analysis of beam resting on elastic layer. Vlasov varia-
tional approach has been used to analysis shallow foundations (see for
examples [7–9]). It was then extended to pile displacement analysis
[10–13]. In Vlasov variational approach, the displacements are expressed
as a multiplication of one-dimensional functions. For example, in the 3D
analysis of a laterally loaded pile in cylindrical coordinates (r,θ,z), the
radial displacement U and the circumferential displacement V can be
expressed by:

U ¼ FðzÞψ1ðr; θÞ ¼ FðzÞuðrÞcos θ
V ¼ FðzÞψ2ðr; θÞ ¼ �FðzÞvðrÞsin θ (1)

where u(r) and v(r) are functions of r only and F(z) is the deflexion of the
pile.

The axial displacement of the pile is ignored as it is significantly small
compared with the radial and circumferential displacement. The key
advantage of the variational approach is that the solution of two and
three-dimensional problems is obtained by solving systems of one-
dimensional equations (as it will be demonstrated later). Therefore,
simplified solutions could be achieved. The Vlasov variational analysis is
not restricted to foundations problems, but it could be applied to various
boundary-value problems. For example, Osman and Birchall [14] used
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this approach to analyse tunnels deeply embedded in viscoelastic soil.
The main limitation of Vlasov variational approach and Winkler

methods is that they are based on the assumption that the soil is an elastic
material. It is well established that soil exhibits plasticity behaviour even
at a small strain level. This note presents the first attempt to extend
Vlasov variational methods to elastoplastic problems.

It should be noted that in Vlasov variational analysis of laterally
loaded piles the terms uðrÞcos θ and -v(r)sinθ in equation (1) represents
radial and the circumferential deformation at any horizontal plane along
the pile normalised by the equivalent pile deflexion, and they are uniform
along the pile. Therefore, plane-strain simplification is justified because
the displacements of the various sections of the pile vary in a continuous
manner. In this note, plane-strain conditions are assumed, and the au-
thors present an elastoplastic analysis of a rigid disc embedded in an
elastoplastic material and subjected to a lateral load using the variation
method.

Formulation of elastoplastic solution

The displacement components in cylindrical coordinates could be
represented by Fourier series expressed as:

U¼
XL

k¼0

uk ð1ÞðrÞcos kθ þ
XL

k¼1

uk ð2ÞðrÞsin kθ (2)

V ¼ �
XL

k¼1

vk ð1ÞðrÞsin kθ þ
XL

k¼0

vk ð2ÞðrÞcos kθ (3)

where U and V are the radial and circumferential incremental displace-
ments, and ukð1Þ , ukð2Þ , vkð1Þ and vkð2Þ are the 0th and Lth order cosine and
Lth order sine harmonic coefficients of variables U and V. The total strain
can be found from the first derivative of displacements as

ε¼

8>><>>:
εrr
εθθ
εzz
2εrθ

9>>=>>; ¼

8>>>>>>>>><>>>>>>>>>:

dU
dr

1
r

�
U þ dV

dθ

�
0

1
r
dU
dθ

þ dV
dr

� V
r

9>>>>>>>>>=>>>>>>>>>;
(4)

where εij denotes a strain component and ε is a total strain.
An elastic strain can be calculated as:

εe ¼ ε� εp (5)

εp represents plastic strain which could also be expressed by Fourier se-
ries as:

εrp ¼
XL

k¼0

bεrkpð1ÞðrÞcos kθ þXL

k¼1

bεrpð2ÞðrÞsin kθ (6)

εθp ¼
XL

k¼0

bεθkpð1ÞðrÞcos kθ þXL

k¼1

bεθkpð2ÞðrÞsin kθ (7)

εzp ¼
XL

k¼0

bεzkpð1ÞðrÞcos kθ þXL

k¼1

bεzkpð2ÞðrÞsin kθ (8)

εrθp ¼ �
XL

k¼1

bεrθkpð1ÞðrÞsin kθ þXL

k¼0

bεrθkpð2ÞðrÞcos kθ (9)

In plane strain, elastic stresses can be calculated by multiplying the
elastic strain vector with the stiffness matrix:
2

>>< σrr
σθθ

>>=
e
fσg¼

8
>>: σzz

σrθ

9
>>;¼ ½D�fε g

¼

2664
λþ2G λ λ

λ λþ2G λ
λ λ λþ2G

G

3775

8>>>>>>>>>><>>>>>>>>>>:

dU
dr

� εrrp

1
r

�
UþdV

dθ

�
� εθθp

0�εzzp

1
r
dU
dθ

þdV
dr

�V
r
�2εrθp

9>>>>>>>>>>=>>>>>>>>>>;
(10)

where ½D� is the stiffness matrix, λ and G are Lame constants which could
be taken to be constant for linear soil.

The total potential energy can be expressed asY
¼F þ D (11)

where F denotes the free energy and D is dissipated energy.
Equation (10) can be rewritten as:Y
¼fσgTfεeg þ fχgTfεpg (12)

where χ is the dissipative stress.
Equation (11) could be also written in term of total strainY
¼fσgTfεg þ fχ � σgTfεpg (13)

From Ziegler's orthogonality condition [15].

fχ � σgT ¼ 0 (14)

Then equation (12) reduces to:Y
¼fσgTfεg (15)

The free energy in the soil domain surrounding the disc can then
calculated by:

F¼
Z rm

r0

r
Z 2π

0

1
2
fσgTfεegdθdr (16)

where rm is the radial distance at which the displacement becomes
insignificant.

The difference between external and internal energy must be zero

δ
Y

¼ δ
Y

int
� δ

Y
ext

¼ 0 (17)

The energy equation can be differentiated to obtain a governing
equation of the form:

δ
Y

¼
X�

AkðU; V ; WÞδuk ð1Þ
�þ�

BkðU; V ; WÞδuk ð2Þ
�þ�

CkðU; V ; WÞδvk ð1Þ
�

þ�
DkðU; V ; WÞδvk ð2Þ

�¼0

(18)

The governing equations for deformation can be obtained by col-
lecting the coefficients of δuk and δvk

d2uk
dr2

þ1
r
duk
dr

�
�
2þ k2ð1�2vÞ�2v

2ð1� vÞ
�

uk
r2
þkð3�4vÞvk

2ð1�vÞr2 � k
2ð1�vÞ

1
r
dvk
dr

¼Frk
p

(19)

d2vk
dr2

þ1
r
dvk
dr

�
�
1þ2k2ð1� vÞ�2v

ð1�2vÞ
�

vk
r2
þkð3�4vÞuk

ð1�2vÞr2 þ k
ð1�2vÞ

1
r
duk
dr

¼Fθk
p

(20)



Fig. 1. Laterally loaded disc in elasto-plastic material.
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where

Frk
p ¼ dbεrkp

dr
þ v
ð1� vÞ

�
dbεθkp
dr

þ dbεzkp
dr

�
þ ð1� 2vÞ

ð1� vÞ
�bεrkp � bεθkp � kbεrθkp

r

�
(21)

Fθk
p ¼ 2

dbεrθkp
dr

þ 2kv
ð1� 2vÞ

�bεrkp þ bεzkp
r

�
þ 2kð1� vÞ

ð1� 2vÞ
�bεθkp

r

�
þ 4

bεrθkp
r

(22)

It should be emphasised that equations (19)–(22) are one-
dimensional equations (a function of r only) and this is only possible
by using the Fourier series approximation for the displacements and the
strains and their integration properties. Therefore, the 2D problem is
transformed into a much simpler system of 1D equations.

Boundary conditions

For a rough interface between the rigid disc and the surrounding soil
(if a lateral load is associated with θ ¼ 0), the displacement at the
boundary is given by:

uk ¼
�
Δ if k ¼ 1
0 if k 6¼ 1

�
at r ¼ r0 (23)

vk ¼
�
Δ if k ¼ 1
0 if k 6¼ 1

�
at r ¼ r0 (24)

uk ¼ vk ¼ 0 at r ¼ rm (25)

where Δ is the lateral deformation of the disc.

Solution procedure

In elastoplastic problems, an iterative procedure is required to solve
the governing equations (19 and 20). At first, the right hand of equations
(19) and (20), which represent the plasticity terms, can be taken to be
zero (i.e. we start by assuming elastic response). Then the components
uk and vk and the displacements are calculated, and the total strains are
calculated using equation (3). The stresses are then calculated from the
total strain. If the stresses lie outside the assumed yield criteria, the
stresses are corrected, and the plastic components of strains are calcu-
lated. Once the plastic strain is calculated, then the harmonic coefficients
are obtained using the fitted method (see Appendix) and substituted in
equations (21) and (22) to calculate Frkp and Fθkp . The plastic terms in
equations (19) and (20) are then updated, and the equations are solved
for new displacements. These calculations need to be iterated until the
difference between the new and old displacements become within a
certain tolerance.

The lateral force per unit length can then be obtained by integrating
the stresses around the disc as follows:

P¼ �
Z 2π

0
r0ðσr cos θ� σrθ sin θÞdθ (26)

Validation of the proposed solution

Elastic material
For a purely elastic material, Frkp ¼ 0 and Fθkp ¼ 0 and problem is

simplified so that equations (18) and (19) are needed to be solved only
for k ¼ 1.

Baugelin et al. [16] and Klar and Osman [4] obtained solutions for
displacements for a laterally loaded disc in an elastic material. These
solutions are obtained by using the general solution of Airy Stress func-
tion derived by Mitchell [17]. The elastic analytical solution required an
assumption that the displacements vanished at a distance rm away from a
rigid disc representing a pile of radius ro (Fig. 1), without which infinite
3

displacements would result. Baguelin et al. [16] also suggested expres-
sions relating rm to the embedded length of the pile for different pile head
fixity conditions. Assuming the pile is bonded to an intact elastic soil,
expressions for radial and circumferential stresses in the soil around the
pile are:

σr¼

� P
4πr0

1
ð1�νÞ

"
ð3�2νÞr0

r
� 1

1þðr0=rmÞ2
�r0
r

�3
þ 1
ð3�4νÞ

1

1þðrm=r0Þ2
r
r0

#
cosθ

(27)

σθ¼ P
4πr0

1
ð1�νÞ

"
ð1�2νÞr0

r
� 1

1þðr0=rmÞ2
�r0
r

�3
� 3
ð3�4νÞ

1

1þðrm=r0Þ2
r
r0

#
cosθ

(28)

It should be noted here that the classical solid mechanics sign
convention is adopted here where compressive stresses are negative. The
corresponding radial displacement is given by:

U¼ P
16πG

1
1�ν

�
ð3�4νÞln

�rm
r

�2
�
�r0
r

�2rm2� r2

rm2þ r20
�ð4ν�1Þ
ð3�4νÞ

rm2� r2

rm2þ r20

	
cos θ

(29)

where G is the shear modulus of the soil and ν is Poisson ratio.
Baguelin et al. [16] also developed solutions that take into account

the disturbance of the soil in the vicinity of the pile. Expressions relating
rm to the embedded length of the pile were suggested for different pile
head fixity conditions. In elatic solutions, it is helpful to form dimen-
sionless groups of relevant parameters, rather than investigate how the
solution is affected by the variation of each individual soil parameter.
Following the technique of dimensional analysis, it can be shown that:

UG
P

¼ f1

�
ν;
R
r0

�
(30)

Similarly, the incremental effective stress can be expressed as:

σr0
P

¼ f2

�
ν;
R
r0

�
(31)

Fig. 2 shows that the solution for the displacements and the stresses
obtained from the current analysis, which is based on variational method
(Equations (19) and (20)), is identical to that obtained from Airy Stress
function [16].
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Fig. 2. Elastic analysis: comparison with previously published solutions.
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Elasto-plastic material

There are no closed-form expressions for the displacement and stress
for the case of a laterally loaded rigid disc in an elastoplastic material.
Therefore, the comparison is made with finite element FE analysis. The
FE analysis was carried out using ABAQUS software [18]. The soil was
modelled using eight-node plane-strain elements. Because of the sym-
metry, only half of the problem was modelled. Full-fixity boundary
conditions are assumed at the far-field while displacements normal to the
line of symmetry are prevented. The FE mesh consisted of 504 elements
and 1605 nodes, with details of the finite element mesh shown in Fig. 3.
4

The rigid disc is taken to have a radius of 1 m embedded in elastoplastic
soil with soil's Young modulus Es ¼ 10 MPa and Poisson ratio υ ¼ 0:499.

For simplification, the comparison is made with Von-Mises yield
criteria:

F¼ σ�2k (32)

where σ denotes the second stress invariant, and 2k is the uniaxial yield
stress.

The plastic strain can be estimated as



Fig. 3. Finite element mesh (rm ¼ 60 m, r0 ¼ 1 m).
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εp ¼ λ
dF
dσ

(33)
By using a radial return algorithm, the Lagrangian multiplier λ can be
evaluated as

Δλ ¼ σ � 2k
3G

(34)

F represents the plastic potential function, and Δλ is equal to the devia-
toric plastic strain equivalent.

Fig. 4 shows the rigid disc load-displacement curve obtained from the
analytical solution is in consistent with the finite element results. The
analytical solutions are obtained using trucated Fourier series with
L ¼ 20 (equation (2)). Contours of deviatoric stresses (Mises stresses) are
shown in Fig. 5. Fig. 5a shows the contours obtained using ABAQUS finite
element software while Fig. 5b shows the results from the analytical
solutions. The contours pattern are in general agreements between the FE
Fig. 4. The deflection of a laterally-loaded disc in elasto-plastic mate-
rial (θ ¼ 0�).

Fig. 5. Contours of deviatoric stress: (a) ABAQUS FE analysis (b) Analyt-
ical solution.

5

and the analytical solution. The minor discrepancies might be due to the
algorithm adopted by ABAQUS for plotting the contours. Then values are
then extrapolated to the nodes and averaged then the contours plotted
using the nodal values. It should be borne in mind that standard FE yields
a stress field that is discontinuous across interelement boundaries.

Conclusions

An analytical solution has been developed to predict the response of a
rigid in an elastoplastic soil. The displacement components in cylindrical
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coordinates are represented by Fourier series. The governing differential
equations are obtained using the principle of minimizing the potential
energy. The results were validated against previously published solutions
and against finite element analysis.

The key advantage of the presented methodology in this paper is that
solutions for two and three-dimensional problems are obtained by solv-
ing one-dimensional governing equations. Therefore, the analytical so-
lutions presented in this note could be regarded as an extension to Vlasov
variation methods to elastoplastic problems.

The validity of the proposed analytical solution is demonstrated here
by analysing a laterally loaded pile assuming plane strain assumptions.
However, the methodology could be extended the 3D analysis of piles by
rewriting the radial and circumferential displacements in term of Fourier
Location of value x and θ

Fig. 6. Fitted method: locations of value xi

6

series and follow the procedure illustrated in this note.
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Appendix

The fitted method is suitable to determine the harmonic coefficients (see Ref. [19] for example), by assuming x is known values, and X represents the
unknown harmonic coefficients. Fourier series harmonic coefficients can be estimated by considering variable xwhich is a function of θ (x¼ f ðθÞÞ. Then
x can be given by

x¼X0 þ X1 cos θ þ X1 sin θ þ X2 cos 2 θ þ X2 sin 2 θ þ…þ Xl cos lθ þ Xl sin lθ þ… (35)

Equation (35) can be rewritten in matrix form as

8>>>>>><>>>>>>:

x1
x2
x3

xn�1

xn

9>>>>>>=>>>>>>;
¼

26666664
1 cosθ1 sinθ1 ⋯ cos Lθ1 sin Lθ1
1 cosθ2 sinθ2 ⋯ cos Lθ2 sin Lθ2
1 cosθ3 sinθ3 ⋯ cos Lθ3 sin Lθ3
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
1 cosθn�1 sinθn�1 ⋯ cos Lθn�1 sin Lθn�1

1 cosθn sinθn ⋯ cos Lθn sin Lθn

37777775

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

x1

x2

x3

X
n�1
2

X
n�1
2

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

(36)

which can be rewritten as

x¼ ½H�X (37)

where L denotes the order of Fourier series, x is the vector of known values, X represents the vector of unknown harmonic coefficients and H is the
harmonic transformation matrix.

Solutions have been derived for the special case of having known x, at equispaced θ values (see Fig. 6). The harmonic coefficients can be estimated
from the following equations

X0 ¼ 1
n

Xn

i¼l

xi (38a)

Xk ¼ 2
n

Xn

i¼l

xi cos kði� lÞα (38b)
Xk ¼ 2
n

Xn

i¼l

xi sin kði� lÞα (38c)
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