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Abstract: Many studies have shown that the average iron (Fe) isotope compositions of mantle-derived
rocks, mantle peridotite and model mantle are close to those of chondrites. Therefore, it is considered
that chondrite values represent the bulk Earth Fe isotope composition. However, this is a brave
assumption because nearly 90% of Fe of the Earth is in the core, where its Fe isotope composition is
unknown, but it is required to construct bulk Earth Fe isotope composition. We approach the problem
by assuming that the Earth’s core separation can be approximated in terms of the Sudbury-type
Ni-Cu sulfide mineralization, where sulfide-saturated mafic magmas segregate into immiscible
sulfide liquid and silicate liquid. Their density/buoyancy controlled stratification and solidification
produced net-textured ores above massive ores and below disseminated ores. The coexisting sulfide
minerals (pyrrhotite (Po) > pentlandite (Pn) > chalcopyrite (Cp)) and silicate minerals (olivine
(Ol) > orthopyroxene (Opx) > clinopyroxene (Cpx)) are expected to hold messages on Fe isotope
fractionation between the two liquids before their solidification. We studied the net-textured ores of
the Sudbury-type Jinchuan Ni-Cu sulfide deposit. The sulfide minerals show varying δ56Fe values
(−1.37–−0.74‰ (Po) < 0.09–0.56‰ (Cp) < 0.53–1.05‰ (Pn)), but silicate minerals (Ol, Opx, and Cpx)
have δ56Fe values close to chondrites (δ56Fe = −0.01 ± 0.01‰). The heavy δ56Fe value (0.52–0.60‰)
of serpentines may reflect Fe isotopes exchange with the coexisting pyrrhotite with light δ56Fe. We
obtained an equilibrium fractionation factor of ∆56Fesilicate-sulfide ≈ 0.51‰ between reconstructed
silicate liquid (δ56Fe ≈ 0.21‰) and sulfide liquid (δ56Fe ≈ −0.30‰), or ∆56Fesilicate-sulfide ≈ 0.36‰
between the weighted mean bulk-silicate minerals (δ56Fe[0.70ol,0.25opx,0.05cpx] = 0.06‰) with weighted
mean bulk-sulfide minerals (δ56Fe ≈ −0.30‰). Our study indicates that significant Fe isotope
fractionation does take place between silicate and sulfide liquids during the Sudbury-type sulfide
mineralization. We hypothesize that significant iron isotope fractionation must have taken place
during core–mantle segregation, and the bulk Earth may have lighter Fe isotope composition than
chondrites although Fe isotope analysis on experimental sulfide-silicate liquids produced under the
varying mantle depth conditions is needed to test our results. We advocate the importance of further
research on the subject. Given the close Fe-Ni association in the magmatic mineralization and the
majority of the Earth’s Ni is also in the core, we infer that Ni isotope fractionation must also have
taken place during the core separation that needs attention.

Keywords: equilibrium iron isotope fractionation; Jinchuan magmatic sulfide deposit; net-textured sulfide
ores; pyrrhotite; chalcopyrite; pentlandite; olivine and pyroxenes; core–mantle Fe isotope fractionation
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1. Introduction

The rapid technological development in mass spectrometry has allowed determination
of non-traditional stable isotopes of many elements (e.g., Mg, Fe, Cu, Zn, Mo, etc.) in all
sorts of Earth materials, which has led to the knowledge that these isotopes do vary on all
scales. The question remains whether the observed isotope variation for a given element
is inherited from the heterogeneous accretion of our planet or if the variation may have
resulted from Earth processes. Our present studies assume uniform bulk Earth isotope
composition for a given element, and then interpret isotope variations between minerals,
between rocks, and between Earth reservoirs as resulting from Earth processes. It is thus
common to read in the literature that isotope variations can be used to constrain Earth
processes, but in practice we cannot yet constrain any process before we fully understand
the mechanisms of isotope fractionation in response to varying chemical and physical
conditions and processes. For this very reason, the iron isotope compositions of the
coexisting minerals (e.g., silicates and sulfides) in Sudbury-type ores from the Jinchuan
magmatic Ni-Cu sulfide deposit were studied to accumulate observations and to evaluate
the possible iron isotope fractionation between the silicate and sulfide liquids prior to the
crystallization of these minerals. Importantly, the data and understanding of this work
provide a fundamental first step for discussing possible Fe isotope fractionation between
the Earth’s mantle and its core that hosts almost 90% of the Earth’s iron.

Iron (Fe) is the most abundant element in the Earth by mass, and it is also one of the
most important multivalent elements (Fe0, Fe2+, and Fe3+) in the Earth with four stable
isotopes (54Fe (5.84%), 56Fe (91.67%), 57Fe (2.12%), and 58Fe (0.28%)). The observation that
iron isotopes of mantle derived melts such as mid-ocean ridge basalts (MORB) and ocean
island basalts (OIB) (δ56Fe = 0.11 ± 0.03‰), mantle peridotites (δ56Fe = 0.01 ± 0.02‰),
and the estimated fertile upper mantle (δ56Fe = 0.02 ± 0.03‰) [1] have sufficient sim-
ilarity to those of carbonaceous and ordinary chondrites with a uniform composition
(δ56Fe = −0.01 ± 0.01‰) [2–6] has led to the suggestion that carbonaceous chondrites
represent the iron isotope composition of the bulk Earth [7]. The implicit assumption is that
the Earth’s core has the same Fe isotope composition as the silicate Earth and there is no Fe
isotope fractionation during the Earth’s core separation. However, some studies argued
that peridotites are not necessarily representative of the silicate Earth composition and as-
sumed instead that the Earth’s mantle as a whole has a heavier iron isotope composition [8].
Beyond that, equating upper mantle iron isotope composition inferred from oceanic basalts
and accessible mantle peridotites with chondrite iron isotope composition is very risky
because ~87% of Earth’s iron is in the core. Any metal-silicate isotope fractionation would
significantly affect iron isotopes in the Earth’s mantle [9]. Thus, to test the above hypothesis
that “carbonaceous chondrite iron isotope composition represents that of the bulk Earth”,
it is necessary to ascertain the iron isotope composition of the Earth’s core, i.e., possible Fe
isotope fractionation during the Earth’s core separation.

Current research on core–mantle iron isotope fractionation is essentially absent be-
cause there is no core material available to study. Some experimental simulations suggest
that iron isotope fractionation between silicate and metal phases at different conditions
(including those relevant to core formation) is small and negligible (e.g., [10–17]). The
most credible approach would be to carry out Fe isotope analysis on sulfide-silicate liquids
experimentally produced under the deep mantle conditions. The latter is challenging
at present, but we can, as a logical first step, analyze Fe isotopes of naturally occurring
sulfide-silicate liquids. The Sudbury-type Ni-Cu-Fe sulfide ores are such materials repre-
senting solidified sulfide-silicate liquids resulting from sulfur-rich and sulfide saturated
mafic magma segregation. Therefore, we choose to study net-textured ore samples from
the Jinchuan magmatic ore deposit, which is the third largest Sudbury-type magmatic
Ni-Cu-Fe sulfide ore mineralization. The ore formation process is hypothesized as best
approximating the magmatic and physical processes of the Earth’s core formation because
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of the strong chemical Fe-S and Fe-O bunding before S removal to convert Fe-S into the
metallic Fe (Ni and other light elements and trace metals) core of the Earth (detailed in
Figure 1).
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Figure 1. A schematic scenario of magmatic Ni-Cu-Fe sulfide mineralization to illustrate the possible process of core–mantle
separation through sulfide-silicate melt segregation. (a) Portion of a cross-section illustrating the silicate-sulfide melt
segregation in a magma reservoir relevant to the Sudbury-type sulfide ore mineralization (modified from [18]), where the
sulfide-saturated mafic magma segregates to immiscible sulfide liquid from the silicate liquid, and the denser sulfide liquid
sinks to the bottom while olivine dominated mafic minerals are crystallizing from the silicate liquid [19]. (b) Continuation
of the process in (a), which forms the peridotite of cumulate origin dominated by olivine and varying textured ore types
downwards (disseminated, net-textured, and massive ores) as illustrated (modified from [18,20]). (c) While the core is largely
metallic (Fe, Ni, etc.), we reason that the core separation must have undergone sulfide-silicate segregation due to density
difference, and the sulfide melt must have then developed into metallic core through sulfur removal. As the latter process
should not cause iron isotope fractionation, the metallic iron will retain the sulfide liquid iron isotope characteristics. Hence,
the net-textured ores showing equilibrium contact between silicates and sulfides provide ideal materials for understanding
possible iron isotope fractionation between the metallic core and silicate Earth during core formation. We do not consider
the effects of deep mantle pressures and temperatures in this strategically important first step study (see text).

This approach has two assumptions:

(1) The core separation was accomplished through silicate melt and sulfide melt segrega-
tion due to density difference. The sulfide melt must have then developed into the
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Fe-Ni metallic core through sulfur removal under core depth pressure-temperature
conditions. Hence the prior sulfides and metals must possess the same iron isotope
composition, representing that of the metallic core in equilibrium with the silicate
Earth (Figure 1).

(2) The core–mantle separation took place under high pressure and temperature in the
deep Earth, but the magmatism takes place under upper mantle or deep crustal
conditions. We do not ignore the effects of pressure and temperature on potential Fe
isotope fractionation, but we use the best natural materials to study this important
problem as the strategically must-do first step. The results will form the foundation
for further studies.

In this article, we report the results of our study on Sudbury-type magmatic sulfide
ore samples (net-textured and disseminated) from the Jinchuan Ni-Cu sulfide deposit in
China, one of the largest Sudbury-type magmatic ore deposits on Earth.

2. Geological Setting

The Jinchuan Ni-Cu sulfide deposit is the third largest magmatic Ni-Cu sulfide de-
posit next to Sudbury and Noril’sk [21], which contains more than 500 million tons of
sulfide ores with an average Ni grade of 1.2 wt.% and Cu grade of 0.7 wt.% [22] plus
economically significant PGE metals. The Jinchuan deposit is located east of the Long-
shoushan uplift belt on the southwestern margin of the North China Craton, with the Alxa
block to the north and the North Qilian orogenic belt to the south (Figure 2b), and is divided
by multiple faults into four mining areas: III, I, II, and IV from northwest to southeast [23]
(Figure 2c). The deposit is hosted in the northwest lenticular mafic-ultramafic intrusive
body that intruding the Longshoushan Paleoproterozoic strata. This ore-bearing intrusion
is dominated by dunite, harzburgite and lherzolite of cumulate origin with a high degree
of serpentinization [24]. The Jinchuan deposit has massive, net-textured and disseminated
ores (Figures 1 and 3), consisting of sulfide minerals (pyrrhotite, pentlandite, chalcopyrite,
etc.) coexisting with silicate minerals (olivine, clinopyroxene, orthopyroxene, etc.), minor
oxide minerals (chromite, magnetite, etc.) and secondary alteration minerals (serpentine,
amphibole, chlorite, dolomite, etc.).

Much research has been done on the ore genesis and mineralization age of the Jinchuan
deposit. Re-Os isochron ages (833 ± 35 Ma [28]; 1404−1508 Ma [29]), SHRIMP U-Pb ages
on zircon and baddeleyite (825−870 Ma [29–31]) and Sm-Nd isochron ages (1508 ± 31
Ma [32]) have been reported in the literature, the U-Pb ages on zircon and baddeleyite
(~830 Ma) are thought to be consistent with the break-up of the Rodinia supercontinent.
Therefore, the mantle derived magmatism associated with the break-up of the Rodinia
supercontinent is considered to be responsible for the Jinchuan ore deposit [30,33–36]
although rifting-related intraplate magmatism is also proposed as an alternative on the
basis of the geochemistry of metabasite [37] and drill core samples [38].
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Figure 2. Simplified geological maps showing major tectonic units of China (a) (modified from [25]), location of the Jinchuan
magmatic Ni-Cu ore deposit in the Longshoushan terrane in the context of regional geology (b) and distribution of ore
bodies in the Jinchuan deposit (c) (modified from [26,27]).
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Figure 3. Photographs of the typical net-textured (a–c) and disseminated (d) sulfide ore samples from the Jinchuan Ni-Cu
sulfide deposit. Samples JC-1, 2, and 3 are net-textured ores with sulfides filling the interstices between silicate mineral
grains, sample JC-4 is a disseminated ore with sulfides sparsely dispersed between silicate mineral grains.

3. Sample and Methods
3.1. Sample

We collected four fresh drill core sulfide ore samples from the Jinchuan deposit
(Figure 3). Samples JC-1, 2, and 3 were net-textured ores with sulfides filling the interstices
between silicate mineral grains. JC-1 and JC-2 were sulfide-rich dunite dominated by
olivine and sulfide, and JC-3 was sulfide-rich lherzolite dominated by olivine, pyroxene
(orthopyroxene > clinopyroxene), and sulfide. Sample JC-4 was a disseminated ore with
sulfides sparsely dispersed between silicate mineral grains, which was collected from
the metasomatic orebody at the contact of the ultrabasic intrusion with dolomite marble,
which was dominated by dolomite with a small amount of amphibole (tremolite and
actinolite) and phlogopite. Silicate minerals dominated by olivine are partially or entirely
serpentinized (Figure 4), with minor magmatic chromite (or chrome spinel) and secondary
magnetite traces. The sulfide mineral assemblage in different ores was similar, dominated
by pyrrhotite (~55% of all sulfides), pentlandite (~30%), and chalcopyrite (~15%). Minor
cubanite can be found in some samples (less than 2%; Figure 4d,e). Serpentine was the
most abundant altered mineral after olivine and pyroxene and takes the pseudomorphs of
these silicate minerals without showing any deformation. Small olivine relicts were locally
seen in mesh-textured serpentines. Except for sample JC-4, there were minor other altered
minerals such as phlogopite, amphibole, and dolomite (less than 1% in net-textured ore
samples JC-1, 2, and 3) (Figure 4d,i).
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Figure 4. Photomicrographs and backscattered electron images of coexisting minerals from net-textured ores (JC-1 (a–d),
JC-2 (e,f), and JC-3 (g,h)) and disseminated ore (JC-4 (i)) under transmitted light (h), reflected light (b–e,i). Panels of a and
f-g are backscattered electron images. (a) Sample JC-1 is a net-textured sulfide-rich dunite, where olivine is almost entirely
serpentinized with tiny olivine relicts preserved for analysis (Fo = 82–84%) and minute secondary magnetite traces along
cracks. The sulfides are mostly pyrrhotite, pentlandite, and chalcopyrite. (b) Serpentines take the pseudomorphs after
euhedral olivine with minute relicts. Pyrrhotite accounts for half of all the sulfide minerals. (c) Similar to (a) and (b), but
there are chromite granules coexisting with sulfide minerals as indicated. (d) Minor secondary magnetite of serpentinization
origin along cracks and grain boundaries of sulfide minerals. There are also grains of dolomite and phlogopite formed
by the late alteration. (e) Sample JC-2 is a net-textured sulfide-rich dunite with serpentinization occurring along the
olivine cracks. (f) Sulfide minerals are connected to form a network between serpentinized olivine grains. (g) Sample
JC-3 is a net-textured sulfide-rich lherzolite with minor serpentinization. (h) Fresh portion of JC-3, showing cumulate
of olivine, orthopyroxene, and minor clinopyroxene. The clinopyroxene is anhedral as interstitial fills between olivine
and orthopyroxene. (i) Sample JC-4 is a disseminated sulfide-rich altered ore from metasomatic orebody, containing
altered dolomite, phlogopite, and amphibole with minor serpentine. Mineral abbreviations: Ol = olivine; Srp = serpentine;
Cpx = clinopyroxene; Opx = orthopyroxene; Chr = chromite; Mag = magnetite; Po = pyrrhotite; Cp = chalcopyrite;
Pn = pentlandite; Dol = dolomite; Phl = phlogopite.

Detailed petrography of these four ore samples is given in Table 1. Representative
photomicrographs and backscattered electron images are shown in Figure 4. Samples JC-1
and 2 were sulfide-rich dunite having 70–80% olivine (highly serpentinized), sample JC-3
was a sulfide-rich lherzolite, consisting of olivine and pyroxenes (orthopyroxene > clinopy-
roxene), and sample JC-4 was a sulfide-rich altered ore, which was mainly composed of
dolomite, phlogopite, amphibole, and minor serpentine.
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Table 1. Petrography of studied ore samples from the Jinchuan deposit.

Sample No. Ore Type Petrographic Description

JC-1 Net-textured ore

sulfide-rich dunite, composed chiefly of olivine (~8%), which has
been completely altered to serpentine (~68%) (olivine + serpentine
≈ 76%). The interstitial space between olivine grains is mainly filled
by sulfides (~22%), including pyrrhotite (~12%), chalcopyrite (~4%),
and pentlandite (~6%), forming the structure of spongy meteorite
(net-texture), minor Cr-spinel (~1%) and altered minerals (~1%).

JC-2 Net-textured ore

sulfide-rich dunite, composed chiefly of olivine (~32%), which has
been strongly serpentinized (~46%) ((olivine + serpentine ≈ 78%).
The interstitial space between olivine grains is mainly filled by
sulfides (~18%), including pyrrhotite (~10%), chalcopyrite (~2%),
and pentlandite (~6%), forming the structure of spongy meteorite
(net-texture), minor Cr-spinel (~1%), and altered minerals (~3%).

JC-3 Net-textured ore

sulfide-rich lherzolite, consists of olivine (~50%), pyroxenes (~35%;
orthopyroxene (~20%) > clinopyroxene (~15%)), plagioclase (~4%),
and minor Cr-spinel (~1%). Metallic sulfides are mainly composed
of pyrrhotite (~5%), chalcopyrite (~3%), pentlandite (~2%), and
minor cubanite.

JC-4 Disseminated ore

sulfide-rich altered ore from metasomatic orebody at the contact of
the mafic intrusion with dolomite marble dominated by dolomite
(~50%), phlogopite (~16%), amphibole (~12%), sulfide (~16%), and
a small amount of serpentine (~6%).

The mineral modes in each sample are determined by point-counting.

3.2. Methods

Four ore samples (JC-1–4) (Figure 3) were made thin sections and separated for miner-
als (i.e., pyrrhotite, chalcopyrite, pentlandite, serpentine, magnetite, olivine, clinopyroxene,
and orthopyroxene) in the Hebei Geological Survey. Major element analysis on sulfides
were done using a JXI-8100 Electron Microprobe Analyser (EMPA) in the Key Lab of Min-
eral Resources and Geological Engineering, Chang’an University in China. The analytical
conditions were 15 kV voltage, 1.0 × 10−8 A electric current, and 1 µm beam spot. The
analytical data on sulfides are given in Table 2.

Major and trace element analyses on silicate and oxide minerals were done using laser
ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) in the Laboratory of
Ocean Lithosphere and Mantle Dynamics, Institute of Oceanology, Chinese Academy of
Sciences (IOCAS). The instrument consists of a 193 nm excimer Ar-F laser ablation system
attached to an Agilent-7900 inductively coupled plasma mass spectrometer. The analytical
conditions were 40 µm ablation beam spot, 3.94 J/cm2 energy density, and 6 Hz frequency.
Each analysis included 25 s background collection (gas blank) and 50 s data collection.
United States Geological Survey (USGS) rock standards (BHVO-2G, BIR-1G, and BCR-2G)
were used as external standards for calibration, and Si was used to correct for instrumental
drift following [39]. The raw data were processed using ICPMSDataCal_ver11.0 [39,40]
and data quality was assessed by repeated analyses of GSE-1G over the analytical session.
The analytical data on silicate and oxide minerals are given in Table 3.

The major and trace element analyses of the bulk-rock ore samples and mineral sepa-
rates were done in the Laboratory of Ocean Lithosphere and Mantle Dynamics, IOCAS.
The bulk-rock samples were digested using the alkali dissolution method, while mineral
separates were digested using the acid dissolution method. The major elements of the
samples were analyzed using an inductively coupled plasma optical emission spectrometer
(ICP-OES, i.e., an Agilent-5100) with USGS rock standards (BCR-2 and BHVO-2) used to
monitor the data quality following [41]. The analytical error of major elements is <5%.
However, as alkali dissolution causes S loss in bulk-rock ore samples and the acid disso-
lution causes S and Si losses in mineral separates, these elements were thus unanalyzed.
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Given the small sample size, no loss-on-ignition was done. Therefore, the totals of major
elements of bulk-rock ore samples and mineral separates were variably less than 100%,
but this did not compromise our research objective. The trace elements of the samples
were measured using an inductively coupled plasma mass spectrometer (ICP-MS, i.e.,
an Agilent-7900) with the data quality better than 10%, following the method detailed
in [42]. The analytical data are given in Table 4.

Table 2. Averaged major element content of each sulfide mineral of ore samples in the Jinchuan deposit by EMPA analysis.

Sample No. Ore Type Sulfide Mineral Calculated Molecular Formula N
S Fe Cu Ni Total

wt.% wt.% wt.% wt.% wt.%

JC-1 Net-textured
ore

Pyrrhotite Fe0.855S 36 39.86 59.37 0.044 0.092 99.53
Chalcopyrite Cu0.944Fe0.959S2 32 36.20 30.23 33.85 0.051 100.5
Pentlandite (Fe4.531,Ni3.825)8.355S8 25 34.51 34.04 0.051 30.20 99.31

JC-2 Net-textured
ore

Pyrrhotite Fe0.852S 26 40.42 60.01 0.052 0.202 100.8
Chalcopyrite Cu0.912Fe0.930S2 13 36.62 29.65 33.09 0.018 99.57
Pentlandite (Fe4.125,Ni4.038)8.164S8 22 34.15 30.67 0.087 31.56 97.31

JC-3 Net-textured
ore

Pyrrhotite Fe0.889S 15 39.74 61.53 0.059 0.044 101.5
Chalcopyrite Cu0.885Fe0.948S2 18 36.79 30.36 32.27 0.011 99.60
Pentlandite (Fe4.026,Ni3.507)7.533S8 13 36.31 31.83 0.249 29.14 98.35

Cubanite Cu0.857Fe1.849S3 5 37.94 40.71 21.47 0.022 100.3

JC-4 Disseminated
ore

Pyrrhotite Fe0.826S 13 41.38 59.51 0.051 0.492 101.6
Chalcopyrite Cu0.897Fe0.937S2 8 36.95 30.16 32.85 0.081 100.3
Pentlandite (Fe3.997,Ni3.930)7.928S8 12 35.45 30.85 0.064 31.88 99.00

N = number of grains analyzed.

Iron isotope compositions of mineral separates from the four sulfide ore samples were
measured in the Laboratory of Ocean Lithosphere and Mantle Dynamics, IOCAS. Mineral
separates were cleaned ultrasonically in Milli-Q water before digestion in HF-HNO3-HCl on a
hotplate. After repeated reflux using reverse aqua regia to obtain full digestion, the samples
were finally dissolved in 1 mL of 9 N HCl and ready for chromatographic separation for
Fe. Fe was purified using 1 mL of anion exchange resin (Bio-Rad AG MP-1M 200 400 mesh)
conditioned with 9 N HCl, following the procedure of [43]. Matrix elements including Ni and
Cr were removed by washing with 5 mL of 9 N HCl. The columns were then washed with
5 mL of 6 N HCl to remove Cu and possible residual Cr and Ni. Fe was eluted from columns by
using 2 mL of 1 N HCl. The eluted Fe solutions were analyzed using ICP-OES to ensure purity
and full recovery. The total procedural blank for Fe was 80 ng, which was less than 0.01% of the
processed samples and was thus negligible. Prior to measurements, Fe solutions were diluted
to 7 ppm, and 9.8 ppm GSB Ni standard (an ultrapure single elemental standard solution from
the China Iron and Steel Research Institute) was added as an internal mass bias monitor to each
diluted sample (Ni:Fe = 1.4:1). Iron isotope compositions of mineral separates were analyzed
using a Nu plasma multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS)
with wet nebulization. Backgrounds were measured and subtracted using electrostatic analyzer
(ESA) deflection. Contributions from isobaric interferences (40Ar14N on 54Fe and 40Ar16O on
56Fe) were eliminated by measuring in pseudo-high resolution mode with M/DM of >8000.
The mass bias fractionation during analysis was corrected for using the Ni doping method
(60Ni/58Ni) with 58Fe interference on 58Ni corrected based on 56Fe [44–46]. The iron isotope
data are expressed using the standard notation δ56Fe (= [(56Fe/54Fe)sample/(56Fe/54Fe)IRMM-014
− 1] × 1000). During analysis, every five sample solutions were bracketed with 7 ppm GSB
Fe standard solution that was also doped with the GSB Ni solution with Ni:Fe of 1.4:1 (the Fe
isotope composition of GSB Fe relative to IRMM-014 is δ57FeIRMM-014 = δ57FeGSB + 1.073 and
δ56FeIRMM-014 = δ56FeGSB + 0.729 [47]). Every sample solution was repeatedly analyzed four
times, with the average δ57Fe and δ56Fe values of each sample given in Table 5. Long-term
analyses of an in-house Alfa Fe standard (an ultrapure single elemental standard from the Alfa
Aesar Chemicals Co., Ltd.) given an average δ56Fe value of 0.51 ± 0.05‰ (2SD, n = 37). The
δ56Fe value of the USGS standard BCR-2 analyzed together with our samples was 0.13± 0.03‰
(2SD, n = 10), consistent with the recommended literature value [47,48]. Duplicate digestion,
chemical separation and analyses of two samples (JC-4 Pentlandite and JC-4 Pentlandite-R)
show good reproducibility (Table 5). Analytical details are given in [43].
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Table 3. Representative microprobe analyses of silicate and oxide minerals of ore samples in the Jinchuan deposit by LA-ICP-MS.

Sample No. Standard JC-1 JC-2 JC-3 JC-4

Mineral BIR-1G BCR-2G BHVO-2G Olivine Serpentine Chromite Olivine Serpentine Chromite Olivine Serpentine Chromite Clinopyroxene Orthopyroxene Plagioclase Serpentine

N 24 24 24 4 3 12 4 4 9 3 3 7 4 4 2 8

Major elements (wt.%)
SiO2 46.84 53.02 49.01 38.19 36.12 0.052 38.80 38.75 0.081 38.54 38.71 0.058 50.18 53.69 53.38 39.97
TiO2 0.929 2.254 2.698 0.017 0.434 0.925 0.012 0.020 1.471 0.021 0.012 1.150 0.417 0.195 0.106 0.020

Al2O3 15.23 13.91 14.28 0.023 3.842 9.636 0.026 2.623 0.133 0.041 0.028 15.69 3.630 2.186 29.25 0.038
FeOT 11.52 13.91 11.79 15.43 9.003 51.64 16.52 7.738 75.96 16.72 13.24 39.22 5.812 9.496 0.418 14.68
MnO 0.178 0.205 0.173 0.203 0.712 0.389 0.303 0.086 0.394 0.229 0.251 0.322 0.155 0.206 0.004 0.052
MgO 9.371 3.501 7.011 45.17 34.93 3.163 43.22 37.01 0.630 43.57 33.14 4.938 18.84 30.94 0.130 31.25
CaO 13.12 7.108 11.33 0.141 0.042 0.033 0.387 0.009 0.014 0.126 0.371 0.014 19.27 2.220 11.47 0.164

Na2O 1.862 3.218 2.284 0.006 0.018 0.068 0.026 0.004 0.137 0.003 0.027 0.123 0.298 0.049 4.804 0.059
K2O 0.021 1.748 0.522 - 0.009 0.017 0.014 0.004 0.027 0.001 0.014 0.021 - 0.001 0.279 0.032
P2O5 0.051 0.356 0.278 0.038 0.019 0.030 0.037 0.026 0.016 0.035 0.044 0.040 0.019 0.024 0.029 0.038

Cr2O3 0.057 0.002 0.042 0.014 1.501 32.15 0.012 0.425 13.10 0.017 0.010 37.64 1.107 0.625 - 0.055
NiO 0.022 0.001 0.015 0.304 0.042 0.087 0.144 0.073 0.372 0.186 0.292 0.080 0.030 0.048 0.001 0.177

FeOcal. - - - - - 28.96 - - 30.46 - - 27.82 - - - -
Fe2O3 cal. - - - - - 25.21 - - 50.56 - - 12.67 - - - -

Total 99.30 99.36 99.52 99.53 86.73 100.7 99.51 86.77 97.40 99.49 86.14 100.6 99.81 99.71 99.88 86.55

Trace element (ppm)
Li 2.922 8.934 4.573 2.745 8.089 0.463 7.076 1.434 8.287 5.396 0.184 0.622 17.08 2.492 0.205 7.453
Be 0.142 2.728 1.364 0.172 0.094 - 0.136 0.103 0.283 0.018 0.129 0.100 0.025 0.038 0.612 0.063
Sc 42.67 33.56 32.31 4.523 72.00 1.380 2.943 13.54 1.326 5.595 4.782 1.088 64.81 29.16 0.397 18.84
V 534.2 704.2 441.9 3.093 291.1 9844 2.679 39.46 1096 6.076 6.303 1871 275.3 120.9 2.742 7.568
Cr 388.4 15.14 286.5 97.83 10272 - 79.66 2910 - 115.7 71.10 - 7574 4273 2.000 378.8
Co 53.24 37.83 45.37 139.0 27.29 180.2 78.73 28.13 66.72 176.8 156.2 494.7 40.74 74.99 0.228 97.86
Ni 172.5 11.64 117.5 2387 329.7 683.6 1129 571.0 2919 1459 2291 630.6 233.3 375.7 8.157 1395
Cu 120.8 16.67 129.1 0.089 2.106 14.00 0.766 0.137 0.144 0.030 470.6 0.028 0.830 0.279 0.355 71.54
Zn 74.37 139.1 105.5 120.9 8.064 1577 98.60 33.43 664.8 109.1 17.14 3365 29.54 73.53 2.479 59.12
Ga 15.60 21.75 21.48 0.086 3.610 36.42 0.064 4.939 11.72 0.228 2.122 78.84 5.732 4.073 25.37 0.706
Ge 1.132 2.363 2.763 5.037 1.300 - 5.450 1.616 1.138 1.551 2.300 0.559 3.041 11.15 2.453 2.828
Rb 0.271 46.39 9.373 0.015 0.211 - 1.013 1.548 - 0.067 0.094 - 0.033 0.146 1.002 3.842
Sr 106.8 341.7 391.0 0.014 0.624 1.879 2.044 0.228 0.804 0.188 4.305 0.006 19.27 0.506 671.9 38.59
Y 15.03 35.72 25.49 0.319 10.69 0.026 0.562 0.538 - 0.454 0.686 0.005 12.31 2.121 0.401 4.087
Zr 13.79 182.8 165.9 0.109 11.43 0.144 0.254 0.384 - 0.258 0.527 0.950 12.13 1.807 0.112 0.193
Nb 0.511 13.49 20.40 0.003 0.058 0.040 0.230 0.223 0.066 0.001 0.011 0.098 0.023 0.005 0.015 0.415
Mo 0.045 237.1 3.727 0.043 0.450 0.322 0.066 0.632 0.069 0.022 0.038 0.068 0.067 0.016 0.030 7.022
Cs 0.016 1.310 0.161 0.032 0.041 - 0.237 0.364 - 0.017 0.015 - 0.014 0.023 0.032 1.060
Ba 6.594 687.4 128.7 0.021 2.643 1.605 7.628 2.537 0.809 0.107 2.652 - 0.150 0.395 233.1 12.27
La 0.581 25.08 14.89 0.346 1.185 0.058 0.089 0.106 0.005 0.005 0.160 - 0.807 0.009 3.481 0.387
Ce 1.810 53.02 36.73 0.002 4.515 0.084 0.267 0.238 0.037 0.008 0.353 - 3.502 0.074 6.194 1.259
Pr 0.366 6.737 5.139 0.001 0.760 0.006 0.046 0.029 0.005 0.001 0.049 - 0.709 0.013 0.617 0.213
Nd 2.360 28.56 24.09 0.029 4.182 - 0.191 0.190 0.038 0.004 0.170 - 4.462 0.137 2.300 1.125
Sm 1.047 6.494 6.031 0.033 1.329 0.025 0.064 0.063 - 0.003 0.024 - 1.742 0.074 0.304 0.399
Eu 0.520 2.061 2.284 0.004 0.472 - 0.018 0.025 0.035 0.002 0.007 - 0.517 0.034 1.039 0.126
Gd 1.769 6.814 6.044 0.014 1.959 0.012 0.075 0.060 0.085 0.009 0.022 - 2.186 0.174 0.299 0.502
Tb 0.360 1.161 1.083 0.004 0.308 - 0.013 0.007 0.008 0.002 0.007 - 0.352 0.038 0.027 0.090
Dy 2.722 7.779 7.546 0.067 2.102 0.015 0.116 0.105 0.034 0.037 0.061 0.009 2.374 0.287 0.106 0.650
Ho 0.580 1.470 1.186 0.016 0.432 0.002 0.028 0.017 0.016 0.014 0.016 - 0.476 0.076 0.019 0.166
Er 1.644 3.617 2.520 0.041 1.220 0.016 0.063 0.085 - 0.070 0.104 - 1.327 0.288 0.029 0.578
Tm 0.237 0.522 0.318 0.012 0.168 0.003 0.019 0.016 - 0.014 0.030 0.002 0.188 0.047 0.007 0.103
Yb 1.596 3.373 2.003 0.111 1.063 - 0.125 0.089 0.050 0.139 0.235 0.040 1.171 0.362 0.006 0.711
Lu 1.778 7.392 5.266 0.011 0.155 - 0.015 0.021 0.009 0.026 0.055 0.002 0.158 0.057 0.003 0.158
Hf 1.545 21.03 25.84 0.013 0.557 0.020 0.019 0.016 0.013 0.004 0.011 0.013 0.584 0.089 0.019 0.004
Ta 0.027 0.790 1.166 0.004 0.004 - 0.012 0.008 0.018 0.003 - 0.002 0.007 0.001 0.006 0.022
Pb 3.535 10.74 1.799 0.045 0.255 0.247 16.17 3.347 18.01 0.035 4.078 - 0.226 0.063 0.693 4.215
Th 0.032 11.56 2.819 0.004 0.021 0.005 0.018 0.048 0.010 - 0.002 - 0.012 0.002 0.005 0.112
U 0.015 1.653 0.412 0.002 0.011 - 0.035 0.083 0.043 0.001 0.003 - 0.005 0.003 0.011 0.216

N = number of grains analyzed. The “-” indicates that element content is below the detection limit.
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Table 4. Major and trace element compositions of bulk-rock ore samples and mineral separates in Jinchuan deposit by ICP-OES and ICP-MS, respectively.

Sample No.
Bulk-Rock

Ores/Mineral
Separates

Major Elements (wt.%, ICP-OES)

bulk-rock ores (Alkali dissolution) SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O P2O5 CuO NiO Cr2O3 Total

Standard
BLANK 0.019 - - 0.001 - 0.001 0.027 0.002 0.001 0.007 - - - 0.058
BCR-2 55.44 2.265 13.12 12.21 0.196 3.603 7.092 3.175 1.841 0.385 0.002 0.002 0.003 99.34

BHVO-2 50.43 2.728 13.10 10.84 0.166 7.205 11.27 2.167 0.499 0.284 0.014 0.017 0.040 98.76

Whole ore

JC-1 24.89 0.062 0.626 24.49 0.126 25.20 0.411 0.039 0.061 - 2.682 2.500 0.501 81.59
JC-2 25.41 0.065 1.003 26.07 0.148 24.40 1.505 0.025 0.030 - 1.135 4.013 0.464 84.27
JC-3 36.43 0.337 2.355 16.49 0.179 27.73 2.132 0.224 0.273 0.032 1.220 0.971 0.469 88.85
JC-4 25.76 0.078 0.634 22.06 0.199 19.34 6.429 0.048 0.231 0.024 0.475 2.954 0.646 78.88

Replicate samples JC-3-R 36.71 0.342 2.385 16.48 0.181 27.77 2.121 0.238 0.305 0.035 1.245 0.972 0.491 89.28

Silicate/oxide mineral separates (Acid dissolution) SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O P2O5 CuO NiO Cr2O3 Total

JC-1 Serpentine - 0.211 0.660 5.408 0.062 14.45 0.134 0.034 0.006 0.005 0.029 0.051 0.583 21.63
Magnetite - 0.911 8.449 64.00 0.564 2.704 0.094 0.006 0.013 - 0.063 0.127 23.92 100.9

JC-2 Serpentine - 0.050 2.310 9.460 0.095 27.39 0.144 0.007 0.002 0.007 0.027 0.073 0.373 39.94
Magnetite - 1.321 0.211 87.48 0.421 1.652 0.079 0.014 0.019 0.001 0.040 0.159 8.622 100.0

JC-3
Olivine - 0.035 0.145 16.15 0.226 38.57 0.328 0.008 0.002 0.013 0.002 0.183 0.080 55.74

Clinopyroxene - 0.537 3.789 6.274 0.167 19.37 19.51 0.346 0.027 - 0.004 0.029 0.968 51.02
Orthopyroxene - 0.274 2.434 10.30 0.221 31.48 2.817 0.060 0.011 0.010 0.004 0.050 0.590 48.25

JC-4 Magnetite - 0.955 0.151 81.57 0.236 0.676 0.579 0.005 - - 0.057 0.147 8.239 92.62
Replicate samples JC-4 Magnetite-R - 0.955 0.148 82.03 0.236 0.679 0.536 0.004 0.001 0.002 0.062 0.158 9.016 93.83

Sulfide mineral separates (Acid dissolution) Si Ti Al Fe Mn Mg Ca Na K P Cu Ni Cr Total

JC-1

Pyrrhotite
(+Pentlandite) - 0.008 0.064 47.73 0.050 3.307 0.910 0.006 0.027 0.041 1.674 11.26 0.066 65.15

Chalcopyrite
(+Pentlandite) - 0.008 0.029 37.87 0.012 0.586 0.373 0.001 0.041 0.332 18.73 15.52 0.004 73.50

Pentlandite - 0.005 0.015 36.07 0.004 0.327 0.216 0.015 0.037 0.003 0.228 30.50 0.009 67.42

JC-2

Pyrrhotite
(+Pentlandite) - 0.003 0.039 48.12 0.016 1.710 0.085 - 0.025 0.009 0.383 16.53 0.008 66.92

Chalcopyrite - 0.001 0.025 31.93 0.012 0.878 0.100 - 0.024 0.384 29.74 1.445 0.002 64.53
Pentlandite - 0.003 0.007 34.02 0.004 0.483 0.041 - 0.018 0.008 0.680 34.92 0.002 70.18

JC-3 Pyrrhotite - 5.281 2.522 55.94 0.272 1.480 5.760 0.031 0.017 - 0.172 0.096 5.978 77.55

JC-4
Pyrrhotite

(+Pentlandite) - 0.002 0.012 59.24 0.002 0.225 0.091 - - 0.003 0.526 6.114 0.010 66.22

Pentlandite - 0.004 0.012 33.40 0.002 0.260 0.323 - 0.017 0.017 0.761 35.16 0.003 69.96
Replicate samples JC-4 Pentlandite-R - 0.004 0.008 33.33 0.002 0.250 0.055 - 0.014 0.013 0.693 34.57 0.003 68.94

The “-” indicates that element content is below the detection limit. Pyrrhotite (+pentlandite) = pyrrhotite separate mixed with pentlandite.



Minerals 2021, 11, 464 12 of 30

Table 5. The iron isotope compositions of sulfide, silicate, and oxide mineral separates of ore samples in the Jinchuan
deposit analyzed by MC-ICP-MS.

Sample No. Mineral Separates δ56Fe (‰) 2SD δ57Fe (‰) 2SD

Standard

BCR-2 0.13 0.03 0.11 0.04
BHVO-2 0.11 0.02 0.03 0.05
AGV-2 0.12 0.07 0.07 0.04
W-2a 0.02 0.02 0.03 0.07

JC-1

Pyrrhotite
(+Pentlandite) −0.82 0.04 −1.19 0.09

Chalcopyrite
(+Pentlandite) 0.15 0.06 0.17 0.11

Pentlandite 0.53 0.03 0.86 0.04
Serpentine 0.60 0.05 0.88 0.05
Magnetite 0.24 0.04 0.38 0.03

JC-2

Pyrrhotite
(+Pentlandite) −0.16 0.01 −0.26 0.05

Chalcopyrite 0.50 0.04 0.65 0.06
Pentlandite 1.05 0.05 1.60 0.10
Serpentine 0.52 0.02 0.60 0.05
Magnetite 0.71 0.05 1.07 0.06

JC-3

Pyrrhotite −0.77 0.05 −1.17 0.07
Olivine 0.07 0.03 0.11 0.09

Clinopyroxene 0.04 0.02 −0.02 0.04
Orthopyroxene 0.05 0.07 0.03 0.09

JC-4

Pyrrhotite
(+Pentlandite) −0.90 0.03 −1.33 0.05

Pentlandite 1.02 0.04 1.57 0.04
Magnetite 0.50 0.03 0.79 0.06

Replicate samples JC-4 Pentlandite-R 0.99 0.03 1.46 0.06
JC-4 Magnetite-R 0.44 0.04 0.75 0.02

2SD = two times the standard deviation of the population of repeated measurements of a sample solution. Pyrrhotite (+pent-
landite) = pyrrhotite separate mixed with pentlandite.

4. Results
4.1. Mineral Chemistry

Table 2 gives the in situ analyses using EMPA and Table 3 gives the in situ analyses
using LA-ICP-MS on ore minerals (sulfide) and gangue minerals (silicate, oxide, etc.). On
the basis of the major element analyses, chemical formula of the mean composition for
each mineral was calculated and given in Table 2. The calculations were done using the
combined method of stoichiometry and charge balance considerations. For serpentine,
the calculation assumed the anion as O10(OH)8. The olivine composition was relatively
uniform with Fo = 0.82–0.84. Serpentines contain 7.74–14.68 wt.% of FeO, suggesting that
iron from olivine remain largely retained during serpentinization.

4.2. Bulk-Rock Ore Sample Major Element Composition

The major element compositions of bulk-rock ore samples are given in Table 4, which
were used for calculating chemical formulae of varying minerals.

4.3. Iron Isotopes of Mineral Separates

Mineral separates were analyzed for iron isotope composition to examine possible iron
isotope fractionation between coexisting minerals. The major challenge is to obtain pure
minerals from fine-grained and intertwined mineral aggregates in ore samples. Mineral
separation was done using the combined method of mechanical, magnetic, and heavy
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liquid separation before the painstaking selection under a binocular. These led to sufficient
purity for most mineral separates (all the silicate minerals, oxides and most sulfide minerals)
as indicated by the mineral compositional analysis (Table 4). Only a few sulfide mineral
separates may be less pure (e.g., pyrrhotite in JC-1,2,4, and chalcopyrite in JC-1,2, marked
with “mineral separate (+mixed mineral)” in Table 4) because they were intertwined
fine-grained aggregates (Figure 4).

The major element compositions and calculated formulae (Table 2) indicate that there
were predominantly three sulfide minerals (pyrrhotite, chalcopyrite, and pentlandite).
Pyrrhotite contained only Fe and S, chalcopyrite contained only Cu, Fe, and S, and pent-
landite contained only Ni, Fe, and S. Due to the relatively simple compositions of sulfides
in ore samples, the excess Ni in pyrrhotite and chalcopyrite might suggest limited solid
solutions or probably come from pentlandite impurities. The excess Cu in pentlandite
might suggest limited solid solution or come from chalcopyrite impurities. Therefore, the
content of each sulfide mineral in the impure sulfide mineral separate (i.e., mixture of
these three sulfide minerals) could be readily calculated following the steps detailed in
Appendix A using the major elemental compositions of mineral separates (Table 4) and the
empirical molecular formulae of sulfides (Table 2).

The calculated results of each sulfide content in the impure mineral separates are
given in Column A2 of Table 6. We can obtain iron isotope composition of each pure sulfide
end-member through further calculations. Previous studies suggested the iron isotope
composition of bulk-rock (δ56Fe) can be calculated by using the iron isotope composition
of each iron-bearing mineral (δ56Fei) and the mass fraction of iron of that mineral (Ci) in
the total iron of the bulk-rock (Equation (1) [49]), where k represents the total amount
of coexisting iron-bearing minerals in the bulk-rock. The simulated δ56Fe values of the
bulk-rock calculated using this formula were essentially consistent with the measured δ56Fe
values of the bulk-rock powder within analytical error according to previous works [49,50].
Thus, iron isotope compositions of pure sulfide end-members (δ56Fei; Table 6) can be
calculated by assuming that impure sulfide mineral separates are the “bulk-rock” (δ56Fe)
and various pure sulfide end-members are “constituent minerals” (δ56Fei) (see Appendix B
for details).

δ56Febulk-rock = ∑k
n=1 Ci×δ56Fei (1)

The iron isotope compositions of all the mineral separates from the Jinchuan sulfide
ores varied significantly (Table 5) with all the data points plotting on the mass fractionation
line (Figure 5a). As seen in the covariation of δ56Fe with Fe of different minerals (Figure
5c), the δ56Fe values of the same minerals were rather similar, well separated from other
minerals, and did not depend on iron content. Sulfide minerals and magnetite from
the disseminated ore (JC-4; from metasomatic orebody) were analyzed, and iron isotope
compositions of these minerals in sample JC-4 were within the range of the other three
net-textured ores (JC-1, 2, and 3; from ore-bearing cumulates). Thus, we did not treat these
sulfide minerals and magnetite in JC-4 specifically or explain them separately.
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Table 6. Calculation of iron isotope composition of pure sulfide end-members in net-textured sulfide ore samples.

Part 1. Mineral Separates.

Sample No. Mineral Separates δ56Fe (Mineral Separate) A2 = Sulfide Content of Mineral Separate (wt.%) A3 = Fe Content of Mineral Separate Value of Ci

(‰, from Table 5) Pyrrhotite Chalcopyrite Pentlandite (wt.%, from Table 4) C(Pyrrhotite) C(Chalcopyrite) C(Pentlandite)

JC-1

Pyrrhotite
(+Pentlandite) −0.82 57.3 5.1 37.6 47.73 70.3 3.2 26.5

Chalcopyrite
(+Pentlandite) 0.15 5.4 49.4 45.2 37.87 9.6 44.5 45.8

Pentlandite 0.53 - - ~100.0 36.07 - - ~100.0

JC-2

Pyrrhotite
(+Pentlandite) −0.16 51.2 - 48.8 48.11 67.3 - 32.7

Chalcopyrite 0.50 6.5 89.1 4.4 31.93 6.5 89.0 4.6
Pentlandite 1.05 - - ~100.0 34.02 - - ~100.0

JC-3 Pyrrhotite −0.77 ~100.0 - - 56.79 ~100.0 - -

JC-4
Pyrrhotite

(+Pentlandite) −0.90 82.6 - 17.4 59.23 90.2 - 9.8

Pentlandite 1.02 - - ~100.0 33.40 - - ~100.0

Part 2. Pure Sulfide End-Members after Calculation.

Sample No. Sulfide Type A1 = Fe Content of Each Sulfide δ56Fei

(wt.%, from Table 2) ‰

JC-1
Pyrrhotite 59.37 −1.37

Chalcopyrite 30.23 0.09
Pentlandite 34.04 0.53

JC-2
Pyrrhotite 60.01 −0.74

Chalcopyrite 29.65 0.56
Pentlandite 30.67 1.05

JC-3 Pyrrhotite 61.53 −0.77

JC-4 Pyrrhotite 59.51 −1.11
Pentlandite 30.85 1.02

The “-” indicates that mineral content is below 1%. δ56Fe (impure mineral separate) = ΣCi × δ56Fei (i = each pure mineral); Ci = A1 × A2/A3.
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Figure 5. (a) Iron isotope compositions of the mineral separates from the Jinchuan sulfide ore samples
plot along a mass-dependent fractionation line, confirming high quality of the data. Error bars repre-
sent ±1 sd. (b) Iron isotope compositions of the mineral separates in ore samples from the Jinchuan
deposit, compared with the carbonaceous chondrite data (δ56Fe = −0.01 ± 0.01‰ (n = 10)) [2–6]. Nu-
merals 1, 2, 3, and 4 represent samples JC-1, JC-2, JC-3, and JC-4. (c) The relationship between δ56Fe
values and Fe content (wt.%) for varying minerals from the Jinchuan ore deposit. Mineral abbrevia-
tions: Ol = olivine; Srp = serpentine; Cpx = clinopyroxene; Opx = orthopyroxene; Mag = magnetite;
Po = pyrrhotite; Cp = chalcopyrite; Pn = pentlandite.
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5. Discussion

To discuss the iron isotope fractionation during the magmatism that leads to the
Jinchuan magmatic sulfide Ni-Cu mineralization, it is necessary to understand the pro-
cesses that developed the net-textured ores. While the origin of such texture remains
poorly understood in the literature [18,20], we here offered our understanding in terms
of straightforward magmatic processes and physics (Figure 6). The net-textured ores are
characterized by euhedral silicate minerals (olivine and pyroxenes prior to serpentiniza-
tion) surrounded by aggregates of sulfide mineral assemblage (e.g., pyrrhotite, pentlandite,
and chalcopyrite) as “interstitial” fills (Figures 3 and 4). Such texture actually represents
a snapshot of sulfide-rich mafic magma evolution. This can be readily understood as
illustrated in Figure 6.

(1) A sulfur-rich and sulfide saturated mafic magma led to sulfide melt exsolution/segregation,
forming a system of coexisting two-phase liquids, the silicate liquid and the sulfide liquid.

(2) Since the sulfide liquid has greater density (>4.00 g cm−3) [51] than the silicate liquid
(~2.75–2.90 g cm−3 [52]), the sulfide liquid will necessarily sink at the base of the
“magma chamber” system where the dense sulfide liquid concentrates at the base
overlain by the silicate liquid.

(3) With the higher liquidus temperature, mafic silicate minerals (olivine, orthopyroxene,
and clinopyroxene) with densities of 3.25–3.35 g cm−3 [52] begin to crystallize first
and tend to sink at the base of the silicate liquid, but would suspend in the denser
sulfide liquid, constituting the network texture.

(4) Subsequent crystallization of sulfide liquid and solidification of the system results in
the observed net-textured Ni-Cu ores above the massive ores and below the dissemi-
nated ores in this density/buoyancy controlled scenario.

The above simple and rigorous analyses represent a state-of-the-art understanding
of the ore texture development. This is also consistent with the petrography that the
silicate mineral assemblages are of cumulate origin as the result of fractional crystallization
from the cooling silicate liquid (Figure 6). On the other hand, solidification of the sulfide
liquid takes place in situ through equilibrium crystallization (Figure 6. The above reason-
able interpretations provide us with a framework to study the difference (if any) of iron
isotope compositions between silicate liquid represented by bulk-silicate mineral phases
and sulfide liquid represented by bulk-sulfide mineral phases. We also note that during
crystallization/solidification of sulfides, iron isotope fractionation must also take place
between phases (e.g., [53]). The fact that the iron isotope compositions are essentially the
same or rather similar for the same minerals (though from different samples), but distinctly
different between minerals as a function of iron content (Figure 5c) suggests that for such
a magmatic system, the same mineral phase has a “unique” iron isotope composition.
This means that the between-phase iron isotope variation was dominated by equilibrium
fractionation with the effect of kinetic fractionation being secondary if not negligible.

5.1. Iron Isotope Composition of Different Iron-Bearing Minerals

Iron sulfides (e.g., pyrrhotite, pentlandite, and chalcopyrite), iron oxides (e.g., chromite
and magnetite), and iron-bearing silicate minerals (e.g., olivine, orthopyroxene, and clinopy-
roxene) are the main iron-bearing minerals in the Jinchuan magmatic Ni-Cu ore deposit.
The iron isotope compositions of these minerals varied significantly (Figure 5). The iron iso-
tope compositions of the same minerals show a large range beyond analytical uncertainty.
Of all these minerals, pyrrhotite shows strikingly the largest iron isotope composition
variation range with all δ56Fe values < 0. Although there were overlaps, between-mineral
iron isotope compositional differences were obvious.
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Figure 6. Schematic diagram illustrating the most likely magmatic processes that develop the
net-textured ores. Stage 1: a sulfur-rich and sulfide saturated mafic magma led to sulfide melt
exsolution/segregation in a “magma chamber”, in which dense (>4.00 g cm−3) [51] sulfide liquid
droplets sink at the base overlain by the less dense (~2.75–2.90 g cm−3) silicate liquid [52]. Stage 2:
mafic silicate minerals (olivine, orthopyroxene, and clinopyroxene) have high liquidus temperature
than sulfides and higher density (~3.25–3.35 g cm−3) than silicate liquid, thus begin to crystallize first
and tend to sink at the base of the silicate liquid, but would suspend in the denser sulfide liquid [52].
Stage 3: Subsequent crystallization of sulfide liquid and solidification of the system results in the
observed net-textured Ni-Cu ores. It is thus logical to assume that the net-textured sulfide minerals
are in equilibrium with the coexisting silicate minerals dominated by olivine.
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Given the above analysis on the magma differentiation processes in the “magma
chamber” that leads to the network ore texture development as illustrated in Figure 6,
it is reasonable to assume that during sulfide-liquid and silicate-liquid segregation prior
to their respective crystallization, both liquids must be in equilibrium in terms of iron
isotopes although the fractionation factor is unknown (i.e., ∆56Fesilicate liquid-sulfide liquid = ?).
It is also reasonable to state that the weighted mean iron isotope composition of bulk-
sulfide minerals altogether represents that of the sulfide liquid because the solidification of
sulfide liquid can be best understood as equilibrium crystallization (see above). On the
other hand, as the silicate minerals (dominated by olivine with minor pyroxene) are of
cumulate origin resulting from fractional crystallization (see above), the mean iron isotope
composition of the bulk-silicate minerals would not represent that of the parental silicate
liquid, but can be readily obtained because of the better-constrained fractionation factor
(e.g., ∆56Fesilicate crystals-melt ≈ −0.15 ± 0.05‰ [46]). That is, the silicate melt in equilibrium
with the sulfide liquid would have δ56Fe about ~0.15‰ higher than the weighted mean
composition of the bulk-silicate minerals. We note that such ~0.15‰ difference was
negligible compared to the large range of sulfide iron isotope compositional variation for a
given mineral and between minerals (Figure 5).

Therefore, the task of unveiling the possible iron isotope fractionation between the
silicate liquid and the sulfide liquid in equilibrium was to obtain the weighted mean δ56Fe
of the bulk-silicate minerals and the weighted mean δ56Fe of the bulk-sulfide minerals
(see below).

5.1.1. Iron Isotope Compositional Differences between Minerals with Different
Valence States

The iron isotope variations among coexisting minerals, if existing, provide convincing
evidence for iron isotope fractionation. In the Jinchuan net-textured ores, all the sulfide
minerals and silicate minerals (dominated by olivine, orthopyroxene, and minor clinopy-
roxene) essentially have only Fe2+. Only minor chromite and magnetite may have Fe3+.
Serpentinization can produce secondary magnetite, but the fact that all the serpentines
took the pseudomorphs of euhedral silicate minerals (Figure 4) with high FeOT (Table 3)
and the fact that only minute secondary magnetite occurred as fine trails in serpentines
(Figure 4) indicate that the serpentines retain Fe2+ of the original silicate minerals. Hence
the bulk-rock ore samples contain only Fe2+ with little Fe3+. It has been shown that under
equilibrium conditions, heavy Fe isotopes are preferentially associated with high valent
Fe3+ with shorter bond length and stronger bond strength (i.e., Fe3+-O2−) over Fe2+ with
longer bond length and weaker bond strength (i.e., Fe2+-O2−) and can have up to ~3‰
δ56Fe fractionation [54–57]. This readily explains the variable heavy Fe with δ56Fe = 0.24–
0.71‰ in magnetite, which is important although all the magnetite analyzed is secondary
associated with the serpentinization and is volumetrically minute. However, bond strength
also depends on ligand types (coordination environments; e.g., Fe2+-S2− bond vs. Fe2+-
O2−) [58,59]. Therefore, the iron valent state is not the sole control on iron isotope frac-
tionation between phases under equilibrium conditions. We reiterated that magnetite
was secondary and was volumetrically insignificant in these ore samples of the magmatic
system that we studied here.

5.1.2. Iron Isotope Compositional Differences between Coexisting Sulfide Minerals

There are few iron isotope data on magmatic sulfides [53]. Like the Sudbury magmatic
sulfide deposits, the Jinchuan net-textured ores have three major coexisting sulfide minerals:
pyrrhotite (Po), pentlandite (Pn), and chalcopyrite (Cp). The δ56Fe values of pure chal-
copyrite (0.09–0.56‰) and pentlandite (0.53–1.05‰) were both positive, and pentlandite
was more enriched in heavy Fe isotopes than chalcopyrite (i.e., δ56Fe(Pn) > δ56Fe(Cp)). A
recent study on magmatic sulfides [53] shows δ56Fe(Po) < δ56Fe(Cp) (no data on Pn), with
δ56Fe(Po) < 0, and δ56Fe(Po) ranges from -0.55 to 0.05‰ with the extremely low δ56Fe(Po)
values of −0.80‰ only found in “impact-related Sudbury deposit”. Our data from the
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Jinchuan deposit also indicate the low δ56Fe(Po), ranging from −1.37 to −0.74‰ (Tables 5
and 6; Figure 5). Given the same Fe2+ in these sulfide minerals, their iron isotope fractiona-
tion is most likely controlled by bond length and bond energy. The work by [58] proposed
that if the bond lengths of the two minerals are different, their vibration frequencies are
correspondingly different. Hence, if there is mass-dependent isotope fractionation between
the two minerals, light isotopes will preferentially enter the minerals with longer bond
and weaker bond strength. Since pentlandite has the shortest Fe2+-S2− bond length and
strongest bond strength compared with chalcopyrite and pyrrhotite, while pyrrhotite has
the longest bond length [60–64], it is thus consistent that pentlandite is enriched with heavy
Fe isotopes than chalcopyrite and pyrrhotite, and pyrrhotite has the lightest Fe isotope
composition with δ56Fe(Po) < 0.

5.1.3. Iron Isotope Compositions of Primary Silicate Minerals

The primary silicate minerals (i.e., olivine (Ol), clinopyroxene (Cpx), and orthopyroxene
(Opx)) all have similar δ56Fe = 0.00–0.01‰ with small variation (δ56Fe(Ol) = 0.07 ± 0.02‰;
δ56Fe(Opx) = 0.05 ± 0.03‰; δ56Fe(Cpx) = 0.04 ± 0.01‰). This small but systematic differ-
ence with δ56Fe(Ol) > δ56Fe(Opx) > δ56Fe(Cpx)) is consistent with being in equilibrium
with their parental melt (fertile upper mantle δ56Fe = 0.02 ± 0.03‰ [1]) during fractional
crystallization at temperatures way above sulfide liquid crystallization (see Figure 6).

5.1.4. Iron Isotope Compositions of Serpentines

Serpentines (Serp) are post-magmatic low-temperature product of serpentinization
whose intensity decreases in the order of Ol, Opx, and Cpx [65]. Available studies suggest
that serpentines have lighter Fe isotope compositions than the coexisting minerals (Ol, Opx,
and Cpx) [66], but our data demonstrate the opposite, i.e., higher δ56Fe(Serp) (0.52 ± 0.01
to 0.60 ± 0.02‰) > δ56Fe(Ol, Opx, Cpx) (0.04 ± 0.01 to 0.07 ± 0.02‰). This is an important
observation (Table 5; Figure 5). This is expected because serpentinization is often a major
disproportionate redox reaction that oxidizes Fe2+ (in Serp) into Fe3+ (in magnetite) while
producing reduced H2 (e.g., [67]) as follows in terms of iron end-member reaction for
conceptual clarity.

6Fe2SiO4[faylite ol]+7H2O[water] → 3Fe3Si2O5(OH)4[Fe serp]+Fe3O4[magnetite]+H2 (2)

Hence, the higher δ56Fe(Serp) > δ56Fe(Ol, Opx, and Cpx) could be caused by secondary
magnetite dispersed in (and incompletely segregated from) serpentines. However, this
interpretation, albeit logical, might be incorrect here because our serpentines had abundant
FeOT (7.7–14.7 wt.%), had network texture intact without deformation, and had little
secondary magnetite (Figures 3 and 4), indicating convincingly that the serpentinization in
the net-textured samples essentially took place by simple hydration without producing
magnetite through the following Ol and Opx hydration reactions:

3
(

Mg, Fe2+
)

2
SiO4[ol]+SiO2[aqueous]+4H2O[water] → 2

(
Mg, Fe2+

)
3
Si2O5(OH)4[serp] (3)

3
(

Mg, Fe2+
)

SiO3[opx]+2H2O[water] →
(

Mg, Fe2+
)

3
Si2O5(OH)4[serp]+SiO2[aqueous] (4)

This simple analysis on the basis of detailed petrography demonstrated that the higher
δ56Fe in the serpentine (δ56Fe(Serp) > δ56Fe(Ol, Opx, Cpx)) is real and needs understanding.
The above reactions suggest that iron in the serpentine remains as Fe2+, but it is possible
that some Fe3+ could be “hidden” in the serpentine structures, which needs further investi-
gations. It is also possible that the serpentinization may have produced enhanced Fe2+-O2−

bond strength. Either or both of the scenarios can help explain why δ56Fe(Serp) > δ56Fe(Ol,
Opx, and Cpx). These hypothetical scenarios must be examined in future studies.

We found that the serpentinization process that transformed the silicate minerals
in questions (Ol > Opx > Cpx) into serpentines is associated with the losses of light Fe
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isotopes (e.g., 54Fe), i.e., δ56Fe(Ol, Opx, Cpx) < δ56Fe(Serp) (or gains of heavy Fe isotopes
(e.g., 56Fe)). Where did the light 54Fe isotope goes to (or heavy 56,57Fe isotopes come
from) without volumetrically significant secondary mineral formation associated with the
serpentinization (including magnetite)? Considering the contextual relationships among
coexisting minerals and mineral chemical/isotopic compositions, we hypothesized that
the complementary light Fe isotope must have migrated by diffusion into the coexisting
pyrrhotite during serpentinization or at even lower temperatures. It is obvious from
petrographical observations (Figure 3) that pyrrhotite is the dominant sulfide mineral
packed around the silicate minerals (Serp, Ol, Opx, and Cpx) (Figure 4a,b). This hypothesis
can be tested through in situ iron isotope analysis in the future. In this test, we also need to
verify our observation of δ56Fe(Pn) > δ56Fe(Cp) > δ56Fe(Po) although this order is indeed
consistent with the Fe2+-S1−,2− bond strength decrease due to bond length increase for
tetrahedral coordination (Po 2.50 Å, Cp 2.26 Å, and Pn 2.16 Å) [62–64].

5.2. Constructing Iron Isotope Compositions of Coexisting Sulfide Liquid and Silicate Liquid

According to our hypothesized scenario of magma differentiation processes illustrated
in Figure 6 and discussion above, we could approximate iron isotope compositions of
silicate liquid and sulfide liquid prior to crystallization using weighted mean iron isotope
composition of the bulk-silicate minerals and bulk-sulfide minerals respectively. Hence,
understanding the iron isotope fractionation between the silicate liquid and sulfide liquid
requires iron isotope composition reconstruction of these two liquid phases for the net-
textured ore samples (JC-1, 2, and 3). The reconstruction for the bulk-silicate was less
demanding because of the similar δ56Fe(Ol, Opx, and Cpx) with small variation relative to
sulfide minerals. This will form the basis to discuss the possible iron isotope fractionation
during the Earth’s core formation. Before the iron isotope composition constructions of the
two liquids below, a “CIPW” approach (calculate the corresponding mineral composition
of ore using chemical compositions of bulk-rock ore and containing minerals; detailed in
Table 7; see Appendix C) was used to calculate the content of each mineral (wt.%; sulfide,
silicate, oxide, etc.) in net-textured bulk-ores, with the calculated results shown in Table 8.

Table 7. The details of the “CIPW” calculations for the three net-textured ore samples (JC-1, 2, and 3).

Sample no. Ore-bearing Rock Type Main Minerals Calculated
in Order Unique Element (mol.%) The Remaining Elements and Their

Contents (mol.%)

JC-1 Sulfide-rich dunite

Chalcopyrite Chalcopyrite = Cu Fe = Fe − Cu, Cu = 0;
Pentlandite Pentlandite = Pn Fe = Fe − Ni, Ni = 0;
Chromite chromite = Cr Fe = Fe − Cr, Mg = Mg − Cr, Cr = 0;

Serpentine serpentine, olivine = Si,
serpentine, olivine = Mg

Fe = Fe − Si (serpentine) − Si
(olivine), Si = 0, Mg = 0;Olivine

Pyrrhotite pyrrhotite = Fe Fe = 0.

JC-2 sulfide-rich dunite

Chalcopyrite Chalcopyrite = Cu Fe = Fe − Cu, Cu = 0;
Pentlandite Pentlandite = Pn Fe = Fe − Ni, Ni = 0;

Serpentine serpentine = Al Si = Si − Al, Fe = Fe − Al,
Cr = Cr − Al, Al = 0;

Chromite chromite = Cr Fe = Fe − Cr, Cr = 0;
Olivine olivine = Si Fe = Fe − Si, Si = 0;

Pyrrhotite pyrrhotite = Fe Fe = 0.
Only serpentine has a lot of Al in JC-2 (unlike chromite of JC-1, which also has a lot of Al)

JC-3 sulfide-rich lherzolite

Chalcopyrite Chalcopyrite = Cu Fe = Fe − Cu, Cu = 0;
Pentlandite Pentlandite = Pn Fe = Fe − Ni, Ni = 0;
Chromite chromite = Cr Fe = Fe − Cr, Mg = Mg − Cr, Cr = 0;

Plagioclase plagioclase = Na Ca = Ca − Na, Si = Si − Na, Al = Al
− Na, Fe = Fe − Na, Na = 0;

Clinopyroxene clinopyroxene = Ca Fe = Fe − Ca, Mg = Mg − Ca, Si = Si
− Ca, Al = Al − Ca, Ca = 0;

Orthopyroxene orthopyroxene = Al Fe = Fe − Al, Mg = Mg − Al,
Si = Si − Al, Al = 0;

Serpentine serpentine, olivine = Si,
serpentine, olivine = Mg

Fe = Fe − Si (serpentine) − Si
(olivine), Si = 0, Mg = 0;Olivine

Pyrrhotite pyrrhotite = Fe Fe = 0.
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Table 8. Calculated content of each mineral in net-textured ore samples and experimental molecular formula of each
mineral.

Sample No. Mineral Type Mineral Modal Abundance (wt.%, cal.) Experimental Molecular Formula

JC-1

Pyrrhotite 13.43 Fe0.855S
Chalcopyrite 6.734 Cu0.944Fe0.959S2
Pentlandite 6.816 (Fe4.531,Ni3.825)8.355S8
Serpentine 57.48 (Mg5.145,Fe0.744,Mn0.060,Ti0.032,Cr0.117)6.099[(Si3.570,Al0.447)4.017O10](OH)8

Olivine 13.88 (Mg1.720,Fe0.330)2.049Si0.975O4
Chromite 1.662 (Mg0.165,Fe2+

0.848,Mn0.012)1.024(Cr0.890,Al0.398,Fe3+
0.664,Ti0.024)1.976O4

JC-2

Pyrrhotite 14.24 Fe0.852S
Chalcopyrite 2.945 Cu0.912Fe0.930S2
Pentlandite 10.42 (Fe4.125,Ni4.038)8.164S8
Serpentine 40.92 (Mg5.353,Fe0.628,Cr0.033)6.014[(Si3.760,Al0.300)4.060O10](OH)8

Olivine 29.07 (Mg1.654,Fe0.355)2.008Si0.996O4
Chromite 2.401 (Mg0.037,Fe2+

1.007)1.044(Cr0.409,Al0.01,Fe3+
1.503,Ti0.044)1.956O4

JC-3

Pyrrhotite 4.645 Fe0.889S
Chalcopyrite 3.286 Cu0.885Fe0.948S2
Pentlandite 2.788 (Fe4.026,Ni3.507)7.533S8
Serpentine 8.062 (Mg4.970,Fe2+

0.982,Mn0.021,Ca0.040)6.014[(Si3.894,Fe3+
0.132)4.026O10](OH)8

Olivine 41.14 (Mg1.665,Fe0.358)2.024Si0.988O4
Clinopyroxene 8.996 (Na0.021,Ca0.765,Mg1.040,Fe0.180,Cr0.032)2.039[(Si1.859,Al0.158)2.017O6]
Orthopyroxene 24.65 (Ca0.085,Mg1.643,Fe0.283,Cr0.018)2.028[(Si1.913,Al0.092)2.004O6]

Chromite 1.362 (Mg0.247,Fe2+
0.782)1.029(Cr1.000,Al0.622,Fe3+

0.320,Ti0.029)1.971O4
Plagioclase 5.073 (Na0.423,K0.016,Ca0.559,Fe0.016)1.014Al1.568Si2.427O8

JC-4

Pyrrhotite - Fe0.826S
Chalcopyrite - Cu0.897Fe0.937S2
Pentlandite - (Fe3.997,Ni3.930)7.928S8
Serpentine - (Mg4.688,Fe1.236,Ca0.018,Ni0.014)5.956[Si4.022O10](OH)8

The “-” indicates that mineral content is not calculated.

5.2.1. Iron Isotope Compositions of the Silicate Liquid

We assumed that the iron isotope compositions of fresh olivine and pyroxene in JC-3
given in Table 5 can be used to estimate iron isotope compositions of the silicate liquid
because of the pervasive serpentinization of sample JC-1 and 2 with almost no fresh silicate
separates (Ol, Cpx, and Opx) sufficient for their iron isotope compositions. The δ56Fe values
of olivine (0.07± 0.03‰), orthopyroxene (0.05± 0.07‰), and clinopyroxene (0.04± 0.02‰)
(Table 5) were very close to the chondritic values (Figure 4b).

Since the primary silicate minerals (Ol, Opx, and minor Cpx) are of cumulate origin
as the result from fractional crystallization, the iron isotope composition of their parental
(equilibrium) melt can be readily obtained using the well understood fractionation factor of
∆56Fesilicate (e.g., Ol)-melt ≈ −0.15 ± 0.05‰ [46]. By considering a reasonable mineral mode
of 70% Ol, 25% Opx, and 5% Cpx, we can obtain the melt in equilibrium with the cumulate
to have δ56Fe = 0.06 + 0.15 ≈ 0.21‰, which is likely to be the maximum by comparing with
highest have δ56Fe values of global OIB [68]. Note that we do not use serpentines in this
construction for reasons elaborated above.

5.2.2. Iron Isotope Compositions of the Sulfide Liquid

As discussed above (see Figure 6), we considered that the sulfide minerals resulted
from equilibrium during crystallization. Hence, the weighted mean δ56Fe values of the
sulfide mineralogy gave a reasonable iron isotope composition of the sulfide liquid. The
calculation would be straightforward with caveats on serpentinization associated heavy
Fe isotopes depletion (or light Fe isotopes addition) in Po, which was the most abundant
sulfide mineral of the net-textured ores.

Similarly, we could calculate the iron isotope composition of the bulk-sulfide phase
and thus sulfide liquid (results shown in Table 9; see Appendix B) in the net-textured ore
samples according to Equation (1) (Section 4.3 [49,50]) with a “CIPW” approach (detailed
in Table 7; results shown in Table 8; see Appendix C). Since the net-textured ore sample
JC-3 has only pyrrhotite separate, this will not be discussed.
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Table 9. Calculated iron isotope composition of bulk-sulfide phase in net-textured ore samples.

Sample
No.

Mineral
Type

δ56Fei
B1 = Fe Content of

Each Mineral

B2 = Sulfide
Content of

Bulk-Sulfide Phase

B3 = Fe Content of
Bulk-Sulfide Phase Value of Ci δ56Fe (Sulfide Liquid)

‰, from Part 2 of
Table 6

wt.%, from
Table 2

wt.%, cal. from
Table 8 wt.% wt.%, Corrected

to 100%
Scenario
(1), ‰

Scenario
(2), ‰

Scenario
(3), ‰

Scenario
(4), ‰

JC-1

Pyrrhotite −1.37 59.37 49.77
45.70

64.66
−0.77 −0.39 −0.59 0.32Chalcopyrite 0.09 30.23 24.96 16.52

Pentlandite 0.53 34.04 25.27 18.82
Serpentine 0.60 6.998

JC-2

Pyrrhotite −0.74 60.01 51.59
45.70

67.75
−0.20 −0.22 −0.11 0.95Chalcopyrite 0.56 29.65 10.67 6.924

Pentlandite 1.05 30.67 37.74 25.33
Serpentine 0.52 6.015

δ56Fe (bulk-sulfide phase) = ΣCi × δ56Fei (i = each sulfide); Ci = B1 × B2/B3.

It should be noted that because of the significantly heavier Fe isotope composition in
serpentine and lighter Fe isotope composition in pyrrhotite (Figure 5b), several probable
bulk-sulfide (i.e., the sulfide liquid) iron isotope compositions could be estimated (Table 9):

(1) By excluding the gains of light Fe isotopes for pyrrhotite caused by serpentiniza-
tion. The δ56Fe values of the bulk-sulfide of JC-1 and JC-2 would be −0.77‰ and
−0.20‰, respectively.

(2) By using pyrrhotite that is less affected by serpentinization in sample JC-3 instead
the pyrrhotite in JC-1 and 2, which are strongly serpentinized, the δ56Fe values of the
bulk-sulfide of JC-1 and JC-2 would be −0.39‰ and −0.22‰, respectively.

(3) By taking full consideration of the probable gains of light Fe isotopes for pyrrhotite
caused by serpentinization, we could use the difference of iron isotope composi-
tions between the serpentine and average of unaltered silicate minerals (δ56Fe =
0.05‰, Ol, Cpx, and Opx) in the net-textured ores, the iron contents of serpentine
and pyrrhotite, and the contents of these two minerals in the whole ore respec-
tively to calculate how much lighter are Fe isotope compositions of the pyrrhotite
caused by serpentinization as ∆56FePo ×WPo × FePo = ∆56FeSerp-Ol ×WSerp × FeSerp
(WPo = Po content in ore; FePo = iron content in Po; Wserp = Serp content in ore;
Feserp% = iron content in Serp), then take the analytical value plus the ∆56FePo cal-
culated above to give the probable value of pyrrhotite before serpentinization as
δ56FePo-before serpentinized = δ56FePo-analytical value + ∆56FePo. The δ56Fe values of the
bulk-sulfide of JC-1 and JC-2 would be −0.59‰ and −0.11‰, respectively.

(4) If we use pentlandite and chalcopyrite only without including pyrrhotite modified by
later serpentinization, we would obtain δ56Fe values of the bulk-sulfide of JC-1 and
JC-2 to be 0.32‰ and 0.95‰, respectively.

We did not consider using serpentine to obtain the iron isotope composition of silicate
liquid because its heavier Fe isotope composition as the result of probable lighter Fe
isotopes losses to pyrrhotite due to serpentinization cannot be ignored although this effect
cannot yet be quantified. Hence, we could exclude scenario (1). Since pyrrhotite was the
dominant sulfide mineral in net-textured ores, the influence of its iron isotope composition
on the total sulfide liquid cannot be ignored. Hence, we could exclude scenario (4). Both
(2) and (3) fully considered the significant influence of serpentinization on iron isotopes in
the sulfide phase-silicate phase system. Due to the introduction of analytical errors and
errors associated with the modal analysis, calculations, and yet to be quantified effect of
serpentinization on pyrrhotite and serpentine iron isotope compositions, scenario (3) was
less reliable than scenario (2). Since JC-3 was the ore sample with the lowest degree of
serpentinization, its iron isotope composition of pyrrhotite might represent more original
pyrrhotite. Therefore, we believe that the value obtained by using the value of pyrrhotite
from JC-3 to calculate JC-1 and JC-2 was probably closer to the real value, i.e., scenario (2)
with an average δ56Fe value of ~−0.30‰.
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5.2.3. Differences of Iron Isotopes Between Sulfide Liquid and Silicate Liquid

The above rigorous calculations yield Fe isotope composition for the silicate liquid
with δ56Fe ≈ 0.21‰ and the sulfide liquid with δ56Fe ≈ −0.30‰, represented by weighted
mean value of bulk-sulfide minerals in the net-textured ores (Figure 6).

Therefore, it can be inferred that during the immiscible separation of sulfide liquid
and silicate liquid from in the parental sulfide saturated silicate magma, iron isotope frac-
tionation does occur between the two liquids, resulting in the iron isotope compositional
differences between sulfide phase and silicate phase. Sulfides tend to preferentially incor-
porate lighter Fe isotopes, making the iron isotope compositions in sulfide phase lighter
than those in the silicate phase. As we reasonably hypothesized from the onset, the final
stage of core separation must have been a process of sulfur removal that will not involve
iron isotope fractionation (e.g., (Fe2+, Ni2+)S2− → (Fe0, Ni0)alloy + S0 for conceptual clarity
and simplicity) although S and other light elements such as Si and O must still exist in
varying small amounts in the core [69].

Previous studies suggest that iron meteorites (δ56Fe = 0.05 ± 0.02‰) have heavier
average iron isotope composition compared with chondrites (δ56Fe =−0.01± 0.01‰) [2–6].
It is suspected that the specific nature of the bonding between Fe and S in iron meteorites
may enhance the affinity for heavy Fe isotopes relative to other phases [70]. The metal
phases in the pallasites have a significant heavier iron isotope composition than the co-
existing silicate phases [70]. Experimental studies on the separation of metallic phase
and silicate melt under 7.7 GPa with 2000 °C and 1 GPa with 1250–1300 °C conditions
show no discernible fractionation of iron isotopes between metallic phase and silicate melt
phase [12,13]. Based on the crystal lattice parameters of the metallic phase and silicate
phase in a diamond anvil experiment, previous researchers found that the calculated iron
isotope fractionation factors between the metallic phase and silicate phase have an obvious
pressure effect: heavy Fe isotopes enriched in the metal phase compared with the silicate
phase at low pressure. On the contrary, light Fe isotopes enriched in the metal phase
compared with the silicate phase under the conditions of temperature and pressure at the
core mantle boundary (e.g., P = 130 GPa) [16].

While such studies are useful, we reason that (1) the Earth’s core formation is not
simply a deep mantle process, but must have been a whole-Earth process because Fe
depletion is not confined to the deep mantle, but happens to the entire silicate Earth; (2) the
strong Fe-S (siderophile property of Fe) and Fe-O (lithophile property of Fe) chemical bonds
make it difficult to produce volumetrically significant metal Fe0 phase in equilibrium with
silicate melt; (3) Fe-S sulfide liquid separation from the bulk-silicate Earth thus must be
an essential intermediate step; (4) the high density and low viscosity of the Fe-S liquid
can thus, under gravity, transport from all Earth depths to the Earth’s deep interiors; and
(5) a final stage of sulfur removal is expected to complete the metallic core formation. This
analysis suggests that determination of Fe isotope differences or similarities of metallic Fe
and silicate at whatever pressure conditions without a melt phase (or equilibrium sulfide-
silicate liquids) may not provide credible information on Fe isotope fractionation between
the Earth’s core and the silicate Earth. Therefore, our approach by analyzing Sudbury-type
ore minerals is a first step forward for future studies (Figures 1 and 6) despite the fact that
the metallic core separation must be a whole-Earth process taking place under all depths.
We predict that like net-textured ore sulfides, the Earth’s core probably preferentially
hosts light iron isotope during the process of core–mantle differentiation (see above our
calculated mean values: δ56Fe[silicate liquid] ≈ 0.21‰ vs. δ56Fe[sulfide liquid] ≈ −0.30‰). If so,
the mantle would have a heavier iron isotope composition and the bulk Earth may have
δ56Fe < −0.01 ± 0.01‰.

Our discussions on the iron isotope fractionation between immiscible sulfide and
silicate liquids were based on the constituent mineral phases of the net-textured ores, in
which iron in all phases occurs as Fe2+ with no or little Fe3+ if any. The magmatic P-T
conditions are likely far lower than core–mantle separation conditions. However, the
core–mantle separation is unlikely to have taken place at the present-day core and deep
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mantle conditions, but throughout the entire Earth, as shallow as the surface of the planet
back > 4.5 Ga to as deep as the core depth simply because ~87% Fe of the bulk chondritic
Earth would have to sink from all parts and depths of the Earth into the core. Furthermore,
this could not take place in the form of metallic Fe to sink through the silicate Earth into
the deep Earth, but must have gone through sulfide-silicate liquid segregation as the very
first stage. The latter is essential because of the strong Fe2+-S2−.1− and Fe2+-O2− chemical
bonding and because of the strong sulfur affinity of Fe.

Thus, the bulk-silicate phase in our net-textured ore dominated by spinel-facies peri-
dotite can reflect the shallow separation less than 60 km of the early stage, but more
probable phases from deeper Earth must be further studied, such as garnet-facies peri-
dotite (60–170 km), whose iron isotope fractionation between coexisting mineral phases
may be quite different from the above results. Previous studies suggested that controlled
by differences in the coordination environment of cations between coexisting minerals,
heavier isotopes are concentrated in lattice positions with stronger bond energy [71,72].
This is maybe why garnet were reported having lighter iron isotope composition than
olivine when under an iron isotope balance indicated by analyses on garnet-facies peri-
dotite [54,73–75]. Thus, higher P-T bulk-silicate phases may have lighter iron isotope
compositions than those of net-textured ores. Besides, given the preference of heavier iron
isotopes to the phases with higher Fe3+ or lower Fe2+ [9], it is expected that the involvement
of Fe3+-bearing minerals (e.g., magnetite and hematite) may lead to heavier iron isotope
compositions of these phases.

It is important to note that what we offered in this study is a logical approach by studying
actual Earth materials that are accessible and whose formation scenarios (Figures 1 and 6) are
physically most plausible towards understanding the process of core–mantle separation and
possible Fe isotope fractionation. Our suggested conclusion for a significantly subchondritic
Earth in terms of Fe isotopes may need change or refinement. More studies like ours are
needed, but we predicted more credible results are expected to come from coexisting
sulfide-silicate liquids produced experimentally under varying mantle depth conditions as
detailed above.

6. Conclusions

To better understand the iron isotope composition of the bulk Earth, it is unsatisfactory
to assume the bulk Earth has the chondritic iron isotope compositions on the basis of oceanic
basalts, mantle peridotites, and model mantle compositions because nearly 90 wt.% of
the Earth’s iron is in the core, which is inaccessible and whose iron isotope composition
is unknown. For this reason, we studied iron isotope characteristics of net-textured ores
from the Jinchuan magmatic sulfide deposit, which is one of the largest Sudbury-type
ore deposits on Earth by analyzing coexisting sulfide (Po, Cp, and Pn) and silicate (Ol,
Cpx, and Opx) minerals. The petrography, analytical data, and rigorous discussion above
allowed us to reach the following conclusions with suggested future works:

(1) There were three major sulfide minerals (pyrrhotite (Po), chalcopyrite (Cp), and
pentlandite (Pn)) in the net-textured ores. The δ56Fe value of these sulfides varied
greatly: −1.37–−0.74‰ (Po) < 0.09–0.56‰ (Cp) < 0.53–1.05‰ (Pn).

(2) The silicate minerals were all of cumulate origin, dominated by olivine (Ol) with a
small amount of pyroxene (clinopyroxene (Cpx) < orthopyroxene (Opx)). Their δ56Fe
values were 0.07 ± 0.03‰ (Ol) > 0.05 ± 0.07‰ (Opx) > 0.04 ± 0.02‰ (Cpx), which
were all close to the chondritic values.

(3) By assuming that the coexisting sulfide and silicate minerals of net-textured ores
were crystallized/solidified from respective sulfide and silicate liquids segregated
from the sulfur-rich and sulfide-saturated parental magma, and by reconstructing the
weighted mean iron isotope compositions of bulk-sulfide minerals and bulk-silicate
minerals, we obtained the iron isotope composition of the silicate liquid (δ56Fe ≈
0.21‰) in equilibrium with the silicate minerals (Ol, Cpx, and Opx) and the iron
isotope composition of the sulfide liquid (δ56Fe ≈ −0.30‰), which was the best value
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possible with caveats, including the effect of serpentinization that must have resulted
in heavy Fe isotope enrichment in serpentines while light Fe isotope enrichment in
the coexisting pyrrhotite.

(4) Our preferred scenario of core formation was through silicate-sulfide liquid seg-
regation followed by sulfur removal. The sulfide liquid iron isotope composition
was expected to be the same as the metallic core. Thus, there must be iron isotope
fractionation between the metallic core and the silicate mantle according to the signifi-
cant differences of iron isotope composition between the sulfide liquid and silicate
liquid obtained from the Jinchuan net-textured sulfide ore samples with the fraction-
ation factor of ∆56Fesilicate-sulfide ≈ 0.51‰. If we simply compared the difference be-
tween the weighted mean bulk-silicate minerals of δ56Fe(0.70ol,0.25opx,0.05cpx) = 0.06‰
with weighted mean bulk-sulfide minerals of δ56Fe ≈ −0.30‰, we would have
∆56Fesilicate-sulfide ≈ 0.36‰. This is still a rather large difference and we do not intend
to claim this value to be correct, but emphasize that iron isotope fractionation does
take place between silicates and sulfides in the Sudbury-type magmatic sulfide miner-
alization. We thus hypothesized that iron isotope fractionation must take place during
core–mantle separation, and predicted that the bulk Earth must have significantly
lighter Fe isotope composition than the chondrites (i.e., δ56Fe < −0.01 ± 0.01‰). We
predicted that the Fe isotope analysis of coexisting sulfide-silicate liquids produced
experimentally under varying mantle depth conditions will complement the study of
the type we reported here and altogether helped provide credible Fe isotope composi-
tions of the bulk-Earth and the possible Fe isotope differences between the Earth’s
core and the silicate Earth.

The importance of our study was to advocate that the Sudbury-type net-textured ores
are the best materials available for studying potential core–mantle iron isotope fractionation
and to bring about an impetus for further study towards better understanding the chemical
and isotopic differentiation of the Earth. It is worthy to note that serpentinization in
net-textured ores is characterized by hydration of olivine (and Opx), which seems to be a
process of losing light Fe isotopes or gaining heavy Fe isotopes through re-equilibration
with the coexisting pyrrhotite, as the pyrrhotite gains light Fe isotopes from serpentines
or loses heavy Fe isotopes to serpentines. This is a reasonable interpretation, but must be
tested through in situ Fe isotope profile studies. Although we did not analyze Ni isotopes,
because of the close Fe-Ni association in the magmatic mineralization and because of the
majority of Earth’s Ni is also in the core, we inferred that Ni isotope fractionation must also
have taken place during the core separation. The Ni isotope study will complement our Fe
isotope study towards improved understanding of the Earth’s core separation.
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Appendix A

The content of each sulfide mineral in the impure mineral separates (i.e., mixture of
three sulfide minerals) can be calculated by the following steps:

(1) The weight percentages of the major elements FeOT, CuO, and NiO in the impure
mineral separates (wt.%; Table 4) are converted into the mole percentages of the
elements Fe, Cu, and Ni (mol.%);



Minerals 2021, 11, 464 26 of 30

(2) According to the empirical molecular formulae given by different sulfides in Table 2, the
mole percentage of the element is converted into the mineral molecular percentage
(mol.%). Assuming that the coefficients of Fe, Cu, and Ni in the empirical molecular
formula of sulfide are x, y, and z respectively, the general molecular formula can be
expressed as FexCuyNizSn, which gives pyrrhotite as Fex1Cuy1Niz1S, chalcopyrite as
Fex2Cuy2Niz2S2, and pentlandite as Fex3Cuy3Niz3S8; Pentlandite (mol.%) = Ni (mol.%)/z3,
chalcopyrite (mol.%) = Cu (mol.%)/y2, Fe content of Pyrrhotite (mol.%) = Total Fe −
x3 × Pentlandite (mol.%) − x2 × chalcopyrite (mol.%), and Pyrrhotite (mol.%) = Fe
content of Pyrrhotite (mol.%)/x1.

(3) The mole percentage of each sulfide and its empirical molecular formula (Table 2)
are converted to the mass percentage (wt.%) of each sulfide, and then normalized to
100%. Sulfide (wt.%) = Sulfide (mol.%)× The relative molecular mass of the empirical
molecular formula × 100%.

Appendix B

According to Equation (1), we could calculate the iron isotope composition of various
constituent minerals (δ56Fei) from the iron isotope composition of the bulk-rock (δ56Fe)
and mass fraction of iron of each mineral (Ci) in the total iron of the bulk-rock through
the following calculation steps (by assuming that impure sulfide mineral separates are
the “bulk-rock” (δ56Fe) and various pure sulfide end-members are “constituent minerals”
(δ56Fei)):

Let A1 = Fe content in each mineral (wt.%), A2 = mineral content in the bulk rock
(wt.%), and A3 = Fe content in the bulk-rock (wt.%), then Ci=A1 × A2/A3, normalized
to 100%. Assuming that the impure mineral separate is the “bulk-rock”, we had δ56Fe
(impure mineral separate) = CPo × δ56Fe(Po) + CCp × δ56Fe(Cp) + CPn × δ56Fe(Pn). Part 2
of Table 6 gives A1 values for each sulfide mineral measured using EMPA (Table 2). Table 6
gives A2 values for each sulfide mineral in impure mineral separate as calculated above.
Table 6 also gives A3 values in that impure mineral separate (Tables 4 and 6). Thus, we
could obtain the iron isotope compositions of pure sulfide end-members (δ56Fei; Part 2 of
Table 6).

Similarly, we could calculate the iron isotope composition of the bulk-sulfide phase in
the net-textured ore samples according to Equation (1) with a “CIPW” approach (see Ap-
pendix C for details) as follows: δ56Fe (bulk-sulfide) = CPo × δ56Fe(Po) + CCp × δ56Fe(Cp)
+ CPn × δ56Fe(Pn). The δ56Fe of each sulfide uses the pure end-member iron isotopes
calculated in Section 4.3 (δ56Fei; Part 2 of Table 6). By letting B1 = Fe content in each sulfide
mineral (wt.%; Tables 2 and 9) and B2 = each sulfide mineral content in the total sulfide
(wt.%), we can obtain Fe content of total sulfides (wt.%; B3 = Σ(B1 × B2) × 100) and thus Ci
= B1 × B2/B3 (Table 9). With all these, we can obtain possible bulk-sulfide and thus sulfide
liquid iron isotope compositions given in Table 9. Since the net-textured ore sample JC-3
has only pyrrhotite separate, this will not be discussed.

Appendix C

The iron isotope fractionation is most likely to take place at the magmatic molten
stage with sulfide liquid exsolved or segregated from the sulfur and sulfide saturated
silicate liquid. In this model scenario (Figure 6), there is expected to be little iron iso-
tope fractionation between silicate minerals and sulfide minerals with the exception of
serpentine-pyrrhotite (see above and below). The bulk-silicate minerals (prior to serpen-
tinization) represent iron isotope composition of the silicate liquid with the consideration
of ∆56Fecrystal-melt ≈ −0.15 [36]. The bulk-sulfide minerals (except for pyrrhotite (Po))
represent the iron composition of the sulfide liquid from which they crystallized. Hence,
to understand the iron isotope fractionation between the silicate liquid and sulfide liquid
requires reconstruction of bulk-sulfide iron isotope composition for the net-textured ore
samples (JC-1, 2, and 3). Determination of the iron isotope composition of the bulk-silicate
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is easier because of the similar δ56Fe (Ol, Opx, and Cpx) with small variation relative to
sulfide minerals.

A “CIPW” approach was used to obtained the sulfide modal abundances of the net-
textured ore samples from Jinchuan deposit using chemical formula of minerals calculated
from major element analyses (Tables 2–4 and 8). The specific procedures are as follows:

(1) The major ore elements (such as FeO, CuO, and Cr2O3 in wt.%; Table 4) in the bulk-ore
samples (JC-1, 2, and 3) are converted to their molar percentages (such as Fe, Cu, and
Cr in mol.%).

(2) The modal mineralogy in mol.% can be calculated using the unique element of each
mineral (e.g., Ni in pentlandite, Cu in chalcopyrite, Cr in chromite, etc.). For the
elements common in all minerals, simultaneous equations are used.

(3) Since pyrrhotite only contains Fe and S, its modal calculation is done after the modes
of all other iron-bearing minerals are completed using the residual Fe of total Fe
minus all the Fe already used so as to obtain the modes of all the major minerals in
the net-textured ore samples.

It should be noted that: (1) The equal sign only means that the mineral (mol.%) can be
calculated using a single element (mol.%) and the molecular formula of that mineral with
the coefficient of each element in the molecular formula omitted in each equation. Take
the chalcopyrite of sample JC-1 (Cu0.944Fe0.959S2) as an example, chalcopyrite = Cu, which
is actual chalcopyrite = Cu/0.944; (2) the equation follows the computer code tradition,
e.g., Fe = Fe + Cu + Ni, means sum Fe, Cu, and Ni to replace the current Fe value; and (3)
the coefficients obtained from the mineral molecular formula are omitted for clarity. For
example, for the chalcopyrite of JC-1 (Cu0.944Fe0.959S2), Fe = Fe − Cu, which is actually
Fe=Fe − 0.959/0.944 × Cu. The details of the above calculations for the three samples
(JC-1, 2, and 3) are given in Table 7.

(4) Then, convert the molar percentage of each mineral in the bulk-ore samples into
weight percentage (wt.%) using the molecular formulae (Table 8): Each mineral (wt.%)
= each mineral (mol.%) × relative molecular weight in the experimental molecular
formula;

(5) Normalize the above to 100%.

The calculated mineral modal abundances for the three net-textured ore samples (JC-1,
2, and 3) were given in Table 8. The calculated mineral models were similar to petrographic
estimates for these samples given in Table 1.
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