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Abstract

In this paper we analyze second‐best optimal taxation

in an endogenous‐growth model driven by public ex-

penditure, in presence of endogenous fertility and labor

supply. Normative analysis shows positive taxes on the

number of children, which are necessary to correct for

congestion in the publicly provided input (such as

education and healthcare), negative public debt.

Results on capital and labor income taxation depend

on whether the public input is optimally provided.

1 | INTRODUCTION

In this paper we analyze second‐best optimal taxation in an endogenous‐growth model driven
by public expenditure, in which we allow for endogenous fertility and labor supply.

An extensive literature on optimal taxation of factor incomes in a general‐equilibrium
dynamic framework has been flourishing in the last three decades, both from a normative and
positive point of view.

Under the normative approach, a well‐established finding is that in dynastic economies, in
the long run, capital income should not be taxed, thus shifting the burden from capital income
taxation toward labor (Chamley, 1986; Judd, 1985). Although the result is robust with respect to
several extensions, some exceptions may arise, such as in the case of borrowing constraints
(Aiyagari, 1995), market imperfections (Judd, 1997), incomplete set of taxes (Correia, 1996),
social discounting and disconnected economies (De Bonis & Spataro, 2010), government time‐
inconsistency and lack of commitment (Reis, 2012), externalities from suboptimal policy rules
(Turnovsky, 1996).
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In endogenous growth models, Lucas (1990) and Turnovsky (1992) compare the effects of a
tax on capital versus a tax on labor and find the former to be inferior to the latter from a welfare
point of view1.

Under the positive approach, several papers have analyzed the impact of fiscal policies on
economic growth, such as Barro (1990), Jones and Manuelli (1990), and Rebelo (1991).
Turnovsky (1996) analyses the issue of first‐best optimal taxation and expenditure policies in an
endogenous growth model with externalities stemming from public goods both in the utility
and in the production function and Turnovsky (2000) extends the analysis to the case of
endogenous labor supply2. In this type of models, direct taxation brings about a natural trade‐
off: on one hand, it distorts incentives to save and work, hence reducing growth; on the other, it
increases the marginal productivity of private inputs, thus increasing growth and possibly
welfare. This is also the key contribution of Barro (1990) and has been extended in several
subsequent studies.

However, in all these papers (with normative or positive analysis) population growth is
either absent or exogenous. In fact, the observed large variations in fertility rates both across
countries and across times, have led an increasing number of scholars to work on the re-
formulation of economic theory and fiscal policy in the presence of endogenous fertility (see,
among others, Balestrino et al., 2002; Barro & Becker, 1989; Becker & Barro, 1988; Cigno, 2001;
de la Croix et al., 2012; Renström & Spataro, 2011). Moreover, most of the endogenous growth
models mentioned above suffer from the “scale effect,” meaning that the steady‐state growth
rate increases with the size (scale) of the economy, as indexed, for example, by population.3

To breach this gap, the contribution of our work is twofold: first, we extend the Barro
(1990) model, in which the engine of growth is productive public expenditure, by allowing
for both endogenous labor supply (as in Turnovsky, 2000) and endogenous population (as
in Barro & Becker, 1989; Becker & Barro, 1988 and Spataro & Renström, 2012; Renström &
Spataro, 2019) in one encompassing model. Second, in this scenario, we analyze the
second‐best optimal tax structure. To the best of our knowledge, this has not been done
so far.

In fact, the process of economic development and in particular the so‐called Demographic
Transition (i.e., the transition from a positive to a negative relationship between per‐capita
income and fertility) have been intensively studied in recent years. Galor (2011) argues that the
positive effect of technical progress on the return to education and the feedback effect of higher
education on technical progress bring upon a rapid decline in fertility accompanied by ac-
celerated output growth.4 Although producing relevant results, such works have not focused on
the role of fiscal policies. Therefore, in this paper we provide another possible explanation on
population changes which can add to the existing ones so far emerged in the literature, by
focusing on the role of fiscal policies.

We retain the Barro (1990) approach since there is consolidated evidence that public ex-
penditure in favor of productive services has a sizable impact on growth (for major insights, see,

1
As pointed out by Lucas (1990), the result holds for the steady state, although along the transition the welfare gains of an efficient tax shift are lower. See also

Sinclair and Slater (1990) and Laitner (1995).
2
A discussion of the effects of taxation in models with endogenous labor supply is also provided by Rebelo (1991). See also Basu et al. (2004) and Basu and

Renström (2007) for indivisible labor economies.
3
To overcome this problem, non‐scale models have been provided by Jones (1995) and subsequent works, although still hinging on exogenous population (see,

e.g., Strulik et al., 2013; Bucci & Raurich, 2017).
4
See also Elgin (2012). For recent empirical evidence on development patterns and demograhic dynamics, see Cervellati et al. (2017).
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among others, García Peñalosa & Turnovsky, 2005; Turnovsky, 1996). We also note that our
model can avoid two shortcomings of the aforementioned nonscale growth models: first, the
direct positive link between economic and demographic growth, which is not supported by
post‐war data (see Acemoglu, 2009, p. 448)5 and, second, the fact that the long‐run equilibrium
growth rate is determined by technological parameters and is independent of macro policy
instruments.

The assumption of endogenous population, may pose major issues related to welfare ana-
lysis. In fact, given that under these circumstances welfare evaluations typically imply the
comparisons between states of the world in which the size of population is different, the Pareto
criterion cannot be used. To deal with this issue, we adopt a Classical Utilitarianism approach,
which allows for social orderings that are based on desirable welfarist axioms in presence of
variable population and, under our assumptions, can also avoid unpleasant outcomes as for
population (e.g., the so‐called Repugnant Conclusion6).

In this framework, normative analysis reveals positive taxation on children, which is ne-
cessary to correct for congestion in the publicly provided input, negative public debt and
constant population. Results on capital and labor income taxation depend on whether the
public input is optimally provided.

The work is organized as follows: after laying out the model (Section 2), we characterize the
decentralized equilibrium (Section 3), the second‐best optimal public debt, tax rules and po-
pulation dynamics (Section 4). Section 5 concludes.

2 | THE MODEL

In this section we lay out the benchmark model. We denote individual quantities by lower
case letters, and aggregate quantities by corresponding upper case letters, so that V = Nv,
with N population size. We will assume that public expenditure is fixed as a fraction of
GDP and we will discuss the cases in which the share of public expenditure is set arbi-
trarily or it is set optimally. This approach will enhance our understanding of the optimal
capital income tax rate, which, as it will be shown, depends upon both the socially optimal
level of government expenditure and the deviation of actual expenditure from its social
optimum.

We assume that the representative agent is endowed with a unit of time that can be
allocated either to leisure or to work or to child rearing. Individuals live for one period
and we also assume intergenerational altruism, with life‐time utility function u(ct,lt),
where ct is life‐time consumption for that individual, lt is time allocated to work and child
rearing. This utility is assumed to be increasing in ct, decreasing in lt and strictly concave.
An individual family chooses consumption, labor supply, savings, and the number of
children (i.e., the change in the cohort size N).

5
See Becker et al. (1990) and Renström and Spataro (2015) for endogenous growth models driven by human capital with variable population. In the present

work we take a different approach, in that we focus on taxation and the engine of growth is public expenditure.
6
According to the Repugnant conclusion, any state in which each member of the population enjoys a life above neutrality is declared inferior to a state in

which each member of a larger population lives a life with lower utility (see Parfit 1976, 1984). In particular, in a growth model with endogenous population,

the Repugnant Conclusion takes the form of upper‐corner solution for the population rate of growth (society reproduces at its physical maximum rate). On this

issue, see Marsiglio (2014), Renström and Spataro (2019), and the literature therein. See Spataro and Renström (2012) for an optimal taxation and policy change

analysis in the presence of Critical Level Utilitarianism a là Blackorby et al. (1995), although without endogenous growth.
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The literature has provided different explanations for parents' demand for children.
For example, the latter could be motivated supposing individuals: (a) derive utility from
the consumption of their children (e.g., Elon Kohlberg, 1976); (ii) aim at receiving old‐age
support from their children (e.g., Willis, 1979). Here, we assume that parents derive utility
from the utility of their children as in Becker and Barro (1988) and Barro and Becker
(1989), Jones and Schoonbroodt (2016) and, in particular, a purely welfarist version of the
latter (i.e., social utility as the sum of utilities of all generations) as in Blackorby et al.
(1995), Michel and Pestieau (1998), Renstrӧm and Spataro (2015, 2019), Spataro and
Renstrӧm (2012).

As for firms, we assume perfectly competitive markets and constant return to scale
technology in private inputs. The consequence of the assumptions on the production side
is that we retain the “standard” second‐best framework, in the sense that there are no
profits.

Finally, we assume the government finances an exogenous stream of per‐capita expenditure
x, that enters as an input in private sector production function, by issuing debt and levying
taxes. To retain the second‐best, we levy taxes on the choices made by the families, that is,
savings, labor supply, and children. Consequently, we introduce the capital‐income tax, labor
income tax, and a tax/subsidy on the number of children.

2.1 | Preferences

Following previous literature (i.e., Barro & Becker, 1989), we focus on a single dynasty (household) or
a policymaker choosing consumption and population growth over time, so as to maximize:

∫
∞

U e N u c l dt,= ( , )ρt
t

ε
t t

0

− 1− (1)

where Nt is the population (family) size of generation t, ε1 − > 0 represents the preference on
the population size, ≥u u c l= ( , ) 0t t t is the instantaneous utility function of an individual of
generation t, such that ∙u (0, ) = 0, u u u u> 0, < 0, < 0, < 0c l cc ll and ρ > 0 the intergenera-
tional discount rate. More precisely, we will assume the following form of the instantaneous
utility function:

u c l c l( , ) = (1 − ) ,μ σ μ η(1− ) (1− ) (2)

with μ σ μ η1 > (1 − ) > 0,1 > (1 − ) > 0, and μ σ η1 − (2 − − ) > 0, which are the assump-
tions which can generate sustained long‐run per‐capita income growth7. To retain the welfarist
approach, in the rest of the paper we assume ε = 0, that is, Classical Utilitarianism. Moreover,
the population dynamics is described by the following law:

N

N
n

˙
= .t

t
t (3)

Hence, the problem of the household is to maximize (1) under (3) and the constraint:

7
Notice that the value of utility must be strictly positive, otherwise the value of population would be negative, implying a corner solution for n. Hence, the case

σ > 1 (with the general form of utility u c l l( , ) = (1 − )
cμ σ

σ
μ η

(1− )

1 −
(1− )) discussed by Straub and Werning (2015) as a potentially source of violation of Chamley‐

Judd zero tax result cannot apply to this model.
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A r A w l θ n N c N τ n N˙ = ¯ + ¯ [ − ( ) ] − − ,t t t t t t t t t t t
n

t t (4)

where At is household wealth, ≡r r τ̅ (1 − )t t t
k is net‐of‐tax interest rate, ≡w w τ̅ (1 − )t t t

l is
the net‐of‐tax wage, τt

k, τt
l are the tax rate on capital income and on labor income, re-

spectively, and τt
n is the tax on the number of children. Without loss of generality, a

consumption tax has been normalized to zero and we have a complete set of second‐best
tax instruments.

We assume that θ n( )t is a time cost and is specified over the number of children each
parent has, so that it is a function of the population growth rate. In fact, in equilibrium
each parent has the same number of children, so the per family member population
growth rate becomes the economy wide one. More precisely, for the sake of simplicity, we
assume that the cost for raising children is increasing in the number of children and
linear, so that ∙θ n θ n( ) =t t.

8

As for the cost function, we follow Strulik (1999, 2003) and Boldrin and Jones (2002),
Jones and Schoonbroodt (2016) according to which children's cost is a fraction of the
wage. In economic growth models this assumption is usually made to avoid that the child
cost vanishes as the economy grows. However, in our model with endogenous labor
supply, the deep economic reason for the children cost function is that there is a time
requirement for child‐rearing and the parent chooses the allocation of time between work
and child‐rearing activity.

Finally, the individual time constraint reads as

⎧
⎨⎪
⎩⎪
∙

∙

l

θ n

l θ n

(1 − ) is time allocated to leisure;

is time allocated to child rearing;

− is time allocated to work.

t

t

t t

2.2 | Firms

We assume constant‐returns‐to‐scale production technology with labor‐augmenting productive
public expenditure. More precisely, the production function is

F F K x L F K x N l θn TK x N l θn= ( , ) = ( , ( − )) = ( ( − ))t t t t t t t t t t
γ

t t t t
γ1− (5)

with T the parameter representing total factor productivity, Kt is capital stock, assumed in-
finitely durable, xt the labor‐augmenting flow of services from government spending on the
economy's infrastructure. L l θn N= ( − )t t t t is hired labor, with l θn( − )t t the fraction of time
dedicated to work by each household.

Assuming perfect competition, firms hire capital, K, and labor services, L, on the spot
market and remunerate them according to their marginal productivity, such that

F r= ,Kt t (6)

F w= .Lt t (7)

Moreover, the economy resource constraint is

K̇ F K x L c N x N vK= ( , ) − − − .t t t t t t t t t (8)

8
Notice that convex childrearing costs, although questionable in terms of realism, are commonly used in population literature (see, among others Tertilt, 2005),

in that convexity is necessary for avoiding a corner solution for n. In our work, the time nature of the childbearing costs ensures interiority of the solution for n.
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with v> 0 the depreciation rate of capital. Notice that, following Barro (1990), public ex-
penditure is labor‐augmenting and, given our assumptions on the neoclassical production
technology, is necessary to production and, thus, to obtain sustained long‐run growth of per‐
capita income.

2.3 | The government

We allow the government to finance an exogenous stream of public expenditure xt by
levying taxes, both on capital and labor income and issuing debt, B, which law of mo-
tion is

̇B r B τ r A τ w l θn N τ n N x N= − − ( − ) − + .t t t t
k
t t t

l
t t t t t

n
t t t t (9)

We assume that public expenditure is a constant fraction of total output:

xN δF= . (10)

We thus assume there is full congestion in the publicly provided expenditure, in the sense
that, as it emerges from Equations (5) and (10), only per‐capita expenditure x, and not total
expenditure, augments labor productivity.9

Hence, we can summarize the economy's resource constraint as follows

K F c N vK˙ =
~
− − ,t t t t t (11)

where

≡F F xN δ δ T l θn K
~

− = (1 − ) ( − ) .
γ
γ γ

γ
γ

1− 1 1−

(12)

Defining ≡k
K

N
as the capital intensity and ≡f

F

N
as per capita output, Equations

(5)–(8) read as10

f δ T l θn k= ( − ) ,
γ
γ γ

γ
γ

1− 1 1−

(5′)

r v F γ
f

k
γδ T l θn+ = = = ( − ) ,K

γ
γ γ

γ
γ

1− 1 1−
(6′)

w F
F

N
γ

f

l θn
γ δ T l θn k= = = (1 − )

−
= (1 − ) ( − ) ,L

l
γ
γ γ

γ
γ

1− 1 1−2
(7′)

k f n k c x vk˙ = − − − −t t t t t t t. (8′)

Notice that by Equation (5′) f increasing in l requires γ < 1 and, by Equation (7′) concavity
in l requires, γ<

1

2
, so that γ< < 1.

1

2
Finally, in per‐capita terms (11) reads as:

̇k δ f c n k vk= (1 − ) − − − .t t t t t t (11′)

9
With only per‐capita public expenditure increasing labor productivity we assume full congestion in the prevision of x. Any partial congestion would imply

economies of scale in population size, and there would not be balanced growth in per‐capita terms. Per‐capita growth rate would explode if population growth

were positive. In this sense, x is indeed a non‐pure public good, because of rivalry, and the way in which we imagine its financing (through taxes on children)

could make x be interpreted as the flow of services produced by children‐related public expenditure for local public goods, such as primary schools, hospitals,

or, more in general, healthcare.
10
In fact, by using xN δF δTK xN l θn= = ( ( − ))γ γ1− we get that xN δT l θn K= ( ) ( − )γ

γ
γ

1 1−

, such that F δ T l θn K= ( − )
γ
γ

γ γ
γ

1−
1

1−

and ̃ ≡F F xN δ δ T l θn K− = (1 − ) ( − )
γ
γ γ

γ
γ

1− 1 1−

.
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The production maximizing level of x is when (12) is maximized with respect to δ and it
turns out that this δ is time invariant.11

3 | THE DECENTRALIZED EQUILIBRIUM

We now characterize the decentralized equilibrium of the economy. The problem of the in-
dividual (household) is to maximize (1) subject to (3) and (4), taking A0 and N0 as given. The
current value Hamiltonian is12

H N u q r A w l θ n N c N λ n N= + [ ̅ + ̅ ( − ̅ ) − ] +t t t t t t t t t t t t t t t t (13)

with ≡
( )

θ θ̅ +t
τ

w τ1−

t
n

t t
l
is the net‐of‐tax cost of child rearing one child in time units, qt and λt the

shadow price of wealth and of population, respectively. Put it differently, according to our
specification, ( )w τ θ τ1 − +t t

l
t
n turns out to be the opportunity cost for giving birth to one

child. The first‐order conditions are the following13:

∂

∂
⇒

H

A
ρq q q ρ r q= − ˙ ˙ = ( − ¯) , (14)

∂

∂
⇒

H

c
u q= 0 = ,c (15)

∂

∂
⇒

H

l
u qw= 0 − = ¯ ,l (16)

∂

∂
⇒

H

N
ρλ λ λ ρ n λ u q w l θn c= − ˙ ˙ = ( − ) − − [ ¯ ( − ¯ ) − ], (17)

∂

∂
⇒

H

n
λ qwθ= 0 = ¯ ¯, (18)

and the transversality conditions are14

→∞ →∞
e q A e λ Nlim = 0,lim = 0.

t

ρt
t t

t

ρt
t t

− − (19)

The last condition for the competitive equilibrium is capital market clearing condition:

A K B= + ,t t t (20)

which, in per capita terms, is

a k b= + .t t t (21)

Note that, given the policy under investigation, equilibrium market price (interest rate) and
equilibrium labor price are equal to (private) marginal product of capital and labor, respectively
(see Equations 6′ and 7′) and the latter can be different from social marginal product of capital
and labor, which are

11
This is the productively efficient level of x as it yields an allocation on the production possibilities frontier and is desired also in the second best (see

Diamond‐Mirrlees 1971).
12
We focus on interior solutions for n, in that the problem is concave.

13
We omit the subscript referring to time when it causes no ambiguity to the reader.

14
It can proved that transversality conditions are satisfied along the BGP.
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r v F δ δ T l θn+ =
~
= (1 − ) ( − ) ,K

⁎ γ
γ γ

γ
γ

1− 1 1−

(22a)

w
F

N

γ

γ
δ δ T l θn k=

~
=
1 −

(1 − ) ( − ) .l⁎ γ
γ γ

γ
γ

1− 1 1−2
(22b)

This difference is due to the presence of externality brought about by public expenditure.
More precisely, we get that

⟺ ⟺r r w w γ δ
>

<

>

<

>

<
(1 − ).

⁎ ⁎
(23)

In case the policymaker aims to correct for this externality, it can either choose δ optimally
(i.e., equal to its productively efficient level γ1 − , as in Turnovsky, 1996, for example), or be
forced to raise corrective taxes.

3.1 | Balanced growth path (BGP)

Finally, we characterize the BGP, along which all per‐capita variables grow at the
same rate.

By using Equation (11′), taking time derivatives of (15), (16), and (18) and using (2), (14),
and (17) and recognizing that along the BGP n, l, and c/k are constant, we get the expressions
for the per‐capita consumption, wage rate and capital intensity growth rates (which, along the
BGP are equal):

c

c

r ρ

μ σ

˙
=

¯ −

1 − (1 − )
, (24a)

w

w
r

μ σ

θμ η
l

μ σ η

θμ η

¯̇

¯
= ¯ −

1 − (1 − )
¯ (1 − )

+
1 − (2 − − )

¯ (1 − )
, (24b)

k

k
Gf n v

˙
= ¯ − − , (24c)

with ≡f ̅
f

k
, ≡G δ l(1 − ) − (1 − ) > 0

σ γ τ

l θn η

(1− )(1− )(1− )

( − )(1− )

l

.15 These equations provide the im-
plicit solutions for (l, n, c/k) and of the per‐capita growth rate of the economy along
the BGP.

By looking at Equations (24a) and (24b), we can notice that, as usual, the economy
growth rate is proportional to the net‐of‐tax interest rate (Equation 24a). The latter, in
turn, depends on the whole set of the endogenous variables (l, n, c/k) and, thus, and on the
deep parameters of the economy, comprising taxes (τ τ τ, , )l k n . Given that the equilibrium
relations are highly complex and nonlinear, their analysis is beyond the scope of the
present work. However, we can say that the system behaves as an AK model, although
with endogenous population and labor supply: any exogenous and unforeseen perturba-
tion of the equilibrium would imply that the economy jumps on its new steady state
growth path, due to the jumps in l, n, c.

In the section that follows we will focus on the characterization of the the optimal tax
rules.

15
Note that we have made use of the relationship l= (1 − )

c

k

σ

η

w

k

(1 − )

(1 − )

̅
stemming from Equations (15), (16), and of Equation (5′) and (7′).
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4 | THE RAMSEY TAX PROBLEM

We now turn to finding the second‐best optimal tax program for the economy in the previous
section by solving the Ramsey tax problem. We focus on the second‐best although we will also
point out the features of the first‐best tax program. In doing so, we adopt the primal approach,
consisting of the maximization of a direct social welfare function through the choice of
quantities (i.e., allocations; see Atkinson & Stiglitz, 1972). For this purpose, we must restrict the
set of allocations among which the government can choose to those that can be decentralized as
a competitive equilibrium. We now provide the constraints that must be imposed on the
government's problem to comply with this requirement.

In our framework there is an implementability constraint associated with the individual
family's intertemporal consumption choice. More precisely this constraint is the individual
budget constraint with prices substituted for by using the household's first‐order conditions,
which yields (see Appendix A):

∫ ∫
∞ ∞

A u e u N dt N e u u c u l dt= − [ − − ] .c
ρt

t t
ρt

t c t l t0

0

−
0

0

−
t t0

(25)

Finally, there are two feasibility constraints, one which requires that private and public
consumption plus investment be equal to aggregate output (Equation 11); the other one is given
by Equation (3).

Suppose that the tax program is chosen in period 0, hence the problem of the policymaker is
to maximize (1) subject to Equations (25), (11), and (3) ∀ ≥t 0. The current value Hamilto-
nian is

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥{ }( )H N u u

N

N

N

N
u l

N

N
u c ω F c N vK φ n N= + Ω 1 − + + + (

~
− − ) + ,t t t t

t t
l t

t
c t t t t t t t t t

0 0 0
t t

(26)

where Ω is the multiplier associated with the implementability constraint16 and ωt and φt are
the co‐states associated with the other constraints. The first‐order conditions for consumption
and labor imply (omitting time subscripts):

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

∂

∂
⟹ ∆{ }( )H

c

N

N

N

N
u ω= 0 1 + Ω 1 − − = ,

t t
c c

0 0 (27)

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

∂

∂
⟹ ∆{ }( )H

l

N

N

N

N
u ω

F

N
= 0 1 + Ω 1 − − = −

~
,

t t
l l

l0 0 (28)

with ∆ ≡ − −c
u c

u

u l

u
cc

c

cl

c
>0 and ∆ ≡ − − < 0l

u l

u

u c

u
ll

l

cl

l
usually referred to as the “general equili-

brium elasticity” of consumption and of labor, respectively. By using Equations (15) and (16),
(27) and (28) can be written as

16
It is possible to show thatΩ is positive if the constraint binds. For this reason, it is usually interpreted as a measure of the deadweight loss brought about by

distortionary taxation.
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⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥∆

N

N

N

N

ω

u
1 + Ω 1 − − = ,

t t
c

c

0 0 (29)

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥∆

N

N

N

N

ω

u

w

w
1 + Ω 1 − − = −

¯
,

t t
l

c

0 0
⁎

(30)

with ≡
̃

w
F

N
⁎ l . Finally, we get:

∂

∂

H

K
ωr ρω ω= = − ˙ ,⁎ (31)

with ≡ ̃r FK
⁎ .

∂

∂

H

N
u ωc φn ρφ φ= (1 + Ω) − + = − ˙ , (32)

∂

∂
⟹

H

n
ωF θ φN= 0
~

= .l (33)

In the next Proposition we characterize the BGP:

Proposition 1. Along the second‐best optimal BGP population is constant.

Proof. See Appendix B.1. □

Moreover, we can provide the following Proposition concerning second‐best taxation for the
case when x is chosen optimally (i.e., when δ γ= 1 − ):

Proposition 2. Along the optimal BGP, under productively efficient δ, second‐best
optimal taxation implies

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∆

∆
∈

( )
( )

τ τ= 0, (1 − ) =
1 + Ω 1 − −

1 + Ω 1 − −
(0, 1)k l

N

N

N

N c

N

N

N

N l

t t

t t

0 0

0 0
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⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦

⎫
⎬⎪
⎭⎪

≡
∆

τ
τ

w
τ l

k

c

μ σ η

μ η
¯ = (1 − ) 1 +

1 − (2 − − )

(1 − )

Ω

1 + Ω − Ω
> 0.n t

n

t

l

N

N

N

N l

t

t

0

0

Proof. See Appendix. B.2. □

The analysis of second‐best optimal taxation carried out so far shows that the Chamley‐Judd
result holds also in our scenario: in fact, along the BGP, the capital income tax should be zero
and the labor income tax should be positive. The latter stems from our utility function, which
yields normality of leisure.

Furthermore, as in Turnovsky (1996), it can be shown that nonzero capital income tax
arises, although in a second‐best context, for correcting suboptimal public expenditure. In fact,
when the fraction of public expenditure is above (below) the social second‐best optimum, the
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social return to capital is less than its private marginal physical product. Consequently, capital
income should be taxed to obtain the social optimum.17

Moreover, the tax on children in Proposition 2 is positive. Notice that, also in the first best,
whenΩ = 0, the tax on children is positive. The reason is that there is a congestion externality
in the publicly provided input generated by population size, which must be corrected for.

Notice that the government finds it (second‐best) optimal to have constant population.
Intuitively, this is due to the fact that the tax instrument that it used θ( ̅) entails a tax break at
one child per adult, (i.e., n = 0). In fact, in case n > 0, although the associated tax structure
would imply zero taxes on both capital income and labor income (see Proposition 2 for N→∞),
the distortion brought about by a nonzero tax on childbearing would be too high and, conse-
quently, the associated allocation of resources would be suboptimal. Hence, the government
will implement a tax structure producing constant population.

As for the quantitative dimension of the tax on children, we notice that along the BGP its
absolute value will increase at the per‐capita income rate of growth. Hence, by recalling that
the opportunity cost for rearing children is equal to w τ θ τ(1 − ) +t t

l
t
n, we present the tax on

children in two forms: the first one is the tax as a share of the “optimal opportunity cost” that is
=

θ θ

θ

τ

wθ τ

̅ −

(1− )

n

l , which is independent of the supplied labor, and it represents the additional
marginal cost for an extra child (τn) as a share of the second‐best optimal opportunity cost, that
is, the opportunity cost for a child in the case of no child tax (i.e., wθ τ(1 − )).l The second
measure we present is the tax as a share of total pretax wage income, that is, τ

wl

n

. Given that our
model (being an AK one) does not allow to adequately replicate the features of an existing
economy, we present our numerical results mainly for illustrative purposes. Hence, in Figure 1
we depict the shape of the first measure of the tax on children as a function of the parameters of
the model18. Table 1 reports the results of the sensitivity analysis for both children tax measures
and for the optimal labor income tax.

Finally, the Proposition that follows provides the result concerning the sign of the optimal
level of debt:

Proposition 3. Along BGP, optimal debt is negative.
Proof. See Appendix B.3. □

This result states that along the second‐best optimal BGP public expenditure should entirely
be financed by labor income taxes and by the returns of public assets or by also capital income
taxes, if γ δ> (1 − ).

5 | CONCLUSIONS

In the present work we have carried out an analysis of optimal taxation in an endogenous
growth model in presence of endogenous fertility and labor supply. As far as the normative
analysis is concerned, we show that, at the steady state the second‐best policy entails a zero
capital‐income tax, a positive labor income tax, a positive tax on children, and negative debt.

17
More precisely, building on Appendix B.2, using (24a) and (31) we have r r= ̅⁎ . Using (6′) and (22a) we obtain τ = .k γ δ

γ

− (1 − )

18
While the purpose is not to seek a full calibration, we have yet chosen the parameters of the model so that it replicates certain quantities of the US economy

in the benchmark economy with exogenous taxes. Hence, we set the labor and capital tax rates 23% and 9%, respectively. We then choose the parameters to

match a growth rate of 2.2%, labor supply of 26% (of total time), and a population growth rate of 1%. By using these parameters we then compute optimal taxes.

The full set of parameters for the benchmark case are listed in Figure 1 and Table 1.
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FIGURE 1 Tax on children (as a fraction of children's opportunity cost) as a function of the model
parameters
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Optimal non‐zero taxes on capital income result as a corrective device only in the case of
suboptimal public spending, as in Turnovsky (1996), although in a second‐best analysis. The
reason for positive taxes on children is that there is a congestion in the publicly provided input
that must be corrected for, even in the first‐best: in fact, x is a nonpure public good, because of
rivalry, and the way in which we imagine its financing (through taxes on children—i.e., on
“household size”) could make x be interpreted as the flow of services produced by children‐
related public expenditure for local public goods, such as schools, hospitals, or, more in general,
healthcare.

In this paper we have treated public expenditure as a flow variable (services from current
expenditure). A natural extension of our study is to analyze the case of public expenditure as
financing a stock of public goods (infrastructure): this case is left for future research.
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TABLE 1 Sensitivity analysis for optimal (second‐best) taxes

Taxes (results) (%)
τ

wθ τ(1− )

n

l (%)
τ

wl

n

τ (%)l

Parameters

ρ= 0.124 (Benchmark) 13.36 5.03 14.32

ρ= 0.112 28.97 9.61 12.89

ρ= 0.137 1.96 0.84 15.28

θ = 20.16 24,7 8.44 10.97

θ = 24.64 3.88 1.60 16.97

σ= 0.71 12.58 4.25 17.21

σ= 0.80 19.76 10.22 6.58

μ = 0.71 20.26 7.89 10.21

μ = 0.82 9.94 3.67 16.41

T = 0.792 10.44 4.87 11.63

T = 0.969 19.21 5.99 17.01

η = 0.694 1.84 0.82 16.36

η = 0.799 25.08 8.14 11.40

Parameters for benchmark: η σ θ μ γ δ T ρ v= 0.75, = 0.73, = 22.4, = 0.78, = , = , = 0.88, = 0.124, = 0
2

3

1

3
. Capital

income tax is equal to zero in all simulations.
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APPENDIX A: Implementability constraint
First, by integrating Equation (17), having used (18), one gets:

∫
∞

λ e u q w c dt= [ + ( ¯ − )] .ρt
t t t t0

0

− (A.1)

Second, let us take the following time derivative, ̇ ̇A q A q= +
d A q

dt t t t t
( )t t , which, exploiting

Equations (4) and (14) can be written as

d A q

dt
ρq A q N w l θn c q N w l c λ N

( )
− = [ ¯ ( − ¯ ) − ] = [ ¯ − ] − ˙ ,

t t

t t t t t t t t t t t t t t t (A.2)

where the last equality follows from (3) and (18). Hence, pre‐multiplying by e ρt− and integrating
both sides of (A.2), making use of transversality conditions we obtain

∫ ∫ ̇
∞ ∞

A q e N q w l c dt e λ N dt− = ( ̅ − ) − .ρt
t t t t t

ρt
t t0 0

0

−

0

− (A.3)

Integrating by parts the last integral of (A.3) and using (17) we get

∫ ∫̇
∞ ∞

e λ N dt λ N e N u q w l c dt= − + [ + ( ̅ − )] .ρt
t t

ρt
t t t t t t

0

−
0 0

0

− (A.4)

Substituting (A.4) into (A.3) gives

∫
∞

A q λ N N e u dt+ = .t
ρt

t0 0 0 0

0

− (A.5)

Finally, using (A.1) in (A.5) and using (15) and (16) gives Equation (25) in the text:

∫ ∫
∞ ∞

A u e u N dt N e u u c u l dt= − [ − − ] .c
ρt

t t
ρt

t c t l t0

0

−
0

0

−
t t0

APPENDIX B

B.1. Proof of Proposition 1
We will write the dynamic system in quantities that are constant at a steady state.
Define

Q
φ

ωk
= . (B.1)

Then taking the time derivative, and using Equations (31) and (32) as well as
̇

r n= − −
k

k

c

k
⁎ gives the first of the dynamic equations for the Jacobian:

⎡
⎣⎢

⎤
⎦⎥Q z Q

μ σ

u

ω
˙ = + 1 −

1 + Ω

(1 − )
,c (B.2)

where we have defined z= c/k as per capita consumption divided by per capita capital.
Next, by differentiating uc= q (notice that u is multiplicative in c and l), and using (2) and

(14), we have
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c

r ρ

μ σ

μ η

μ σ

l

l

˙
=

¯ −

1 − (1 − )
−

(1 − )

1 − (1 − )

˙

1 −
. (B.3)

Notice that, from (B.3) and (31)

⎛
⎝⎜

⎞
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d

dt

ω

u
r r

ω

u
= (¯ − ) .

c c

⁎ (B.4)

For the second dynamic equation for the Jacobian we have

⎛
⎝⎜

⎞
⎠⎟z

c

c

k

k
z˙ =

˙
−

˙
,

or, by using Equations (B.3) and (B.4), as well as the capital accumulation
equation

⎡
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Differentiating the log of (27) with respect to time
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and substituting into (B.5) we have
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Next, as for the third dynamic equation, from (28), (33), (15), (16) and the relationship
l= (1 − )

c

k
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η
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̅ , we get:
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By using (29) and (B.1) we obtain
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Differentiating the log of (B.7) with respect to time gives
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Rearranging (B.8) we have
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where

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

≡ ≡

≡ ≥

A l
N

N
B

N

N

D
N

N

N

N
μ σ η AB

(1 − ) 1 + Ω − Ω Δ > 0 1 + Ω − Ω Δ

> 0 1 + Ω 1 + Ω − Ω (1 − (2 − − )) 1

l c
−1 0

−1
0

−1

0 0

are functions of l. Finally, by using (33) and the production technology

Q
φ

ωk
θ
F

Nk
θ

γ
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l θn
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~
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~

−
l K (B.10)

gives n as a function of l and Q: n(l,Q). In particular (B.10) implies the derivatives

∂

∂
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Q θQ
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n

n

l
=

1
> 0, =
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2 − 1
> 0, = + = 0.K K K

Consequently Equations (B.2), (B.6), and (B.9) form a dynamic system in Q, z, and l (with A,
B, and D being functions of l, and n being a function of l and Q). To find the Jacobian we
differentiate the system with respect to Q, z, and l, and evaluate the derivatives at a steady state
(derivatives of expressions multiplying a time derivative can then be ignored).19

We then have (subscripts denoting partial derivatives):

Q z Q Q z
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B˙ = , ˙ = 0, ˙ = −
1 + Ω

(1 − )
,Q z l l (B.11)
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⎦⎥

⎡
⎣⎢

⎤
⎦⎥

l
l

D
D n

Q

Q

z

z
l

l

D

Q

Q

z

z

l
l

D
D n

Q

Q

z

z

˙ =
1 −

( − 1) +
˙
−

˙
, ˙ =

1 − ˙
−

˙
,

˙ =
1 −

( − 1) +
˙
−

˙
,

Q Q
Q Q

z
z z

l l
l l (B.13)

where ≡ ( )P 1 + Ω
μ η

μ σ

N

N

B

l

(1− )

1− (1− ) 1−
0 , ≡S B1 + Ω Δ

μ σ

N

N c
1

1− (1− )
0 . Notice that S

̃
n + = 0Q

μ σ

μ σ

dF

dQ

(1− )

1− (1− )
K and

̃
= 0

dF

dl
K . Solving (B.11), (B.12), and (B.13) gives the Jacobian. The

roots solve:

19
For example dD/dl can be ignored as it multiples

̇l

l1 −
, as well as derivatives of A and B in the expression ABnΩ (1 + Ω)

N

N
0 , as either n=0 or → ∞N + at a

steady state.
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⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

{
}

J νI

z ν z B

z D n z ν D n Sn B

Sn z

D n D n Sn B ν

− =

− 0 −

− ( − 1) + − ( − 1) − −

+

( − 1) + − ( − 1) − − −

= 0.

μ σ l

P

D P Q
z

Q

D

D P

P

D P l l
z

Q μ σ l

l

l

D P Q
z

Q

l

D P

l

D P l l
z

Q μ σ l

1 +Ω

(1− )

− −

−

−

1 +Ω

(1− )

1−

−

1−

−

1−

−

1 +Ω

(1− )

Multiplying the third row by zP/(1‐l) and adding it to the second, gives

⎡

⎣

⎢⎢⎢⎢⎢ ⎡⎣ ⎤⎦

⎤

⎦

⎥⎥⎥⎥⎥
J νI

z ν z B

z ν Sn ν z

D n R ν

− =

− 0 −

0 − −

( − 1) + − −

= 0,

μ σ l

l
P

l

l

D P Q
z

Q

l

D P

l

D P

1 +Ω

(1− )

1−

1−

−

1−

−

1−

−

(B.14)

where ≡R D n Sn B( − 1) − −l l
z

Q μ σ l
1 +Ω

(1− )
. The characteristic equation is

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭z ν ν ν
D

D P
z

l

D P
R ν

l

D P
z D n n

μ σ
B( − ) −

−
+

1 −

−
+

1 −

−
( − 1) +

1 + Ω

(1 − )
= 0.l Q l

2

(B.15)

We check the stability of the steady state where → ∞N + . In this case B = 0l , S=1, D=1,
R n= − l and P =

μ η

μ σ

(1− )

1− (1− )
. Then (B.15) becomes

⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

z ν ν ν
μ σ z l n

μ σ μ η
( − ) −

[1 − (1 − )][ − (1 − ) ]

1 − (1 − ) − (1 − )
= 0.

l
(B.16)

The roots are:

ν z
c

k
ν ν

μ σ

μ σ μ η
z l n= = > 0, = 0, =

1 − (1 − )

1 − (1 − ) − (1 − )
[ − (1 − ) ].l1 2 3

To see that the last root is positive, we proceed as follows. Equations (B.2) and (B.7) are in

this case, respectively, Q = ,
μ σ

μ σ

1− (1− )

(1− )
z Q= .

σ

η

l

θ

(1− )

(1− )

1− Then z =
μ σ

μ η

l

θ

1− (1− )

(1− )

1− . Finally, by dif-

ferentiating (B.10), n =l θ

1 , then the final root is ν = > 0
μ σ

μ η

l

θ3
1− (1− )

(1− )

1− .

Consequently, the steady state for → ∞N + is unstable and cannot be reached asympto-
tically. Since N cannot jump, this steady state cannot be reached. This leaves only the steady
state where n=0. If in this case neither v2 nor v3 is negative, the system (c/k, Q, l [and
consequently n]) jumps to its steady state value (as is usual in AK models). In any case this is
the only steady state which can be reached.

B.2. Proof of Proposition 2
As for the capital income tax, from (32) we get ω̇ ρ r ω= ( − )⁎ and given that ω

q
must be constant

along the BGP (by Equation 22), the rate of growth of ω and q must be equal, so that r r̅ = ⁎. If x
is productively efficient (i.e., δ γ= 1 − ), r r= ⁎ and then τ = 0k . As for the labor income tax,
from (29) and (31):
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⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∆

∆

( )
( )

w

w

¯
=
1 + Ω 1 − −

1 + Ω 1 − −
.

N

N

N

N c

N

N

N

N l

⁎

t t

t t

0 0

0 0

(B.17)

Given that if δ γ= 1 − , w w= ⁎, then
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
∈

∆

∆

( )
( )

τ(1 − ) = (0, 1)l
1 +Ω 1− −

1 +Ω 1− −

N

Nt

N

Nt
c

N

Nt

N

Nt
l

0 0

0 0
, since

⎡⎣ ⎤⎦μ σ ηΔ = 1 − (2 − − ) + > 0c
μ η

l

(1− )

1−
and ⎡⎣ ⎤⎦μ σ ηΔ = 1 − (2 − − ) − < 0l

μ η

l

1− (1− )

1−
.

As for θ ̅, along the steady state growth path, after tax wage and consumption grow at the
same rate. Combining (24b) and

̇
r n= − −

k

k

c

k
⁎ , we have

r
μ σ

θμ η
l

l

θ
r

c

k
n¯ −

1 − (1 − )
¯ (1 − )

(1 − ) −
¯
= − − .⁎ (B.18)

Using n = 0, ̃r F̅ = K , (B.18) becomes

c

k

μ σ

θμ η
l

l

θ
=
1 − (1 − )
¯ (1 − )

(1 − ) +
¯
. (B.19)

(B.2) and (B.7) give

⎡⎣ ⎤⎦( )c

k

σ

η

l

θ
=
1 −

1 −

1 −
− 1 + Ω − Ω Δ

1 + Ω − Ω Δ
.

μ σ

N

N c

N

N l

1 +Ω

(1− )
0

0
(B.20)

Combining (B.19) and (B.20) we get

⎡⎣ ⎤⎦∆
θ θ l

k

c

μ σ η

μ η
l
k

c
̅ − = +

1 − (2 − − )

(1 − )

Ω

1 + Ω − Ω
.

N

N

N

N l

t

t

0

0

(B.21)

By definition of θ ̅, ≡τ τ θ θ̅ (1 − )( ̅ − ) > 0n l .

B.3. Proof of Proposition 3
Let us start from inputs remuneration. Equations (22a) and (22b) give

̃

̃
w l θn

r k

γ

γ

F

N

K

Fk

γ

γ

( − )
=
1 −

=
1 −⁎

⁎
(B.24)

Next, Equation (8′) yields: ̇ ̃
n r n= − − = − −

k

k

F

k

c

k

c

k
⁎ , so that

̇
r n= − −

c

k

k

k
⁎ .

Given that along the BGP
̇ ̇
= =

k

k

c

c

r ρ

μ σ

−

1− (1− )

⁎

we get: ≡r n z= − −
c

k

r ρ

μ σ
⁎ −

1− (1− )

⁎

. Next, let

us exploit the individuals' budget constraint,

a r n a w l θn c˙ = (¯ − ) + ¯ ( − ¯ ) − , (B.25)

and given that

a

a

c

c

r ρ

μ σ

˙
=

˙
=

−

1 − (1 − )
,

⁎

(B.26)
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it follows:

c

a
r n

r ρ

μ σ

w

a
l θn= (¯ − ) −

−

1 − (1 − )
+

¯
( − ¯ ).

⁎

(B.27)

Moreover, exploiting (B.24), l θn( − ̅ )
w

a

̅ is l θn r r( − ̅ ) = =
w

a

w

w

k

a

w l θn

r k

w

w

k

a

γ

γ

̅ ̅ ( − ̅ ) ⁎ ̅ 1− ⁎
⁎

⁎

⁎ ⁎ , so that
we can rewrite Equation (B.27) as

c

a
z

w

w

k

a

γ

γ
r= +

̅ 1 −
.

⁎
⁎ (B.28)

Finally,

a

k

z

z r

a

k

z

z r
= =

+
=

+
,

c

k
c

a

w

w

k

a

γ

γ

a

k

w

w

γ

γ

¯ 1− ⁎ ¯ 1− ⁎
⁎ ⁎

and collecting terms we get:

⎜ ⎟
⎛
⎝

⎞
⎠z

a

k

w

w

γ

γ
r− 1 +

¯ 1 −
= 0.

⁎
⁎

By recalling that ( )− 1 =
a

k

b

k
we get

( )

b

k

r

r n
=

− −
< 0.

w

w

γ

γ

r ρ

μ σ

¯ 1− ⁎

⁎ −

1− 1−

⁎

⁎ (B.29)
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