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We evaluate the contribution of inelastic intermediate states (such as p → N� excitations) to the phase
between the one-photon-exchange and the “nuclear” high energy pp scattering amplitudes as t → 0,
caused by multiphoton diagrams. It turns out to be rather small—much smaller than to have any influence
on the experimental accuracy of the measurements of ρ, defined to be the ratio of the real to imaginary parts
of the forward nuclear amplitude.
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I. INTRODUCTION

The conventional way to measure the real part of the
strong interaction (nuclear) forward amplitude, FN , is to
consider its interference with the pure real one-photon-
exchange QED amplitude, FC, at very small momentum
transfer t → 0. However this interference is affected by the
possibility of multiphoton exchange processes which result
in the an additional phase difference αϕ. That is, the total
amplitude reads

FTOT ¼ FN þ eiαϕFC: ð1Þ

Here α ¼ αQED ¼ 1=137. The phase ϕ (the so-called Bethe
phase) was calculated first by Bethe [1] using a WKB
approach, and then was reexamined byWest and Yennie [2]
in terms of Feynman diagrams. A more precise calculation,
which accounts for the details of the proton form factor,
was performed by Cahn [3]. It gives

ϕðtÞ ¼ −½lnð−Bt=2Þ þ γE þ C�; ð2Þ

where B is the t-slope of the elastic cross section
(dσel=dt ∝ eBtÞ, γE ¼ 0.577… is Euler’s constant and
C ¼ 0.62 (0.60) depending on which form of the proton
electromagnetic form factor—exponential (or dipole)1 is
used (see also [4] for a more detailed calculation).

Note that in all previous calculations only the pure
eikonal diagrams were considered. That is only the
“elastic” (p → p) intermediate states were allowed in the
multiphoton exchange diagrams Fig. 1(a,b).2 Besides this,
there are diagrams with the proton excitations shown in
Fig. 1(c,d). Of course, at small t due to gauge invariance the
pþ γ → N� vertex contains transverse momentum qtγ .
Therefore, these diagrams do not generate ln jtj and can
only affect the value of the constant C.
In the case of the TOTEM experiment at

ffiffiffi
s

p ¼ 13 TeV
the value of ρ was extracted by fitting the differential
dσel=dt proton-proton elastic cross section in the region of
very small jtj ∼ 0.001–0.005 GeV2, where the role of the
Bethe phase is not negligible. It changes the resulting value
of ρ≡ Re=Im ratio by about 0.03. This should be compared
with the experimental accuracy 0.01 (ρ ¼ 0.10� 0.01 [5]).
However, the variation of C by δC ¼ Oð1Þ may addition-
ally shift the value of ρ by δρ ¼ 0.01–0.02. Such an effect
could potentially be important for the confirmation of the
possible presence of the odd signature (Odderon) contri-
bution in the high energy pp-amplitude at t → 0. Indeed
the value of ρ ¼ 0.10� 0.01, extracted using the phase ϕ
calculated in [3] (without accounting for the possibility of
proton excitation) is noticeably lower than that (ρ ≃ 0.135)
obtained from dispersion relations for a pure even-
signature amplitude (with the total cross sections measured
by TOTEM). The observed difference 0.135 − 0.10 ¼
0.035� 0.01 can be explained either by the odd-signature
nuclear contribution to elastic pp scattering or by a
modification of the constant C due to the diagrams of
Figs. 1(c,d) with inelastic (p → N�) intermediate states.
Therefore, it is timely to evaluate the possible role of the

processes with proton excitations in the Coulomb-nuclear
Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Note that the value of C ¼ 0.62 (0.60) was calculated in [3]
for the ISR energies, assuming B ¼ 13 GeV−2. In the LHC case
with B ¼ 20 GeV−2 we get C ¼ 0.45.

2Actually working at OðαÞ accuracy it is sufficient to study
only the two-photon exchange QED diagram and one additional
photon in the nuclear amplitude.
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interference region. Unfortunately, there are no sufficient
data on diffractive p → N� dissociation which would allow
the calculation of the contribution of Fig. 1(d) explicitly. On
the other hand, it is known that cross section of low-mass
diffractive excitation is well described by the so-called
Deck p → N þ π process [6], shown in Fig. 2(a).
Therefore, in Sec. II we use the diagrams of Fig. 2(a) to

evaluate the expected shift δC caused by low-mass exci-
tations. The higher-mass contribution is calculated in
Sec. III based on the triple-Regge formalism [Fig. 2(b)]
and duality. Next, in Sec. IV, we calculate the phase shift
δϕC originating from the two-photon graph Fig. 1(c). Here
data on the γp cross sections are available and will be used.
Unlike one-photon exchange this diagram does not contain

a factor of 1=t. Thus, at very small t → 0 the corresponding
correction is strongly suppressed and can be neglected.
Besides this, formally the diagram in Fig. 1(c) describes the
even-signature amplitude and should satisfy even-signature
dispersion relations. We conclude in Sec. V.

II. PHASE SHIFT CAUSED BY THE DECK
PROCESS

At the lowest αQED order the phase of the strong
interaction amplitude (marked in figures as P) is given
by the discontinuity shown in Figs. 1(b,d) by the vertical
dashed lines. Taking the discontinuity of the amplitude, that
is replacing iπ by 2iπ in the imaginary part of the
propagator we account for the contribution where the
photon exchange is now placed to the left of the nuclear
amplitude. Besides this, in Fig. 1(d) (and also in Figs. 3
and 4) we have to include an additional factor of 2 since
the lower proton can also dissociate. Instead of the p →
N� low-mass excitation we consider the simplest diagrams
for the p → Nπ transition which rather well reproduce the
low-mass proton dissociation [6]. In particular, the cross
section of diffractive dissociation calculated via the dia-
gram of Fig. 2(a) at the LHC energy

ffiffiffi
s

p ¼ 7 GeV is about
2.7 mb (for dissociation of both—that is either the
upper or lower—protons). This is close to the value of low-
mass dissociation (σSDðMX<3.4GeVÞ¼2.66�2.17mb)
measured by TOTEM [7] (see also the discussion in sect. 3
of [8]).
Recall that the amplitude of the Deck processes is

described by three diagrams shown in Fig. 3. For the
photon exchange amplitude we have an analogous set of
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FIG. 2. (a) The Deck diagram for low-mass proton disso-
ciation. (b) The diagram of triple-Regge form used to
evaluate, via duality, the contribution of the heavier inter-
mediate states.
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FIG. 3. The nuclear “Deck” amplitudes for low-mass proton
dissociation.
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FIG. 4. The QED Deck amplitudes for low-mass proton
dissociation.
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FIG. 1. Diagrams responsible for the Bethe phase at the lowest
αQED order. The four plots are: (a) the eikonal (elastic) phase of
the one-photon-exchange amplitude, (b) the elastic phase of the
strong interaction amplitude, (c) and (d) are the contributions of
the excited (p → N�) intermediate states. The nuclear amplitude
is shown by the triple solid line and marked as P.
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three diagrams (Fig. 4). That is, to calculate the disconti-
nuity we have to sum up the three diagrams of Fig. 3 and
multiply this contribution by the sum of the three diagrams
of Fig. 4.
Since we are looking just for an additional Bethe phase

which may affect the ρ ¼ Re=Im ratio we should not worry
about an exact value of the high energy strong amplitude.
We use the normalization sσtot ¼ ImTðt ¼ 0Þ assuming
that σtot ∝ s0.1 and use the additive quark model rela-
tion σðπpÞ ¼ ð2=3ÞσðppÞ.
First, the amplitude shown in Fig. 3(a) reads

A3a ¼GπNGðk2Þ
ffiffiffiffiffiffiffiffi
−k2

p

k2−m2
π
Tπpðxs;tÞ

¼GπNGðk2Þ
ffiffiffiffiffiffiffiffi
−k2

p

k2−m2
π
ið1− iρÞ

×xs
2

3
σ0

�
xs
s0

�
αPðtÞ−1

FπðtÞFpðtÞ; ð3Þ

where x is the beam momentum fraction carried by the
pion, s is the initial energy squared and Tπp is the amplitude
of the strong πp interaction parametrized in the final
equality of the above equation by the pomeron pole
exchange with effective trajectory αPðtÞ¼1þΔþα0Pt, with
ImTppðsÞ¼sσ0ðs=s0ÞαPð0Þ−1, in which we takeΔ ¼ 0.1 and
α0P ¼ 0.25 GeV2. As usual s0 ¼ 1 GeV2. The coupling
GπN ¼ GπNðk2 ¼ 0Þ for the γ5 proton pion vertex3 is
G2

π0pp=4π ¼ 13.75 [9] at k2 ¼ 0with the dipole form factor

Gðk2Þ ¼ 1=ð1 − k2=0.71 GeV2Þ2: ð4Þ

mπ is the pion mass, and wewill takem to be the mass of the
proton.
Besides the contribution from the term α0Pt ¼ α0Pq

2, the
q2 ¼ t dependence of the strong amplitude is driven by the
“form factors” in the vertices

Fpðq2Þ ¼ 1=ð1 − q2=0.71 GeV2Þ2; ð5Þ

Fπðq2Þ ¼ 1=ð1 − q2=0.6 GeV2Þ: ð6Þ

Analogously, the amplitudes corresponding to Figs. 3(b,c)
are

A3b ¼ GπNGðk2Þ
ffiffiffiffiffiffiffiffi
−k2

p

ðp − k − qÞ2 −m2
ið1 − iρÞ

× ð1 − xÞsσ0
�ð1 − xÞs

s0

�
αPðq2Þ−1

F2
pðq2Þ; ð7Þ

and

A3c ¼ GπNGðk2Þ
ffiffiffiffiffiffiffiffi
−k2

p

ðpþ qÞ2 −m2

× ið1 − iρÞsσ0
�
s
s0

�
αPðq2Þ−1

F2
pðq2Þ: ð8Þ

For completeness we give the formulas for the
propagators:

k2 −m2
π ¼ −

1

1 − x
ðk2t þ x2m2Þ −m2

π;

ðpþ qÞ2 −m2 ¼ ΔM2

ðp − k − qÞ2 −m2 ¼ m2
π − k2 − q2t − ΔM2; ð9Þ

where

ΔM2 ¼ ðm2 þ q2t Þ=ð1 − xÞ þ ðm2
π þ ðkþ qÞ2t Þ=x −m2:

ð10Þ

Note that here the values of k2t , q2t and ðkþ qÞ2t are
positive. At very high energies s ≫ q2t where the photon
virtuality q2 ¼ −q2t .
The QED amplitudes of Fig. 4 take the form

A4a ¼ GπNGðk2Þ
ffiffiffiffiffiffiffiffi
−k2

p

k2 −m2
π

8πα

q2
xsFπðq2ÞFpðq2Þ; ð11Þ

A4b ¼ GπNGðk2Þ
ffiffiffiffiffiffiffiffi
−k2

p

ðp − k − qÞ2 −m2

8πα

q2
ð1 − xÞsF2

pðq2Þ;

ð12Þ

and

A4c ¼ GπNGðk2Þ
ffiffiffiffiffiffiffiffi
−k2

p

ðpþ qÞ2 −m2

8πα

q2
sF2

pðq2ÞÞ: ð13Þ

Again a dipole form factor

Fp ¼ Fpγðq2Þ ¼ 1=ð1 − q2=0.71 GeV2Þ2 ð14Þ

is used for the photon-proton vertices while for the pion-
photon coupling we take the pole form

Fπ ¼ Fπγðq2Þ ¼ 1=ð1 − q2=0.6 GeV2Þ: ð15Þ

Recall that for the case of πþ the coupling GπN must be
multiplied by

ffiffiffi
2

p
and we have to deal with the sum A4a þ

A4c while the total QED amplitude with a π0 meson is given
by A4b þ A4c. It is easy to check that the total QED
amplitude of proton excitation vanishes as qt → 0.
The product of the total nuclear times the total QED

amplitudes now has to be integrated over the momentum
fraction x and the transverse momenta qt and kt. Recall that
we are seeking for the phase ϕ at t ¼ 0. We find3For πþ the coupling is

ffiffiffi
2

p
larger than for π0.
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αϕDeck ¼ 2

32π2s2σðppÞ
Z

1

0

dx
xð1 − xÞ

×
Z

dq2t

Z
d2ktðImAð3ÞÞ · Að4Þ; ð16Þ

where Að3Þ and Að4Þ denote the total amplitudes, that is the
sum of the corresponding a, b, c contributions. The factor 2
accounts for the dissociation of the lower proton. The
denominator in dx=ðxð1 − xÞÞ arises from the 1=ð2Eπ2ENÞ
factors in the phase space integrals d3k=ð2Eð2πÞ3Þ.
Numerical calculation at

ffiffiffi
s

p ¼ 13 TeV results in
αϕDeck ¼ 1.3 × 10−4, which is negligibly small in com-
parison with the experimental accuracy of 0.01. In terms
of the Bethe phase, the “inelastic” diagrams with proton
low-mass excitations change ϕ by about 0.018.4 A similar
variation (0.02) of ϕ was observed in [3] depending on the
form of the parametrization of the “elastic” proton form
factor—(that is either dipole or exponent).

A. Deck cross section

The cross section of low-mass dissociation given by the
Deck diagram shown in Fig. 2(a) reads

σSD¼ 1

4s2 ·ð4πÞ3
Z

1

0

dx
xð1−xÞ

Z
dq2t

Z
dk2t Að3Þ ·A�ð3Þ: ð17Þ

Here we account for the dissociation of only one of the
colliding proton. For

ffiffiffi
s

p ¼ 7 TeV we note that the total
cross section5 σtot¼97mb and (17) gives σSD ¼ 1.35 mb.
This is to be compared with low-mass dissociation cross
section 2.6=2 ¼ 1.3� 1.1 mb observed by TOTEM [7].
The good agreement confirms the applicability of our
calculation of the low-mass proton excitation contribution
to the Bethe phase ϕ.

III. HIGHER-MASS DISSOCIATION

To evaluate the possible role of higher-mass excita-
tions we consider the “triple-Regge”-like diagram of
Fig. 2(b). Since the RPγ triple vertex is not known

phenomenologically we use the “vector dominance model”
(VDM) [13] approach and replace this vertex by the
“Pomeron—ρ-meson” (or ω-meson) vertex which in its
turn can be written as 2=3 of the Pomeron-proton vertex.
Recall that due to gauge invariance the proton excitation
vertex caused by the photon must vanish as q2 → 0. The
dimension of the corresponding q2 factor should be
compensated either by the radius of the RPγ triple vertex
or by the mass difference ΔM2 ¼ M2 −m2. In the present
calculation we use s0 ¼ 1 GeV2. On the one hand, this
simplifies the final Regge formula, while on the other hand
this is close to the expected size of the vertex driven
by the slope of the R-reggeon (ρ, ω) trajectory α0R ¼
0.9 GeV−2 [14].
Next, it is known within the VDM, that the proton-to-

photon coupling (proton electric charge e) can be consid-
ered as the sum of the contributions mediated by the ρ and
ω mesons. Exploiting the fact that the ρ and ω Regge
trajectories are degenerate [14] we calculate the contribu-
tion shown in Fig. 2(b) as

αϕR ¼ α0Rπ
2

3

α

π

Z
dM2

X

M2
X

�
M2

X

s0

�
αRð0Þ−αPð0Þ

×
Z

dq2t F2
pðq2Þ

�
M2

X

s

�
α0Pq

2

: ð18Þ

HereMX is the mass of the proton-excited system described
by the R-reggeon and we have already accounted for the
possibility of excitation of the lower proton.
The first factor α0Rπ in (18) accounts for the relation

between the imaginary part of the Reggeon exchange
amplitude given by the R-Reggeon signature factor

η ¼ 1 − expð−iπαRðtÞÞ
sinð−παRðtÞÞ

ð19Þ

and the residue of the pole at αRðtÞ ¼ 1. Near the pole the
signature factor (19) takes the form 2=ðα0Rπðt −m2

RÞÞ while
the discontinuity at t ¼ 0 (where αRð0Þ ≃ 1=2) is 2Imη ≃ 2.
The numerical calculation of (18) results in

ϕR ¼ 0.099–0.106 ð20Þ

for αRð0Þ ¼ 0.5–0.54. This leads to a correction

αϕR ≃ 0.0007 − 0.0008 ð21Þ

to the ρ ¼ Re=Im ratio for the ‘nuclear’ amplitude.
Recall that for this evaluation we used a very approxi-

mate approach. Nevertheless, the result is an order-of-
magnitude less than the accuracy of the present experiment
(see [5]). Moreover, most probably the true value of ϕR is
even smaller since, as a rule, the triple-Reggeon vertices

4The reason for such a small contribution from proton
dissociation is as follows. The low-mass nucleon photo-excitation
is mainly a magnetic transition which flips the proton helicity.
Indeed, the spin flip in N → N� transition is needed in order to
compensate for the spin ¼ 1 of γ quantum in the N� → pγ decay.
On the other hand, the Pomeron exchange amplitude contains two
components: one conserving the s-channel helicity and another
one which flips the helicity. The second component acts as the
anomalous magnetic moment. Let us assume that the Pomeron-
nucleon vertex is similar to the photon-nuclear vertex [10]. Then
the term responsible for the spin flip component is given by the
anomalous magnetic moment for zero isospin (I ¼ 0) exchange
amplitude. That is for the diffractive transition μI¼0 ¼ðμp þ μnÞ=2 ¼ ð1.79 − 1.91Þ=2 ¼ 0.06 is very small.

5This is the value between the cross sections given by TOTEM
[11] and by ATLAS-ALFA [12].

V. A. KHOZE, A. D. MARTIN, and M. G. RYSKIN PHYS. REV. D 101, 016018 (2020)

016018-4



extracted from the phenomenological triple-Regge
analysis are smaller than the corresponding Reggeon-
hadron vertices (see for example [15], and the discus-
sion below).
In terms of VDM the interaction with the photon starts

from the transition of a pointlike photon to the qq̄ pair
where the quark-quark separation, r, is close to zero. On
the other hand the Pomeron-induced cross section of such
a pair behaves as σ ∝ α2shr2i [16]. Most probably the time
interval occupied by the RPγ interaction is not sufficient
to form the ρ− or ω− mesons in their normal (equilibrium)
states, so the resulting values of r2, which drive the value
of the vertex, will be smaller than that used in our estimate
(based on the assumption that σpR ¼ σωp ¼ ð2=3Þσpp).
This qualitatively explains why we expect that the value of
ϕR to be smaller than that calculated above.
Note also that strictly speaking one should not sum the

phases ϕDeck and ϕR. This will lead to double counting
since when calculating ϕR using (18) we integrate over
MX starting from MX ¼ s0 ¼ 1 GeV2. If we would like to
keep the contribution described by the Deck diagrams then
in (18) we have to take a larger lower limit for MX. This
will diminish the value of ϕR.

IV. TWO-PHOTON EXCHANGE
WITH PROTON EXCITATION

The inelastic contribution of the two-photon exchange
diagram shown in Fig. 1(c) can be calculated using the
equivalent photon approximation [17]. The imaginary part
of the amplitude in Fig. 1(c) reads

A1c ¼ 2
α

π2
s
Z

dEγ

Eγ

Z
d2qt

ðq1 · q2Þ
q21q

2
2

σtotγpðEγÞFpðq21ÞFpðq22Þ;

ð22Þ

where first factor 2 accounts for the excitations of the
second [lower in Fig. 1(c)] proton. Here we have to be more
precise and to account for the small but nonzero total
momentum transferred t ¼ Q2 ¼ −Q2

t . The momenta of
the “left” and the “right” photons in Fig. 1(c) are

q1;2 ¼ qt �
Qt

2
ð23Þ

and ðq1 · q2Þ denotes the scalar product of q1 and q2. Eγ is
the photon energy in the upper [in Fig. 1(c)] proton rest
frame; σtotγp is the total cross section of photon-proton
interaction.
The resulting value of A1c in (22) should be compared

with the one-photon exchange (Coulomb) amplitude (which
is real)

FCðtÞ ¼ s
8πα

Q2
: ð24Þ

Note that, contrary to FC, the proton excitation contribution
A1c of (22) does not contain a 1=Q2 pole. Therefore, the
phase generated by the A1c=FC ratio vanishes at
t ¼ Q2 → 0. However actually the Coulomb-nuclear inter-
ference is measured at jtj ∼ 0.001 GeV2 ≠ 0. That is why
we wrote the formula (22) accounting for the value of Qt.
For the numerical estimate we take the experi-

mentally measured σtotγpðEγÞ cross sections [18,19] at
Eγ ¼ 0.26–4.2 GeV. For a larger Eγ > 4 GeV we use
parametrization of [18]

σtotγpðEγÞ ¼ ð91þ 71.4=
ffiffiffiffiffi
Eγ

p Þμb ð25Þ

with Eγ in GeV. In this parametrization we keep only the
second term since the first term corresponds to Pomeron
exchange (σ ¼ const) and should be treated as an Oðα2Þ
correction to the strong interaction (even-signature)
amplitude.
As seen from Fig. 5, in the region of interest

(jtj < 0.001–0.005 GeV2), where Coulomb-nuclear inter-
ference manifests itself, the possibility of proton excitations
in the two-photon exchange process changes the original
phase of the pure QED one-photon-exchange amplitude by
the negligibly small value of jδϕCj < 10−3.

-t  (GeV2)

-δφC

FIG. 5. The phase shift δϕC of the one-photon-exchange
amplitude caused by the second photon exchange with proton
excitations in the intermediate states. The dashed line is calcu-
lated using the full photon-proton cross section, σtotγPðEγÞ at
Eγ < 4.2 GeV, while for the solid curve the Pomeron (constant)
“background” of 91 μb was subtracted from σtotγp.
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V. CONCLUSION

We evaluated the contribution of proton (p → N�) exci-
tations to the phase shift (Bethe phase) between the strong
interaction and the one-photon exchange QED amplitudes
caused by an additional photon exchange. The low-mass
part was calculated based on the Deck [6] (p → Nπ)
mechanism, while the higher-mass excitation was esti-
mated using the triple-Regge formalism. The “inelastic”
two-photon exchange QED contribution was calculated
using the experimental data on the proton-photon cross
section in terms of the equivalent photon approach.

It is shown that the effects arevery small anddonot change
the value of ρ ¼ Re=Im ratio, measured via the Coulomb-
nuclear interference in small angle elastic pp scattering, by
more than δρ ∼ 10−3. This is about an order-of-magnitude
less than the experimental accuracy of �0.01 [5].
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