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Bethe phase including proton excitations
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We evaluate the contribution of inelastic intermediate states (such as p — N* excitations) to the phase
between the one-photon-exchange and the “nuclear” high energy pp scattering amplitudes as ¢ — 0,
caused by multiphoton diagrams. It turns out to be rather small—much smaller than to have any influence
on the experimental accuracy of the measurements of p, defined to be the ratio of the real to imaginary parts

of the forward nuclear amplitude.

DOI: 10.1103/PhysRevD.101.016018

I. INTRODUCTION

The conventional way to measure the real part of the
strong interaction (nuclear) forward amplitude, F", is to
consider its interference with the pure real one-photon-
exchange QED amplitude, FC, at very small momentum
transfer 1 — 0. However this interference is affected by the
possibility of multiphoton exchange processes which result
in the an additional phase difference a¢. That is, the total
amplitude reads

FTOT — FN + eiaqﬁFC' (l)

Here @ = a®®P = 1/137. The phase ¢ (the so-called Bethe
phase) was calculated first by Bethe [1] using a WKB
approach, and then was reexamined by West and Yennie [2]
in terms of Feynman diagrams. A more precise calculation,
which accounts for the details of the proton form factor,
was performed by Cahn [3]. It gives

¢(t) = —[In(=Bt/2) + v + CJ, (2)

where B is the f-slope of the elastic cross section
(doy/dt « eB"), yr =0.577... is Euler’s constant and
C = 0.62 (0.60) depending on which form of the proton
electromagnetic form factor—exponential (or dipole)1 is
used (see also [4] for a more detailed calculation).

'Note that the value of C = 0.62 (0.60) was calculated in [3]
for the ISR energies, assuming B = 13 GeV~2. In the LHC case
with B =20 GeV~2 we get C = 0.45.
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Note that in all previous calculations only the pure
eikonal diagrams were considered. That is only the
“elastic” (p — p) intermediate states were allowed in the
multiphoton exchange diagrams Fig. 1(a,b).> Besides this,
there are diagrams with the proton excitations shown in
Fig. 1(c,d). Of course, at small ¢ due to gauge invariance the
p+y— N* vertex contains transverse momentum g,,.
Therefore, these diagrams do not generate In |¢| and can
only affect the value of the constant C.

In the case of the TOTEM experiment at /s = 13 TeV
the value of p was extracted by fitting the differential
do;/dt proton-proton elastic cross section in the region of
very small |¢| ~0.001-0.005 GeV?2, where the role of the
Bethe phase is not negligible. It changes the resulting value
of p = Re/Im ratio by about 0.03. This should be compared
with the experimental accuracy 0.01 (p = 0.10 = 0.01 [5]).
However, the variation of C by 6C = O(1) may addition-
ally shift the value of p by dp = 0.01-0.02. Such an effect
could potentially be important for the confirmation of the
possible presence of the odd signature (Odderon) contri-
bution in the high energy pp-amplitude at r — 0. Indeed
the value of p = 0.10 £ 0.01, extracted using the phase ¢
calculated in [3] (without accounting for the possibility of
proton excitation) is noticeably lower than that (p ~ 0.135)
obtained from dispersion relations for a pure even-
signature amplitude (with the total cross sections measured
by TOTEM). The observed difference 0.135—0.10 =
0.035 £ 0.01 can be explained either by the odd-signature
nuclear contribution to elastic pp scattering or by a
modification of the constant C due to the diagrams of
Figs. 1(c,d) with inelastic (p — N*) intermediate states.

Therefore, it is timely to evaluate the possible role of the
processes with proton excitations in the Coulomb-nuclear

2Actually working at O(a) accuracy it is sufficient to study
only the two-photon exchange QED diagram and one additional
photon in the nuclear amplitude.
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FIG. 1. Diagrams responsible for the Bethe phase at the lowest
aP order. The four plots are: (a) the eikonal (elastic) phase of
the one-photon-exchange amplitude, (b) the elastic phase of the
strong interaction amplitude, (c) and (d) are the contributions of
the excited (p — N*) intermediate states. The nuclear amplitude
is shown by the triple solid line and marked as P.

interference region. Unfortunately, there are no sufficient
data on diffractive p — N* dissociation which would allow
the calculation of the contribution of Fig. 1(d) explicitly. On
the other hand, it is known that cross section of low-mass
diffractive excitation is well described by the so-called
Deck p — N + x process [6], shown in Fig. 2(a).
Therefore, in Sec. II we use the diagrams of Fig. 2(a) to
evaluate the expected shift 5C caused by low-mass exci-
tations. The higher-mass contribution is calculated in
Sec. III based on the triple-Regge formalism [Fig. 2(b)]
and duality. Next, in Sec. IV, we calculate the phase shift
5¢¢ originating from the two-photon graph Fig. 1(c). Here
data on the y p cross sections are available and will be used.
Unlike one-photon exchange this diagram does not contain

(b)

FIG. 2. (a) The Deck diagram for low-mass proton disso-
ciation. (b) The diagram of triple-Regge form used to
evaluate, via duality, the contribution of the heavier inter-
mediate states.

a factor of 1/¢. Thus, at very small # — 0 the corresponding
correction is strongly suppressed and can be neglected.
Besides this, formally the diagram in Fig. 1(c) describes the
even-signature amplitude and should satisfy even-signature
dispersion relations. We conclude in Sec. V.

II. PHASE SHIFT CAUSED BY THE DECK
PROCESS

At the lowest a%fP order the phase of the strong
interaction amplitude (marked in figures as P) is given
by the discontinuity shown in Figs. 1(b,d) by the vertical
dashed lines. Taking the discontinuity of the amplitude, that
is replacing iz by 2iz in the imaginary part of the
propagator we account for the contribution where the
photon exchange is now placed to the left of the nuclear
amplitude. Besides this, in Fig. 1(d) (and also in Figs. 3
and 4) we have to include an additional factor of 2 since
the lower proton can also dissociate. Instead of the p —
N* low-mass excitation we consider the simplest diagrams
for the p — Nz transition which rather well reproduce the
low-mass proton dissociation [6]. In particular, the cross
section of diffractive dissociation calculated via the dia-
gram of Fig. 2(a) at the LHC energy /s = 7 GeV is about
2.7 mb (for dissociation of both—that is either the
upper or lower—protons). This is close to the value of low-
mass dissociation (65P(My <3.4GeV)=2.66+2.17mb)
measured by TOTEM [7] (see also the discussion in sect. 3
of [8]).

Recall that the amplitude of the Deck processes is
described by three diagrams shown in Fig. 3. For the
photon exchange amplitude we have an analogous set of

p n(

(a) (b (©

FIG. 3. The nuclear “Deck” amplitudes for low-mass proton
dissociation.

(b)

FIG. 4. The QED Deck amplitudes for low-mass proton
dissociation.
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three diagrams (Fig. 4). That is, to calculate the disconti-
nuity we have to sum up the three diagrams of Fig. 3 and
multiply this contribution by the sum of the three diagrams
of Fig. 4.

Since we are looking just for an additional Bethe phase
which may affect the p = Re/Im ratio we should not worry
about an exact value of the high energy strong amplitude.
We use the normalization so,, = Im7(z = 0) assuming
that o, o s*! and use the additive quark model rela-
tion o(zp) = (2/3)o(pp).

First, the amplitude shown in Fig. 3(a) reads

Ada — G”NG(k2)ﬁTW (xs,1)
2 _k2 . .
=GG(k )kz——m,z,l(l —ip)
2 ap(1)—1
X x5 =6, (”) FL(1)F (1), (3)
3 S()

where x is the beam momentum fraction carried by the
pion, s is the initial energy squared and 7', is the amplitude
of the strong zp interaction parametrized in the final
equality of the above equation by the pomeron pole
exchange with effective trajectory ap (1) =1+A+apt, with
ImT ,,(s)=s00(s/s0)©~", in which we take A = 0.1 and
op = 0.25 GeV2. As usual sy =1 GeV?. The coupling
Gy = Goy(k* =0) for the ys proton pion vertex’ is
Gzopp /4r = 13.75 [9] at k> = 0 with the dipole form factor

G(k?) = 1/(1 = K*/0.71 GeV?)2. (4)

m,, is the pion mass, and we will take m to be the mass of the
proton.

Besides the contribution from the term a5t = @pq?, the
g*> = t dependence of the strong amplitude is driven by the
“form factors” in the vertices

F,(q*) =1/(1-¢*/0.71 GeV?)?, (5)

Fi(q?) = 1/(1 - ¢2/0.6 GeV?). (6)

Analogously, the amplitudes corresponding to Figs. 3(b,c)
are

k2
A = G G (k) rET i
—X)s aP(qz)_
x (1 —x)sao((l 5 ) ) IF%(CIZ), (7)

and

For z* the coupling is v/2 larger than for 7°.

V=i2
(p+q)?*—m?

. . Ky ap(q’)-1
<itt-ise( )" R ®)

A3 = G,yG(K?)

For completeness we give the formulas for the
propagators:

1
(p+q)* —m* = AM?

(p—k=q)* —m>=m; -k — g} = AM?, )

where

AM? = (m* + q7)/(1 = x) + (mz + (k+q)7)/x —m

(10)

Note that here the values of k7, ¢? and (k+ q)? are
positive. At very high energies s > g?> where the photon
virtuality ¢*> = —q?.

The QED amplitudes of Fig. 4 take the form

V= 87ra
At —GﬂNG(kZ)k s xsFL(¢*)F,(q*), (11)
a2 8ra

AY = GG (k) — (1 =x)sF(q?).

(p—k—q)*—m? q
(12)
and
V—k? 8ra
(p+q)?*—m* ¢*

Again a dipole form factor

sF2

A% = G yG(K?) 2(q%). (13

F,=F,(q*)=1/(1-¢*/0.71 GeV?)*  (14)
is used for the photon-proton vertices while for the pion-
photon coupling we take the pole form

F,=F,(¢*)=1/(1-4*/0.6 GeV?).  (15)

Recall that for the case of z the coupling G,y must be
multiplied by /2 and we have to deal with the sum A*® -
A*® while the total QED amplitude with a z° meson is given
by A* 4+ A% 1t is easy to check that the total QED
amplitude of proton excitation vanishes as ¢, — O.

The product of the total nuclear times the total QED
amplitudes now has to be integrated over the momentum

fraction x and the transverse momenta ¢, and k,. Recall that
we are seeking for the phase ¢ at + = 0. We find
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2 I dx
Deck __
o 32ﬂ2s26(pp)/0 x(1—x)

x/dq%/dzkt(ImA“))-A(“), (16)

where A®) and A®) denote the total amplitudes, that is the
sum of the corresponding a, b, ¢ contributions. The factor 2
accounts for the dissociation of the lower proton. The
denominator in dx/(x(1 — x)) arises from the 1/(2E,2Ey)
factors in the phase space integrals d°k/(2E(2x)?).

Numerical calculation at +/s =13 TeV results in
agP* = 1.3 x 107, which is negligibly small in com-
parison with the experimental accuracy of 0.01. In terms
of the Bethe phase, the “inelastic” diagrams with proton
low-mass excitations change ¢ by about 0.018.* A similar
variation (0.02) of ¢ was observed in [3] depending on the
form of the parametrization of the “elastic” proton form
factor—(that is either dipole or exponent).

A. Deck cross section

The cross section of low-mass dissociation given by the
Deck diagram shown in Fig. 2(a) reads

1 I dx
s /0 e / dg? / A2AD A, (17)

Here we account for the dissociation of only one of the
colliding proton. For /s =7 TeV we note that the total
cross section’ .o, =97mb and (17) gives ¢5° = 1.35 mb.
This is to be compared with low-mass dissociation cross
section 2.6/2 = 1.3 £ 1.1 mb observed by TOTEM [7].
The good agreement confirms the applicability of our
calculation of the low-mass proton excitation contribution
to the Bethe phase ¢.

ITI. HIGHER-MASS DISSOCIATION

To evaluate the possible role of higher-mass excita-
tions we consider the “triple-Regge”-like diagram of
Fig. 2(b). Since the RPy triple vertex is not known

“The reason for such a small contribution from proton
dissociation is as follows. The low-mass nucleon photo-excitation
is mainly a magnetic transition which flips the proton helicity.
Indeed, the spin flip in N — N* transition is needed in order to
compensate for the spin = 1 of y quantum in the N* — py decay.
On the other hand, the Pomeron exchange amplitude contains two
components: one conserving the s-channel helicity and another
one which flips the helicity. The second component acts as the
anomalous magnetic moment. Let us assume that the Pomeron-
nucleon vertex is similar to the photon-nuclear vertex [10]. Then
the term responsible for the spin flip component is given by the
anomalous magnetic moment for zero isospin (/ = 0) exchange
amplitude. That is for the diffractive transition p;_o =
(), 4+ p,)/2 = (1.79 = 1.91)/2 = 0.06 is very small.

>This is the value between the cross sections given by TOTEM
[11] and by ATLAS-ALFA [12].

phenomenologically we use the “vector dominance model”
(VDM) [13] approach and replace this vertex by the
“Pomeron—p-meson” (or w-meson) vertex which in its
turn can be written as 2/3 of the Pomeron-proton vertex.
Recall that due to gauge invariance the proton excitation
vertex caused by the photon must vanish as g> — 0. The
dimension of the corresponding ¢> factor should be
compensated either by the radius of the RPy triple vertex
or by the mass difference AM?> = M? — m?. In the present
calculation we use s, = 1 GeV2. On the one hand, this
simplifies the final Regge formula, while on the other hand
this is close to the expected size of the vertex driven
by the slope of the R-reggeon (p, w) trajectory oy =
0.9 GeV~2 [14].

Next, it is known within the VDM, that the proton-to-
photon coupling (proton electric charge e) can be consid-
ered as the sum of the contributions mediated by the p and
@ mesons. Exploiting the fact that the p and @ Regge
trajectories are degenerate [14] we calculate the contribu-
tion shown in Fig. 2(b) as

2a [ dM?% /M3 @x(0)-a(0)
R_ g =% [ VX X
ag aRzr3 ﬂ/ Mg( ( )

M2 oaq*
« [ agre) (") (18)

Here My is the mass of the proton-excited system described
by the R-reggeon and we have already accounted for the
possibility of excitation of the lower proton.

The first factor ajz in (18) accounts for the relation
between the imaginary part of the Reggeon exchange
amplitude given by the R-Reggeon signature factor

So

_ 1 —exp(—imag(1))
sin(—zag(1))

(19)

and the residue of the pole at ag(¢) = 1. Near the pole the

signature factor (19) takes the form 2/(agz(t — m%)) while

the discontinuity at t = 0 (where ag(0) =~ 1/2) is 2Imzy ~ 2.
The numerical calculation of (18) results in

$® = 0.099-0.106 (20)
for ax(0) = 0.5-0.54. This leads to a correction
ag® ~0.0007 — 0.0008 (21)

to the p = Re/Im ratio for the ‘nuclear’ amplitude.
Recall that for this evaluation we used a very approxi-
mate approach. Nevertheless, the result is an order-of-
magnitude less than the accuracy of the present experiment
(see [5]). Moreover, most probably the true value of ¢¥ is
even smaller since, as a rule, the triple-Reggeon vertices
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extracted from the phenomenological triple-Regge
analysis are smaller than the corresponding Reggeon-
hadron vertices (see for example [15], and the discus-
sion below).

In terms of VDM the interaction with the photon starts
from the transition of a pointlike photon to the gg pair
where the quark-quark separation, r, is close to zero. On
the other hand the Pomeron-induced cross section of such
a pair behaves as ¢ o a?(r?) [16]. Most probably the time
interval occupied by the RPy interaction is not sufficient
to form the p— or w— mesons in their normal (equilibrium)
states, so the resulting values of r2, which drive the value
of the vertex, will be smaller than that used in our estimate
(based on the assumption that ¢,z = 0, = (2/3)0,,).
This qualitatively explains why we expect that the value of
@R to be smaller than that calculated above.

Note also that strictly speaking one should not sum the
phases ¢P°* and @R. This will lead to double counting
since when calculating ¢® using (18) we integrate over
My starting from My = s, = 1 GeV?2. If we would like to
keep the contribution described by the Deck diagrams then
in (18) we have to take a larger lower limit for M. This
will diminish the value of ¢&.

IV. TWO-PHOTON EXCHANGE
WITH PROTON EXCITATION

The inelastic contribution of the two-photon exchange
diagram shown in Fig. 1(c) can be calculated using the
equivalent photon approximation [17]. The imaginary part
of the amplitude in Fig. 1(c) reads

a [dE (41 92)
Ale _2_3/_r/ &q oA (E,)F,(q})F »(43),
=) E, Cgigy TR

(22)
where first factor 2 accounts for the excitations of the

second [lower in Fig. 1(c)] proton. Here we have to be more
precise and to account for the small but nonzero total

momentum transferred t+ = Q% = —Q?. The momenta of
the “left” and the “right” photons in Fig. 1(c) are
0
Gi2=a: 5 (23)

and (g, - g,) denotes the scalar product of ¢, and g,. E, is
the photon energy in the upper [in Fig. 1(c)] proton rest

frame; ¢'% is the total cross section of photon-proton

rp
interaction.

The resulting value of A' in (22) should be compared
with the one-photon exchange (Coulomb) amplitude (which

is real)

8ra

Fc(ﬁ ZISz§T.

(24)

Note that, contrary to FC, the proton excitation contribution
A'¢ of (22) does not contain a 1/Q? pole. Therefore, the
phase generated by the A!¢/FC ratio vanishes at
t = Q% — 0. However actually the Coulomb-nuclear inter-
ference is measured at |¢| ~ 0.001 GeV? # 0. That is why
we wrote the formula (22) accounting for the value of Q,.

For the numerical estimate we take the experi-
mentally measured o}, (E,) cross sections [18,19] at
E, =0.26-4.2 GeV. For a larger E, >4 GeV we use
parametrization of [18]

oy (E,) = (91 + 71.4/\/E7),ub (25)
with E, in GeV. In this parametrization we keep only the
second term since the first term corresponds to Pomeron
exchange (¢ = const) and should be treated as an O(a?)
correction to the strong interaction (even-signature)
amplitude.

As seen from Fig. 5, in the region of interest
(|t] < 0.001-0.005 GeV?), where Coulomb-nuclear inter-
ference manifests itself, the possibility of proton excitations
in the two-photon exchange process changes the original
phase of the pure QED one-photon-exchange amplitude by
the negligibly small value of |5¢¢| < 1073,

x 102 _6¢C

0.1

0.00 [
0.08 |
0.07 |
0.06 |
0.05
0.04 |
0.03 |

002 |

0.01

t (GeV?H)

FIG. 5. The phase shift 6¢C of the one-photon-exchange
amplitude caused by the second photon exchange with proton
excitations in the intermediate states. The dashed line is calcu-
lated using the full photon-proton cross section, ¢,%(E,) at
E, < 4.2 GeV, while for the solid curve the Pomeron (constant)

“background” of 91 ub was subtracted from o).
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V. CONCLUSION

We evaluated the contribution of proton (p — N*) exci-
tations to the phase shift (Bethe phase) between the strong
interaction and the one-photon exchange QED amplitudes
caused by an additional photon exchange. The low-mass
part was calculated based on the Deck [6] (p — Nrx)
mechanism, while the higher-mass excitation was esti-
mated using the triple-Regge formalism. The “‘inelastic”
two-photon exchange QED contribution was calculated
using the experimental data on the proton-photon cross
section in terms of the equivalent photon approach.

Itis shown that the effects are very small and do not change
the value of p = Re/Im ratio, measured via the Coulomb-
nuclear interference in small angle elastic pp scattering, by
more than §p ~ 1073, This is about an order-of-magnitude
less than the experimental accuracy of +0.01 [5].
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