
IEEE INTERNET OF THINGS JOURNAL 1

Adaptive Recovery Mechanism for SDN Controllers
in Edge-Cloud supported FinTech Applications

Xiaodong Ren∗, Gagangeet Singh Aujla†, Senior Member, IEEE, Anish Jindal‡, Member, IEEE,
Ranbir Singh Batth‖, Member, IEEE, Peiying Zhang¶

Abstract—Financial Technology have revolutionized the deliv-
ery and usage of the autonomous operations and processes to
improve the financial services. However, the massive amount
of data (often called as big data) generated seamlessly across
different geographic locations can end end up as a bottleneck
for the underlying network infrastructure. To mitigate this
challenge, software-defined network (SDN) has been leveraged
in the proposed approach to provide scalability and resilience in
multi-controller environment. However, in case if one of these
controllers fail or cannot work as per desired requirements,
then either the network load of that controller has to be
migrated to another suitable controller or it has to be divided or
balanced among other available controllers. For this purpose, the
proposed approach provides an adaptive recovery mechanism in a
multi-controller SDN setup using support vector machine-based
classification approach. The proposed work defines a recovery
pool based on the three vital parameters, reliability, energy,
and latency. A utility matrix is then computed based on these
parameters, on the basis of which the recovery controllers are
selected. The results obtained prove that it is able to perform
well in terms of considered evaluation parameters.

Index Terms—Classification, Controller recovery, Financial
Technology, Software-defined networks, Support vector machine.

I. INTRODUCTION

Financial Technology (FinTech) has evolved as a way to au-
tomate and improvise the delivery and use of financial services
thereby enabling the business organisation and consumers to
manage their financial operations and processes effectively.
Initially, FinTech was limited to the back-end services but
with the rise of consumer-oriented applications, it is now seen
as a major revolution for the consumers related to financial
applications (such as retail banking, investment management,
etc). Thus, FinTech can be seen as a synergy between finance
and technology that can act as a software, a service, or
a business that utilises technological advancements like 1)
Artificial Intelligence (AI) and Machine Learning (ML), 2)
Big Data and Data analytics, 3) Robotic Process Automation
(RPA), and 4) Blockchain [1], [2]. The major application and

X. Ren is with the School of Automation Science and Engineering,
Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China. E-mail:
rxd@xjtu.edu.cn

G.S. Aujla is with the School of Computing Science, Durham University,
United Kingdom. E-mail: gagi aujla82@yahoo.com

A. Jindal is with the University of Essex, Colchester, United Kingdom. E-
mail: a.jindal@essex.ac.uk

R.S. Batth is with the School of Computer Science Engineering, Lovely
Professional University, India. E-mail: ranbir.21123@lpu.co.in

P. Zhang is with the College of Computer Science and Technology, China
University of Petroleum (East China), Qingdao 266580, P.R. China. E-mail:
25640521@qq.com

enablers for FinTech are shown in Fig. 1. Some of the major
applications of FinTech are discussed below [2].

Fig. 1. FinTech Applications

• Crowdfunding platforms: These platforms (like Kick-
starter, GoFundMe, etc) enables early-stage businesses
and entrepreneurs to raise funds or capital form inter-
national market, bypassing all geographic limitations.

• Mobile Payments: The mobile payment gateways are
another application of FinTech that are most prevalent
in the current times (even helped in COVID pandemic
situation). These gateways enable the consumers to carry
the routine banking activities using their mobile phones
without even visiting the bank premises physically.

• Robo-Advisers or Chatbots: These online investment
managers or virtual assistants that are based on AI or ML
algorithms to help the customers with their queries and
allocate assets accordingly. The Robo-advisers are popu-
lar among the investment sector for providing investment
service and activities at a minimal cost.

• Insuretech: This platform relates to the new insurance
model that provides a secure and tailored services thereby

IEEE INTERNET OF THINGS JOURNAL 2

streamlining the insurance process, filling claims and
managing the policies online.

• Regtech: This platform helps to automate the compliance
process for relulating the financial organisations in a
quick and cost-effective manner.

These applications imply that FinTech has converted the
entire financial sector into a data-driven platform where a
massive data is generated continuously, starting from the
initiation of a financial service, transmitting the data using
network backbone, processing it using computing resources
(mostly cloud-based data centers), extracting the knowledge
using learning algorithms, passing the desired information
to the customer, and storing the relevant data on backup
cloud data stores. To handle these applications, the Cloud
offers variety of services in terms of shared and abundant
network resources to the users such as-storage, computing, and
infrastructure [3]. The major advantage of cloud is its ability
to provide quality of service (QoS) to the end-users [4].

However, as the FinTech applications are distributed with
a range of small to medium to large service scenarios so
processing the data at the Cloud may not serve the latency
requirements of financial services like mobile payments. But,
the cloud has evolved over the time to edge and fog computing
which can provide financial services closer to the end-users
premises [5], [6]. These computing paradigms compliment the
cloud environment to form an edge-cloud ecosystem which is
fast, efficient, and provides improved quality of experience
(QoE) [7]. The dependence of a larger consumer base through
connected devices (such as-phones, computers, PDAs, etc.)
generate humongous data which needs real-time transmission
and processing using edge-cloud infrastructure. This puts the
underlying network under tremendous load. So, to maintain the
efficiency in such a financial network, a scalable and reliable
network architecture is required.

A. Network Attributes for FinTech

In a FinTech environment, the desired network characteris-
tics are low latency, high bandwidth, high bit rate, and neg-
ligible congestion [8], [9], [10]. The major network attributes
desired to support FinTech clusters are listed below [11], [12],
[13], [14], [15].

• Predictable and Efficient: Traffic patterns and character-
istics are likely to be variable and bursty due to the un-
certain nature of the data traveling across the network at
any time and scale. An adaptable and predictive network
can enhance the overall efficiency and reduce the latency
in large data clusters.

• Holistic Network: A network which can manage the
transactions between massive parallel servers with big
data environments and outside enterprise systems without
any duplicative cost is essential.

• Multi Tenancy: A multi-tenant network which can con-
solidate and centralize the big data management.

• Network Intelligence: Network provisioning using so-
phisticated intelligence to handle workloads as per the
requirements or priorities.

• Network Partitioning: This is one of the most significant
features as different organizations can require separate
network partitions for running their tasks. For example,
a research organization can run multiple projects which
need to be separated from regular transactions.

• Scale Out: The ease of scalability and seamless transitions
in terms of size and number need efficient network
management to reduce over subscriptions.

However, conventional network infrastructures provide rigid
network polices for FinTech applications. The control and
data planes are collocated to each other making the policies
and protocols very restrictive in nature. This means in the
traditional suite, the software/control logic is embedded within
the networking devices such as-switches and routers. Thus,
the individual configuration of such network devices is a
challenging task due to their high maintenance cost. Moreover,
in case of relocation of hardware devices, a complex proce-
dure is used to reconfigure the network itself [16]. TCP/IP
model has many other issues such as-global monitoring and
flow control, logical grouping, manual configuration, policy
modification, and hardware migration. Hence, the traditional
network paradigm has to face numerous challenges to meet
the requirements in multi edge-cloud ecosystem serving the
Fintech. However, in a FinTech environment, one of the most
important prerequisites is a flexible and adaptive network
architecture which could handle the incoming data traffic in
an robust manner.

So, to mitigate the aforementioned issues and to provide
scalability, reliability, and programmability to the network
architectures, software-defined network (SDN) has evolved
as one of the most prominent technologies over the years.
Many researchers have explored the use of SDN in edge-cloud
ecosystem from various aspects of cost, delay, carbon emis-
sion, and energy [17]. SDN has a centralized architecture that:
(1) decouples the network control from forwarding devices,
and (2) provides abstraction at control plane. To control the
network topology, SDN depends on the central intelligence in
comparison to legacy networks. The central controller handles
the abstraction of network complexities from application de-
velopers using northbound application programming interfaces
(APIs) and deploy network functionalities into forwarding
devices using southbound APIs. However, these centralized
controllers may act as a single point of failure, hence a
fault-tolerant and logically distributed multi-controller setup
becomes necessary for the scalability of the network over a
large area [18].

B. Motivation and Research Challenges

With the increase in usage of edge and cloud computing
for different application domains, the dynamic traffic flow
management has become a tedious task. Moreover, the num-
ber of switches is increasing drastically in multi edge-cloud
ecosystem which puts additional burden on network resources
with respect to flow control, reliability, and energy-efficiency.
For this purpose, there is an imminent need of an efficient so-
lution which helps to manage the overall network traffic in an
optimal manner. These issues are more prominent in traditional

IEEE INTERNET OF THINGS JOURNAL 3

TCP/IP networks, therefore these networks are being replaced
by more adaptive network architectures such as SDN for
providing efficient services in domains such as-healthcare [19],
smart grid [20], smart cities [21], vehicular networks [22],
and data center management [23]. However, the major issue
in SDN-enabled network architectures is the use of a single
controller at a central location. This may lead to reliability and
fault tolerance issues. But, with recent advancements in SDN,
multiple controllers and virtualization of physical controllers is
possible which helps to overcome these drawbacks. However,
the optimal number of controllers and their placement in the
underlying network is a very important task. This is because,
if there are fewer controllers, then it would lead to more
delay and less reliability; if there are more controllers, then it
would lead to more energy consumption and under-utilization
of network resources. Moreover, to cater to the ever increasing
requirements of providing seamless services in the underlying
networks, the placement of controller plays a crucial role
in addressing various key issues such as-reliability, latency
and energy-efficiency. Thus, the primary concern in SDN
architectures is handling Controller Placement (CP) problem
in order to address the end-users requirements (with respect
to latency and reliability).

CP problem has been addressed by many existing proposals
specifically for Data center networks [24], Large Scale SDN
Networks [25], Software-defined wide area networks [26],
Wireless Edge Networks [27]. In [24], the authors used a
coalition formation games to form different clusters for stable
network partitioning and localization of controllers. In [25],
the authors used Pareto-based Optimal COntroller placement
approach based on several performance metrics. In [26], the
authors considered the switch-controller/inter-controller la-
tency requirements and the capacity of the controllers to realise
the resilient controller placement using clique-based approach
in graph theory. In [25], the authors used linearization and
supermodular function techniques to model the CP problem
that lead to approximate solutions which outperforms the
state-of-the-art methods in performance. However, all these
proposals fail to address the following questions:

• Q1: What happens if a controller fails in a multi-
controller setup?

• Q2: Do these existing techniques for controller placement
dynamically select an alternative controller if a running
controller fails?

• Q3: What conditions or performance parameters should
be considered before the switching between multiple
controller in a failure scenario.

Although some proposals have successfully proposed failure
recovery or fault tolerant mechanism for SDN setup, but
most of them are focused on a single controller scenarios.
For a multi-controller or distributed scenario, the authors in
[28] designed a self-stabilizing placement mechanism for the
migration capable controller instances in IoT network. In
[29], the authors proposed a heuristic algorithm to address
the controller placement problem with respect to single-link
or multi-link failures. In the above proposals, there is no
consideration of a multi-controller scenario where the network

load in divided across different network partitions. In [30], the
authors considered a master and slave architecture to resolve
the problem of failure but this may not adapt to large scale
network flows where the requirements are very dynamic. This
also limits the scalability of the overall distributed setup. This
problem was resolved to a limited extend in [31] where they
used multiple slave controller. However, they do not consider
dynamic switching based on different performance parameters.

In summary, these above raised challenges for SDN con-
troller failure need to be resolved using an adaptive recovery
mechanism that considers different parameters (like reliability,
latency, and energy) while considering the switching from
a failed controller to an active controller. Looking into the
FinTech applications that are distributed across the globe,
it become pretty necessary to devise a recovery mechanism
before utilising SDN in there setup. For example, the financial
banking sector has several branches located at different geo-
location across various countries. So, if a SDN controller han-
dling the network traffic related to these FinTech applications
fail, then there may be a possibility that entire segment or
area goes down or remains offline and the customers may not
access the service or may access limited services. This is not
a very preferable scenarios for FinTech applications as any
failure may result in faulty transactions and even attackers or
malicious parties can take advantage of such scenarios.

C. Contributions

Keeping in view of the above considerations, We propose an
Adaptive Recovery Mechanism for Multi-controller scenario
for SDN applicable for FinTech Applications. The major
contributions are as follows.

• For a large-scale edge-cloud ecosystem supporting Fin-
Tech, a adaptive recovery mechanism has been proposed
for failure recovery in multi-controller SDN scenario.

• A controller classification scheme is designed based on
Support Vector Machine algorithm that decides which
controllers lie in the category of tentative load bearers
for a failed controller.

• The evaluation of the proposed scheme is carried out
on different competing objectives (reliability, energy con-
sumption, and latency) using a case study of typical city.

II. NETWORK MODEL AND PRELIMINARIES

A. Network Model

We represent the SDN network using an undirected
weighted graph G = (V, E); where V depicts the set of open-
flow switches and controllers and E represents the set of
links/edges between the pair of switches or controllers. In
this network, each edge is associated with a definite weight
which represents the distance (di,j) between ith and jth pair of
switches (s) or controllers (c). The undirected weighted graph
of a sub-network z is denoted using Gz = (V z, Ez) | V z ⊂
V,Ez ⊂ E; where the associated set of vertices and edges are
represented using V z and Ez .

IEEE INTERNET OF THINGS JOURNAL 4

B. Assumptions

The control plane consists of identical SDN controllers.
Some of the assumptions and initial conditions for the pro-
posed model are given as follows:
• Initially, all the controller are switched on.
• The control plane system is down when all the SDN

controllers are in a failed condition.
• The control plane system has failure when one of more

SDN controllers are in a failed condition.
• Switching is perfect and instantaneous.
• Distribution of failure time is taken as negative exponen-

tial while the recovery time it is considered as arbitrary.

C. System States

The system states for the failure-recovery mechanism are
shown in Fig. 2 and the description is provided as below.
• Good State (So): In this state, all the controllers are in

working condition. Some of the operative controllers are
added to a standby list selected by proposed scheme to
act as backups in case of failure.

• Failure State (S1): In this state, one controller fail and
a part of network goes down. Here, the failure rate (λ)
play important role.

• Transition State (S2): In this state, the control of the
failed SDN controller is automatically transited to another
controller selected from the standby list.

Fig. 2. Various States of System (for simplicity we depicted a 2 controller
scenario but P2 is selected from standby list); λ: failure rate

Various states of the proposed system are shown in Table I.

TABLE I
STATE-SPECIFICATIONS

State Specification
S0 One controller is operative and the others are in standby list
S1 One controller has failed and the other controllers are operative
S2 Recovery from state S1 through transition from failed controller

to an operative controller from standby list.

D. State Transition Analysis

In this paper, initially the system is assumed to be in state
S0, in which all the controllers are switched ON and the
proposed scheme selects some of the operative controller and
add them to a standby list. When any operative controller
fails, the system transits from state S0 to state S1. In this
state, a standby controller selected using the proposed scheme
becomes operative and the system transits from state S1 to
state S2. It is assumed that switching is perfect and instanta-
neous. Once the failed controller is recovered, it is added to
the standby list and the system return back to state S0.

III. PROPOSED SCHEME

The proposed scheme works in two phases one after another.
In the first phase, an SVM-based classification approach is
proposed that separates the controllers that can act as standby
to recover a failed controller from others. In the second phase,
an appropriate controller is selected from the standby list
received from the first phase based on multiple parameters
(reliability, energy, and latency). These phases are described
comprehensively in the followings sections. The switches and
controllers are the vertices and the path between the pair of
switches or controllers are the edges in the network graph.

A. SVM-based Classification Approach

The SVM-based classification approach (hidden layer SVM)
is used to classify the switches and controllers into two lists,
i.e., standby and non-standby. The standby list consists of
the controllers or switches that can considered for backup
purpose to recover the consequences of any failed controller or
a switch. The non-standby list stored the detail of the available
controllers or switches except the one that failed. The failed
controllers are automatically added to a new list and these
controllers are repaired and further they are ready to operate
as per the requirement. SVM approach is based on supervised
machine learning technique to differentiate the overall group
into pre-defined classes using different decision functions. For
this purpose, the model is trained using processed data by
considering the required features or parameter (such as post
number, health status, network load, communication cost, error
rate, failure rate, etc) and thereafter the testing approach is
performed to validate the preciseness of the model. SVM
approach create a hyper plane to differentiate the classes with
proper margins.

SVM consists of different layers, i.e., input layer, feature
layer and output layer. These layers are shown in Fig. 3. A
bias (b) is used to help the activation function to select the
optimal class. Here, an input vector (n) is forwarded to the
input layer of the SVM model for classification. There are
various training neurons (m1,m2, ..,mi, ..,mq) on the Input
layer and µ ∈ (0, 1) is the vector to store the classification
output [32], [33]. The trained instances are matched with the
input vector n by using specified activation function (K) in the
feature layer [34]. To define the boundaries of the hyper plane,
the weight vector (w) and bias value b is used as follows.

w.n+ b = 0 (1)

The function to classify the training and testing is given as
below.

f(n) = sign(w.n+ b) (2)

During mapping the neurons and the input vector, the follow-
ing kernel function is used.

f(n) = sign(

N∑
i=1

αiµiK(mi, n+ b) (3)

where, K represents the kernel function to map the neuron
features (m1,m2, ..,mi, ..,mq) with the input vector (n).

IEEE INTERNET OF THINGS JOURNAL 5

Fig. 3. SVM classification

Now, the objective function to define the boundaries of the
hyper plane is defined as below.

f(O) = min(
1

2
wTw) + C

∑
i

max(0, 1− µiw
Tmi) (4)

where, min(12w
Tw) is the regularization term for better gener-

alization of the hypothesis spaces, C is the controller to define
the high margins between the boundaries and max(0, 1 −
µiw

Tmi) is the empirical loss to penalize the weight vectors
for inaccurate selection of boundaries.

During classification, an optimized function is used to
categorize the incoming input vector n, as mentioned in Eq.
5.

µ =

N∑
i

αiK(mi, n) + b (5)

The steps are followed during the training and testing the
defined model are described as below [35]:

• Select the required parameters for training the model as
per network requirements.

• Divide the dataset into two parts, one chunk is used for
the training purpose and other one is for testing purpose.

• Increment the epoch value and re-run the model again
and again till the required accuracy is not achieved.

• During increment in epoch values, the weights of the
neurons are updated and kernel trick technique is used
for efficient weight allocation at different layers.

• When the model is fully trained, then configure the
network setup to validate the results accordingly.

The entire classification process is presented in Algorithm 1.
Initially, the random weights are assigned to the neurons

of the layers. Then, the forwarded data is mapped with the
trained instances by using the features and mapped accordingly
to the particular class. After on-wards, the margin between
the boundaries of the defined class is calculated known as
hyper plane. For clarification, objective function is calculated
to define the boundaries more precisely. If, the calculated
margin is not justified, then update the weights again and

Algorithm 1 SVM-based classification
Input: n = (n1, n2,, nJ)
Output: µ

1: Initialize weights W 0 for each layer.
2: for j=1 : J do
3: for α Iterations do
4: for i=1 : N do
5: Calculate the initial boundary distance.
6: Calculate the objective function f(O).
7: Check the boundary margins: Db =

2
||w||

8: Compare Db with expected margin
9: Otherwise: Iterate α.

10: Repeat steps 5-7 till α→ µ
11: end for
12: end for

recalculate the objective function. Lastly, the output of the
proposed algorithm is mentioned below:

µ =

{
1 : Standby
0 : No (6)

B. Recovery Controller Selection Scheme

The considered problem deals with the selection of a suit-
able neighbourhood switches and controllers in the given net-
work, based on three parameters, i.e., latency, reliability, and
energy. These parameters are considered as objective functions
that must be achieved for selecting a suitable controller/link for
recovery and accordingly rebuild the entire recovery network.
The formal description of these objective functions is given as
follows:

1) Objective Function 1 (O1) : Reliability : The
network reliability is one of the key aspect as it determines
the resilience of the controllers. The controllers and the
number of nodes directly connected to them are major factors
for selecting the reliable controller. This estimation can be
performed using a reliability index (R(i, n)) of each controller
in the network. The R(i, n) for ith switches connected to nth

controller can be computed as follows [36]:

R(i, n) =
1

|Ln|

(
T (DW)(vi,n)× λi,n

)
;∀i, n (7)

where, |Ln| represents the total number of switch-controller
links in the network, NDT (vi,n) represents the number of
edges that are experiencing the downtime, and λi,n denotes
the average failure rate of the switch-controller link vi,n.

2) Objective Function 2 (O2) : Energy : The total energy
consumption must be considered while selecting a controller
where the network load of a failed controller will be shed as
otherwise this may lead to the destabilisation or overloading of
the entire network. The energy consumption (E(i,n)) is defined
as below.

E(i, n) = ×
[(
EFX

i,n × (teni,n − tsti,n)
)
+

(
EDY

i,n × (teni,n − tsti,n)

×|NAP (vi,n)|
)]

;∀i, n (8)

IEEE INTERNET OF THINGS JOURNAL 6

where, EFX
i,n represents the fixed part of energy consumption

(fans, chassis, etc), EDY
i,n is the dynamic part of energy

consumption that depends on the number of active ports
(|NAP (vi,n)|), teni,n and tsti,n denotes the start and end times of
ith switch [37].

3) Objective Function 3 (O3) : Latency : Latency plays
a key role in selecting the recovery controller in the network.
The latency T(i, n) in the network is defined as below.

T(i, n1, n2) =

[(
Di,m,n

TPROP

)
+

(
TPROC
i,n (t)

)
+(

PSZ
i,n,j(t)

Bi,n,j ×ORT
i,n,j(t)

)
+

(
|QREADY (t)|

Bi,n,j ×ORT
i,n,j(t)

)]
;∀i, n, j (9)

where, Di,m,n depicts the weighted distance between
the pair of switches (di,m,n), TPROP the medium prop-
agation delay, TPROC

i,n (t) represents the processing delay,
mathcalPSZ

i,n,j(t) denote the packet size at time instant t,
Bi,n,j denotes bandwidth, ORT

i,n,j(t) is the occupation ratio of
the jth port of the ith switch, and QREADY (t) is depth of the
ready queue.

C. Problem formulation

In order to select a suitable controller to handle the network
load of a failed controller in multi edge-cloud environment, the
above defined objective functions are considered to design a
combined utility function matrix. The combined utility matrix
is given as below.

Ûmap
i,j,n =

k∑
i=1

1, 1, 1 1, 2, 1 . . 1, j, 1
1, 1, 2 1, 2, 2 . . 1, j, 2
.
.

1, 1, n 1, 2, n . . 1, j, n

 (10)

Now, to select the optimal mapping for all the three objec-
tive functions, a decision variable is defined as below.

α(i,j,n) =

{
1 for if all three objectives are achieved
0 for otherwise

(11)
This combined utility function is formulated using integer

linear programming and is given as below.

max

 jn∑
j=1

(1j11)αij +1j22 α1j22 ++1jkn α1jnk

 (12)

subject to following constraints

αijn ∈ [0, 1]

R(i, n) > 0

E(i, n) > 0

Let Texp represent the expected or worst bound delay for
each switch/vertex in the considered network, G ={V,E}. Now,
we define a recovery neighborhood (RN) of switch i, as below.

RN(i) = {i|j ∈ V}; s.t. di,j < Texp (13)

where, di,j denotes the smallest delay/latency between the
switches i and j.

Algorithm 2 Recovery neighborhood selection algorithm
Input: G = (V,E), T (i,m, n)thr, R(i, n)thr
Output: N

1: Compute Delay Matrix using Floyds Algorithm.
2: Initialize N as an Identity matrix.
3: for i ← V do
4: Find N(i) in order of delay to i.
5: N(i) ← i
6: if Rc(Gc [N(i) U {j}] < Rc

0 then
7: N(i) ← V(i) U {j}
8: n(ij) = 1
9: end if

10: for i ← n(ij) do
11: if Ec(Gc [N(i) U {j}] < Ec

0 then
12: α(ijk) = 1
13: N
14: end if
15: end for

This depicts RN(i) as a cluster of switches that can be
linked with i within the worst bound delay. This means that
if i is a controller then all the switches connected to it must
belong to RN(i). This helps to ensure that the objective of
delay is satisfied. Hence, the first task is to create a recovery
neighbourhood from the class of switches/controllers that has
been added into the standby list.

We proposed the Algorithm 2 to show how the recovery
neighbourhood mechanism works in line with the three objec-
tives. For a given network, a recovery neighbourhood network
is created that meets the three objectives while recovering
the failed controller and switches/links that are down as a
consequence of the failure. We can say that if switch j belongs
to the neighbourhood of i, then nij = 1, otherwise nij = 0. In
the proposed algorithm, initially a delay matrix is constructed
using the Floyd’s Algorithm [38]. Now, the network N is
initialised as an identity matrix. After this, for each switch
i, we construct RN(i). Using RN(i), we compute N(i) by
combining the switch/vertex that satisfies the given constraint.
If k = |V|, then in Y = (y0, y1, ..., yk−1), if yi = 1 then it
means the controller resides at vertex i, otherwise yi = 0. Now,
our target is to select the minimum number of controller where
the failed part of network should be shifted so that all the
objectives are satisfied. The selected controller should cover
the entire network N with maximum reliability and minimum
delay as well as energy consumption. For this reason, we have
defined the following objective function.

min :

k−1∑
i=0

yk (14)

such that

C1 :

k−1∑
i=0

yinij > 0

C2 : 0 ≤ j ≤ k

IEEE INTERNET OF THINGS JOURNAL 7

Using the above objective function, we can select the
minimum distanced switch-controller links and assign them
as control path, i.e., Gc(Yi). In the next step, we calculate
the reliability index (Rc) using Eq. 7. The Rc is compared for
all controllers in Gc(Yi) to select the controllers that achieve
minimum delay with maximum reliability. Finally, to achieve
the objective of minimum energy consumption, we compute
the energy consumption of switches and controller using Eq. 8.
Once the thrid objcetive is achieved, we set αijk = 1. This way,
we are able to create a complete recovery network (including
controller, switch, links, etc) to divert the network traffic from
failed part of network.

IV. RESULTS AND DISCUSSION

To test the efficacy of the proposed scheme, a typical city
network has been considered as a case study. The proposed
scheme is evaluated in terms of reliability, energy consump-
tion, and latency.

A. Case study of a typical City

A realistic example of a metropolitan area network, i.e., a
typical city has been considered for evaluation of the proposed
scheme. In this example, the underlying SDN network in multi
edge-cloud ecosystem have some locations with dense network
of switches and others having sparse network. In the multi
edge-cloud network, 5 distribution switches are considered to
be placed in different locations which are further connected
to 100 core/edge switches that are deployed throughout the
network. The entire network has been divided into different
network clusters. We have considered four scenarios for evalu-
ation with different numbers of controller set, i.e., c: {2,4,6,8}.
In each scenario, we consider that one of the controller fail and
the proposed scheme puts the remaining controllers along with
associated switches into two list, i.e., standby and non-standby
using SVM as discussed in Section III-A. From this list, our
scheme selects a suitable controller and switches where the
load of failed controller can be shed. For SVM training, the
dataset has been divided in 70-30 ratio where 70% is used for
training and the rest is used for testing.

Initially, the reliability analysis of each distribution switches
connected to core and edge switches is performed with respect
to the failure rates. For this purpose, the considered case of
disconnected switches and associated links for failed network
is shown in Fig. 4. Further, the Fig. 5 shows failure rate with
respect to various switches collected from the city network.
Fig. 6 shows the reliability index of the switches with respect
to the failure rates. For analysis of variation of reliability index
for a change in the value of failure rate, four categories of
failure rate λi,n = (0.25, 0.5, 0.75, 1.0) are considered. Fig. 7
shows the effect of variation in failure rate on the reliability
index.

The impact of number of controllers and flows is examined
with respect to latency. Fig. 8 shows that C=6,8 are having
lower latency in comparison to C=2,4. In this case, the latency
of C=6 is marginally lower than C=8. So, if we analyze all
these parameters, then an optimal solution is achieved with
C=6 as the variation in latency is marginally higher than C=8,

Fig. 4. Disconnected switches and links in failure.

Fig. 5. Failure rate with respect to number of switches.

Fig. 6. Variation of reliability index.

but the energy consumption is lowest when compared with
other values of C.

Moreover, in a multi edge-cloud ecosystem, energy con-
sumption of the controllers for providing seamless services is
an important aspect. In this regard, the variation of energy con-
sumption using the proposed scheme with increasing number
of controllers and flows are analyzed. Fig. 9 depicts that the
energy consumption with C=6 is the lowest. This is due to the

IEEE INTERNET OF THINGS JOURNAL 8

Fig. 7. Reliability index vs number of flows.

Fig. 8. Latency with respect to number of flows.

reason that with lower number of controllers, the load on each
switch increases which maximizes the energy consumption.
However, for C=8, the energy consumption is somewhat higher
than C=6, as in this case the number of controllers exceeds the
network load. So, an additional controller increases the overall
energy consumption in the network.

Fig. 9. Energy with respect to number of flows.

V. CONCLUSION

SDN has evolved as a major technology in the modern
era for the purpose of traffic monitoring, flow management,
scalability, and flexibility. However, dependency on a single
centralized controller may lead to the inefficiencies and bot-
tlenecks for any implemented solution for various applications
in SDN. Even if, this problem is resolved using multiple
controller, there come a challenge when one of the controller
fails. In such a case, it become a necessity to provide a
mechanism to select a suitable controller that can act as backup
for the recovery of the portion of the network that goes down.
The proposed scheme addresses this challenge to provide
efficient solution with respect to different parameters such as-
latency, energy consumption, and reliability. The results shows
that the proposed scheme behaves as desired for all the three
parameters to select the recovery neighbourhood.

ACKNOWLEDGEMENT

This work is partially supported by the Durham University
Startup Fund and Major Scientific and Technological Projects
of CNPC under Grant ZD2019-183-006, partially supported by
Shandong Provincial Natural Science Foundation under Grant
ZR2020MF006, and partially supported by ”the Fundamental
Research Funds for the Central Universities” of China Uni-
versity of Petroleum (East China) under Grant 20CX05017A.

REFERENCES

[1] J. Kagan, Financial Technology – Fintech, Aug 2020. [Online].
Available: https://www.investopedia.com/terms/f/fintech.asp

[2] Fintech (Financial Technology), Aug 2020. [Online]. Avail-
able: https://corporatefinanceinstitute.com/resources/knowledge/finance/
fintech-financial-technology/

[3] N. Kumar, T. Dhand, A. Jindal, G. S. Aujla, H. Cao, and L. Yang,
“An edge-fog computing framework for cloud of things in vehicle to
grid environment,” in 2020 IEEE 21st International Symposium on”
A World of Wireless, Mobile and Multimedia Networks”(WoWMoM).
IEEE, 2020, pp. 354–359.

[4] R. R. Suryono, I. Budi, and B. Purwandari, “Challenges and trends of
financial technology (fintech): A systematic literature review,” Informa-
tion, vol. 11, no. 12, p. 590, 2020.

[5] P. Zhang, C. Jiang, X. Pang, and Y. Qian, “Stec-iot: A security tactic by
virtualizing edge computing on iot,” IEEE Internet of Things Journal,
2020.

[6] P. Zhang, X. Pang, N. Kumar, G. S. Aujla, and H. Cao, “A reliable data-
transmission mechanism using blockchain in edge computing scenarios,”
IEEE Internet of Things Journal, 2020.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[8] P. Zhang, G. Singh, N. Kumar, and M. Guizani, “Iov scenario: Band-
width aware algorithm in wireless network communication mode,” IEEE
Transactions on Vehicular Technology, 2020.

[9] P. Zhang, X. Pang, Y. Bi, H. Yao, H. Pan, and N. Kumar, “Dscd:
Delay sensitive cross-domain virtual network embedding algorithm,”
IEEE Transactions on Network Science and Engineering, 2020.

[10] P. Zhang, C. Wang, C. Jiang, and A. Benslimane, “Security-aware virtual
network embedding algorithm based on reinforcement learning,” IEEE
Transactions on Network Science and Engineering, 2020.

[11] J. Liu, X. Kang, C. Dong, and F. Zhang, “Simulation of real-time
path planning for large-scale transportation network using parallel com-
putation,” INTELLIGENT AUTOMATION AND SOFT COMPUTING,
vol. 25, no. 1, pp. 65–77, 2019.

[12] M. Liu, X. Zhang, S. Ge, X. Chen, J. Wu, and M. Tian, “An application-
oriented buffer management strategy in opportunistic networks,” CMC-
COMPUTERS MATERIALS & CONTINUA, vol. 60, no. 2, pp. 559–574,
2019.

https://www.investopedia.com/terms/f/fintech.asp
https://corporatefinanceinstitute.com/resources/knowledge/finance/fintech-financial-technology/
https://corporatefinanceinstitute.com/resources/knowledge/finance/fintech-financial-technology/

IEEE INTERNET OF THINGS JOURNAL 9

[13] M. Okhovvat and M. R. Kangavari, “Tslbs: A time-sensitive and
load balanced scheduling approach to wireless sensor actor networks,”
COMPUTER SYSTEMS SCIENCE AND ENGINEERING, vol. 34, no. 1,
pp. 13–21, 2019.

[14] J. Wang, Y. Gao, W. Liu, W. Wu, and S.-J. Lim, “An asynchronous
clustering and mobile data gathering schema based on timer mechanism
in wireless sensor networks,” Comput. Mater. Contin, vol. 58, no. 3, pp.
711–725, 2019.

[15] N. Al-Otaiby, H. Kurdi, and S. Al-Megren, “A hierarchical trust model
for peer-to-peer networks,” CMC-COMPUTERS MATERIALS & CON-
TINUA, vol. 59, no. 2, pp. 397–404, 2019.

[16] P. Zhang, H. Yao, and Y. Liu, “Virtual network embedding based on
computing, network, and storage resource constraints,” IEEE Internet of
Things Journal, vol. 5, no. 5, pp. 3298–3304, 2017.

[17] P. Borylo, A. Lason, J. Rzasa, A. Szymanski, and A. Jajszczyk, “Energy-
aware fog and cloud interplay supported by wide area software defined
networking,” in IEEE International Conference on Communications
(ICC). IEEE, 2016, pp. 1–7.

[18] M. T. I. ul Huque, G. Jourjon, and V. Gramoli, “Revisiting the controller
placement problem,” in IEEE 40th Conference on Local Computer
Networks (LCN), 2015, pp. 450–453.

[19] L. Hu, M. Qiu, J. Song, M. S. Hossain, and A. Ghoneim, “Software
defined healthcare networks,” IEEE Wireless Communications, vol. 22,
no. 6, pp. 67–75, 2015.

[20] S. Rinaldi, P. Ferrari, D. Brandão, and S. Sulis, “Software defined
networking applied to the heterogeneous infrastructure of smart grid,” in
IEEE World Conference on Factory Communication Systems (WFCS).
IEEE, 2015, pp. 1–4.

[21] J. Liu, Y. Li, M. Chen, W. Dong, and D. Jin, “Software-defined internet
of things for smart urban sensing,” IEEE communications magazine,
vol. 53, no. 9, pp. 55–63, 2015.

[22] G. S. Aujla, R. Chaudhary, N. Kumar, J. J. P. C. Rodrigues, and A. Vinel,
“Data offloading in 5G-enabled software-defined vehicular networks:
A stackelberg game-based approach,” IEEE Communication Magazine,
vol. 55, no. 8, pp. 100–108, Aug 2017.

[23] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “ElasticTree: Saving energy in data
center networks.” in NSDI, vol. 10, 2010, pp. 249–264.

[24] R. Chaudhary and N. Kumar, “Parc: Placement availability resilient
controller scheme for software-defined datacenters,” IEEE Transactions
on Vehicular Technology, vol. 69, no. 8, pp. 8985–9001, 2020.

[25] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel,
and M. Hoffmann, “Heuristic approaches to the controller placement
problem in large scale sdn networks,” IEEE Transactions on Network
and Service Management, vol. 12, no. 1, pp. 4–17, 2015.

[26] M. Tanha, D. Sajjadi, R. Ruby, and J. Pan, “Capacity-aware and delay-
guaranteed resilient controller placement for software-defined wans,”
IEEE Transactions on Network and Service Management, vol. 15, no. 3,
pp. 991–1005, 2018.

[27] Q. Qin, K. Poularakis, G. Iosifidis, S. Kompella, and L. Tassiulas, “Sdn
controller placement with delay-overhead balancing in wireless edge
networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 4, pp. 1446–1459, 2018.

[28] S. Chattopadhyay, S. Chatterjee, S. Nandi, and S. Chakraborty, “Aloe:
Fault-tolerant network management and orchestration framework for iot
applications,” IEEE Transactions on Network and Service Management,
pp. 1–1, 2020.

[29] S. Yang, L. Cui, Z. Chen, and W. Xiao, “An efficient approach to robust
sdn controller placement for security,” IEEE Transactions on Network
and Service Management, vol. 17, no. 3, pp. 1669–1682, 2020.

[30] L. Sidki, Y. Ben-Shimol, and A. Sadovski, “Fault tolerant mechanisms
for sdn controllers,” in 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), 2016, pp.
173–178.

[31] A. Mahjoubi, O. Zeynalpour, B. Eslami, and N. Yazdani, “Lbft: Load
balancing and fault tolerance in distributed controllers,” in 2019 In-
ternational Symposium on Networks, Computers and Communications
(ISNCC), 2019, pp. 1–6.

[32] L. J. Herrera, I. Rojas, H. Pomares, A. Guillén, O. Valenzuela, and
O. Baños, “Classification of mri images for alzheimer’s disease detec-
tion,” in 2013 International Conference on Social Computing. IEEE,
2013, pp. 846–851.

[33] M. Pal and G. M. Foody, “Feature selection for classification of
hyperspectral data by svm,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 48, no. 5, pp. 2297–2307, 2010.

[34] S. Bauer, S. Köhler, K. Doll, and U. Brunsmann, “Fpga-gpu architecture
for kernel svm pedestrian detection,” in 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition-Workshops.
IEEE, 2010, pp. 61–68.

[35] G. M. Foody and A. Mathur, “Toward intelligent training of supervised
image classifications: directing training data acquisition for svm classi-
fication,” Remote Sensing of Environment, vol. 93, no. 1-2, pp. 107–117,
2004.

[36] Q. Zhong, Y. Wang, W. Li, and X. Qiu, “A min-cover based controller
placement approach to build reliable control network in SDN,” in
IEEE/IFIP Network Operations and Management Symposium (NOMS),,
2016, pp. 481–487.

[37] G. S. Aujla and N. Kumar, “SDN-based energy management scheme for
sustainability of data centers: An analysis on renewable energy sources
and electric vehicles participation,” Journal of Parallel and Distributed
Computing, 2017, doi:10.1016/j.jpdc.2017.07.002.

[38] B. Xue, Y. Guiqin, and J. Zhanjun, “Research and application of floyd
algorithm based on sdn network,” in 2019 12th International Conference
on Intelligent Computation Technology and Automation (ICICTA), 2019,
pp. 317–320.

	Introduction
	Network Attributes for FinTech
	Motivation and Research Challenges
	Contributions

	Network Model and Preliminaries
	Network Model
	Assumptions
	System States
	State Transition Analysis

	Proposed Scheme
	SVM-based Classification Approach
	Recovery Controller Selection Scheme
	Objective Function 1 (O1): Reliability
	Objective Function 2 (O2): Energy
	Objective Function 3 (O3): Latency

	Problem formulation

	Results and discussion
	Case study of a typical City

	Conclusion
	References

