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Abstract. We study existence and absence of `2-eigenfunctions of the combinatorial

Laplacian on the 11 Archimedean tilings of the Euclidean plane by regular convex polygons.

We show that exactly two of these tilings (namely the .3:6/2 “kagome” tiling and the

.3:122/ tiling) have `2-eigenfunctions. These eigenfunctions are infinitely degenerate

and are constituted of explicitly described eigenfunctions which are supported on a finite

number of vertices of the underlying graph (namely the hexagons and 12-gons in the tilings,

respectively). Furthermore, we provide an explicit expression for the Integrated Density of

States (IDS) of the Laplacian on Archimedean tilings in terms of eigenvalues of Floquet

matrices and deduce integral formulas for the IDS of the Laplacian on the .44/, .36/, .63/,

.3:6/2, and .3:122/ tilings. Our method of proof can be applied to other Zd -periodic graphs

as well.
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1. Introduction and statement of results

The goal of this paper is to provide concrete formulas for the Integrated Density

of States (IDS) on Archimedean tilings, viewed as combinatorial graphs, and to

study existence or absence of `2-eigenfunctions for the associated Laplacians.

A plane tiling by regular convex polygons is a countable family of regular

convex polygons covering the plane without gaps or overlaps. It is called edge-to-

edge if the corners and sides of the polygons coincide with the vertices and edges

of the tiling (see [8]). The type of a vertex of an edge-to-edge plane tiling by

regular polygons describes the order of the polygons arranged cyclically around

the vertex, for example the vertices in the honeycomb tiling are all of the type

.6:6:6/ DW .63/.

https://creativecommons.org/licenses/by/4.0/
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Definition 1.1. An Archimedean tiling is an edge-to-edge tiling of the plane by

regular convex polygons such that all vertices are of the same type.

Archimedean tilings were systematically investigated in 1619 by Johannes

Kepler in his book Harmonices Mundi [14] (see [5] for an English translation).

Kepler found all 11 Archimedean tilings, namely with vertices of type .44/, .36/,

.63/, .3:6/2, .3:122/, .4:82/, .33:42/, .32:4:3:4/, .3:4:6:4/, .34:6/, and .4:6:12/,

cf. [8, pp. 59 and 63] and Figure 1 for an illustration.

.44/ .36/ .63/

.3:6/2 .3:122/ .33:42/ .4:82/

.32:4:3:4/ .3:4:6:4/ .4:6:12/ .34:6/

Figure 1. The 11 Archimedean tilings.

There is a vast literature about various aspects of Archimedean tilings. For

historical details on Archimedean tilings we refer the readers to [8, Section 2.10].

These tilings are relevant in crystallography as layers of stacked 3-dimensional

structures [6, 7]. Archimedean tiling structures at different length scales have the

potential to exhibit interesting properties: they may form frustrated magnets [9]

or photonic crystals [31]. Diffusion constants of Archimedean tilings have been
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calculated in [1]. Percolation thresholds of Archimedean solids have been inves-

tigated, e.g., in [30, 16, 29, 12, 27].

We view these tilings as combinatorial graphs G D .V;E/ with vertex set V

and edge set E. The Laplacian �W `2.V/ ! `2.V/ on such a graph is defined as

.�f /.v/ D f .v/ � 1

jvj
X

w�v

f .w/; (1)

where jvj denotes the vertex degree of v 2 V, and w � v means that w and v

are adjacent, i.e. joined by an edge. This is a self-adjoint, bounded operator. On

each of these graphs, there is a cofinite Z2-action allowing to define the Integrated

Density of States (IDS) (for the precise definition see Section 2).

Our first main results are concrete integral expressions of the IDS for the

Archimedean tilings .44/, .36/, .63/, .3:6/2, and .3:122/. Moreover, we show that

the tilings .3:6/2 (kagome lattice), and .3:122/ have �-eigenfunctions of finite

support leading to jumps of the IDS. Finally, we show that no other Archimedean

tiling has (any `2.V/) eigenfunctions.

Remark 1.2. For periodic graphs with co-finite Z
d action, the (distributional)

derivative of the IDS, the density of states, is a spectral measure in the sense that

is carries all information on the spectrum: The points of increase of the IDS, i.e.

the support of the density of states, are the spectrum of � [25, p. 119], see also [23,

Proposition 5.2] for a proof of this statement in a more general context. The set

of discontinuities of the IDS constitues the pure point spectrum and the singular

continuous spectrum is empty [20, Theorem 6.10]. Thus, the remaining points of

increase are the absolutely continuous spectrum. In particular, we have a complete

description of the spectral types on all 11 Archimedean lattices.

Furthermore, since we have concrete expressions for the IDS of the tilings .44/,

.36/, .63/, .3:6/2, and .3:122/, it is straightforward to calculate their densities of

states from our expressions below.

The method of proof is based on Floquet theory and can be applied to more

general graphs with cofinite Z
d -action and not only to Archimedean tilings. Ex-

amples include periodic finite hopping range operators on the nearest neighbour

graph on Zd or on non-planar, Z2-periodic graphs.

2. General results on the IDS and the lattice Z
d

2.1. Floquet theory and the IDS. Even though the goal of this article will be to

study the 11 (planar) graphs based on Archimedean tesselations, the results of this



464 N. Peyerimhoff and M. Täufer

subsection do not require planarity of the graph. More precisely, let G D .V;E/

be an infinite graph with vertex set V and edge set E. We assume that the vertex

degree jvj is finite for every v 2 V.

We also assume that there is a cofinite Z
d -action on G, given by

Z
d 3  7�! T WV �! V:

Let Q � V be a (finite) fundamental domain of this action.

The graph Laplacian �, a self-adjoint bounded operator on `2.V/, was defined

in (1). The (abstract) Integrated Density of States (IDS) NG WR ! Œ0; 1� of the

Laplacian � on G is

NG.E/ WD 1

jQj Tr.�Q�.�1;E�.�//

where �.�1;E�.�/ denotes the spectral projector onto the interval .�1; E�. In-

tuitively, the IDS counts the number of states of � below the energy level E per

unit volume [22]. This is also reflected by formula (2) below. The IDS is non-

decreasing and right continuous.

In order to apply Floquet theory, we also define the d -dimensional torus

T
d D R

d =.2�Z/d and for every � 2 T
d the jQj-dimensional Hilbert space

`2.V/� WD ¹ Qf WV �! C j Qf .Tv/ D eih�;i Qf .v/ for all  2 Z
d º

with inner product

hf; gi� WD
X

v2Q

f .v/g.v/:

Furthermore, we define on `2.V/� the �-pseudoperiodic Laplacian �� as

��f .v/ WD f .v/ � 1

jvj
X

w�v

f .w/;

that is, �� acts in the same way as � but on the different vector space `2.V/� .

Since this is a jQj-dimensional vector space due to quasiperiodicity, the operator

�� can be viewed as a hermitian jQj�jQj-matrix. In Sections 3 and 4 we will

give concrete examples of this matrix for the case of the 11 Archimedean lattice

graphs. The map T
d 3 � 7! �.��/ is also called dispersion relation.

The following theorem provides an integral expression for the IDS on Z
d -pe-

riodic graphs, see also [20, Theorem 6.18].

Theorem 2.1. We have

NG.E/ D 1

.2�/d jQj

Z

T
d

#¹Eigenvalues of �� less or equal than Eº d �: (2)
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For the convenience of the reader we now give a proof of Theorem 2.1 using

Fourier theory on `2.Zd /.

We have `2.V/ D ˚v2Q`2.Zd /, where each summand `2.Zd / represents

the space `2.¹Tv j  2 Z
d º/. Therefore, we can isometrically identify f 2

`2.V/ with .fv/v2Q 2 ˚v2Q`2.Zd / by fv./ WD f .Tv/. Applying the Fourier

transform on every component, we obtain

Of 2 ˚v2QL2.Td /; Of WD . Ofv/v2Q; where Ofv.�/ WD
X

2Zd

e�ih�;ifv./:

From Fourier theory it follows that f 7! Of is an isometry with the norms

kf k`2.V/ WD
X

v2V
jf .v/j2 D

X

v2Q

X

2Zd

j.Tv/j2

and

k Of k˚v2QL2.Td / WD
X

v2Q

k Ofvk2
L2.Td /

where kgk2
L2.Td /

WD 1

.2�/d

Z

T
d

jg.�/j2 d �:

We write Qf� .v/ WD Ofv.�/ and extend Qf� .v/ quasiperiodically to V via

Qf� .Tv0/ D eih�;i Qf� .v0/; where v0 2 Q:

We have isometrically identified the spaces

`2.V/ '
Z̊

T
d

`2.V/� d �:

Lemma 2.2. For all v 2 V, all f 2 `2.V/, and all � 2 T
d , we have

Qf� .v/ D
X

2Zd

e�ih�;if .Tv/: (3)

Proof. Write v D T0
v0 for v0 2 Q. Then

Qf� .v/ D Qf� .T0
v0/ D eih�;0i Qf� .v0/

D eih�;0i Ofv0
.�/ D

X

2Zd

eih�;0ie�ih�;if .Tv0/

D
X

2Zd

e�ih�;�0if .T�0
T0

v0/ D
X

 02Zd

e�ih�; 0if .T 0v/: �
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Now, we can identify operators:

� Š
Z̊

�2Td

�� d � where�f .v/ D f .v/ � 1

jvj
X

w�v

f .w/ (4)

and where �f D g, if and only if for all v D T0
v0 with v0 2 Q,

Qg� .v/
(3)D
X

2Zd

e�ih�;ig.Tv/

D
X

2Zd

e�ih�;i
h
f .Tv/ � 1

jTvj
X

w�T v

f .w/
i

(3)D Qf� .v/ � 1

jvj
X

2Zd

X

w 0�v

e�ih�;if .Tw0/

D Qf� .v/ � 1

jvj
X

w�v

X

2Zd

e�ih�;if .Tw/

(3)D Qf� .v/ �
X

w�v

1

jvj
Qf� .w/ D �� Qf� .v/:

Recall that �� and � are formally defined via the same expressions, but they

operate on different spaces: � operates on `2-functions on G while �� operates

on �-quasiperiodic functions.

From (4), we conclude

�.�1;E�.�/ Š
Z̊

T
d

�.�1;E�.�
� / d �:

and therefore

.F�.�1;E�.�/f /� D �.�1;E�.�
�/ef �

Now, we are in a position to calculate the IDS. We have

NG.E/ D 1

jQj Tr.�Q�.�1;E�.�// D 1

jQj
X

v2Q

hıv; �.�1;E�.�/ıvi

D 1

.2�/d jQj
X

v2Q

Z

T
d

h.eıv/� ; .
G
�.�1;E�.�

� /ıv/� i d �

D 1

.2�/d jQj

Z

T
d

X

v2Q

h.eıv/� ; �.�1;E�.�
�/eıv/� i d �:
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The operator, �.�1;E�.�
� / is an orthogonal projection onto the finite-dimensional

span of eigenfunctions of �� on `2.Q/ with eigenvalues smaller or equal than E

(i.e. a matrix). Hence, the trace Tr.�.�1;E�.�
� // is the number of eigenvalues of

�� less or equal than E. This finishes the proof of Theorem 2.1. �

The next results are useful to show absence of finitely supported eigenfunctions

for particular graphs.

Theorem 2.3. The following are equivalent:

(i) NG is continuous at E;

(ii) � has no eigenfunctions with eigenvalue E of finite support;

(iii) � has no `2.V/-eigenfunctions with eigenvalue E;

(iv) There is � 2 T
d such that E 62 �.�� /.

Corollary 2.4. If there exist �; � 0 2 T
d such that �.�� / \ �.�� 0

/ D ;, then NG

is continuous.

Proof of Theorem 2.3. The equivalence of items (i), (ii) and (iii) is proved in [19],

see also [24, Corollary 2.3] for a proof in a more general setting.

It remains to show the equivalence of (i) and (iv). We fix E 2 R and calculate,

using the dominated convergence theorem,

NG.E/ � lim
E 0%E

NG.E 0/

D 1

.2�/d jQj

Z

T
d

lim
E 0%E

#¹Eigenvalues of �� in .E 0; E�º d �

D 1

.2�/d jQj

Z

T
d

¹Multiplicity of the eigenvalue E of ��º d �:

This is non-zero if and only if the characteristic polynomial

P�� .E/ WD det.�� � E � Id/

vanishes on a set S � T
d of positive measure. Since � 7! P�� .E/ is a

real analytic function, this is equivalent to P�� .E/ vanishing identically on T
d

(see [18, p. 67]). Thus discontinuity of NG at E is equivalent to E 2 �.��/ for

all � 2 T
d . �

Let us note that the analytic nature of the band functions has been used in

similar arguments before, see e.g. [20, Corollary 6.19].
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2.2. The lattice Zd . As a first application of (2), we calculate the IDS of � on the

lattice Z
d . An elementary cell Q consists of a single point. In the 2-dimensional

case, we can view Z
2 as a tiling by unit squares (i.e. as the .44/ tiling) with Z

2

generated by translation vectors !1 D .1; 0/, and !2 D .0; 1/, cf. Figure 2. The

.1 � 1/-matrix corresponding to �� has the entry (and hence the only eigenvalue)

��
Zd D 1 � 1

2d
.e�i�1 C ei�1 C � � � C e�i�d C ei�d / D 1 � 1

d

dX

j D1

cos.�j /: (5)

Thus, (2) simplifies to

N
Zd .E/ D 1

.2�/d
Vol

°
� 2 T

d W 1

d

dX

j D1

cos.�j / � 1 � E
±
: (6)

It is clear that N
Zd .E/ is supported in Œ0; 2�. Moreover, by Corollary 2.4,

the IDS on Z
d is continuous and � has no `2-eigenfunctions since from (5) we

conclude ��
Zd D 0 ¤ 2 D �� 0

Zd for � D .0; : : : ; 0/, and � 0 D .�; : : : ; �/.

In dimensions d D 1; 2, the following expressions for the IDS follow directly

from (6). In the case d D 2, we derive the expression by applying the substitution

t D cos �1.

Proposition 2.5. In dimension d D 1, we have

NZ.E/ D �Œ0;2�.E/

�
� arccos.1 � E/:

In dimension d D 2, we have

NZ2.E/ D N.44/.E/

D 1

.2�/2
Vol¹� 2 T

2 j cos �1 C cos �2 � 2 � 2Eº

D

8
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂:

0 if E < 0;

1

�2

1Z

1�2E

arccos.2 � 2E � t /p
1 � t2

d t if 0 � E � 1;

1 � N.44/.2 � E/ if 1 < E � 2;

1 if 2 < E:
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a .a C !1/.a � !1/

.a C !2/

.a � !2/

Figure 2. Fundamental domain of the graph Z
2 (left) and its IDS (right).

3. Concrete integral expressions for the IDS of some Archimedean tilings

In this section, we present concrete integral expressions of the IDS of the

Archimedean tilings with vertex types .36/, .63/, .3:6/2, and .3:122/. We will

denote the corresponding IDS by N.36/, etc.

We will see that only the last two tilings admit finitely supported eigenfunc-

tions.

3.1. IDS of the .36/ tiling (triangular lattice). A fundamental domain consists

of a single point with translation vectors !1 D .1; 0/, !2 D .cos.�=3/; sin.�=3//,

cf. Figure 3. The corresponding matrix �� has the only entry and hence the only

eigenvalue

��
.36/

D
�
1 � 1

6
.ei�1 C e�i�1 C ei�2 C e�i�2 C ei.�2��1/ C e�i.�2��1//

�

D
�
1 � 1

3
.cos.�1/ C cos.�2/ C cos.�2 � �1//

�
:

Therefore,

N.36/.E/ D 1

.2�/2
Vol

°
� 2 T

2W 1

3
.cos.�1/ C cos.�2/ C cos.�2 � �1// � 1 � E

±
:

(7)

a
.a C !1/

.a C !2/.a � !1 C !2/

.a � !1/

.a � !2/ .a C !1 � !2/

Figure 3. Fundamental domain of the .36/ tiling (left) and its IDS (right).
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Since the expression

Vol¹� 2 T
2W cos.�1/ C cos.�2// C cos.�2 � �1/ � Lº

will be relevant later on, we shall discuss it in more detail here. By periodicity, we

can consider T2 as .��; �/2 (the boundary is a measure zero set and does not play

any role). Using the change of variables u WD .�1 C �2/=
p

2, v D .�1 � �2/=
p

2

we find

cos.�1/ C cos.�2/ C cos.�1 � �2/ D cos
�u C vp

2

�
C cos

�u � vp
2

�
C cos

�p
2u
�

D 2 cos
� up

2

�
cos

� vp
2

�
C 2 cos2

� up
2

�
� 1:

The new variables .u; v/ identify T2 with the domain

Þ WD ¹.u; v/ 2 R
2W juj C jvj < �

p
2º:

Lemma 3.1. The function F W Þ ! R, defined by

F.u; v/ D 2 cos
� up

2

�
cos

� vp
2

�
C 2 cos2

� up
2

�
� 1

has the following properties:

i) the global maximum of F is at .u; v/ D .0; 0/, where F.u; v/ D 3;

ii) the two global minima of F are at .u; v/ D .˙2=3 �
p

2�; 0/, where F.u; v/ D
�3=2;

iii) F � �1 in the “hexagon” .Hex/ WD ¹.u; v/ 2 ÞW juj � �=
p

2º and F � �1

in the complemetary set .Tri/� [ .Tri/C which consists of two rectangular

triangles;

iv) we have

Vol¹F � Lº D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

.2�/2 if L < �3=2;

.2�2/ � 8

�1=2C 1
2

p
2LC3Z

�1=2� 1
2

p
2LC3

arccos
�

LC1
2t

� t
�

p
1 � t2

d t if � 3=2 � L < �1;

8

1Z

� 1
2

C 1
2

p
2LC3

arccos
�

LC1
2t

� t
�

p
1 � t2

d t if � 1 � L < 3;

0 if 3 � L:
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Remark 3.2. It is known that additional symmetries (e.g. a rotational symme-

try) of the underlying graph are reflected in symmetries of the dispersion relation.

More precisely, in an appropriate basis, the function F is symmetric under rota-

tions by �=3 around its maximum and symmetric under rotations by 2�=3 around

its minima. This corresponds to symmetries of the underlying graph, see [2,

Lemma 2.1] for details.

Proof. It is straightforward to check i) to iii) and using symmetry and monotonic-

ity considerations

Vol¹F � Lº

D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

.2�/2 if L < �3=2;

.2�/2 � 2 � Vol¹.u; v/ 2 .Tri/CW F.u; v/ � Lº if � 3=2 � L < �1;

4 � Vol¹.u; v/ 2 .Hex/ \ R
2
CW F.u; v/ � Lº if � 1 � L < 3;

0 if 3 � L:

.Tri/ .Tri/C

.Hex/

V

U

Figure 4. Level sets of the function F W Þ ! R and the domains .Hex/ and .Tri/˙.
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To calculate the area within .Tri/C we consider the upper half (i.e. v � 0)

of .Tri/C (i.e. u � �=
p

2). Therein, cos.u=
p

2/ < 0, whence F.u; v/ � L is

equivalent to

cos
� vp

2

�
� L C 1

2 cos
�

up
2

� � cos
� up

2

�
: (8)

and we found that the area is the area under a graph. Since cos.v=
p

2/ � 1,

we conclude that (8) can only be fulfilled if u is in the interval between the two

solutions of cos.u=
p

2/ D .L C 1/=2 � cos2.u=
p

2/ in .�=
p

2;
p

2�/, i.e. for

u 2 .u�; uC/ WD
�p

2 arccos
�

� 1=2 C 1

2

p
2L C 3

�
;

p
2 arccos

�
� 1=2 � 1

2

p
2L C 3

��
:

Together with (8), we find

Vol¹.u; v/ 2 .Tri/CW F.u; v/ � Lº

D 2

uCZ

u�

p
2 arccos

� L C 1

2 cos
�

up
2

� � cos
� up

2

��
d u

D
�1=2C 1

2

p
2LC3Z

�1=2� 1
2

p
2LC3

4
arccos

�
LC1

2t
� t
�

p
1 � t2

d t

where in the last step, we used the transformation u D
p

2 arccos.t /.

As for the area in the hexagon H , by an analogous argument,

Vol¹.u; v/ 2 .Hex/ \ R
2
CW F.u; v/ � Lº

D
u0Z

0

p
2 arccos

� L C 1

2 cos.u=
p

2 /
� cos.u=

p
2/
�

d u

D 2

1Z

� 1
2

C 1
2

p
2LC3

arccos
�

LC1
2t

� t
�

p
1 � t2

d t

where

u0 D
p

2 arccos
�

� 1

2
C 1

2

p
2L C 3

�

is the solution of cos.u=
p

2/ D .L C 1/=2 � cos2.u=
p

2/ in Œ0; �=
p

2�. �
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Combining Lemma 3.1 and (7), we find:

Proposition 3.3. We have

N.36/.E/ D 1

.2�/2
Vol¹.u; v/ 2 ÞW F.u; v/ � 3 � 3Eº

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

0 if E < 0;

2

�2

1Z

� 1
2

C 1
2

p
9�6E

arccos
�

4�3E
2t

� t
�

p
1 � t2

d t if 0 � E <
4

3
;

1 � 2

�2

�1=2C 1
2

p
9�6EZ

�1=2� 1
2

p
9�6E

arccos
�

4�3E
2t

� t
�

p
1 � t2

d t if
4

3
� E <

3

2
;

1 if 3=2 < E:

In particular, N.36/ is continuous and there are no `2-eigenfunctions.

3.2. IDS of the .63/ (honeycomb) tiling. The honeycomb tiling is of particular

practical interest since this structure appears in graphene and is closely related

to fullerenes (buckeyballs) and carbon nano-tubes. The earliest reference from

which the dispersion relations for this tiling can be inferred seems to be [32].

Furthermore, parts of our calculations have an overlap with the metric graph

investigations in [21], where the authors derive dispersion relations and determine

various spectral types of the Hamiltonian not only for the .63/ tiling, but also for

metric nano-tube graphs isometrically embedded in cylinders. Moreover, [4] is

a good source to find further information and references about graphene under a

magnetic field.

A fundamental domain is Q D ¹a; bº D ¹.0; 0/; .0; 1/º, cf. Figure 5. This

implies

�� D
�

1 � 1
3

.1Cei�1 Cei�2 /

� 1
3

.1Ce�i�1 Ce�i�2 / 1

�

which has the eigenvalues

8
<̂

:̂

��
.63/;1

D 1 � 1

3

p
2 cos �1 C 2 cos �2 C 2 cos.�1 � �2/ C 3;

��
.63/;2

D 1 C 1

3

p
2 cos �1 C 2 cos �2 C 2 cos.�1 � �2/ C 3:
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b

a

.a � !2/.a � !1/

.b C !1/.b C !2/

Figure 5. Fundamental domain of the .63/ tiling (left) and its IDS (right).

Therefore,

N.63/.E/ D 1

2.2�/2
.Vol¹� 2 T

2W ��
.63/;1

� Eº C Vol¹� 2 T
2W ��

.63/;2
� E; º/:

We see that N.63/.E/ has support Œ0; 2� and is antisymmetric around .E; N.E// D
.1; 1=2/. For E < 1, we find by Lemma 3.1

N.63/.E/ D 1

2.2�/2
Vol¹� 2 T

2W ��
.63/;1

� Eº

D 1

2.2�/2
Vol

°
.u; v/ 2 ÞW F.u; v/ � 9

2
.1 � E/2 � 3=2

±
:

Therefore, using Lemma 3.1 and antisymmetry around E D 1, we find the

following result.

Proposition 3.4. We have

N.63/.E/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0 if E < 0

1

�2

1Z

1� 3
2

E

arccos
�

9.1�E/2�1
4t

� t
�

p
1 � t2

d t if 0 � E < 2=3

1

2
� 1

�2

1� 3
2

EZ

�2C 3
2

E

arccos
�

9.1�E/2�1
4t

� t
�

p
1 � t2

d t if 2=3 � E < 1

1

2
C 1

�2

�2C 3
2

EZ

1� 3
2

E

arccos
�

9.E�1/2�1
4t

� t
�

p
1 � t2

d t if 1 � E < 4=3

1 � 1

�2

1Z

1� 3
2 E

arccos
�

9.E�1/2�1
4t

� t
�

p
1 � t2

d t if 4=3 � E < 2

1 if 2 � E:

In particular, there are no `2-eigenfunctions.
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3.3. IDS of the .3:6/2 tiling (“the kagome lattice”). Properties of kagome

lattice structures under magnetic fields have been investigated both in the Applied

Physics literature (e.g., [33] and references therein studying kagome staircase

compounds) and in the Theoretical Physics literature (butterfly-type spectra for

ultracold atoms in optical kagome lattices, see [11, 15, 10] and references therein,

as well as [3]). We refer the readers also to [26] for historical information on

the name “kagome” and how the scientific community became interested in this

structure.

ab

c

.b C !1/

.c C !1/

.c C !2/

.a � !2/

.a � !1/

.b � !2/

Figure 6. Fundamental domain of the .3:6/2 tiling (left) and its IDS (right).

We would like to point out that jumps and strict monotonicity properties of the

IDS of the combinatorial Laplacian on the kagome lattice were already determined

in [22, Proposition 3.3]. We now derive an explicit formula for the IDS.

A fundamental domain of the kagome lattice consists of three points, cf.

Figure 6. This leads to the matrix

�� D Id �1

4

 
0 .1Cei�1 / .ei�1 Cei�2 /

.1Ce�i�1 / 0 .1Cei�2 /

.e�i�1 Ce�i�2 / .1Ce�i�2 / 0

!

with eigenvalues 8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

��
.3:6/2;1

D 3 �
p

3 C 2F.u; v/

4
;

��
.3:6/2;2

D 3 C
p

3 C 2F.u; v/

4
;

��
.3:6/2;3

D 3

2
:

Furthermore the eigenvalue 3=2 of �� is �-independent whence by Theorem 2.3,

it corresponds to an infinitely degenerate eigenvalue of �. It can be seen that

this eigenvalue is a linear combination of finitely supported eigenvalues on each
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hexagon where at the vertices of the hexagon, the eigenfunction takes the values

˙1 in alternating order, see also Figure 8. From Lemma 3.1, we deduce the

following result.

Proposition 3.5. We have

N.3:6/2.E/ D 1

3.2�/2

3X

kD1

Vol¹� 2 T
2W ��

.3:6/2;k
� Eº

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

0 if E < 0

2

3�2

1Z

1�2E

arccos
�

4E2�6EC2
t

� t
�

p
1 � t2

d t if 0 � E <
1

2

1

3
� 2

3�2

1�2EZ

2E�2

arccos
�

4E2�6EC2
t

� t
�

p
1 � t2

d t if
1

2
� E <

3

4

1

3
C 2

3�2

2E�2Z

1�2E

arccos
�

4E2�6EC2
t

� t
�

p
1 � t2

d t if
3

4
� E < 1

2

3
� 2

3�2

1Z

2E�2

arccos
�

4E2�6EC2
t

� t
�

p
1 � t2

d t if 1 � E <
3

2

1 if
3

2
< E:

For each hexagon H there exists (up to scalar multiples) exactly one eigenfunction

with support on H . Every `2-eigenfunction is a linear combination of these special

finitely supported eigenfunctions.

3.4. IDS of the .3:122/ tiling. The .3:122/ tiling is the second Archimedean

tiling after the .3:6/2 (kagome) tiling which has compactly supported eigenfunc-

tions. It also has the interesting feature that the spectrum consists of the two in-

tervals Œ0; 2=3� and Œ1; 5=3�, i.e. it has a proper band structure which might make

nanomaterials based on this tiling an interesting candidate for applications.

A fundamental domain consists of six points, Q D ¹a; b; c; d; e; f º, cf. Fig-

ure 7. We have

�� D Id �1

3

0
B@

0 1 1 0 e�i�2 0
1 0 1 0 0 ei�1

1 1 0 1 0 0
0 0 1 0 1 1

ei�2 0 0 1 0 1
0 e�i�1 0 1 1 0

1
CA:
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Its characteristic polynomial is

P�� .E/ D .E � 1/.3E � 5/

243
.81E4 � 270E3 C 279E2 � 90E

� 2.cos.�1/ C cos.�2/ C cos.�1 � �2/ � 3//

D .E � 1/.3E � 5/

243
.81E4 � 270E3 C 279E2 � 90E � 2F.u; v/ C 6/;

where we used again the change of variables u WD .�1C�2/=
p

2, v D .�1��2/=
p

2

and the function F from Lemma 3.1. This is a polynomial of degree 6 and its roots

are

��
.3:122;1/

D 1

6
.5 �

q
13 C 4

p
2F.u; v/ C 3/ 2

h
0;

5 �
p

13

6

i
;

��
.3:122;2/

D 1

6
.5 �

q
13 � 4

p
F.u; v/ C 3/ 2

h5 �
p

13

6
;
2

3

i
;

��
.3:122;3/

D 1;

��
.3:122;4/

D 1

6
.5 C

q
13 � 4

p
F.u; v/ C 3/ 2

h
1;

5 C
p

13

6

i
;

��
.3:122;5/

D 1

6
.5 C

q
13 C 4

p
2F.u; v/ C 3/ 2

h5 C
p

13

6
;

5

3

i
;

��
.3:122;6/

D 5

3
:

d

c

ef

ba

a � !2b � !1

f C !1e C !2

Figure 7. Fundamental domain of the .3:122/ tiling (left) and its IDS (right).
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We see that the spectrum of � is supported in the two bands Œ0; 2=3� and

Œ1; 5=3�. Furthermore the eigenvalues 1 and 5=3 of �� are �-independent whence

by Theorem 2.3, they correspond to two linearly independent, infinitely degenerate

supported eigenvalues of �. It can be seen that the corresponding space of

eigenfunctions is spanned by functions which are supported on the vertices of

a single 12-gon where cyclically at the vertices of the 12-gon either the values

1; �1; 1; �1; : : : (in case � D 5=3) or the values 1; 1; �1; �1; 1; 1; : : : (in case

� D 1) appear, see also Figure 8.

1
�11

�1
1 �1

0

0

0

0

0

0

1�1
1

�1

0

0

1

�1

1

�1

0

0

1

�1
1 �10

0

1�1�1

1

0

0

1

�1

�1

1

0

0

1

�1�1 10

0

Figure 8. Eigenfunction in the .3:6/2 tesselation with support on a single hexagon (left) and

the two types of eigenfunctions in the .3:122/ tesselation with support on a single 12-gon

(center and right).

Using some elementary algebra and Theorem 2.1, we find the following result.

Proposition 3.6. We have

N.3:122/.E/ D 1

6.2�/2

6X

kD1

Vol
®
� 2 T

2W �.3:122;k/ � E
¯

:

Introducing

I.a; b/ D 1

3�2

bZ

a

arccos
��1

2
C 9

2
.3E2 � 5E C 1/2

2t
� t
� dtp

1 � t2

and

A� D �1

2
� 3

2
.3E2 � 5E C 1/; AC D �1

2
C 3

2
.3E2 � 5E C 1/;

this leads to:
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� if E < 0,

N.3:122/.E/ D 0I

� if 0 � E < 5�
p

17
6

,

N.3:122/.E/ D I .AC; 1/ I

� if 5�
p

17
6

� E < 5�
p

13
6

,

N.3:122/.E/ D 1

6
� I .A�; AC/ I

� if 5�
p

13
6

� E < 1
3
,

N.3:122/.E/ D 1

6
C I .A�; AC/ I

� if 1
3

� E < 2
3
,

N.3:122/.E/ D 1

3
� I .AC; 1/ I

� if 2
3

� E < 1,

N.3:122/.E/ D 1

3
I

� if 1 � E < 4
3
,

N.3:122/.E/ D 1

2
C I.AC; 1/;

� if 4
3

� E < 5C
p

13
6

,

N.3:122/.E/ D 2

3
� I.A�; AC/;

� if 5C
p

13
6

� E < 5C
p

17
6

,

N.3:122/.E/ D 2

3
C I.A�; AC/;

� if 5C
p

17
6

� E < 5
3
,

N.3:122/.E/ D 5

6
� I.AC; 1/;

� if 5
3

� E,

N.3:122/.E/ D 1:
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For each 12-gon D there exist (up to scalar multiples) exactly two linearly in-

dependent eigenfunctions with support on D. Every `2-eigenfunction is a linear

combination of one type of these special finitely supported eigenfunctions.

We refer to Figure 7 for a plot of N.3:122/.

Remark 3.7. The eigenfunctions on the .6:3/2 and the .3:122/ are (finite or

infinite) linear combinations of eigenfunctions supported on a single hexagon

or 12-gon, respectively, see Figure 8 for an illustration. One observes that both

these tesselations share the feature that they contain an 2n-gon which is either

completely surrounded by triangles or where triangles are adjacent to every second

edge. Since the .3:6/2 tiling and the .3:122/ tiling are the only ones with this

property, this might give an intuitive explaination why exactly these two tilings

have finitely supported eigenfunctions. However, if one considers periodic graphs

which are not based on a tesselation by regular polygons the situation might be

different. Figure 9 gives an example of a (non-archimedean) tesselation with

finitely supported eigenfunctions.

a

�a

�1

1

0

a�a

�11

0

a

�a

�1

1

0

a �a

�1 1

0

00

00

Figure 9. An example of an elementary cell of a planar, periodic, but non-Archimedean

tiling with finitely supported eigenfunctions where the choice a D 1 ˙
p

2 yields an

eigenfunctions to the eigenvalue � D 1 C a=3.

4. Absence of `2-eigenfunctions on the remaining Archimedean tilings

We show in this section that the remaining Archimedean tilings, namely .33:42/,

.4:82/, .32:4:3:4/, .3:4:6:4/, .4:6:12/, and .34:6/ do not have `2-eigenfunctions.
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Therefore, their IDS’ are continuous whence – in the light of the discussion in Re-

mark 1.2 – their have purely absolutely continuous spectrum. Sufficient geometric

conditions for the absence of finitely supported eigenfunctions in plane tessella-

tions, based on combinatorial curvature, were given in [17, 13] (see also [28] about

the topic of finitely supported eigenfunctions and unique continuation). These cur-

vature conditions are not satisfied in the examples under consideration, so we need

to employ Theorem 2.3 instead. Since we do not always have explicit expressions

of the eigenvalues of the operators �� or the volumes of their sublevels sets are

too difficult to handle, we will not provide explicit integral expressions for these

IDS’, but we are still able to exclude the existence of `2-eigenfunctions. In fact, for

each tiling, we will find the �-dependent matrix �� , make two choices �; � 0 2 T
2,

and see that the sets of eigenvalues of �� and �� 0
are disjoint.

4.1. IDS of the .33:42/ tiling. A fundamental domain consists of two points

¹a; bº as in Figure 10. This leads to the matrix

�� D Id �1

5

�
ei�1 Ce�i�1 1Cei�2 Cei.�2��1/

1Ce�i�2 Ce�i.�2��1/ ei�1 Ce�i�1

�
:

with eigenvalues

�˙ D 1 � 2

5
cos.�1/ ˙ 1

5
j1 C ei.�1��2/ C ei�2j

D 1 � 2

5
cos.�1/ ˙ 1

5

p
3 C 2 cos.�1/ C 2 cos.�2/ C 2 cos.�2 � �1/:

a
a C !1

b C !2
b C !2 � !1

a � !1

b
b � !1

a � !2

a � !2 C !1

b C !1

Figure 10. Fundamental domain of the .33:42/ tiling.

Plugging in � D .0; 0/ and � D .0; �/, we find

�.�.0;0// D
°
0;

6

5

±
and �.�.0;�// D

°2

5
;
4

5

±
:

Since these sets are disjoint, Theorem 2.3 and Corollary 2.4 imply
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Proposition 4.1. The .33:42/ tiling has no `2.V/-eigenfunctions.

4.2. IDS of the .4:82/ tiling. A fundamental domain consists of the four vertices

¹a; b; c; dº adjacent to a square, cf. Figure 11.

ab

c d

c C !1d � !2

a � !1 b C !2

Figure 11. Fundamental domain of the .4:82/ tiling.

It leads to the matrix

�� D Id �1

3

 
0 1 ei�1 1
1 0 1 e�i�2

e�i�1 1 0 1
1 ei�2 1 0

!

Inserting the values � D .0; 0/ and � D .�; �/, we find

�.�.0;0// D
°
0;

4

3

±
and �.�.�;�// D

°2

3
; 2
±
:

Since the spectra are disjoint, Theorem 2.3 and Corollary 2.4 imply the following

result.

Proposition 4.2. The .4:82/ tiling has no `2.V/-eigenfunctions.

4.3. IDS of the .32:4:3:4/ tiling. A fundamental domain consists of the four ver-

tices ¹a; b; c; dº adjacent to a square with edges parallel to the axes, cf. Figure 12.

It leads to the matrix

�� D Id �1

5

0
BBB@

0 1 C ei�2 ei�1 1 C ei�1

1 C e�i�2 0 1 C ei�1 e�i�2

e�i�1 1 C e�i�1 0 1 C e�i�2

1 C e�i�1 ei�2 1 C ei�2 0

1
CCCA :

Inserting � D .0; 0/ and � D .�; 0/, we find

�.�.0;0// D
°
0;

6

5
;
8

5

±
and �.�.�;0// D ¹1 �

p
5

�1
; 1 C

p
5

�1º:
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Again, these sets are disjoint whence Theorem 2.3 and Corollary 2.4 imply

Proposition 4.3. The .32:4:3:4/-tiling has no `2.V/-eigenfunctions.

A fundamental domain consists of the six vertices ¹a; b; c; d; e; f º around a

hexagon, cf. Figure 13. It leads to the matrix

�� D Id �1

4

0
BB@

0 1 e�i.�2��1/ 0 ei�1 1
1 0 1 ei�1 0 ei�2

ei.�2��1/ 1 0 1 ei�2 0
0 e�i�1 1 0 1 ei.�2��1/

e�i�1 0 e�i�2 1 0 1
1 e�i�2 0 e�i.�2��1/ 1 0

1
CCA:

ab

c d

c C !1 d C !1

b C !2

c C !2

a � !1b � !1

d � !2

a � !2

Figure 12. Fundamental domain of the .32:4:3:4/ tiling.

a

bc

d

e f

e C !2 f C !2

f C !2 � !1

a C !2 � !1

a � !1

b � !1

b � !2c � !2

c C !1 � !2

d C !1 � !2

d C !1

e C !1

Figure 13. Fundamental domain of the .3:4:6:4/ tiling.

4.4. IDS of the 3:4:6:4 tiling. We compare the spectra of �� at � D .0; 0/ and

� D .�; �=2/:

�.�.0;0// D
°
0; 1;

3

2

±
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and

�.�.�;�=2// D
°
� 2 CW �6 � 6�5 C 57

4
�4 � 17�3 C 85

8
�2 � 13

4
� C 95

256
D 0

±
:

It is straightforward to verify that these sets are disjoint. By Theorem 2.3 and

Corollary 2.4, we find

Proposition 4.4. The .3:4:6:4/ tiling has no `2.V/-eigenfunctions.

a
b

c

d
e

f

k C !1

l C !1

g C !2

h C !2

i
h

g

l
k

j

f !1

g !1

b !2

a !2

Figure 14. Fundamental domain of the .4:6:12/ tiling.

4.5. IDS of the .4:6:12/ tiling. A fundamental domain consists of the 12 vertices

constituting two neighboring hexagons. This leads to

�� D Id �1

3

�
A B
xBT A

�
;

where

A D

0
@

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

1
A and B D

0
B@

0 0 0 0 e�1 0
0 0 0 0 0 e�1

0 0 1 0 0 0
0 0 0 1 0 0

e�2 0 0 0 0 0
0 e�2 0 0 0 0

1
CA:

It suffices to study the spectrum of the adjacency matrix

M � WD
�

A B
xBT A

�

since the spectrum of M � differs from the spectrum of �� only by an invertible

linear affine transformation. Thus, we need to check that there are � , � 0 such that

�.M � / \ �.M � 0
/ D ;. Plugging in the values .0; 0/ and .�; �=2/ for � , we find

�.M .0;0// D ¹˙1; ˙
p

3; ˙3º



Eigenfunctions and the IDS of Archimedean tilings 485

and

�.M .�;�=2// D ¹� 2 CW �12 � 18�10 C 111�8 � 268�6 C 207�4 � 50�2 C 1 D 0º

and again it is straightforward to verify that these sets are disjoint whence also

�.�.0;0// \ �.�.�;�=2// D ;. Theorem 2.3 and Corollary 2.4 imply

Proposition 4.5. The .4:6:12/-tiling has no `2.V/-eigenfunctions.

4.6. IDS of the .34:6/ tiling. A fundamental domain consists of the six vertices

¹a; b; c; d; e; f º corresponding to a hexagon, cf. Figure 15. This leads to the

matrix

�� D Id �1

5

0
BB@

0 1 ei�2 ei�2 ei�1 1
1 0 1 ei�1 ei�1 e�i.�2��1/

e�i�2 1 0 1 e�i.�2��1/ e�i.�2��1/

e�i�2 e�i�1 1 0 1 e�i�2

e�i�1 e�i�1 ei.�2��1/ 1 0 1
1 ei.�2��1/ ei.�2��1/ ei�2 1 0

1
CCA:

a

bc

d

e f

f C !1 � !2

e C !1 � !2

a � !2

f � !2

b � !1

a � !1

c � !1 C !2

b � !1 C !2

d C !2

c C !2

e C !1

d C !1

Figure 15. Fundamental domain of the .34:6/ tiling.

We choose the particular values � D .0; 0/ and � D .�; �=2/ and find

�.�.0;0// D
°
0;

6

5

±

and

�.�.�;�=2// D
°
� 2 CW �6 � 6�5 C 72

5
�4 � 2192

125
�3

C 7056

625
�2 � 11192

3125
� C 6656

15625
D 0

±
:

It is straightforward to verify that these sets are disjoint and by Theorem 2.3 and

Corollary 2.4 we find
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Proposition 4.6. The .34:6/-tiling has no `2.V/-eigenfunctions.
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