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Abstract 

Research and theories on visual search often focus on visual guidance to explain differences in search. 

Guidance is the tuning of attention to target features and facilitates search because distractors that do 

not show target features can more effectively ignored. As a general rule, the better the guidance is, the 

more efficient is search. Correspondingly, behavioral experiments often interpreted difference in 

efficiency as reflecting varying degrees of attentional guidance. But other factors such as the time 

spent on processing a distractor (dwelling) or multiple visits to the same stimulus in a search display 

(revisiting) are also involved in determining search efficiency. While there is some research showing 

that dwelling and revisiting modulate search times in addition to skipping, the corresponding studies 

used complex naturalistic and category-defined stimuli. The present study will test whether results 

from prior research can be generalized to more simple stimuli, where target-distractor similarity, a 

strong influence on search performance, can be manipulated in a principled way. Thus, in the present 

study, simple stimuli with varying degrees of target-distractor similarity were used to deliver 

conclusive evidence for the contribution of dwelling and revisiting to search performance. The results 

have theoretical and methodological implications. They imply that visual search models should not 

treat dwelling and revisiting as constants across varying levels of search efficiency and that behavioral 

search experiments are equivocal with respect to the responsible processing mechanisms underlying 

more versus less efficient search. We also suggest that eye-tracking methods may be used to 

disentangle different search components such as skipping, dwelling, and revisiting.  
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Dwelling on Simple Stimuli in Visual Search 

Introduction 

Finding a target among distractors can be easy or difficult, depending on the properties of the 

stimuli. It is easy in efficient search (also known as pop-out search), where the target is found at a 

glance, and where adding non-targets (distractors) to the search field does not affect search times. It is 

difficult in inefficient search, where a considerable amount of time is spent on checking distractors 

before the target is finally detected, so that search times are slower with more than with less 

distractors. According to Treisman's seminal Feature Integration Theory (FIT, Treisman, 1985; 

Treisman & Gelade, 1980), efficient or pop-out search has been attributed to the use of the output of a 

parallel feature extraction stage, whereas inefficient search indicates the involvement of a capacity-

limited attentional stage that operates at least partly in a serial manner. This conception has been 

elaborated in more recent models of visual search, such as Guided Search (GS; Wolfe, Cave, & 

Franzel, 1989; Wolfe, 2004, 2007), the Target Acquisition Model (TAM, e.g., Zelinsky, 2008), the 

Dimensional Weighting Model (DW, e.g., Found & Müller, 1996) or the Saliency Model (IS, Itti & 

Koch, 2000, 2001), all of which explain varying levels of search efficiency in particular by 

differences in target guidance. GS2 (Wolfe, 2004) for example, suggests that during an initial 

(bottom-up) stage of visual processing, the visual field is decomposed into isolated spatial maps of 

basic features for color, orientation, luminance, etc. The output of these separate maps is 

spatiotopically organized and summed up to be represented in a single spatiotopic map of activation. 

To enable guidance, searched-for features are boosted on the activation map. The profile of the 

activation map schedules sequential shifts of attention within the visual field towards conspicuous 

locations, the attentional visiting of which is necessary for the final decision whether a stimulus at a 

particular location is the target or not. A single high peak in the activation map leads to a fast attention 

shift to the target’s location, and search is efficient. However, if some of the distractors share features 

with the target, multiple peaks arise in the activation map. Because there is also inherent noise in the 

system, the target location may in this case not always have the highest activation peak on the map. 

Accordingly, multiple stimuli in the display, sometimes even all of them, may be visited before the 

target is finally found, rendering search inefficient. Note that this view predicts that search efficiency 

is a continuum rather than a dichotomy. Depending on the signal-to-noise ratio, search is predicted to 

be more or less efficient. This is reflected by the fact that search slopes, that is, the slopes of the 

functions relating reaction times to set size (i.e., the number of stimuli in a display), can vary between 

values around zero and several hundred milliseconds per item (Wolfe, 1998). 

Guidance based approaches to visual search are elegant and attractive because attentional 

guidance is effectively the only variable needed to explain search efficiency. These models predict 

that in efficient search, the ratio of activation for the target versus the distractors is very high, such 
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that many of the distractors are not considered target candidates and will never be checked (skipping 

of distractors). Thus, prototypical efficient (pop-out) search is fast, because all distractors are skipped 

and only one stimulus, the target, is attended. Prototypical inefficient search is slow when all stimuli 

are considered target candidates, because attentionally investigating each of them is time consuming. 

Intermediate levels of efficiency result from possible, but imperfect guidance by the target: the 

activation ratio for target against distractors is lower, and noise inherent in the activation map leads to 

the selection of some of the distractors in some of the trials. Hence, the target is not found as the first 

item, but it is also not found as a result of a random sampling of stimuli. Rather a weak guidance 

signal renders search better than expected by chance. How much better, in turn, depends on the 

strength of the guidance signal.  

On reflection, it is clear that other selection mechanisms should contribute to search difficulty 

(or its inverse: search efficiency) as well (Treisman & Souther, 1985; Wolfe, 2001). The first of such 

mechanisms which we consider here is the time spent checking candidate target items or dwell time. It 

has been acknowledged that irrespective of whether a single stimulus (Wolfe, 1989; Zelinsky, 2008) 

or groups of stimuli (Hulleman & Olivers, 2016) are attentionally investigated, the duration of this 

investigation process may be an effective cause rendering some searches inefficient, and that search is 

more efficient when only a short period of time is spent at the respective stimulus locations (e.g., 

Horstmann, Ansorge, & Scharlau, 2006; Horstmann, Herwig & Becker, 2016; Horstmann, Becker & 

Ernst, 2017; Wolfe, 2011; Wolfe & Horowitz, 2017). Correspondingly, search is less efficient if, for 

whatever reasons, attentional checking time is increased in a particular type of search. In some sense 

this is also an obvious interpretation of search slopes, which is measured as the rise in milliseconds 

over added distractors to the search display: time spent checking each (additional) item. Note, 

however, that this is not the only interpretation of search slopes, because search slopes can also be 

interpreted as indicating the (average) number of distractors selected during search, which are selected 

with a constant search rate (e.g., Chun & Wolfe, 1996) .  

The influence of attentional checking time on search time is no secret and has been observed 

before (e.g., Hout et al., 2017; Walenchok et al., 2016; Wolfe, 2001; see Wolfe, 2018, for a 

comprehensible summary). However, guidance-based models tend to treat selection rate (e.g., Chun & 

Wolfe, 1996), or dwell time (Zelinsiky, 2008), as a constant that does not change for different search 

types. This does not necessarily mean that the processing requirements for stimuli are assumed to be 

the same for all variants of visual search. For example, Wolfe (2003; 2007) assumes parallel 

processing after selection (see also Venini et al., 2014)  to reconcile the assumption of fast and 

constant selection rates in the range of 50 ms/item with findings that attentional dwell time is more in 

the range of 250-500 ms (e.g., Duncan et al., 1994). Yet current computational models of guided 

visual search such as GS or TAM, fix this time to a constant (see, for a different treatment, the CRISP 

model by Nuthmann, Smith, & Engbert, 2010, which is however not a model of guided visual search). 
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Treating attentional selection rate or dwell time as a constant implies that it is not useful in 

explaining differences in search. Moreover, yet another factor that might modulate search efficiency is 

the number of revisited stimuli in the visual field, i.e., stimuli that are checked multiple times. The 

classical notion in visual search models is that already visited locations are tagged in some way to 

ensure that each stimulus is investigated once and ideally only once (although revising has been 

suggested previously, e.g., by Horowitz & Wolfe, 1998). One possible way of implementing such a 

tagging is inhibition of return (IOR, Posner, Rafal, Choate, & Voaughan, 1985), where the locations 

on the activation map that correspond to already visited locations in the visual field, are transiently 

suppressed (Itti & Koch, 2000; Shipp, 2004; Wolfe, 1989; Zelinsky, 2008). Alternatively, already 

investigated locations in the visual field may be stored in a visuo-spatial memory store (i.e., VSTM, 

cf. Hulleman & Olivers, 2017) and prevent revisiting via higher level processes concerned with 

choosing the target for the next fixation. Unless memory is perfect, capacity limitations and storage 

decay are responsible for revisiting already scanned locations and thus can explain a decrease of 

search efficiency. Capacity limitations, if relevant, should become more important as set size 

increases, while memory decay should become a determining factor for less efficient search with 

increasing time elapsed between stimulus onset and response. 

Focusing on the single principle of guidance to explain many aspects of visual search 

performance adheres to the criterion of parsimony in theory building. Moreover, letting some factors 

vary while fixing others to constants is obviously wise when beginning to build computational models 

and explore their behavior through simulations and experiments. Scientific models often seek 

complexity reduction and include only a few important variables. One might even argue that dwelling 

(the time spent on checking a stimulus) and revisiting (the frequency of repeated checking) only affect 

search efficiency in such a minor way that it can hence be ignored. However, there is still a lot of 

variation in search efficiency in highly inefficient search, when guidance is difficult or absent, 

indicating that dwelling and revisiting may be important variables to explain visual search efficiency. 

In a series of previous studies we have used eye-tracking to measure dwell time and revisiting most 

directly (Horstmann & Becker, 2019; Horstmann, Herwig, & Becker, 2016; Horstmann, Becker, and 

Ernst, 2017; see also Horstmann, Lipp, & Becker, 2012). Eye tracking was used to assess whether a 

distractor was looked at or not (skipping), and if so, for how long it was looked at during the first 

examination (dwelling) and whether the same distractor was looked at repeatedly (revisiting). Targets 

that were either similar or dissimilar to the distractors were used to induce different levels of search 

efficiency. We found that target-distractor similarity led to increased dwell time, which in turn 

increased search duration as indicated by RT. Correspondingly, distractors were more often revisited 

when searching for a similar (difficult) target than when searching for a dissimilar (easy) target. 

These previous studies used naturalistic face stimuli, which is a drawback for two reasons. 

First, visual search studies are usually conducted with well controlled laboratory stimuli. While the 
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importance of using more ecologically relevant common stimulus categories (e.g., faces or scenes) in 

studies of visual search have been substantiated recently (e.g., Alexander & Zelinsky, 2012; Einhäuser 

& Nuthmann, 2016), research has revealed differences in the processing of artificial and realistic 

stimuli (e.g., Neider & Zelinsky, 2006; Zelinsky & Schmidt, 2009; Jenkins, Grubert, and Eimer, 

2018). Second, while we successfully induced differences in search efficiency with different target 

categories in the previous studies, with natural stimuli it is not possible to actively manipulate 

theoretically important dimensions, in particular, target-distractors similarity (but see Hout & 

Goldinger, 2010; Hout et al., 2016, for procedures to measure target-distractor similarity).  

The aim of the present study was to test whether our previous results for faces generalize to 

more standard laboratory stimuli, and to manipulate target-distractor similarity in a systematic way 

while using artificial stimuli. To that aim, we adapted search stimuli from an eye-tracking study by 

Reingold and Glaholt (2014), which seemed ideal for our paradigm as they were already designed to 

manipulate target-distractor similarity. As illustrated in Figure 1 (top panel), these stimuli were 

irregular shapes where the target differed from the distractors (bottom row) either only in the spatial 

organization of one individual stimulus part (similar targets where in comparison to the distractor 

stimuli, the left stimulus arm is shifted downwards along the attaching vertical bar; middle row), or - 

in addition - in the orientation of the entire configuration (dissimilar targets which are mirror versions 

of the similar targets; top row).  

- Figure 1 about here - 

In Experiment 1, we produced ten variations (distortions) of the basic stimulus shapes by 

replacing some pixels of the stimulus figures with a different color (Figure 1). This was done to 

mirror the stimulus heterogeneity of our previous studies where we used facial images of ten 

individuals (rather than ten times the same face). Experiment 1 was therefore designed to allow for a 

direct comparison of potential effects caused by the stimulus material (heterogeneous faces vs. 

heterogeneous simple stimuli) rather than any other changes in the methods or materials. To test 

whether the artificially introduced distractor heterogeneity affected the results of Experiment 1, we 

conducted Experiment 2, in which we used the three original stimulus types without any distortions. 

In Experiment 3, we varied the set size to assess search efficiency in a more traditional way with RT 

increase as a function of increased stimulus number. Experiment 4 was designed to test whether the 

previously observed effects of not only skipping, but also dwelling and revisiting, would hold under 

search conditions which very likely promote strong guidance. 

We expect target-distractor similarity to influence search times, both in target-present and 

target-absent trials. If the effect of similarity on search times is exclusively due to guidance, we would 

expect more skipping with dissimilar than similar targets, whereas dwelling and revisiting should be 

unaffected by similarity. More skipping in target-present trials would be because the dissimilar target 
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has a higher probability of being selected early than the similar target. More skipping in target-absent 

trials would depend on a stopping rule that is correlated to the guidance in present trials (Chun & 

Wolfe, 1996). In short, in target-absent trials, the activation map may contain multiple activations 

proportional to the similarity of the distractors with the searched for target, and in addition, noise. 

Search is stopped when the remaining activation falls below some threshold, under which activation is 

treated as effectively zero. The threshold is set to an optimal value, just high enough that the similar 

or dissimilar target, respectively, if present, is always above (note that this only applies to a design in 

which similar and dissimilar targets are presented in a blocked fashion). Because good guidance 

implies that the target has a much higher activation than a distractor, the threshold is well above zero 

in easy search. Because weak guidance implies that the target only statistically has a higher value than 

the distractors, the threshold is near zero in difficult search. In contrast, if the effect of similarity on 

search times is not exclusively due to guidance, but if dwelling and revisiting contribute to the effect 

of similarity on search times, we would expect to observe not only increased skipping rates, but also 

increased dwell times and revisiting rates when target-distractor similarity is high.  

To validate our hypotheses and predictions that not only skipping, but also dwelling and 

revisiting are reliable determinants of search times, we traced the effects of these three variables by 

means of correlations and multiple regression analyses in which any potential impact will be 

registered in substantial regression weights. We focused on target-absent trials (cf. Horstmann et al., 

2016, 2017), because they allow observations of distractor processing without interference from 

target-related processes. However, analyses for target-present trials are also reported for 

completeness. Note that it is not our aim to challenge guidance (here substantiated in skipping rates) 

as an important contributor to search efficiency in general. Rather, we aim to test whether differences 

in selection mechanism that are not directly related to guidance can modulate search efficiency in a 

non-trivial, substantial way.     

Experiment 1 

Methods 

Participants. Sixteen students with normal or corrected to normal vision participated in the 

study. Each received €4 for their 30-minute participation. Three participants were excluded from 

analysis because of near-chance performance in the similar target-present condition. Mean age of the 

remaining 13 participants was 23.3 years (SD = 2.3 years); 10 were female. The study was approved 

by the Bielefeld University’s ethics committee and performed in accordance with the approved 

guidelines. 

Stimuli. Figure 1 A shows the stimuli used in Experiment 1. The basic shapes for the 

distractors (bottom row) and the similar targets (middle row; same as distractors, only that the right 
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arm is shifted towards the bottom of the connecting vertical bar) were adapted from a publication of 

Reingold and Glaholt (2014). Their dissimilar targets, a C-shaped configuration, differed too much 

from the distractors for our purposes, and so we chose a horizontally flipped version of the similar 

target instead (top row). All stimuli were gray and were presented on a white background; each 

subtended 74x74 pixels. For Experiment 1, the basic shapes were distorted by randomly selecting 

seven positions within the inner 69x69 pixel matrix of a stimulus and flipping the grey foreground 

with blue. The selected locations to flip color each measured 11x11pixels, centered on a randomly 

selected position within the stimulus. No restrictions were applied to randomization (e.g., distortions 

were allowed to overlap), so that some of the distorted stimuli differed more from the basic shape than 

others. 

Search displays consisted of ten stimuli presented at ten randomly selected locations from an 

imaginary grid of 5 horizontal ×3 vertical locations. Figure 1 B shows two examples of target-present 

trials, one with a similar target (left panel) and one with a dissimilar target (right panel). The central 

position of the grid was excluded, as it contained the fixation marker in the pre-stimulus display. 

Center to center distances of the grid position were 100 pixels (2.8° of visual angle) horizontally and 

130 pixels vertically (3.6°). Each stimulus position on each trial was randomly jittered by 5±5 pixels 

horizontally and vertically. The fixation marker was the standard fixation stimulus for the SR-1000 

eye tracker (a black disk with a small white center). 

Apparatus. Stimuli were presented on a 19-inch display CRT-monitor (100-Hz refresh rate, 

resolution 1,024×768 pixels) at a viewing distance of 71 cm. A video-based tower-mounted eye 

tracker (EyeLink 1000, SR Research, Ontario, Canada) with a sampling rate of 1,000 Hz was used for 

the recording of eye movements. Participants’ heads were stabilized by a chin and forehead rest, and 

for all participants, the right eye was monitored. A 9-point eye tracker calibration was used before the 

start of the experiment. Stimulus presentation and manual response collection was programmed using 

Experiment Builder 1.10.165 (SR Research, Ontario, Canada). Eye tracking data were preprocessed 

using Data Viewer 2.2.1 (SR Research, Ontario, Canada). 

Design. The experiment comprised of six experimental blocks with 20 trials each. There were 

three alternating blocks for each of the two target categories - similar versus dissimilar targets. Half of 

the participants started with a similar target block. Each block contained ten target-present and ten 

target-absent trials. Target-absent trials displayed ten distractors, which means that target-absent trials 

in the similar and dissimilar target condition were structurally identical. In target-present trials, one of 

the distractors was randomly chosen to be replaced with one out of the ten possible target shapes of 

the respective target category (similar vs. dissimilar targets). The target in each trial was selected 

pseudo-randomly, so that each individual target shape appeared equally often in each block. Before 
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the experiment proper participants completed a 20-trial practice block, which did not enter analysis. 

The target category in this practice block was always different from the first experimental block. 

Procedure. Each trial started with a fixation control, which was terminated with a left-hand 

key press that initiated the presentation of the search display. Participants’ task was to indicate with a 

right-hand (index or middle finger) key press whether or not one of the ten possible target shapes was 

present in the search display. The search display was shown until a manual response was registered. A 

short beep was issued in case of an error. Prior to each block, the ten possible targets of the respective 

target category (similar vs. dissimilar) and the ten possible distractors were displayed until the 

participant initiated the start of the first trial. The experimental blocks were preceded by two practice 

blocks, one for each target, which were not analyzed. Instructions emphasized speed and accuracy. 

Data preprocessing. Raw eye position data were parsed by the eye tracker software's 

standard experimental settings which used a speed threshold (30°/s) and an acceleration threshold 

(8,000°/s²) for saccade detection. Rectangular 75x75 pixels areas of interest (AOIs) were defined that 

enclosed the stimulus shapes; outlier fixations were assigned to the nearest AOI. From these 

preprocessed data, four variables were derived for analysis. Each stimulus was classified as being 

fixated within a given trial or not. If a stimulus was fixated, dwell time was assessed, which is the sum 

of the fixation durations over the first continuous series of fixations on that stimulus. Of note, this 

measure often includes the duration of a single fixation, but in case several fixations were made on the 

stimulus, for example due to corrective saccades, the additional time was added. Please note also, that 

only gaze duration during the first continuous visit was used here, dismissing the gaze duration of 

possible revisits. This was done to avoid confounding the measures of dwelling and revisiting. 

Furthermore, we recorded whether a stimulus was visited only once, or whether it was revisited, that 

is, selected repeatedly during a trial after the first continuous run of fixations. A fixation was scored as 

a revisit if (a) the stimulus had been fixated before and (b) the last fixation of that stimulus was 

interrupted by at least one off-stimulus fixation. The basic variables of our analysis, however, were 

trial statistics (i.e., statistics for each trial). Skipping is defined as the proportion of stimuli that had not 

been fixated at all in a trial. Skipping is the variable which drives trial RTs, as assumed by guidance-

based theories of visual search. Dwelling is the average dwell time in a given trial. We predict 

dwelling to be affected by similarity, whereas guidance-based theories treat dwelling as a constant. 

Also, we predict dwelling to substantially modulate trial RTs, i.e., to govern differences in search 

performance across trials. In addition to dwelling and skipping, we also assessed the proportion of 

stimuli that had been revisited, because Revisiting is a third possible source of variance in RTs.  RT 

was measured as the time elapsed between display onset and key press of a correct answer.   

Before analysis, raw data for the measures of time (i.e., RT, dwell times, and stimulus 

selection latencies) were filtered for outliers. Measures of time were log transformed before outlier 
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analysis. Data points were identified as outliers when they exceeded the mean of their respective 

condition (target presence x similarity) by two standard deviations or more. In addition, a lower cutoff 

was used for RTs (300ms) and dwell times (40ms). Outlier analysis was performed separately for 

each participant. As a result of the analysis, 36 RTs, 298 dwell times, and 17 selection latencies were 

removed.  

Results 

In the presentation of the results, we will proceed as follows. First, we will present error rates 

and manual RTs (Figure 2, left column), along with the corresponding ANOVAs, to assess whether 

there was an effect of target-distractor similarity on overall search performance. Secondly, we will 

show correlations and multiple regression analyses, where trial-based search times were regressed on 

the trial statistics for distractor dwelling, skipping, and revisiting, to indicate whether all these three 

underlying mechanisms are substantial predictors for increased search times (as indexed by RTs) in 

similar relative to dissimilar target search. The respective means (panels a, b, and c) are depicted in 

Figure 3, top row. We will not present ANOVAs as we did in the previous studies (e.g., Horstmann, 

Becker & Ernst, 2017), because the central evidence, that is the effects of similarity on skipping, 

revisiting, and in particular, dwelling, is captured in the correlations between similarity on the one 

hand, and skipping revisiting, and dwelling on the other. Our main focus is on target-absent trials, 

because only in these trials skipping, dwelling, and revisiting can be observed independently of the 

processes that may lead to the selection of the target in target-present trials. 

-- Figure 2 about here – 

Error rates. Mean proportion correct on target-absent trials was .98 and .90 in blocks with 

dissimilar and similar targets, respectively, and .94 and .88 on target-present trials in those blocks. A 

repeated measures ANOVA with the factors target-distractor similarity (similar vs. dissimilar) and 

target presence (present vs. absent) revealed a significant main effect for presence, F(1,12) = 123.99, 

p < .001, ηG
2 = .48, and target-distractor similarity, F(1,12) = 6.94, p = .021, ηG

2 = .20, but no reliable 

interaction, F<1. All trials with errors were excluded from further analyses. 

Reaction times. Figure 2 (left column) displays mean correct RTs, separately for target-

absent and target-present trials in blocks with dissimilar and similar targets, respectively. A repeated 

measures ANOVA computed over mean correct RTs with the factors target-distractor similarity 

(similar vs. dissimilar) and target presence (present vs. absent) revealed significantly shorter RTs on 

target-present than target-absent trials, F(1,12) = 168.56, ηG
2 = .38, and in blocks with dissimilar as 

compared to similar targets, F(1,12) = 33.42, ηG
2 = .31; both ps < .001. The interaction just failed to 

be significant, F(1,12) =3.97, p=.069. 
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-- Figure 3 about here – 

Contributions of distractor dwelling, skipping, and revisiting to increased search times 

Search times are basically the product of the number of fixations and their average duration, 

and therefore it is reasonable to expect that skipping, dwelling, and revisiting together would predict 

search times very well. The crucial question is therefore not whether, but to which degree these 

variables predict RT. Table 1 (top panel) presents the bivariate correlations between manual RTs, the 

trial-based rates for revisiting and skipping, and the dwell times, separately for target-absent and 

target-present trials. The unit of analysis is the trial, and each participant provides measures from up 

to 120 trials (minus the trials where outliers were detected).  Note that the bivariate correlations (first 

column) between similarity on the one hand and RT, dwelling, skipping, and revisiting on the other 

hand, correspond roughly to a test of the mean differences between the levels of similarity (i.e., the 

main effect of similarity), which would normally be done using a t-test. These significant correlations 

show that similarity impacts on RT, and also on dwelling, skipping, and revisiting.   

The second column is informative, as it shows whether and how strongly dwelling, skipping, 

and revisiting co-vary with RTs. Figure 4 complements Table 1 with the respective scatterplots on 

target-absent trials, separately for low (left panel) and high (right panel) target-distractor similarity 

trials. The forth (bottom) row of Figure 4, for instance, shows the bivariate distributions of trial 

dwelling, trial skipping, trial revisiting, and trial RT for dissimilar (left) and similar (right) target 

blocks. Each dot represents one trial. The deep blue region represents the concentration of most trials. 

However, independently of the scatter, the positive linear regression slope of the main axis through 

the data points can clearly be visualized. Figure 4 also reveals that the linear relations between the 

variables are similar for blocks with similar and dissimilar targets. The same holds true for skipping 

and revisiting (middle and right plots of the fourth row). In contrast, dwelling showed no clear 

relationships to skipping (second row) and revisiting (third row, left plot), respectively. Finally, 

skipping and revisiting are slightly negatively correlated (third row, right plot), as the region above 

the diagonal is virtually devoid of data points. This has purely technical reasons and is due to the 

definition of revisiting as a per stimulus/trial statistic. Because a skipped distractor cannot be 

revisited, as skipping rates go up, revisiting rates go down. Note that due to the large number of 

observations; even small coefficients are significantly different from zero. The correlations should be 

thus evaluated with respect to their size, not their statistical significance. 

The correlations between RT and dwelling, skipping, and revisiting, respectively, cannot 

easily be interpreted because the predictors are themselves correlated. Accordingly RT was regressed 

on dwelling, skipping, revisiting, and target-distractor similarity as predictors in order to obtain their 

statistically unique effects (i.e., when the other variables are statistically held constant). The binary 

variable target-distractor similarity was included to gauge the variance in RT that was caused by 
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target-distractor similarity, but was not transmitted to RT via our main predictor variables. This 

includes, inter alias, interactions between the predictor variables, which are not included in this simple 

linear model.  

-- Table 1 about here -- 

-- Figure 4 about here – 

We used a linear multilevel regression with random intercepts to disentangle within-subject 

variations from between-subject variations in dwelling, skipping, revisiting, and RT. Metrical 

variables were z-transformed prior to analyses in order to make regression coefficients comparable 

among each other. With standardized coefficients, b = .5 means that when the independent variable is 

increased by one standard deviation, the dependent variables increases for half a standard deviation. 

For the experimental factor of target-distractor similarity, dissimilar was coded as zero and similar as 

one. Regression coefficients are tested against zero with t-tests. We interpreted empirical t-values 

exceeding a value of ±1.96 as significantly (p<.05) differing from zero.   

Target-absent trials. Table 2 displays the results on target-absent trials, based on 744 

observations. The variance inflation factor (VIF) was used to guard against collinearity among the 

predictor variables. It was acceptable with tolerances (i.e., 1/VIF) within > .70 (well above the critical 

tolerance level of .1). All predictors (i.e., dwelling, skipping, revisiting) were found to have a 

significant effect on target-absent RTs. The effect of dwelling was strongest, followed by revisiting 

and then skipping (see the second column, where the regression slope, indicated by coefficient b, is 

shown). Marginal R2 was .90 (Nakagawa & Schielzeth, 2013). The effect for target-distractor 

similarity was significant but small, indicating that target-distractor similarity had little unique 

influence on RTs after the common variance of dwelling, skipping, and revisiting had been removed.  

-- Table 2 about here -- 

Target-present trials. Only distractor fixations were analyzed for target-present trials to be 

consistent with the previous analysis of target-absent trials. Table 2 shows the results on target-present 

trials, which were based on 701 observations. Indications of collinearity were low, with all computed 

tolerances (1/VIF) > .75. All regression slopes were significant (see t -value). Skipping had the largest 

impact on target-present RTs, which is not surprising because the number of distractors that have been 

inspected before the target varies between zero and nine (all distractors in the display, ignoring 

possible revisits). Dwelling and revisiting had roughly the same beta weights, i.e., they can be 

considered to be equally important for the prediction of search RTs on target-present trials. Marginal 

R2 was .79. 

Discussion 
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Experiment 1 replicated previous findings (Horstmann, et al., 2016, 2017) and confirmed that 

in addition to skipping (the proportion of distractors that are excluded from inspection), dwelling (the 

time gaze is focused on a distractor) and revisiting (the frequency with which distractors are included 

for inspection repeatedly) were important predictors for search times. This is a notable finding 

because it shows that our previous observations are not limited to visual search for complex and 

naturalistic (face) stimuli. There are three main findings of Experiment 1. First, target distractor-

similarity increases search times as expected, which is indicated by the significant correlation between 

similarity and RT, and the significant main effect of similarity in the ANOVA. The effect is actually 

quite strong, with search among ten items being almost a second longer with the similar target. 

Second, similarity increases dwelling and revisiting, and decreases skipping; these effects are also 

indicated by the corresponding correlation coefficients, and are visually presented in Figure 3, upper 

panel. These effects can be observed in absent and present trials as well. Third, dwelling, revisiting, 

and skipping, respectively influence RT independently from each other, as indicated by the 

coefficients in the multiple regression. The effects of dwelling and revisiting are strong in absent 

trials, and are actually the strongest effects in this experiment. The effects of dwelling and revisiting 

are weaker in present trials, whereas the effect of skipping increases. We will discuss this in more 

detail after we have reviewed the results of Experiment 2.  

Experiment 2 

Methodological aspects of stimulus presentation, experiment timing, and response collection 

were identical to Experiment 1, with the important exception that in Experiment 2, we employed the 

undistorted prototypes of the stimuli used in Experiment 1 (i.e., the grey basic stimulus types 

presented in Figure 1 without the colored distortions). The motivation for the stimulus distortions in 

Experiment 1 was to introduce a certain degree of stimulus variance (distractor-heterogeneity, cf. 

Duncan & Humphreys, 1989) that was expected to approximate the differences in the stimulus 

material used by Horstmann et al. (2017, 2018), where target and distractor stimuli were images of 10 

individual faces, naturally introducing a certain level of stimulus variability. However, adding noise to 

the shapes may have had its own effect on the results. Moreover, the classical experiments concerned 

with the basic mechanisms of visual search often used little distractor heterogeneity (e.g., Treisman & 

Souther, 1987; Wolfe, Cave, & Franzel, 1989). Thus, Experiment 2 was designed to narrow the gap 

between more typical experiments on search efficiency and the protocols used in our studies. Apart 

from that, it is interesting in its own right to see whether the result pattern is changed when the 

distractors are more homogeneous (Duncan & Humphreys, 1989).  In general, we expect search to be 

more efficient with more homogeneous displays.  

Methods 
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Participants. Fourteen students participated in the study. Each received €4 for their 30-

minute participation. Two participants were excluded because of near chance performance in the 

dissimilar target condition. Mean age of the remaining twelve participants was 26.4 years (SD = 2.8 

years); 6 were female. The study was approved by the Bielefeld University’s ethics committee and 

performed in accordance with the approved guidelines. 

Apparatus, Stimuli, & Procedure. All aspects of the stimulus parameters, the apparatus 

used for testing, the study design employed, the procedures applied, and eye tracking data 

preprocessing were identical to Experiment 1, with the only exception that in Experiment 2, stimuli 

were the undistorted prototype shapes. To reiterate the most relevant variables: Experiment 2 was 

tested in 6 blocks with 20 trials each, ten of which were target-present trials (search displays showed 

one target shape and nine distractor shapes), the other ten were target-absent trials (search displays 

contained ten distractor shapes). Similar vs. dissimilar targets were tested block-wise and 

alternatingly. Two practice blocks preceded the actual experimentation. 

Data pre-processing. This was analogous to Experiment 1. Outlier detection led to the 

exclusion of 42 RTs, 274 dwell times, and 14 latencies. 

Results 

Error rates. Mean proportion correct on target-absent trials was .99 and .98 in dissimilar and 

similar target blocks, respectively, and .95 and .87 on target-present trials of the respective blocks. A 

repeated measures ANOVA with the factors target-distractor similarity (similar vs. dissimilar) and 

target presence (present vs. absent) revealed significant main effects for target presence, F(1, 11) = 

19.81, p = .001, ηG
2= 0.64, and target-distractor similarity, F(1, 11) = 10.05, p = .009, ηG

2= 0.48, as 

well as a significant interaction F(1, 11) = 5.21, p = .043, ηG
2 = 0.32. While the mean proportion 

correct was at ceiling on target-absent trials, target-distractor similarity affected accuracy on target-

present trials such that there were more errors in blocks with similar as compared to dissimilar targets. 

Reaction times. Figure 2, middle column, shows mean correct RTs, separately for target-

absent and target-present trials in blocks with dissimilar and similar targets, respectively. Those mean 

correct RTs were subjected to a repeated measures ANOVA with the factors target-distractor 

similarity (similar vs. dissimilar) and target presence (present vs. absent), which revealed significant 

main effects for target presence, F(1, 11) = 134.83, p < .001, ηG
2= 0.92, and target-distractor 

similarity, : F(1, 11) = 20.01, p = .001, ηG
2= 0.65. The interaction was also significant, : F(1, 11) = 

3.37, p = .093 ηG
2= 0.23, because RTs were faster on target-present than target-absent trials (1754 ms 

vs. 2727 ms), and in dissimilar than similar target blocks (2027 ms vs 2454 ms). As confirmed by two 

independent follow-up t-tests, the target-distractor similarity effect (i.e., slower RTs in similar relative 
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to dissimilar target blocks) was more pronounced on target-absent trials, but was substantial on both 

target-present and target-absent trials, both t(11) > 3.79, p < .003. 

Impact of similarity on dwelling, skipping, and revisiting, and contributions of distractor 

dwelling, skipping, and revisiting to search times  

As for Experiment 1, multiple regression analyses were trial-based, and search times were 

regressed on the trial statistics for distractor dwelling, skipping, and revisiting, to investigate the 

predictive power of each of these mechanisms on search time. Figure 3, bottom panel, illustrates the 

respective means (panels a, b, and c). Table 2 presents the bivariate correlations between RTs and the 

rates for revisiting and skipping together with the dwell time, separately for target-absent and target-

present trials. The first column of Table 1 (lower part) shows the correlations between similarity and 

RT, dwelling, skipping, and revisiting. All correlations were significantly from zero, and the structure 

from Experiment 1 is well replicated.  The second column shows the correlations between RT and 

dwelling, skipping, and revisiting with substantial effects as well. The two final columns show that 

correlations among dwelling, skipping, and revisiting.   

Target-absent trials. Table 2 (lower top panel) shows the statistical values obtained in the 

regression analyses based on 632 target-absent trials, reflecting the separate prediction power of 

dwelling, skipping, revisiting, and target-distractor for the trial RTs. Collinearity among the predictor 

variables was acceptable, with all 1/VIF > .75. All regression slopes, except target-distractor similarity 

were significant. Marginal R2 was .93.  

Target-present trials. The lower bottom panel of Table 2 shows the respective values based 

on 635 target-present trials. Indications of collinearity were low, 1/VIF > .75. As on target-absent 

trials, all regression slopes were significant, except for the one on target-distractor similarity. 

Marginal R2 was .82. 

Discussion 

The most important result in Experiment 2 is that similarity has an effect on skipping, 

dwelling, and revisiting, and that these variables in turn have an effect on search times. This indicates 

that the general results pattern is observed independently from the presence (Experiment 1) or absence 

(Experiment 2) of distractor heterogeneity. The effects of similarity are generally somewhat weaker in 

the present homogeneous distractors, as indicated by the correlations between similarity and the 

measured variables (see Table 1, first column); however, all correlations are still substantial. In the 

multiple regressions, the regression slopes of dwelling were reduced in comparison to Experiment 1, 

in particular for the absent trials; however, all regression slopes are still substantial. Overall, RTs 

seem to be shorter in Experiment 2 than in Experiment 1 (see Figure 2), which is consistent with the 
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assumption that distractor-homogeneity makes search easier. As the standard errors also happened to 

be different in the two experiments (see Figure 2), it seems that increasing distractor homogeneity 

makes search less variable. To sum up, the present results shows that dwelling and revisiting (together 

with skipping) significantly contributed to explaining the increased search RTs in similar versus 

dissimilar target blocks, irrespective of the lower distractor heterogeneity in Experiment 2.   

Experiment 3 

Experiment 3 included a variation of set size to test (with a more traditional approach) 

whether search for a dissimilar rather than a similar target is more efficient. For RT studies set size 

modulations are critical to separate the slope of the search function (indicator of the actual search 

mechanism) from the intercept (reflecting response selection processes). One could argue that this 

would not be necessary in our experiments for which we employed eye movements to directly assess 

the search slopes. However, search slopes are a common currency in visual search and for the sake of 

between-study comparability it is thus informative to test search efficiency in this way. Furthermore, 

it might be possible that the impact of dwelling, skipping, and revisiting changes with set size. For 

example, revisiting may occur more frequently with higher set sizes because the decay of VSTM 

might be increased (Hulleman & Olivers, 2017) or inhibition of return might be less effective with 

larger samples. We used ANOVAs to test whether dwelling, skipping, and revisiting are influenced by 

set size. 

Participants. Sixteen students participated in the study. Each received €4 for their 30-minute 

service. Two participants were excluded because of an excess of errors in at least one condition (33% 

or more). Age from one participant was missing, mean age of the remaining participants was 26.15 

years (SD = 1.91 years); 9 were female, 5 were male. The study was approved by the Bielefeld 

University’s ethics committee and performed in accordance with the approved guidelines. 

Apparatus, Stimuli, & Procedure. All aspects of the stimulus parameters, the apparatus 

used, the study design employed, the procedures applied, and the eye tracking data preprocessing 

were identical to Experiment 1 (with stimuli being randomly distorted), with two differences. First, set 

sizes of five and ten were used, both of which were presented intermixed within the same block of 

trials, doubling the number of trials per block to 40. Second, stimuli were presented in a 5x5 grid, 

such that for both set sizes the arrangement of stimuli would be irregular on most of the trials.  

Data pre-processing. Data were preprocessed as in Experiments 1 and 2. Outlier screening 

led to the exclusion of 116 RTs, 693 dwell times, and 47 latencies. As before, the screening was done 

case wise and separately for each combination of the variables similarity (similar vs. dissimilar), 

target presence (absent vs. present), and set size (5 vs. 10). Areas of interest (AOI) for the eye 

tracking data were defined somewhat differently from before, as every cell of the 5x5 grid was a 
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single AOI. This was done because otherwise (i.e., using the nearest AOI for outlier fixations) 

AOI size would have been confounded with set size. 

Results 

For Experiment 3, we report ANOVAs in addition to the correlations and the multiple 

regressions.  

Error rates. Mean proportion correct on target-absent trials was .99 and .98 in dissimilar and 

similar target blocks, respectively, and .95 and .87 on target-present trials of the respective blocks. A 

repeated measures ANOVA with the factors target-distractor similarity (similar vs. dissimilar), target 

presence (present vs. absent), and set size (5 vs. 10) revealed significant main effects for target 

presence, F(1, 13) = 30.3, p < .001, ηG
2= 0.7, target-distractor similarity, F(1, 13) = 21.93, p < .001, 

ηG
2= 0.63, and set size, F(1, 13) = 5.11, p = .042, ηG

2= 0.28. The Target Presence x Similarity 

interaction was significant, F(1, 13) = 25.85, p < .001, ηG
2= 0.67, as was the Target Presence x Set 

size interaction, F(1, 13) = 25.85, p < .001, ηG
2= 0.67, (all other Fs < 1). Less errors were made in 

target-absent than target-present trials (.99 vs. .93), with similar than dissimilar targets (.98 vs .94), 

and higher than lower set size (.96 vs. 95). The Target Presence x Similarity interaction reflected 

larger absent-present difference in correct responses with high similarity (.99 vs. .89) than with low 

similarity (.99 vs. .97). The Target Presence x Set Size interaction was due to more errors with set size 

10 than 5 in target-present trials (.94 vs. 92), whereas there were no set size differences in target-

absent trials (.99 vs. .99) 

Reaction times. Figure 5 shows mean correct RTs. The same ANOVA as for error rates, 

revealed all main effects and interactions to be significant for reaction times (Fs>10.47, ps<.006), 

with the exception of the three-way interaction (F=1.2). To follow this up, we focused on search 

slopes of the RT-set size function (difference in RT divided by difference in set size). An ANOVA 

with the variables target presence and similarity revealed main effects for target presence, F(1, 13) = 

88.78, p < .001, ηG
2= 0.87, and similarity , F(1, 13) = 34.56, p < .001, ηG

2= 0.73. The interaction was 

not significant, F(1, 13) = 1.2, p = .293, ηG
2= 0.08. Search slopes were steeper in target-absent than 

target-present trials (278 ms/item vs. 152 ms/item) and steeper with similar than dissimilar targets 

(273 ms/item vs. 158 ms/item). 

-- Figure 5 about here -- 

-- Figure 6 about here -- 
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Dwell times. An ANOVA of the dwell times (Figure 6a) with the variables target presence 

(present vs. absent), similarity (similar vs. dissimilar), and stimulus type (distractor in absent vs. 

distractor in present vs. target in present trial) rendered significant main effects for similarity, F(1, 13) 

= 19.07, p = .001, ηG
2= 0.59, and stimulus type, F(2, 26) = 67.57, p < .001, ηG

2= 0.84. The main effect 

of set size was not significant, F(1, 13) = 2.49, p = .138, ηG
2= 0.16. Of the interactions, only the 

Stimulus Type × Set Size interaction was significant, F(2, 26) = 4.62, p = .019, ηG
2= 0.26, other Fs < 

1.55, ps > .235. The main effect for similarity was due to longer dwell times in blocks with similar 

than dissimilar targets (391 vs. 455 ms). The main effect for stimulus type was in particular due to 

much longer dwell times on targets than distractors (see Figure 6a); t-tests revealed, however that all 

stimulus types differed from each other, ts >7.44, ps<.001. 

The interaction between set size and stimulus type was followed-up by three t-tests, each 

comparing similarity for each stimulus type. There was no significant effect of set size on dwelling for 

targets, t(13) <1, or distractors in target-present trials, t(13)<1. However, for distractors in target-

absent trials, t(13)= 7.47, p<.001, dwell time was longer with set size 5 than 10 (309 vs. 270 ms).   

Proportion of fixated and skipped stimuli. An ANOVA of the skipping proportions (Figure 

6b) with the variables target presence (present vs. absent), similarity (similar vs. dissimilar), and 

stimulus (distractor in absent vs. distractor in present vs. target in present trial) rendered significant 

results for all main effects and interactions, Fs>4.94, ps<.05. 

Follow-up tests revealed that for distractors in target-absent trials there was a significant main effect 

for similarity, F(1, 13) = 51.45, p < .001, ηG
2= 0.8, and for set size, F(1, 13) = 84.4, p < .001, ηG

2= 

0.87. The two-way interaction was significant as well, F(1, 13) = 30.02, p < .001, ηG
2= 0.7. Skipping 

was increased for dissimilar than similar targets (.10 vs.02), and with set size 10 than 5 (.09 vs. .03). 

This set size effect was larger for dissimilar than similar targets (difference .10 vs. .02).  

A corresponding ANOVA for the distractors in target-present trials revealed main effects for 

similarity, F(1, 13) = 50.81, p < .001, ηG
2= 0.8, and set size, F(1, 13) = 60.99, p < .001 ηG

2= 0.82. 

There was no reliable interaction, F<1. More distractors were skipped with dissimilar than similar 

targets (.52 vs .34), and when set size was 10 rather than 5 (.49 vs. .37).  

Revisiting. An ANOVA, investigating the effects of set size on revisiting (Figure 6c), 

revealed that revisiting is higher for similar than dissimilar targets (.35 vs. .30), F(1, 13) = 6.17, p = 

.027, ηG
2= 0.32, higher for targets (.51) than for distractors in target-present (.10) and target-absent 

(.35) trials, F(2, 26) = 89.13, p < .001, ηG
2= 0.87, and higher for set size 5 than 10 (.34 vs. .30),  F(1, 

13) = 18.27, p = .001, ηG
2= 0.58. Only the Stimulus Type x Set Size interaction reached significance, 

F(2, 26) = 24.1, p < .001, ηG
2= 0.65. The revisiting rate of the targets was virtually the same (t<1) for 

set size 5 and 10 (.51), but it was increased for distractors in target-present trials with set sizes 5 than 
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10 (.12 vs .09), t(13) = 3.99, p <.002, and for distractors in target-absent trials with set sizes 5 than 10 

(.41 vs. .29), t(15) =8.10, p< .001. 

Impact of similarity on dwelling, skipping, and revisiting, and contributions of dwelling, 

skipping, and revisiting on search times 

Target-absent trials. Correlations are shown in Table 3. As already indicated in the 

ANOVAs, the correlations of similarity with dwelling and skipping were substantial as before, the 

correlations of similarity and revisiting was significant but low here. The regression analyses 

corresponded to the previous ones of Experiments 1 and 2, with the exception that set size was 

included as a factor. Also, interactions of set size with dwelling, skipping, and revisiting are now 

included to examine whether the effects of dwelling, skipping, and revisiting change across set sizes. 

Set size was dummy-coded as 0 for set size 5 and 1 for set size 10. There is no difference 

computationally between treating set size as a metric or categorical variable. The advantage of 

dummy coding is that the simple regression coefficients can be read as showing the results for set size 

5, and the interactions coefficients give the increments for set size 10. As before, the metrical 

predictors were standardized before regression analysis. In the following, we will concentrate on the 

target-absent trials, as these are most informative. 

Table 4 (top panel) shows the statistical values obtained in the regression analyses based on 1680 

target-absent trials. Collinearity among the predictor variables was stronger than in the previous 

experiments but still acceptable, with all 1/VIF > .29. All predictors but similarity showed significant 

effects. Marginal R2 was .79. Note that regression slopes for dwelling, skipping and revisiting can be 

derived from Table 4 by adding regression coefficients (i.e., the regression slopes) for set size 5 and 

10 of a respective predictor. For instance, the regression slope for dwelling with set size 10 would be 

.63, as regression coefficients are .32 for set size 5 and .31 for the increment with set size 10 

(.32+.31=.63). The interactions of set size with dwelling skipping, and revisiting, respectively, were 

significant. This indicates that the regression slopes differed significantly between the set sizes. More 

precisely, all regression slopes were more extreme in the set size 10 than in the set size 5 condition.  

Target-present trials. Table 4 (bottom panel) shows the results from the regression analyses 

based on 1620 target-present trials. Collinearity was small, with all tolerances (1/VIF) > .37. All 

predictors had significant effects. Marginal R2 was .66.  

Discussion 

Experiment 3 yielded five informative results. First, not surprisingly, search was clearly inefficient, as 

gauged by the search slopes of the RT/set size function. Second, as predicted, search was less efficient 

for similar than dissimilar targets. Third, there was only a small effect of set size on dwell time, with 
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slightly prolonged dwell times at the smaller set size. The main reason for this may be that dwelling 

not only includes the time to analyze a currently fixated stimulus, but also the time to select the next 

fixation location, and to plan and prepare the corresponding saccade. With set size 5, the spatial 

separation of the stimuli is necessarily higher in the present set up than with set size 10 and this might 

cause increased dwelling due to selection of a further away location (which may be complicated by 

degraded visual acuity) and preparation of spatially longer saccades. There is yet no consensus about 

which of the two variables is more affected by stimulus separations (Ludwig, Davies, & Eckstein, 

2014; Unema, Pannasch, Hoos, & Velichkovsky, 2005; Antes, 1974, Viviani & Swensson, 1982). 

Alternatively, it might be that with small set sizes, participants feel less pressured to work quickly on 

each individual item, because with few items, working somewhat slower does not affect search time 

much. Fourth, there was more skipping with set size 10 than 5, and this was more pronounced during 

search for dissimilar compared to similar targets, i.e., skipping increases in more densely populated 

displays. The observation of more skipping with larger set sizes is in accordance with the assumption 

that more than one stimulus can be processed within one fixation (e.g., Hulleman & Olivers, 2015, 

Venini et al., 2014), but that the probability that an additional stimulus is in the functional field of 

view, is lower with sparsely populated displays (e.g., in a set size 5 display). Finally, revisiting rates 

were higher with set size 5 than 10. This is a rather unexpected result, because revisiting has been tied 

to memory overflow (e.g., Hulleman & Olivers, 2017) in that revisiting should occur more often for 

larger set sizes because participants forget the locations they already visited. 

It is of note that the effects of dwelling, skipping, and revisiting in the regression analyses are 

remarkably stable, showing a similar pattern of effects as for Experiment 1 and 2: Dwelling and 

revisiting have both strong effects, and skipping a slightly weaker effect on search times in absent 

trials. All regression slopes were steeper with higher set sizes. This is not unexpected as dwelling, 

revisiting, and skipping are statistics per trial per stimulus. That is, an average dwell time of, for 

instance, 200 ms in a given trial means that each stimulus is looked at on average for 200 ms. This in 

turn implies that dwelling would have a stronger impact on RT with more stimuli in the display.   

Experiment 4 

Experiment 4 was designed to measure the effects of dwelling, skipping, and revisiting under 

conditions that most likely promote strong guidance (i.e., easy search). Given the inefficient searches 

employed in Experiment 1 to 3 (as indicated by the steep search slopes measured in Experiment 3, 

and the high search times in Experiment 1 and 2), it seems important to test whether dwelling, 

skipping, and revisiting still reliably contribute to search times when search might exclusively be 

controlled by guidance. We implemented guidance by allowing a subset search. Of the 10 stimuli 

presented, five distractor stimuli had a color (orange) that was never the target color. The target, if 

present, was always among the stimuli with the other color (blue). Note that the coloring (blue vs. 
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orange) uses a basic feature that is accessible before attentional deployment, and should thus be able 

to guide attention towards the subset of stimuli that possibly contains the target.  

Methods 

Participants. 16 students participated in the study. Each received €4-5 for their 30-40-minute 

service. Mean age (one age missing) was 25.21 years (SD = 3.24 years); 13 were female.  

Apparatus, Stimuli, and Procedure. These were as in Experiment 1, with the exceptions 

that (1) the same 5x5 grid was used as in Experiment 3, (2) five of the distractors were shown in 

orange, while the other five stimuli (five distractors or four distractors and the target) were shown in 

blue, and (3) each block was twice as long and comprised 40 trials. Participants were informed about 

the target color (blue) at the beginning of the experiment and were therefore able to limit their search 

to five items in each trial.  

Data pre-processing. Data were preprocessed as in Experiments 1 and 2. Outlier screening 

led to the exclusion of 103 RTs, 474 dwell times, and 62 latencies. As before, the screening was done 

case wise and separately for each combination of the variables similarity (similar vs. dissimilar), 

target presence (absent vs. present). 

Results 

Reaction times. An ANOVA of the RTs with the variables target presence (present vs. 

absent) and similarity (similar vs. dissimilar) revealed main effects for target presence, F(1, 15) = 

72.68, p < .001, ηG
2 = 0.83, and similarity,  F(1, 15) = 20.9, p < .001, ηG

2 = 0.58. The interaction was 

not significant, F(1, 15) = 2.88, p = .111, ηG
2 = 0.16. RTs were delayed in absent compared to present 

trials (1905 ms vs. 1414 ms), and they were slower with similar than with dissimilar targets (1456 ms 

vs. 1864 ms). 

Error rates. The ANOVA on error rates revealed only a main effect of similarity, F(1, 15) = 

11.29, p = .004, ηG
2 = 0.43 (other Fs < 1). More errors were made with similar than with dissimilar 

targets (.15 vs. .06). 

Contributions of distractor dwelling, skipping, and revisiting to search times  

In contrast to the previous experiments, the search displays in Experiment 4 allow the 

participant to a priori exclude of half of all display items in each trial (all orange items). This subset 

search is assumed to provide a strong incentive for participants to use guidance, which should 

consequently be reflected in increased skipping rates. Figure 7 shows the means (panels a, b, and c) 

for dwelling, skipping, and revisiting for the factorial combinations of similar and dissimilar targets, 

and for distractors with or without the target color, for both target-absent and target-present trials. 
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Table 5 presents the bivariate correlations between RTs and the rates for revisiting and skipping 

together with the dwell time, separately for target-absent and target-present trials. The regression 

analyses corresponded in all details to those employed in the previous experiments. 

-- Figure 7 about here -- 

-- Table 5 about here -- 

Target-absent trials. Table 6 (top panel) shows the results of the weights from the regression 

analyses based on 1731 target-absent trials. Collinearity among the predictor variables was 

acceptable, with all 1/VIF > .73. All regression slopes were significant. The regression slopes of 

dwelling, skipping, and revisiting were of similar size. Marginal R2 was .81. 

-- Table 6 about here -- 

Target-present trials. The bottom panel of Table 6 shows the respective values based on 

1589 target-present trials. Indications of collinearity were low, 1/VIF > .88. All regression slopes were 

significant. Marginal R2 was .57. 

Discussion 

Experiment 4 tested the replicability of the effects reported in the previous experiments under 

conditions when guidance is highly likely, due to the possibility to focus search on a subset of stimuli 

in each trial. As expected, search was relatively fast, because participants were able to ignore half of 

the distractors that did not share the color with the target (compare the RTs for Experiment 1 and 

Experiment 3 in Figure 2). Also, skipping had a strong impact on search time in target-absent trials. 

Importantly, however, the weights for dwelling and revisiting were high as well, indicating that the 

presence of strongly guiding features does not eliminate the effects of dwelling and revisiting on 

search time.  

General Discussion 

We conducted four experiments that were designed to investigate to which extent skipping, 

dwelling, and revisiting, determine behavioral search performance. Most generally, we found that 

apart from skipping, which can be interpreted as a measure of search guidance, dwelling and 

revisiting processes also contributed substantially to the additional time requirements in inefficient 

versus efficient search. More specifically, Experiments 1 and 2 showed that target-distractor similarity 

influenced skipping, dwelling, and revisiting, and that these variables in turn contributed to search 

performance in both experiments, and on both target-present and target-absent trials. Experiment 3 

revealed that this contribution holds across sparely and densely populated search displays (and 

mirrored classical findings of search slope modulations by target-distractor similarity). Experiment 4 
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finally explored whether the effects of skipping, dwelling, and revisiting persist when search is more 

likely controlled by guidance (i.e., increased skipping rates).   

We have pointed out that models of visual search often present elaborated theory on how 

guidance can be analyzed and how it affects search performance, and in particular search efficiency. 

Other aspects such as the contribution of attentional dwelling and revisiting are relatively 

underdeveloped, which implies that their role in search is generally assumed to be relatively minor in 

nature. The present results, however, do not seem to support this presumption. In the present 

experiments, the effects of similarity on dwelling and revisiting are significant, as well as the effects 

of dwelling and revisiting on search times. Our results thus point to an explanatory gap in the 

contemporary theories of visual search and indicate that a successful search model should include the 

search mechanism of dwelling and skipping to explain more or less efficient search. 

Experiment 3 revealed that search for the distorted version of the stimuli used in this study is 

very inefficient, with search slopes in of 150 ms /item in target-present trials. Does this imply that the 

observed effects of dwelling, and revisiting on search times are limited to inefficient searches where 

guidance (as reflected in skipping rates) is less likely to begin with? Experiment 4 tested this 

hypothesis and revealed that in target-absent trials (RT without contamination of any target-related 

processing), skipping rates were increased in Experiment 4 as compared to Experiment, 1. This 

suggests that the sub-set search of Experiment 4 indeed allowed for a more guided search as 

compared to the full-set search employed in Experiment 1. Importantly, however, even under 

conditions that promote guidance, dwelling and revisiting were still substantially contributed to the 

search RTs in Experiment 4. On a greater scale, our results suggest that guidance by target features 

(selection) as measured by increased skipping rates on the one hand, and rejection of distractors as 

measured by decreased dwell times on the other hand, are two mechanisms that coexist in visual 

search.  

We would like to begin a closer inspection of our search variables with skipping. Skipping 

was influenced by similarity and in turn influenced search times, in all experiments, and in both 

target-present and -absent trials. Skipping in target-absent trials can be explained as a result of a 

variable threshold for search termination. In the context of GS (2.0; Wolfe, 1994), Chun and Wolfe 

(1996) showed that search is terminated when activation falls below variable threshold. This threshold 

is set well above zero when target-distractor similarity is low (efficient search), however, with 

increased target-distractor similarity the threshold is set to a low value near zero. In consequence, 

search can be terminated early in the first case, but in the latter, it may happen that all stimuli of the 

display must be examined before search can be terminated. One might argue that skipping is not an 

exhaustive measure of ‘ignoring’ a search item. Clearly, a peripheral stimulus can covertly be 

attended while focal attention is fixated at a different location in the visual field. This has, for 
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example, been put forward by the Functional View Field model (FVF; Hulleman & Olivers, 2016). 

The FVF is the region in space where a target can be detected among distractors with sufficient 

reliability in a single eye fixation. If the FVF includes more than one stimulus, this will result in the 

skipping of stimuli. The size of the FVF changes with search difficulty, and thus, depending on 

whether more or less stimuli are included in the FVF, skipping rates may differ for similar and 

dissimilar targets. However, correlations between eye and attention movements are undoubtedly very 

high (Deubel & Schneider, 1996), and we assume this to be sufficient to justify our methodological 

approach to employ fixations as an online marker of attentional selection (or de-selection, 

respectively). 

In the context of skipping, we would like to state that despite the fact that we analyze and 

report search mechanisms in target-present trials, these results should be interpreted with caution. In 

particular when guidance is weak (inefficient search conditions), skipping rates will be dominated by 

random noise in the activation map. Finding the target as the first item (in which case the skipping 

rate is .90) or as the tenth item (skipping rate of zero) has a very large effect on RT, and the high 

regression weights for skipping are therefore not surprising. However, the regression analyses on 

target-present trials uncovered significant weights for dwelling and revisiting and therefore suggests a 

systematic contribution of search efficiency also on target-present and not just target-absent trials. 

The second search time predictor, dwelling, was increased by target-distractor similarity, and 

in turn increased RT. It is important to note that we may have overestimated dwell times due to two 

factors. First, eye tracking procedures measure gaze fixations, which may be the sum of attentional 

dwell times on more than one stimulus included in one fixation (same logic as for skipping described 

above). Second, gaze dwelling does not only include the time of attentional dwelling, but in addition 

the time to select the next fixation target. While there is evidence that saccade planning is done in 

parallel to stimulus analysis (Ludwig, Davies, & Eckstein, 2014), some studies report that saccade 

amplitude register in fixation duration, indicating that the processes are either not completely parallel, 

or that saccade planning sometimes takes longer than stimulus analysis (Unema, Pannasch, Joos, & 

Velichkovsky, 2005). This important caveat, to our assessment, does not invalidate gaze dwell time as 

a valid indicator of the duration of stimulus analysis. For example, Becker et al. (2011) found that 

perceptual target difficulty (i.e., the acuity needed to detect the feature on which the response is 

based) increased dwell time independently from target-distractor similarity. While target-distractor 

similarity theoretically influences both the categorization of a stimulus (attentional dwelling) and the 

selection of the next candidate stimulus, perceptual target difficulty should influence categorization 

exclusively. Moreover, in the difficult searches of Experiments 1 to 3, dwelling had substantial 

effects, but here it is not plausible that this effect was dominated by the selection processes: 

Apparently guidance was rather weak, because otherwise search would not have been this inefficient. 
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Finally, revisiting was assessed for two reasons. First, revisiting is an empirical fact, as for 

example described in IOR studies, and should thus be included in the equation that explains 

differences in search times. Second, revisiting has been brought into focus recently by the FVF model 

(Hulleman & Olivers, 2016) which explicitly assumes that memory for recently checked positions is 

limited and that revisiting should thus be a general predictor of search behavior, in particular with 

larger set sizes. In line with these suggestions we find that revisiting is a substantial contributor to 

search performance. However, contrary to the suggestions in the FVF model, in Experiment 3, revisits 

were not more likely with the higher set size. Perhaps, set size in our experiments was still too small 

(10) to tease out such effects of IOR and VSTM limitations? Of all variables tested in our 

experiments, revisiting was least affected by target-distractor similarity (see correlation Tables 1,3, 

and 5). This fits the idea that skipping is related to mechanisms such as IOR-decay time or VSTM 

capacity, which are independent on the actual search task.  

For our study, we have used a relatively abstract "guidance-based model" as a reference 

frame, with GS, TAM, DW, or SM, as possible exemplars. However, we appreciate that this 

simplification does not do justice to the individual models, which do differ from each other with many 

respects. In particular, GS and DW are primarily attentional models, while TAM and SM are rather 

models of eye-movements. Our results, which are based on eye movements, therefore relate more 

directly to TAM, and SM. Conversely, for GS and DW, some of our underlying assumptions – as 

specified above (for example the interpretation of fixations as markers of attentional selection or the 

possible overestimation of attentional dwell time by empirical gaze dwell time) - may be more 

difficult to accept. GS (2.0; Wolfe, 1994) and TAM, while similar in many respects, are different in 

that GS treats near and far stimuli the same, while TAM employs the concept of an inhomogeneous 

retina, where stimuli closer to fixation are represented with higher visual acuity than more peripheral 

stimuli. According to GS, the activation map is thus computed once for each display (and updated 

with IOR for a visited stimulus), while TAM assumes a new coding of the activation map with every 

fixation, because every fixation changes the spatial parameters between the stimuli of a display. 

Irrespective of these important details, though, all of these models make important predictions for 

visual search performance. They should therefore implement the search mechanisms of skipping, 

dwelling and revisiting, as with the present experiments, we have shown that these have a substantial 

impact on visual search performance.  

On a broader scale, our results have important implications for the interpretation of behavioral 

search experiments that use RT to measure search performance. An idealized guidance-based model 

suggests that differences in search efficiency are solely caused by different guidance opportunities. 

More efficient search would be due to higher skipping rates, as efficient search allows for a priori 

rejections of distractors as possible target candidates. Correspondingly, less efficient search is due to 

low skipping rates, as multiple distractors have to be checked for target status. Because search 
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efficiency is explained by guidance exclusively, it is tempting to interpret differences in search 

efficiency as directly indicating different degrees of guidance (given that other possible influences 

such as differential amounts of crowding can be excluded; cf. Vlaskamp & Hooge, 2006). However, 

our series of experiments suggest that skipping is not the only mechanism determining visual search 

performance: dwelling and revisiting also significantly modulate search efficiency. The effects on 

dwelling and skipping, however, cannot be disentangled in RT data. RT measures, and in particular 

the measures of search efficiency derived from search function slopes, are completely blind as to 

whether these effects are driven by longer dwelling or less skipping or more frequent rescanning. Eye-

tracking data, as used in the present experiments, are very useful to assess dwelling and skipping 

separately. At present, eye tracking seems to be the only method that allows distinguishing between 

skipping, dwelling, and revisiting.  

Taken together, search slopes are a reliable measure of search efficiency, but they are not 

informative as to the underlying search mechanisms. Eye tracking data are required to disentangle 

contributions of guidance/skipping, dwelling and revisiting on search performance. Any 

comprehensive model of visual search must incorporate all three of those selection mechanisms: 

skipping, dwelling, and revisiting. 
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Figure Captions 

Figure 1. A depicts the dissimilar targets (top row), the similar targets (middle row), and the 

distractors (bottom row), used in Experiment 1. B shows two example search displays with a similar 

(left panel) or dissimilar target (right panel), respectively. The right part includes a simplified scan 

path in yellow. The "lines" are saccades and the "knots" are fixations, where the eyes drift slowly on a 

small spot. The figure also illustrates the main variables. The time the gaze foveates a stimulus is the 

dwell time; this may include one fixation, as on the first stimulus visited, or two fixations, as for 

example on the second stimulus visited. The stimuli on the right side of the screen are not visited 

during this trial; that is the skipping proportion on this trial is 0.5. The target is visited as the fourth 

stimulus, but it is revisited after fixating the fifth stimulus. As this is the only stimulus revisited on 

this trial, revising proportion for the target is 1.0 and revisiting proportion of the distractors is 0.0   

Figure 2. Mean correct RTs on target-absent and target-present trials for Experiments 1, 2 and 4, 

separately for blocks with dissimilar and similar targets. Results for Experiment 1 are on the left, for 

Experiment 2 in the middle, and for Experiment 3 on the right. Error bars are standard errors (i.e., SD 

/ √N) of the means. 

Figure 3. Mean dwell times (a) , proportion of skipped stimuli (b), and proportion of revisited stimuli 

(c) for non-target distractors in target-absent trials, for non-target distractors in target-present trials, 

and for targets in target-present trials, separately for blocks with dissimilar and similar targets, 

respectively. Results for Experiment 1 are in the top row, and for Experiment 2 in the bottom row. 

Error bars are standard errors (i.e., SD / √N) of the means. 

Figure 4. Bivariate relationship between trial search times (RTs), revisiting rates (Revisiting), 

skipping rates (Skipping), and dwell times (Dwelling), for distractors in target-absent trials from 

Experiment 1, separately for the dissimilar target condition (left side) and the similar target condition 

(right side). Each dot represents a single trial.  

Figure 5. Mean correct RTs for Experiment 3. Error bars are standard errors (i.e., SD / √N) of the 

means. 

Figure 6. Mean dwell times (a), proportion of skipped stimuli (b), and proportion of revisited stimuli 

(c) for Experiment 3. Error bars are standard errors (i.e., SD / √N) of the means. 

Figure 7. Averages for Experiment 4. Mean dwell times (a), proportion of skipped stimuli (b), and 

proportion of revisited stimuli (c) for distractors, separately for similar and dissimilar targets, and for 

distractors with or without the basic feature characterizing the target. Error bars are standard errors 

(i.e., SD / √N) of the means. 
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Table 1. Correlation matrix for the variables target-distractor similarity, RT, skipping, 

dwelling, and revisiting in target-absent and target-present trials of Experiment 1 and 2.  

    Similarity RT Skipping Revisiting 

Experiment 1 
Target-absent 

 
    

trials RT .43    
 Skipping -.40 -.66   
 Revisiting .21 .49 -.27  
 Dwelling .43 .80 -.46 .07 

      
Target-present  

    
trials RT .34    
 Skipping -.23 -.81   
 Revisiting .25 .51 -.48  

  Dwelling .21 .23 .09 -.10 

      

Experiment 2 
Target-absent 

 
    

trials RT .34    
 Skipping -.35 -.74   
 Revisiting .13 .69 -.36  
 Dwelling .28 .55 -.19 .12 

      
Target-present  

    
trials RT .26    
 Skipping -.22 -.86   
 Revisiting .24 .54 -.45  

  Dwelling -.12 -.11 .34 -.20 

      

Note. Correlations were calculated on trial measures. All coefficients are significantly different from 

zero (p < .05). 

 

  



Dwelling in Visual Search - 33 

Table 2. Linear multilevel regression of target-absent and target-present trial reaction times on 

dwelling, skipping, revisiting, and similarity as fixed effects, and random intercepts for 

participants based on the data of Experiment 1 and 2. 

Experiment 1 

Target-absent trials b SE(b) t 

Intercept 0.10 0.04 2.65 

Dwelling 0.74 0.02 39.91 

Skipping -0.24 0.02 -14.99 

Revisiting 0.44 0.01 30.68 

Similarity -0.10 0.03 3.59 

Target-present trials    
Intercept -0.04 0.05 -0.69 

Dwelling 0.25 0.02 11.92 

Skipping -0.73 0.02 -37.71 

Revisiting 0.22 0.02 11.15 

Similarity 0.12 0.04 3.34 
Experiment 2 

Target-absent trials    

Intercept 0.06 0.02 2.87 

Dwelling 0.43 0.01 37.16 

Skipping -0.49 0.01 -38.81 
Revisiting 0.52 0.01 43.54 

Similarity -0.01 0.02 -0.49 

Target-present trials    
Intercept 0.04 0.05 0.77 

Dwelling 0.20 0.02 11.61 

Skipping -0.84 0.02 44.75 

Revisiting 0.26 0.02 13.75 

Similarity 0.03 0.03 1.04 
Notes. b = regression coefficient; SE = standard error of regression coefficient; models allowed for 

random intercepts between subjects; estimation method was full maximum likelihood; with the 

exception of similarity, all metrical variables were z-transformed prior to analyses; for similarity 

“dissimilar target” was coded as zero and “similar target” as one; coefficients are statistically 

significant where t > |1.96|.  
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Table 3. Correlation matrix for the variables target-distractor similarity, set size, RT, skipping, 

dwelling, and revisiting in target-absent and target-present trials of Experiment 3.  

    Similarity Set size RT Skipping Revisiting 

Target-absent        
trials Set size .00     

 RT .35 .51    

 Skipping -.40 .30 -.21   

 Revisiting .12 -.27 .32 -.31  

 Dwelling .48 -.24 .36 -.24 .11 

       

       

       
Target-present       
trials Set size -.01     

 RT .28 .31    

 Skipping -.29 .25 -.53   

 Revisiting .07 -.10 .43 -.43  
  Dwelling .24 -.01 .29 -.14 .10 

 

Note. Correlations were calculated on trial measures. Coefficients < |.07| are not statistically 

significant (p < .05). 
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Table 4: Linear multilevel regression of target-absent and target-present trial reaction times on 

dwelling, skipping, revisiting, similarity, and set size as fixed effects, and random intercepts for 

participants for Experiment 3 

     
Target-absent trials   b SE(b) t 

 Intercept -0.71 0.05 -13.01 

 Dwelling 0.32 0.01 21.71 

 Skipping -0.07 0.02 -3.76 

 Revisiting 0.29 0.01 21.29 

 Similarity 0.04 0.03 1.47 

 Setsize  1.56 0.02 68.13 

 Dwelling:Setsize 0.31 0.02 13.94 

 Skipping:Setsize -0.11 0.02 -4.80 

 Revisiting:Setsize 0.29 0.02 12.82 

         

Target-present trials     

 Intercept -0.48 0.07 -7.11 

 Dwelling 0.07 0.02 3.95 

 Skipping -0.26 0.02 -11.66 

 Revisiting 0.14 0.02 8.54 

 Similarity 0.18 0.03 6.39 

 Setsize  0.87 0.03 32.32 

 Dwelling:Setsize 0.17 0.03 6.49 

 Skipping:Setsize -0.39 0.03 -12.21 

  Revisiting:Setsize 0.32 0.03 9.79 
 

 Notes. b = regression coefficient; SE = standard error of regression coefficient; models allowed for 

random intercepts between subjects; estimation method was full maximum likelihood; with the 

exceptions of similarity and set size, all metrical variables were z-transformed prior to analyses; for 

similarity “dissimilar target” was coded as zero and “similar target” as one; for set size, set size 5 was 

coded as zero and set size 10 was coded as one; coefficients are statistically significant where t > 

|1.96|.  
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Table 5. Correlation matrix for the variables target-distractor similarity, RT, skipping, 

dwelling, and revisiting in target-absent and target-present trials of Experiment 4.  

    Similarity RT Skipping Revisiting 

Target-absent  
    

trials RT .35    
 Skipping -.22 -.57   
 Revisiting .09 .56 -.23  
 Dwelling .36 .63 -.05 .10 

      
Target-present  

    
trials RT .26    
 Skipping -.16 -.66   
 Revisiting .07 .45 -.32  

  Dwelling .25 .37 -.06 .06 

      
Note. Correlations were calculated on trial measures. Coefficients ≥ |.05| are statistically significant (p 

< .05 
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Table 6. Linear multilevel regression of target-absent and target-present trial reaction times on 

dwelling, skipping, revisiting, and similarity as fixed effects, and random intercepts for 

participants based on the data of Experiment 4. 

Experiment 1 

Target-absent trials b SE(b) t 

Intercept 0.05 0.05 >1 

Dwelling 0.51 0.01 44.96 

Skipping -0.40 0.01 -38.75 

Revisiting 0.40 0.01 39.99 

Similarity -0.09 0.02 4.52 

Target-present trials    
Intercept -0.08 0.09 >1 

Dwelling 0.28 0.01 18.93 

Skipping -0.54 0.02 -35.54 

Revisiting 0.25 0.01 17.32 

Similarity 0.20 0.03 7.44 

    

Notes. b = regression coefficient; SE = standard error of regression coefficient; models allowed for 

random intercepts between subjects; estimation method was full maximum likelihood; with the 

exception of similarity, all metrical variables were z-transformed prior to analyses; for similarity 

“dissimilar target” was coded as zero and “similar target” as one; coefficients are statistically 

significant where t > |1.96|.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 (Experiment 3) 
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Figure 6 (Experiment 3) 

 

 

 

Figure 7 (Experiment 4) 

 

 

 


