

Abstract

22 The Dongji (>12.5 t Au @ 4.27 g/t) and Maluntou (>5.0 t Au @ 3.70 g/t) gold deposits are the
23 two largest ones in the Dongkeng Volcanic Basin (DVB), SE China, that are hosted by 22 The Dongji (>12.5 t Au @ 4.27 g/t) and Maluntou (>5.0 t Au @ 3.70 g/t) gold deposits are the
23 two largest ones in the Dongkeng Volcanic Basin (DVB), SE China, that are hosted by
24 volcanic rocks. Mineralization is r 22 The Dongji (>12.5 t Au @ 4.27 g/t) and Maluntou (>5.0 t Au @ 3.70 g/t) gold deposits are the
23 two largest ones in the Dongkeng Volcanic Basin (DVB), SE China, that are hosted by
24 volcanic rocks. Mineralization is r 21

22 The Dongji (>12.5 t Au @ 4.27 g/t) and Maluntou (>5.0 t Au @ 3.70 g/t) gold deposits are the

23 two largest ones in the Dongkeng Volcanic Basin (DVB), SE China, that are hosted by

24 volcanic rocks. Mineralizatio 22 The Dongji (>12.5 t Au @ 4.27 g/t) and Maluntou (>5.0 t Au @ 3.70 g/t) gold deposits are the
23 two largest ones in the Dongkeng Volcanic Basin (DVB), SE China, that are hosted by
24 volcanic rocks. Mineralization is r 22 The Dong_{II} (21.3 t Au @ 4.27 gri) and Madundu (25.0 t Au @ 3.70 gri) gold deposits are the
27 (so targest ones in the Dongkeng Volcanic Basin (DVB), SE China, that are hosted by
27 volcanic rocks. Mineralization is r 28 related to the stage 2 fluids featured by three stages (i.e., stage 1, 2, and 3) that are
28 characterized by four types of unzoned hydrothermal pyrite (i.e., pyrite1, 2a, 2b, and 3).
26 Hydrothermal fluids responsible 29 characterized by four types of unzoned hydrothermal pyrite (i.e., stage 1, 2, and 3) that are
29 characterized by four types of unzoned hydrothermal pyrite (i.e., pyrite1, 2a, 2b, and 3).
26 Hydrothermal fluids respons 33 Characterized by holi types of unzoned hydrothermal pyrice (i.e., pyrice), za, zb, and 3).
33 Hydrothermal fluids responsible for pyrite1 deposition are moderate temperatures
308−377 °C) and low salinity (4.6−9.1 wt% N 19 solution and statistically (4.6–9.1 wt% NaCl equiv.). The deposition of pyrite2a and 2b is
19 related to the stage 2 fluids featured by moderate-low temperatures (253–341 °C) and low
19 salinity (3.2–9.1 wt% NaCl equiv. 23 related to the stage 2 fluids featured by moderate-low temperatures (253-341 °C) and low
32 selated to the stage 2 fluids featured by moderate-low temperatures (253-341 °C) and low
33 selation in the stage 3 fluids wit salinity (3.2–9.1 wt% NaCl equiv.). Pyire3 is deposited from the stage 3 fluids with low
salinity (3.2–9.1 wt% NaCl equiv.). Pyire3 is deposited from the stage 3 fluids with low
temperatures (220–250 °C) and salinities (1. saminty (3.2–9.1 wto Nact equity). Fyries is deposited from the stage 3 had swith low
temperatures (220–250 °C) and salinities (1.0–6.5 wt% NaCl equity.). Hydrothermal fluids
potentially have a magmatic origin and experien 33 potentially have a magmatic origin and experience fluid boiling and mixing of meteoric water.
32 Scanning electron microscopy and laser ablation inductively coupled plasma-mass
33 spectrometry were used to investigate t Both potentially have a magnitatic ongin and experience it at obting and mixing or inetective watel.
Scanning electron microscopy and laser ablation inductively coupled plasma-mass
spectrometry were used to investigate the 33 spectrometry were used to investigate the occurrence of visible gold and the distribution of
33 spectrometry were used to investigate the occurrence of visible gold and the distribution of
33 invisible gold in pyrite fr spectrometry were used to investigate the occurrence of visible gold mainly exists as native gold and
invisible gold in pyrite from different generations. Visible gold mainly exists as native gold and
electrum within cryst 33 electrum within crystal interstices, fractures, and hollows of pyrite2b, and precipitates directly
36 electrum within crystal interstices, fractures, and hollows of pyrite2b, and precipitates directly
36 from the fluids

-
-

 elevated content of invisible Au (together with As, Ag, Zn, and Sb) in pyrite2b is potentially elevated content of invisible Au (together with As, Ag, 241
associated with lattice dislocations.
The Re–Os isochron age of pyrite2b (99 ± 10 Ma)

elevated content of invisible Au (together with As, Ag, Zn, and Sb) in pyrite2b is potentially
41 associated with lattice dislocations.
42 The Re–Os isochron age of pyrite2b (99 ± 10 Ma) and the zircon U–Pb dating of the
4 elevated content of invisible Au (together with As, Ag, Zn, and Sb) in pyrite2b is potentially
associated with lattice dislocations.
The Re–Os isochron age of pyrite2b (99 ± 10 Ma) and the zircon U–Pb dating of the
volcani elevated content of invisible Au (together with As, Ag, Zn, and Sb) in pyrite2b is potentially
associated with lattice dislocations.
The Re–Os isochron age of pyrite2b (99 ± 10 Ma) and the zircon U–Pb dating of the
volcani 44 elevated collerit of invisible Ad (together with As, Ag, 2.1), and 50) in pyritezb is potentially
41 associated with lattice dislocations.
43 The Re-Os isochron age of pyrite2b (99 ± 10 Ma) and the zircon U-Pb dating of 44 The Re–Os isochron age of pyrite2b (99 ± 10 Ma) and the zircon U–Pb dating of the
43 volcanic and subvolcanic rocks (95.1–104 Ma) indicate that the formation of gold
44 mineralization and the igneous activity in the DV Fraction depressions and subvolcanic rocks (95.1–104 Ma) indicate that the formation of gold
animeralization and the igneous activity in the DVB were coeval during the Turonia–Albian.
Geochronology, fluid characteristics, From the igneous activity in the DVB were coeval du

Geochronology, fluid characteristics, together with low Ni concentration

mean Co/Ni ratios (≥2.0) of pyrite from different generations, supp

Maluntou gold deposits for 50 **Keywords:** Intermediate sulfidation ore system · Pyrite Re–Os isotopes · Gold · Dongkeng
16 **Keywords:** Intermediate sulfidation epithermal origin.
16 **Keywords:** Intermediate sulfidation epithermal origin.
16 **Keyword** Maluntou gold deposits formed in a magmatic-hypotentral origin.
43 intermediate-sulfidation epithermal origin.
49 **Keywords:** Intermediate sulfidation ore system · Pyr
51 Volcanic Basin · SE China
52

 1. Introduction 53
55 The Cretaceous epoch, specifically between ~110–90 Ma, was a period of intense
57 magmatic-hydrothermal activity in the South China Block, which was associated with the 53
55
55 The Cretaceous epoch, specifically between ~110–90 Ma, was a period of intense
57 magmatic-hydrothermal activity in the South China Block, which was associated with the
58 large-scale lithospheric extension and cr 55
55 The Cretaceous epoch, specifically between ~110–90 Ma, was a period of intense
57 magmatic-hydrothermal activity in the South China Block, which was associated with the
58 large-scale lithospheric extension and crust 1. Introduction
55 The Cretaceous epoch, specifically between ~110–90 Ma, was a period of intense
57 magmatic-hydrothermal activity in the South China Block, which was associated with the
58 large-scale lithospheric extens The Cretaceous epoch, specifically between ~110–90 Ma, was a period of intense
magmatic-hydrothermal activity in the South China Block, which was associated with the
large-scale lithospheric extension and crust-mantle inte Fire Steadceous epoch, specificary between 1110–90 Ma, was a period of interise
magmatic-hydrothermal activity in the South China Block, which was associated with the
large-scale lithospheric extension and crust-mantle int Inaginal Critical Hitles activity in the Solution Cities block, which was associated with the
large-scale lithospheric extension and crust-mantle interaction (Li, 2000; Mao et al., 2008).
One of the most important economic based in the most important economic manifestations of this activity is the formation of an
epithermal gold metallogenic belt along the Southeastern China Fold Belt (SCFB, Fig. 1a).
Over twenty-two epithermal gold deposits 66 volcanic/subvolcanic rocks have been dated at 97–114 Ma and 149–158 Ma based on U–Pb,
61 volcanic/subvolcanic rocks have been dated at 97–114 Ma and 149–158 Ma based on U–Pb,
64 volcanic/subvolcanic rocks have been date 61 Over twenty-two epithermal gold deposits have been currently explored, possessing a total
62 resource of ~480 t Au (Zhong et al., 2017a) and significant amount of Ag, Cu, Pb, and Zn
63 (Jiang et al., 2017; Wang et al., 66 both wentig-two epitulential gold deposits have been currently explored, possessing a total
66 resource of ~480 t Au (Zhong et al., 2017a) and significant amount of Ag, Cu, Pb, and Zn
66 (Jiang et al., 2017; Wang et al. 63 (Jiang et al., 2017; Wang et al., 2017; Zhong et al., 2017b). Ore-related granites and
64 volcanic/subvolcanic rocks have been dated at 97–114 Ma and 149–158 Ma based on U–Pb,
65 Rb–Sr, and Ar–Ar isochron ages (Yu et al (Jiang et al., 2011; Wang et al., 2017; Zilong et al., 2017b). Ole-related granites and
volcanic/subvolcanic rocks have been dated at 97–114 Ma and 149–158 Ma based on U–Pb,
Rb–Sr, and Ar–Ar isochron ages (Yu et al., 2013; 66 Rb-Sr, and Ar-Ar isochron ages (Yu et al., 2013; Zeng et al., 2013; Li, 2016). They generally
66 Rb-Sr, and Ar-Ar isochron ages (Yu et al., 2013; Zeng et al., 2013; Li, 2016). They generally
66 possess calc-alkaline or 20 IND-31, and At-At isochion ages (10 et al., 2013, 2eng et al., 2013, Lt, 2010). They generally

20 possess calc-alkaline or high-K calc-alkaline A- or I-type granite affinities and show the

20 characteristics of igneou book possess cateralism of inglient cateralism entity of interpretation and slow the characteristics of igneous rocks related to continental arc or arc-back tectonic settings (Li et al., 2011; Li,2016). By contrast, the or 21 Dialacteristics of igneous focks related to continental arc of alc-back tectome

28 al., 2011; Li, 2016). By contrast, the origin of these epithermal gold deposits and

31 genetic links to magmatism remain unclear due t

Located in the northeastern SCFB, the Dongkeng Volcanic Basin (DVB) with an area of ca.
74 310 km² has developed more than seven operational gold deposits, such as the Dongji, Located in the northeastern SCFB, the Dongkeng Volcanic Basin (DVB) with an area of ca.
310 km² has developed more than seven operational gold deposits, such as the Dongji,
Maluntou, Shangshangang, Baoyan, and Shangshan Located in the northeastern SCFB, the Dongkeng Volcanic Basin (DVB) with an area of ca.

310 km² has developed more than seven operational gold deposits, such as the Dongji,

Maluntou, Shangshangang, Baoyan, and Shangsha Located in the northeastern SCFB, the Dongkeng Volcanic Basin (DVB) with an area of ca.

310 km² has developed more than seven operational gold deposits, such as the Dongji,

Maluntou, Shangshangang, Baoyan, and Shangsha Located in the northeastern SCFB, the Dongkeng Volcanic Basin (DVB) with an area of ca.

310 km² has developed more than seven operational gold deposits, such as the Dongji,

Maluntou, Shangshangang, Baoyan, and Shangsha 23 Previous studies were controversial about whether magmatic water is involved in the oregian Maluntou, Shangshangang, Baoyan, and Shangshan (Fig. 1c; Chen et al., 2020). Orebodies in these deposits are mainly hosted by v 75 Maluntou, Shangshangang, Baoyan, and Shangshan (Fig. 1c; Chen et al., 2020). Orebodies

in these deposits are mainly hosted by volcanic and/or subvolcanic rocks and related to

quartz vein systems and various styles of wand Wang and Standard Martin Considered that ore-forming fluids are more likely derived from the mixture in stead, Liu (2019) proposed that hydrothermal fluids are dominated by meteoric water.

Wang and Yan (2019) propose 91 In these deposits are manny nosted by volcanic and/or subvolcanic tooks and felated to

9 quartz vein systems and various styles of mineralized breccias (Wang, 2013; Lu et al., 2017).

9 Previous studies were controvers Previous studies were controversial about whether magmatic water is involved in the ore system, as the published data of microthermometry and H–O isotopes are heterogeneous.
Wang and Yan (2019) proposed that hydrothermal f Frevious staties were controversial about when
the riaghtant water is involved in the orie
system, as the published data of microthermometry and H–O isotopes are heterogeneous.
Wang and Yan (2019) proposed that hydrotherma System, as the published data of introduction
and Yand (2019) proposed that hydrothermal fluids are dominated by meteoric water.
Instead, Liu (2016) suggested that ore-forming fluids are more likely derived from the mixtur Wany and Tan (2019) proposed that ore-forming fluids are more likely derived from the mixture

82 Instead, Liu (2016) suggested that ore-forming fluids are more likely derived from the mixture

82 of magmatic and meteoric 1 Inistead, Lul (2010) suggested that ore-forming hatts are interesting terms of magnatic and meteoric water. Moreover, there is no reported chronological data on mineralization so far. These lead to the poor understanding 88 mineralization so far. These lead to the poor understanding of the relationship between gold
84 mineralization and Cretaceous large-scale magmatic activity. Apparently, scientific problems
85 related to ore genesis at t mineralization so rat. Firese lead to the poor understanding of the leaduriship between gold
mineralization and Cretaceous large-scale magmatic activity. Apparently, scientific problems
related to ore genesis at the DVB is 1898 extended to ore genesis at the DVB is consistent with that of other similar deposits in the region.

1898 Felated to ore genesis at the DVB is consistent with that of other similar deposits in the region.

1898 Minera 90 Therefore, gold deposits in the DVB are representative and are the ideal objects to study
98 Therefore, gold deposits in the DVB are representative and are the ideal objects to study
98 mineralization process. Here, we 91 mineralization process. Here, we focus on the Dongji and Maluntou deposits, together with
91 mineralization process. Here, we focus on the Dongji and Maluntou deposits, together with
92 mineralization of the ore-forming 992 and magmatism in the DVB. Combined the data contribute to the origin of these gold deposits, in the origin of the original material and evolution of the ore-forming fluids. We also discuss trace element compositions of

 $5₅$

 and are potentially helpful to improve our understanding of other gold deposits within the and are potentially helpful to improve our understanding of other gold deposits within the
94 SCFB that have similar features to the Dongji and Maluntou deposits.
95 2013 and are potentially helpful to improve our unde
94 SCFB that have similar features to the Dongji and
95
2. Geological setting
97

99 The Dongji and Maluntou deposits are situated in the DVB that is controlled by NE-striking
99 The Dongji and Maluntou deposits are situated in the DVB that is controlled by NE-striking
99 Zhenghe-Dapu fault in the east 99 2. Geological setting
99 2. Geological setting
99 The Dongji and Maluntou deposits are situated in the DVB that is controlled by NE-striking
99 Zhenghe-Dapu fault in the eastern SCFB (Fig. 1). The DVB records multiple v 2. Geological setting

100 97

100 Phenghe-Dapu fault in the eastern SCFB (Fig. 1). The DVB records multiple volcanic

100 eruptions and subvolcanic events during the Mesozoic period (Guo et al., 2012; Liu et al.,

101 201 2012). Volcanic rocks in the DVB are divided into an upper and lower series by a regional unconformity (Liu et al., 2016). The lower volcanic series contains the Changlin and Nanyuan 103 Fine Dorigin and Maturicular eposits are studated in the DVB tract is controlled by Ne-suite virgin 2012
103 Schenghe-Dapu fault in the eastern SCFB (Fig. 1). The DVB records multiple volcanic
103 eruptions and subvolc 2.1erigne-Dapu Tault in the eastern SCED (Fig. 1). The DVD fecolos finally evolcante
eruptions and subvolcanic events during the Mesozoic period (Guo et al., 2012; Liu et al.,
2012). Volcanic rocks in the DVB are divided i 101 2012). Volcanic rocks in the DVB are divided into an upper and lower series by a regional
102 unconformity (Liu et al., 2016). The lower volcanic series contains the Changlin and Nanyuan
103 formations. The Changlin Fo 2012). Volcante focks in the DVB are divided into an upper and lower series by a regional
102 unconformity (Liu et al., 2016). The lower volcanic series contains the Changlin and Nanyuan
106 formations. The Changlin Format 102 diconforming (Eu et al., 2016). The lower volcantic series contains the Changlin and Nanydan
103 formations. The Changlin Formation is mainly composed of conglomerates and sandstones
104 with minor volcanic beds (Fig. 108 volcanic series, known as the Huangkeng and Zhaixia formations, is the most important to the majority of the Maryuan Formation comprises abundant acidic lava and pyroclastic (Liu et al., 2016). The Nanyuan Formation co 109 host-rocks for the majority of gold deposits within the DVB. The Huangkeng Formation is
109 dCliu et al., 2016). The Nanyuan Formation comprises abundant acidic lava and pyroclastic
109 (Liu et al., 2016). The Nanyuan 110 dominated by volcanic breccia, ignimbrite, and rhyolite, with some sandstone at the base of the succession (Feng et al., 2016). Previous geochronology of the Huangkeng Formation is dominated by volcanic breccia, ignimb 107 rocks and formed between 141–143 Ma (Guo et al., 2012; Liu et al., 2016). The upper
108 volcanic series, known as the Huangkeng and Zhaixia formations, is the most important
109 bost-rocks for the majority of gold depo 107 Tooks and formed between 141-143 Ma (Guo et al., 2012, Lule et al., 2016). The upper
108 volcanic series, known as the Huangkeng and Zhaixia formations, is the most important
109 host-rocks for the majority of gold dep 113 Interlayers of the majority of gold deposits within the DVB. The Huangkeng Formation is
110 Interlayers for the majority of gold deposits within the DVB. The Huangkeng Formation is
111 Interlayered the succession (Feng

occurrences are developed in the DVB, mostly hosted by the upper volcanic series (Fig. 1c).
136 The two largest deposits, i.e., Dongji and Maluntou, that are representative of the geology occurrences are developed in the DVB, mostly hosted by the upper volcanic series (Fig. 1c).
136 The two largest deposits, i.e., Dongji and Maluntou, that are representative of the geology
137 observed at a large number of occurrences are developed in the DVB, mostly hosted by the upper volcanic series (Fig. 1c).
136 The two largest deposits, i.e., Dongji and Maluntou, that are representative of the geology
137 observed at a large number of occurrences are developed in the DVB, mostly ho
136 The two largest deposits, i.e., Dongji and Malunt
137 observed at a large number of artisanal workings
138 3.1. Dongji gold deposit
140 The measured resource of Au at the 135 Cocurrences are developed in the DVB, mostry insted by the upper volcalitic series (rig. 10, 136 The two largest deposits, i.e., Dongji and Maluntou, that are representative of the geology observed at a large number of

141 including seven principal orebodies with an average grade of 4.27 g/t (Lu et al., 2017). The dominant hosts to orebody are the Jurassic Changlin Formation (ca. 153–160 Ma; Liu et al., 2017). 139
138
139 3.1. Dongji gold deposit
140 The measured resource of Au at the currently explored Dongji deposit is more than 12.5 t,
141 including seven principal orebodies with an average grade of 4.27 g/t (Lu et al., 2017) 139 3.1. Dongji gold deposit

140 The measured resource of Au at the currently explored Dongji deposit is more than 12.5 t,

141 including seven principal orebodies with an average grade of 4.27 g/t (Lu et al., 2017). The
 140 The measured resource of Au at the currently explored Dongji deposit is more than 12.5 t,

141 including seven principal orebodies with an average grade of 4.27 g/t (Lu et al., 2017). The

142 dominant hosts to orebod 140 The measure resource of Au at the currently explored Dongly deposit is indeterminated its.31, including seven principal orebodies with an average grade of 4.27 g/t (Lu et al., 2017). The dominant hosts to orebody are 141 Including seven pinicipal diebodies with an average grade of 4.27 gr (cd et al., 2017). The

142 Including seven pinicipal of ebodies are the Jurassic Changlin Formation (ca. 153–160 Ma; Liu et al.,

143 2016) and a r 142 comman rosts to breolog are the statistic changin it of matterial (ca. 155–160 ma, club et al.,

143 2016) and a rhyolitic porphyry (154 ± 2 Ma; Xiao and Ban, 2015) (Fig. 2). The majority of gold

144 orebodies are st 2010) and a myonic porphyry (134.12 Ma, Xiao and Dam, 2013) (Fig. 2). The majority original
orebodies are structurally controlled (Liu, 2011) and occur as sulfide-bearing quartz veins with
occurrence of ca. 1.0-km-long an 144 small angle) to the fault zone. Additionally, various styles of breccia mineralization (e.g., crackle breccia and breccia veins) are associated with vein systems. A granite popphyly dike the fault zone. They mostly fil 143 cocurrence of ca. 1.0-Kin-long and ca. 30-in-wide (up to 45-in), NE-sulKing (30-60) and
146 SE-dipping (30-40°) (Fig. 2a, c). A few less continuous quartz \pm calcite pyrite veins with
147 chlorite (\pm pyrophyllite 140 SE-upping (30—40) (Fig. 2a, 6). A few less commitods quark 1 calcule pyrite verifs with

2161 chlorite (± pyrophyllite) alteration selvage are observed proximal to the boundaries of fault

2149 come. They mostly fill i 149 small angle) to the fault zone. Additionally, various
150 crackle breccia and breccia veins) are associated wi
151 (95.1 ± 0.7 Ma; Fig. 6h) cuts the orebodies, and there
152
153 3.2. Maluntou gold deposit
154 The Malun 149 Sinan angle) to the Hallm Zone. Additionary, various styles of blecka initialization (et.g.,
150 crackle breccia and breccia veins) are associated with vein systems. A granite porphyry dike
154 (95.1 ± 0.7 Ma; Fig. 6h)

151 (95.1 ± 0.7 Ma; Fig. 6h) cuts the orebodies, and therefore postdates the gold mineralization.

152

153 3.2. Maluntou gold deposit

154 The Maluntou deposit is located at ca. 4km northeast of the Dongji deposit and ca.

156 Geological Team (No. 1 G.T.) since 2003. The identified recoverable gold resource is more
157 than 5.0 t with an average grade of 3.7 g/t (Liu, 2017). The ore system is hosted by 156 Geological Team (No. 1 G.T.) since 2003. The identified recoverable gold resource is more
157 than 5.0 t with an average grade of 3.7 g/t (Liu, 2017). The ore system is hosted by
158 hydrothermally altered volcanic bre Geological Team (No. 1 G.T.) since 2003. The identified recoverable gold resource is more
than 5.0 t with an average grade of 3.7 g/t (Liu, 2017). The ore system is hosted by
hydrothermally altered volcanic breccia and dac 156 Geological Team (No. 1 G.T.) since 2003. The identified recoverable gold resource is more

157 than 5.0 t with an average grade of 3.7 g/t (Liu, 2017). The ore system is hosted by

158 hydrothermally altered volcanic b Geological Team (No. 1 G.T.) since 2003. The identified recoverable gold resource is more

1615 than 5.0 t with an average grade of 3.7 g/t (Liu, 2017). The ore system is hosted by

1615 hydrothermally altered volcanic bre 151 orebodies in the Maluntou deposit are also spatially associated with the fault system is hosted by
158 hydrothermally altered volcanic breccia and dacitic-rhyolitic volcaniclastic rocks of the
161 Huangkeng Formation. 152 but with an average grade of 3.7 grt (Lut, 2011). The one system is hosted by
158 hydrothermally altered volcanic breccia and dacitic-rhyolitic volcaniclastic rocks of the
169 Huangkeng Formation. Ten subparallel lodes 159 Huangkeng Formation. Ten subparallel lodes (thickness 1–3 m) and 21 smaller lenticular
160 veins (thickness <1 m) are recognized at 66–600 m elevations. Similar to the Dongji deposit,
161 orebodies in the Maluntou depo 164 lodes exhibit a similar orientation. The exception is a few lodes located at northeast (Fig. 2b),
162 e.g., the tensional NW-striking (310–342°) faults and fractures. The Au2 lode (ca. 420 m in
163 length and 4–19 m in 161 orebodies in the Maluntou deposit are also spatially associated with the fault system (Fig. 2b),

162 e.g., the tensional NW-striking (310–342°) faults and fractures. The Au2 lode (ca. 420 m in

163 e.g., the tensional 162 e.g., the tensional NW-striking (310–342°) faults and fractures. The Au2 lode (ca. 420 m in
163 e.g., the tensional NW-striking (310–342°) faults and fractures. The Au2 lode (ca. 420 m in
164 lodes exhibit a similar or 163 length and 4–19 m in width) is the largest lode that dips at 60–80° northeast (Fig. 2d). Other
163 length and 4–19 m in width) is the largest lode that dips at 60–80° northeast (Fig. 2d). Other
166 lodes exhibit a sim 164 Iodes exhibit a similar orientation. The exception is a few lodes located at northeast (Fig. 2d).

164 Iodes exhibit a similar orientation. The exception is a few lodes located at northeastern e

165 the Maluntou depos 170 **3.3. Paragenetic sequence and mineralization stages**
171 **3.3. Paragenetic sequence and mineralization stages**
171 **3.3. Paragenetic sequence and mineralization stages**
171 **3.3. Paragenetic sequence and mineralizatio** 167 ranging from silicification + sericite, silicification + chlorite, and chlorite + argillic alteration
168 from the centre of ore-vein outwards to the host-rocks (Fig. 2d).
169
170 3.3. Paragenetic sequence and minerali

173 Interaction 1917 methods of the host-rocks (Fig. 2d).
170 3.3. Paragenetic sequence and mineralization stages
171 Ores in the Dongji and Maluntou deposits are similar, consist of multiple vein phases filled by
172 micr 173 and consists of pyrite with arsenopyrite, chalcopyrite, galena, and sphalerite (Liu, 2011; Lu et al., 2017). Nevertheless, the genetic significance of mineral associations is tentative, as all of al., 2017). Neverthele 179 3.3. Paragenetic sequence and mineralization stages

171 Ores in the Dongji and Maluntou deposits are similar, consist of multiple vein phases filled by

172 microcrystalline to coarse-grained quartz and sulfides. Sulf 171 Ores in the Dongji and Maluntou deposits are similar, consist of multiple vein phases filled by
172 microcrystalline to coarse-grained quartz and sulfides. Sulfide mineralogy is relatively simple
173 and consists of py 171 Cres in the Dongji and Maduhou deposits are similar, consist of multiple vein phases lined by

172 microcrystalline to coarse-grained quartz and sulfides. Sulfide mineralogy is relatively simple

173 and consists of py

177 Stage 1: Quartz veins in this stage are characterized by quartz-pyrite-arsenopyrite
178 assemblage with chlorite-K-feldspar alteration selvages (Figs. 3a, 4a). Quartz veins are 177 Stage 1: Quartz veins in this stage are characterized by quartz-pyrite-arsenopyrite
178 assemblage with chlorite-K-feldspar alteration selvages (Figs. 3a, 4a). Quartz veins are
179 typically ca. 10–50 cm wide and occur 177 Stage 1: Quartz veins in this stage are characterized by quartz-pyrite-arsenopyrite
178 assemblage with chlorite-K-feldspar alteration selvages (Figs. 3a, 4a). Quartz veins are
179 typically ca. 10–50 cm wide and occur Stage 1: Quartz veins in this stage are characterized by quartz-pyrite-arsenopyrite
assemblage with chlorite-K-feldspar alteration selvages (Figs. 3a, 4a). Quartz veins are
typically ca. 10–50 cm wide and occur at 66–600 m Stage 1: Quartz veins in this stage are characterized by quartz-pyrite-arsenopyrite
assemblage with chlorite-K-feldspar alteration selvages (Figs. 3a, 4a). Quartz veins are
typically ca. 10–50 cm wide and occur at 66–600 m 178 assemblage vith chlorite-K-feldspar alteration selvages (Figs. 3a, 4a). Quartz veins are
179 assemblage with chlorite-K-feldspar alteration selvages (Figs. 3a, 4a). Quartz veins are
179 by to subhedral pyrically medium 183 Arsenopyrite is generally enveloped by pyrite1 (Fig. 5a). Free gold is not recognized visually or petrographically.

183 arsenopyrite is generally enveloped by pyrite1 (Fig. 5a). Free gold is not recognized visually

1 grid 180 medium- to coarse-grained (>1 mn
181 brown fluorescence with growth zor
182 to subhedral pyrite (pyrite1, <1 mm)
183 Arsenopyrite is generally enveloped
184 or petrographically.
185 Stage 2: Quartz veins (Figs. 3b 181 brown fluorescence with growth zones in cathodoluminescence images (Fig. A.2). Euhedral
182 to subhedral pyrite (pyrite 1, <1 mm) and arsenopyrite are disseminated within quartz veins.
183 Arsenopyrite is generally env 182 to subhedral pyrite (pyrite1, <1 mm) and arsenopyrite are disseminated within quartz veins.

186 Arsenopyrite is generally enveloped by pyrite1 (Fig. 5a). Free gold is not recognized visually

184 or petrographically.
 183 Arsenopyrite is generally enveloped by pyrite1 (Fig. 5a). Free gold is not recognized visually
183 Arsenopyrite is generally enveloped by pyrite1 (Fig. 5a). Free gold is not recognized visually
185 or petrographically. Exemplyine is generally enveloped by pyriter (rig. 3a). Thee gold is not recognized visuality
188 or petrographically.
188 Stage 2: Quartz veins (Figs. 3b–i, 4b–d) are closely associated with polymetallic sulfide
186 miner 185 Stage 2: Quartz veins (Figs. 3b–i, 4b–d) are closely associated with polymetallic sulfide
186 mineralization, as well as gold mineralization in the Dongji and Maluntou deposits. Quartz
187 veins predominantly occur bet 1903 Fine-grained (co.5 mm) smoky gray anhedral quartz crystals and sulfide-bearing bands.

1919 fine-grained (<0.5 mm) smoky gray anhedral quartz crystals and sulfide-bearing bands.

1919 fine-grained (<0.5 mm) smoky gray 191 The start of the stage is significantly different from the one in the stage is startz
191 Density attention phases, e.g., sericite, chlorite, and clay minerals. Individual veins
191 generally exhibit complex patterns (They intensive alteration phases, e.g., sericite, chlorite, and clay minerals. Individual veins

generally exhibit complex patterns (Fig. 3b) and distinctive grey coloration caused by

fine-grained (<0.5 mm) smoky gray anh Interisive anti-auon phases, e.g., sencite, chonne, and clay immerals. Individual velifs
generally exhibit complex patterns (Fig. 3b) and distinctive grey coloration caused by
fine-grained (<0.5 mm) smoky gray anhedral qua 194 diagnostic component of quartz veins (Fig. 5b–d). Two types of pyrite are recognized,
191 diagnostic component of quartz i. Pyrite, visible gold, chalcopyrite, galena, and sphalerite are
193 fills fractures within quar 191 Quartz (quartz2) in this stage is significantly different from the one in the stage 1. Quartz2

2011 Quartz (quartz2) in this stage is significantly different from the one in the stage 1. Quartz2

2022 exhibits blue fl 1911 Guarizz (quarizz) in this stage is significantly dimetent from the one in the stage 1. Quarizz

192 exhibits blue fluorescence without growth zones (Fig. A.2) and locally surrounds quartz1 or

195 fills fractures with exhibits blue intorescence whild the good, chalcopyrite, galena, and sphalerite are
193 fills fractures within quartz1. Pyrite, visible gold, chalcopyrite, galena, and sphalerite are
194 diagnostic component of quartz vein

- -

 stage 2 veins). Pyrite2a is generally enveloped by pyrite2b (Fig. 5b, g). In turn, pyrite2b is 198 stage 2 veins). Pyrite2a is generally enveloped by pyrite2b (Fig. 5b, g). In turn, pyrite2b is
199 replaced by chalcopyrite, sphalerite, and galena as rims and fracture fillings (Fig. 5c–d).
200 Visible gold shows a cl 198 stage 2 veins). Pyrite2a is generally enveloped by pyrite2b (Fig. 5b, g). In turn, pyrite2b is

199 replaced by chalcopyrite, sphalerite, and galena as rims and fracture fillings (Fig. 5c–d).

200 Visible gold shows a stage 2 veins). Pyrite2a is generally enveloped by pyrite2b (Fig. 5b, g). In turn, pyrite2b is

replaced by chalcopyrite, sphalerite, and galena as rims and fracture fillings (Fig. 5c–d).

200 Visible gold shows a close re stage 2 veins). Pyrite2a is generally enveloped by pyrite2b (Fig. 5b, g). In turn, pyrite2b is
replaced by chalcopyrite, sphalerite, and galena as rims and fracture fillings (Fig. 5c–d).
Visible gold shows a close relation 203 pyrite2b deposition.
204 Stage 3: Quartz veins a close relationship
201 inclusions of native gold and electrum w
202 pyrite2b (Fig. 5c, g). Textural evidence sup
203 pyrite2b deposition.
204 Stage 3: Quartz veins (Figs 204 Change 3: Quartz veins (Figs. 3j–k, 4d) predominantly occur at shallow levels (elevations greater than ~300 m) and are associated with calcite veins. Quartz (quartz3) occurs as visible glota shows a close Tetatoniship with pyritezo, manny forms informedi-sized
201 inclusions of native gold and electrum within crystal interstices, fractures, and hollows of
202 pyrite2b (Fig. 5c, g). Textural evide 202 pyrite2b (Fig. 5c, g). Textural evidence suggests that gold is coeval with or locally postdates
203 pyrite2b deposition.
204 Stage 3: Quartz veins (Figs. 3j–k, 4d) predominantly occur at shallow levels (elevations
206 2022 Byrite2b deposition.
203 pyrite2b deposition.
203 pyrite2b deposition.
204 Stage 3: Quartz veins (Figs. 3j–k, 4d) predominantly occur at shallow levels (elevations
205 greater than ~300 m) and are associated with calc 208 BythezD deposition.

208 Stage 3: Quartz veins (Figs. 3j–k, 4d) predominantly occur at shallow levels (elevations

208 greater than ~300 m) and are associated with calcite veins. Quartz (quartz3) occurs as

206 fine-g Grade 3. Quartz veins (Figs. 3)–K, 40) predominating occur at strategies. Quart
206 differe-grained (<0.5 mm) white anhedral crystal quartz and community of the served in some veins of fluorescence (Fig. A.2). Sulfides ar fluorescence (Fig. A.2). Sulfides are largely abser

disseminated coarse (>1 mm) euhedral pyrite (pyrit

be observed in some veins at 360 m elevation.

210
 4. Samples and methods

212

- -
-

209 be observed in some veins at 360 m elevation.
210
211 **4. Samples and methods**
212
213 **4.1. LA–ICP–MS zircon U–Pb geochronology**
214 Hydrothermally unaltered / least altered samples, including the 210
211 **4. Samples and methods**
212
213 **4.1. LA–ICP–MS zircon U–Pb geochronology**
214 Hydrothermally unaltered / least altered samples, including the rhyolitic ignimbrite of the
215 Huangkeng Formation, the rhyolite of t 212
212
213 4.1. LA-ICP-MS zircon U-Pb geochronology
214 Hydrothermally unaltered / least altered samples, including the rhyolitic ignimbrite of the
215 Huangkeng Formation, the rhyolite of the Zhaixia Formation, the Xiaos 212
213 **4.1. LA–ICP–MS zircon U–Pb geochronology**
214 Hydrothermally unaltered / least altered samples, including the rhyolitic ignimbrite of the
215 Huangkeng Formation, the rhyolite of the Zhaixia Formation, the Xiaosha 212 4.1. *LA-ICP-MS zircon U-Pb geochronology*
214 Hydrothermally unaltered / least altered samples, including the rhyolitic ignimbrite of the
215 Huangkeng Formation, the rhyolite of the Zhaixia Formation, the Xiaoshao sy 1c and $2a$.

219 The rhyolitic ignimbrite sample (HK-1) is characterized by pyroclastic material (>70 %),
220 quartz and feldspar phenocrysts (10−20 %), and pseudo flow texture (Fig. 6a). The matrix is 220 The rhyolitic ignimbrite sample (HK-1) is characterized by pyroclastic material (>70 %),
220 quartz and feldspar phenocrysts (10−20 %), and pseudo flow texture (Fig. 6a). The matrix is
221 dominated by volcanic ash, a 221 The rhyolitic ignimbrite sample (HK-1) is characterized by pyroclastic material (>70 %),
220 quartz and feldspar phenocrysts (10–20 %), and pseudo flow texture (Fig. 6a). The matrix is
221 dominated by volcanic ash, an 222 The rhyolitic ignimbrite sample (HK-1) is characterized by pyroclastic material (>70 %),
220 quartz and feldspar phenocrysts (10−20 %), and pseudo flow texture (Fig. 6a). The matrix is
221 dominated by volcanic ash, a 229 The rhyolitic ignimbrite sample (HK-1) is characterized by pyroclastic material (>70 %),

220 quartz and feldspar phenocrysts (10–20 %), and pseudo flow texture (Fig. 6a). The matrix is

221 dominated by volcanic ash, 224 syenogranite porphyry has a porphyritic texture. Phenocrysts are characterized by Fine matrix is
221 duartz and feldspar phenocrysts (10–20 %), and pseudo flow texture (Fig. 6a). The matrix is
221 dominated by volcanic 221 dominated by volcanic ash, and microcrystalline feldspar and quartz. The rhyolite sample
222 dominated by volcanic ash, and microcrystalline feldspar and quartz. The rhyolite sample
223 (ZX-1) shows clear flow textur 222 (ZX-1) shows clear flow texture and comprises quartz (10–20 vol%) and K-feldspar (5–10 vol%) phenocrysts, with a predominantly cryptocrystalline matrix (Fig. 6b). The Xiaoshao syenogranite porphyry has a porphyritic te $(222 \text{ } \text{ } (248-1) \text{ shows total and complex variables.}$ possesses, with a predominantly cryptocrystalline matrix (Fig. 6b). The Xiaoshao syenogranite porphyry has a porphyritic texture. Phenocrysts are characterized by orthoclase (30–35 vol%) wi 228 vorta) phenocrysts, with a predominantity cryptocrystaline matrix (rig. 0b). The Xiaoshao
225 (30–35 vol%) with minor biotite (<5 vol%) and hornblende (<5 vol%). The matrix is dominated
226 (30–35 vol%) with minor biot by enoughanine porphyry has a porphyric extent. Priemocrysts are characterized by of tholdase

225 (30–35 vol%) with minor biotite (<5 vol%) and homblende (<5 vol%). The matrix is dominated

226 by microcrystalline feldsp 223 (30–33 Vorte) what initial block (53 Vorte) and nonbieting (53 Vorte). The matrix is dominated
226 by microcrystalline feldspar such as orthoclase and plagioclase. The collected sample (XS-1)
227 possesses minor seric Langfang Regional Geological Survey Institute, Hebei Province, China, using traditional
232 Langfang Regional Geological Survey Institute, Hebei Province, China, using traditional
231 Langfang Regional Geological Survey In 223 (DJ-1) shows a similar mineral compositions to that of the Xiaoshao syenogranite porphyry,
229 (DJ-1) shows a similar mineral compositions to that of the Xiaoshao syenogranite porphyry,
230 Lircon from the collected wh 233 (DJ-1) shows a similar infieral compositions to triat of the Maositao syenogramite porphyry,
233 Zircon from the collected whole rock samples were separated at the Laboratory of the
231 Zircon from the collected whole 234 Surprenoutyst is dominated by K-retaspartamer than ornioclase (Fig. 60).
231 Zircon, from the collected whole rock samples were separated at the Laboratory of the
231 Langfang Regional Geological Survey Institute, Hebe 235 Cathodolumine conected whole rock samples were separated at the Laboratory of the
232 Langfang Regional Geological Survey Institute, Hebei Province, China, using traditional
232 separation methods (i.e., combination of Lanyiany Regional Geological Survey institute, Freber Frovince, China, dsing traditional
232 separation methods (i.e., combination of heavy liquid and magnetic separation techniques,
233 followed by handpicking under a bin separation inetitious (i.e., combination of heavy liquid and hiagnetic separated solid structure of separated zircon, reflected and transmitted light m cathodoluminescence (CL) observations were carried out at the elect la European by Handpicking under a binocular inicioscope). To study the morphology and internal
233 structure of separated zircon, reflected and transmitted light microscopy and
235 cathodoluminescence (CL) observations were 239 equipped with a 193 nm laser at the GPMR following published analytical procedures (Liu et 239 equipped with a 193 nm laser at the GPMR following published analytical procedures (Liu et 239 equipped with a 193 nm laser

 al., 2008). Spot laser ablation of 32 μm and laser pulse repetition frequencies of 8 Hz were
241 utilized. Off-line inspection, integration of background and analyzed signals, time-drift 240 al., 2008). Spot laser ablation of 32 μm and laser pulse repetition frequencies of 8 Hz were
241 utilized. Off-line inspection, integration of background and analyzed signals, time-drift
242 correction and quantitativ al., 2008). Spot laser ablation of 32 µm and laser pulse repetition frequencies of 8 Hz were
241 utilized. Off-line inspection, integration of background and analyzed signals, time-drift
242 correction and quantitative cal al., 2008). Spot laser ablation of 32 µm and laser pulse repetition frequencies of 8 Hz were
241 utilized. Off-line inspection, integration of background and analyzed signals, time-drift
242 correction and quantitative cal al., 2008). Spot laser ablation of 32 µm and laser pu

241 utilized. Off-line inspection, integration of backgrc

242 correction and quantitative calibration for U–Pb dating

243 (Liu et al., 2008). Concordia diagrams and 242 **correction and quantitative calibration for U–Pb dating we**
243 **(Liu et al., 2008). Concordia diagrams and weighted m**
1990 **1244 180plot/Ex_ver 4.15 (Ludwig, 2008).**
245 **4.2. ID–N–TIMS Pyrite Re–Os**
247 **Texture** 242 Conection and quantitative canonation for 0--D dating were performed using *for misdiatear*
243 (Liu et al., 2008). Concordia diagrams and weighted mean calculations were made using
244 Isoplot/Ex_ver 4.15 (Ludwig, 200 243 (Lid et al., 2006). Concordia diagrams and weighted mean calculations were made using
244 soplot/Ex_ver 4.15 (Ludwig, 2008).
245
246 4.2. ID-N-TIMS Pyrite Re-Os
247 Texture evidence shows a close relationship between n 244 misophot Cx_ver 4.15 (Ladwig, 2000).

245

246 4.2. ID-N-TIMS Pyrite Re-Os

247 Texture evidence shows a close relationship between native gold and pyrite

250 seven pyrite samples from the stage 2 veins were selected 243

246 4.2. ID-N-TIMS Pyrite Re-Os

247 Texture evidence shows a close relationship between native gold and pyrite2b. In this case,

248 seven pyrite samples from the stage 2 veins were selected to constrain the timing o 251 Texture evidence shows a close relationship between native gold and pyrite2b. In this case,
243 Texture evidence shows a close relationship between native gold and pyrite2b. In this case,
251 seven pyrite samples from Extract evidence shows a close relationship between hatter gold and pyritez. In this case,
seven pyrite samples from the stage 2 veins were selected to constrain the timing of gold
mineralization. All samples were collecte severi pyrite samples from the stage 2 vents were selected to constraint the thing of gota
mineralization. All samples were collected from the Au1 orebody (at 416 m elevation) of the
Dongji deposit. Some samples were divid 254 primerialization. Fur samples were conected nonr the Atta of eoody (at 4 to m elevation) or the
254 Dongji deposit. Some samples were divided into two fractions (Fig. 3), thus there were a total
251 of 10 pyrite separa 251 of 10 pyrite separates. The detailed sample locations are shown in Fig. 2c and Table 1. In
252 of 10 pyrite separates. The detailed sample locations are shown in Fig. 2c and Table 1. In
252 hand specimens, pyrite is mo 251 bi 10 pyrite separatios. The detailed sample locations are st

252 hand specimens, pyrite is mostly massive (Fig. 3) with the exc

253 possesses disseminated pyrite (Fig. 3h). Microscopic obser

254 predominantly pyrit 252 Thand spectricities, pyrite is intosty massive (Fig. 3) with the exception of sample DN-CF-34 that
253 possesses disseminated pyrite (Fig. 3h). Microscopic observations show that the pyrite is
254 predominantly pyrite2 prossesses disseminated pyrite (i.g. 3n). Microscopic observations show that the pyrite is
predominantly pyrite2b (>98 %) with only minor pyrite2a (Fig. 5b-d). About 1 g of each pyrite
separates was obtained using traditio examples are separates was obtained using traditional isolation methods (i.e., crushing, magnetic, and/or
256 separates was obtained using traditional isolation methods (i.e., crushing, magnetic, and/or
258 heavy liquid se separates was obtained dsing radiuolial isolation interious (i.e., crushing, magnetic, and/or
256 heavy liquid separation and handpicking).
257 The pyrite Re–Os analyses were conducted at the Source Rock and Sulfide
258 Ge

mixed Re–Os tracer solution (¹⁸⁵Re + ¹⁹⁰Os) by inverse aqua regia (3 ml of 11 N HCl and 6 ml
262 of 15.5 N HNO₃) in a carius tube for 24 h at 220 °C. Osmium was isolated and further purified mixed Re–Os tracer solution (¹⁸⁵Re + ¹⁹⁰Os) by inverse aqua regia (3 ml of 11 N HCl and 6 ml
of 15.5 N HNO₃) in a carius tube for 24 h at 220 °C. Osmium was isolated and further purified
from inverse aqua regia by C mixed Re–Os tracer solution (¹⁸⁵Re + ¹⁹⁰Os) by inverse aqua regia (3 ml of 11 N HCl and 6 ml
of 15.5 N HNO₃) in a carius tube for 24 h at 220 °C. Osmium was isolated and further purified
from inverse aqua regia by C 261 mixed Re–Os tracer solution (¹⁸⁵Re + ¹⁹⁰Os) by inverse aqua regia (3 ml of 11 N HCl and 6 ml
262 of 15.5 N HNO₃) in a carius tube for 24 h at 220 °C. Osmium was isolated and further purified
263 from inverse aqua mixed Re–Os tracer solution (¹⁸⁵Re + ¹⁹⁰Os) by inverse aqua regia (3 ml of 11 N HCl and 6 ml
262 of 15.5 N HNO₃) in a carius tube for 24 h at 220 °C. Osmium was isolated and further purified
263 from inverse aqua reg 266 inneer Ne-Os tracer solution ("Ne + "Nos) by inverse aqualitient (3 information minimised Ne-Os tracer solution ("Ne + "Nos) by inverse aqualitient and further purified from inverse aqualities of 15.5 N HNO₃) in a ca 262 Scientific TRITON mass spectrometer at the Arthur Holmes Laboratory at Durham University.
263 Scientific TRITON mass spectrometry (Creaser et al., 1991; Völkening et al., 1991) on a Thermo
266 Scientific TRITON mass sp 268 The Re was measured using static Faraday collectors and Os in peak-hopping mode using and secondary electron multiplier.
268 The Re was measured using operator at the Arthur Holmes Laboratory at Durham University.
268 264 isolated using amon column chomatography method
266 onto the degassed Ni and Pt filaments, respectively
266 ionization mass spectrometry (Creaser et al., 1991;
267 Scientific TRITON mass spectrometer at the Arthur H
26 260 Unio the degassed is and Pt maniems, respectively, and analyzed dshigh regative them are ionization mass spectrometry (Creaser et al., 1991; Völkening et al., 1991) on a Thermo
267 Scientific TRITON mass spectrometer Scientific TRITON mass spectrometer at the Arthur Holmes Laboratory at Durham University.
268 The Re was measured using static Faraday collectors and Os in peak-hopping mode using a
369 secondary electron multiplier.
270 T

268 The Re was measured using static Faraday collectors and Os in peak-hopping mode using a
269 secondary electron multiplier.
270 Total procedural blanks were monitored during the course of study. Blanks for Re and Os
27 secondary electron multiplier.

Total procedural blanks were monitored during the course of study. Blanks for Re and Os

were 4.06 pg and 0.36 pg, with an average ¹⁸⁷Os/¹⁸⁸Os value of 0.19 ± 0.04 (1SD, n = 3). The

op 3.09 Secondary electrofr multiplier.

270 Total procedural blanks were monitored during the course of study. Blanks for Re and Os

3.00026 with the 185Re/ ¹⁸⁷Re values of the Re standard being 0.5993 ± 0.0006 (1SD, n = were 4.06 pg and 0.36 pg, with an average $^{187}Os/188Os$ value of 0.19 ± 0.04 (1SD, n = 3). The
operational conditions of the spectrometer were monitored by reference solutions DROsS
and Re standard (Selby and Creaser, 200 277 were 4.00 pg and 0.30 pg, with an average $-$ Os $-$ Os value of 0.19 ± 0.04 (1.00, n = 3). The operational conditions of the spectrometer were monitored by reference solutions DROsS and Re standard (Selby and Creaser 272 propagated and incorporate uncertainties related to Re and Os mass spectrometer measurements, blank abundances and isotopic compositions, spike calibrations, sample measurements, blank abundances and isotopic composit 273 and its standard (Jendy and cleaser, 2001). The USS US values of DitOsS are 0.10007 1
274 0.00026, with the ¹⁸⁵Re/¹⁸⁷Re values of the Re standard being 0.5993 ± 0.0006 (1SD, n = 3).
275 These measured values are i 279 These measured values are in good agreement with those previously reported at Durham
276 University (e.g., Saintilan et al., 2018 and references therein). Analytical uncertainties are
277 propagated and incorporate un Driversity (e.g., Saintilan et al., 2018 and references therein). Analytical uncertainties are
propagated and incorporate uncertainties related to Re and Os mass spectrometer
measurements, blank abundances and isotopic com

 4.3. In-situ trace element analysis of pyrite by LA–ICP–MS 282 4.3. In-situ trace element analysis of pyrite by LA–ICP–MS
283 Trace element analyses of four pyrite types were conducted by LA–ICP–MS at the Wuhan
284 Sample Solution Analytical Technology Co., China. Detailed operati 282 4.3. *In-situ trace element analysis of pyrite by LA-ICP-MS*
283 Trace element analyses of four pyrite types were conducted by LA-ICP-MS at the Wuhan
284 Sample Solution Analytical Technology Co., China. Detailed opera 282 4.3. *In-situ trace element analysis of pyrite by LA–ICP–MS*
283 Trace element analyses of four pyrite types were conducted by LA–ICP–MS at the Wuhan
284 Sample Solution Analytical Technology Co., China. Detailed opera 282 4.3. *In-situ trace element analysis of pyrite by LA-ICP-MS*
283 Trace element analyses of four pyrite types were conducted by LA-ICP-MS at the Wuhan
284 Sample Solution Analytical Technology Co., China. Detailed opera 282 4.3. *IF-Stid indee element attarysis of pyrite by LA-ICP-IWS*
283 Trace element analyses of four pyrite types were conducted by LA-ICP-IWS at the Wuhan
284 Sample Solution Analytical Technology Co., China. Detailed op 284 Sample Solution Analytical Technology Co., China. Detailed operating conditions for the laser
285 ablation system and the ICP–MS instrument and data reduction are the same as those
286 described by Zong et al. (2017). 285 ablation system and the ICP-MS instrument and data reduction are the same as those
286 described by Zong et al. (2017). Laser sampling was performed using a GeolasPro laser
ablation system that consists of a COMPexPro 290 Argon was used as the make-up gas and mixed with the carrier gas via a T-connector Before and maximum energy of 200 mJ) and a MicroLas optical system. An Agilent 7700e ICP–MS instrument was used to acquire ion-signal i diation system that consists of a COMPexPro 102 ArF excimer laser (wavelength of 193 nm
and maximum energy of 200 mJ) and a MicroLas optical system. An Agilent 7700e ICP–MS
instrument was used to acquire ion-signal intensi ablaudin system that consists of a Colwrear to Toz Arr exclider laser (waveleright of 1951).
288 and maximum energy of 200 mJ) and a MicroLas optical system. An Agilent 7700e ICP–MS
290 instrument was used to acquire ion-s 293 Instrument was used to acquire ion-signal intensities. Helium was used as the carrier gas.
290 Argon was used as the make-up gas and mixed with the carrier gas via a T-connector before
291 Argon was used as the make-up Insulation was used to acquire for signal internsities. Trenum was used as the carrier gas.

290 Argon was used as the make-up gas and mixed with the carrier gas via a T-connector before

291 entering the ICP. A "wire" sig 291 entering the ICP. A "wire" signal smoothing device is included in this laser ablation system (Hu
292 entering the ICP. A "wire" signal smoothing device is included in this laser ablation system (Hu
292 et al., 2014). T 292 entering the ror. A wife sightal sindoming device is included in this laser ablandon system (interior)
293 et al., 2014). The spot size and frequency of the laser were 32 µm and 5 Hz, respectively.
293 Trace element co 292 et al., 2014). The spot size and nequency of the laser were 52 pm and 5 riz, respectively.

293 Trace element compositions of pyrite were calibrated against various reference materials

294 (NIST 610 and NIST 612) wit 293 Frace element compositions of pyrite were calculated against various reference inaterials
294 (NIST 610 and NIST 612) without using an internal standard (Liu et al., 2008). The sulfide
295 reference material of MASS-1 al., 2008).

 4.4. Microthermometry and Laser Raman Spectroscopy 4.4. Microthermometry and Laser Raman Spectroscopy
302 Thirteen quartz samples corresponding to the three mineralization stages were collected to
303 study fluid inclusions, all of which came from the underground mining la 301 4.4. Microthermometry and Laser Raman Spectroscopy
302 Thirteen quartz samples corresponding to the three mineralization stages were collected to
303 study fluid inclusions, all of which came from the underground minin 301 4.4. Microthermometry and Laser Raman Spectroscopy
302 Thirteen quartz samples corresponding to the three mineralization stages were collected to
303 study fluid inclusions, all of which came from the underground minin 301 4.4. Microthermometry and Laser Raman Spectroscopy
302 Thirteen quartz samples corresponding to the three mineralization stages were collected to
303 study fluid inclusions, all of which came from the underground minin 4.4. Microtriemoineny and Laser Raman Spectroscopy
302 Thirteen quartz samples corresponding to the three mineralization stages were collected to
303 study fluid inclusions, all of which came from the underground mining la 303 study fluid inclusions, all of which came from the underground mining laneway at the elevation
304 study fluid inclusions, all of which came from the underground mining laneway at the elevation
306 of ca. 100–400 m. Am 303 suay nan inclusions, an or which came non the directly ountum imming lateway at the elevation
303 of ca. 100–400 m. Among these samples, eight were from the Au1 ore-body of the Dongji
305 deposit, and the rest were fro 305 deposit, and the rest were from the Au17 ore-body of the Maluntou deposit. The details of sample location are shown in Table 2. The microthermometric measurements of fluid inclusions in this study were mainly focused o 310 and pseudosecondary fluid inclusions that occur as clusters and short trails (Fig. 8). Individual 311 fluid inclusions generally possess a diameter between 6 and 10 µm with round to sub-round 311 fluid inclusions gener 310 sample location ate shown in Table 2. The microtriemonentic measurements of had
313 inclusions in this study were mainly focused on fluid inclusion assemblages (FIAs) that were
313 defined as fluid inclusion vacuoles defined as fluid inclusion vacuoles along the sam
309 or single intra-grain fracture/crack (Fig. 8). The exa
310 and pseudosecondary fluid inclusions that occur a
311 fluid inclusions generally possess a diameter bet
312 o 313 Microthermometric analyses were carried out at the Geofluids Research Laboratory, China
313 University of Geosciences, Wuhan, using a Linkam THMS600 heating-freezing stage on an
314 University of Geosciences, Wuhan, us 313 and pseudosecondary fluid inclusions that occur as clusters and short trails (Fig. 8). Individual
311 and pseudosecondary fluid inclusions that occur as clusters and short trails (Fig. 8). Individual
312 fluid inclusio

313 Il fluid inclusions generally possess a diameter between 6 and 10 µm with round to sub-round
312 or polygonal in shape.
313 Microthermometric analyses were carried out at the Geofluids Research Laboratory, China
314 Un 312 or polygonal in shape.
313 or polygonal in shape.
313 Microthermometric analyses were carried out at the Geofluids Research Laboratory, China
314 University of Geosciences, Wuhan, using a Linkam THMS600 heating-freezin 313 Microthermometric analyses were carried out at the Geofluids Research Laboratory, China
314 University of Geosciences, Wuhan, using a Linkam THMS600 heating-freezing stage on an
315 Olympus transmitted light microscope 313 Intervalsions at a referred on at the decisions research Laboratory, China
315 University of Geosciences, Wuhan, using a Linkam THMS600 heating-freezing stage on an
315 Olympus transmitted light microscope. The precis 315 Diympus transmitted light microscope. The precision of freezing runs was ± 0.2 °C and of
316 heating runs was ± 2 °C. Synthetic fluid inclusion standards (pure CO₂ and pure water) were
317 used (Baumgartner et 313 Solympus danismided light inicioscope. The plecision of lieszing runs was 10.2 C and of
316 heating runs was ± 2 °C. Synthetic fluid inclusion standards (pure CO₂ and pure water) were
313 studies (Baumgartner et

 ondition (e.g., density and capture pressure) of individual FIAs was calculated by Flincor
322 H₂O–NaCl program based on fluid inclusion volumetric data (Brown and Hagemann, 1995). 232 Condition (e.g., density and capture pressure) of individual FIAs was calculated by Flincor
322 H₂O–NaCl program based on fluid inclusion volumetric data (Brown and Hagemann, 1995).
323 Gas phases from selected fluid 321 condition (e.g., density and capture pressure) of individual FIAs was calculated by Flincor
322 H₂O-NaCl program based on fluid inclusion volumetric data (Brown and Hagemann, 1995).
323 Gas phases from selected fluid condition (e.g., density and capture pressure) of individual FIAs was calculated by Flincor

322 H₂O-NaCl program based on fluid inclusion volumetric data (Brown and Hagemann, 1995).

323 Gas phases from selected fluid i 322 H₂O-NaCl program based on fluid inclusion volumetric data (Brown and Hagemann, 1995).
323 Gas phases from selected fluid inclusions were identified using a JY/Horiba LabRam
324 HR800 system at Key Laboratory of Tect Gas phases from selected fluid inclusion volument data (brown and riagement), 1980).

Gas phases from selected fluid inclusions were identified using a JY/Horiba LabRam

HR800 system at Key Laboratory of Tectonics and Pet 323 Gas priases norm selected hald inclusions were identified using a 37716/hot Labovann

324 HR800 system at Key Laboratory of Tectonics and Petroleum Resources, Ministry of

5325 Education, China University of Geoscience scan. output of 45 nW. The detector charge
328 for spectra was set between 1000 ar
329 scan.
330
5. Results
332 339 scan.
330
331 **5. Results**
332
333 **5.1. LA–ICP–MS zircon U–Pb age**
334 **All analytical spots were located on pale, euhedral and prismat** 333
331 **5. Results**
332 **All analytical spots were located on pale**, euhedral and prismatic zircon grains with clear CL
335 zonation (Fig. 6). The zircon morphological and textural features confirm a magmatic origin. 331 5.1. LA-ICP-MS zircon U-Pb age
333 5.1. LA-ICP-MS zircon U-Pb age
334 All analytical spots were located on pale, euhedral and prismatic zircon grains with clear CL
335 zonation (Fig. 6). The zircon morphological and te 332
333 5.1. LA–ICP–MS zircon U–Pb age
334 All analytical spots were located on pale, euhedral and prismatic zircon grains with clear CL
335 zonation (Fig. 6). The zircon morphological and textural features confirm a magma 333 5.1. LA-ICP-MS zircon U-Pb age
333 6.1. LA-ICP-MS zircon U-Pb age
336 All analytical spots were located on pale, euhedral and prismatic zircon grains with clear CL
335 zonation (Fig. 6). The zircon morphological and t 2011 2011 Sales were located of pate, embedded and prismatic 2ncorrigiants with clear CL
2011 grantion (Fig. 6). The zircon morphological and textural features confirm a magmatic origin.
336 The U-Pb data of the studied v 20 agreement with previous published data (100–112 Ma, Guo et al., 2012; Liu et al., 2016) in the region. Twenty-one spot analyses for the rhyolite sample (2X-1) show a slightly younger 337 illustrated in Fig. 6.
338 For the rhyolitic ignimbrite (HK-1) of the Huangkeng Formation, 23 analyses yield a
339 weighted mean ²⁰⁶Pb/²³⁸U age of 104 ± 0.7 Ma (MSWD = 1.8; Fig. 6e). This age is in good
340 agreem

Os/ 188 Os compositions yields a Model 3 data (assumes that the scatter about the best-fit
364 line is due to a combination of the assigned uncertainties, and an unknown but normally ¹⁸⁷Os/¹⁸⁸Os compositions yields a Model 3 data (assumes that the scatter about the best-fit

ine is due to a combination of the assigned uncertainties, and an unknown but normally

distributed variation in the ¹⁸⁷Os ¹⁸⁷Os/¹⁸⁸Os compositions yields a Model 3 data (assumes that the scatter about the best-fit
line is due to a combination of the assigned uncertainties, and an unknown but normally
distributed variation in the ¹⁸⁷Os/ ¹⁸⁷Os/¹⁸⁸Os compositions yields a Model 3 data (assumes that the scatter about the best-fit

line is due to a combination of the assigned uncertainties, and an unknown but normally

distributed variation in the ¹⁸⁷O 363 **5.3.** Fluid inclusions of the assign
365 **function** is due to a combination of the assign
365 **function in the ¹⁸⁷Os/¹⁸⁸Os value
366 = 216; Fig. 7a), with an initial ¹⁸⁷Os/¹⁸⁸Os (O
367
5.3. Fluid inclusions
F** 365 distributed variation in the ¹⁸⁷Os/¹⁸⁸Os values; Ludwig, 2008) of 139 ± 14 Ma (N = 10, MSWD
366 = 216; Fig. 7a), with an initial ¹⁸⁷Os/¹⁸⁸Os (Osi) value of 0.36 ± 0.26.
367
368 5.3. Fluid inclusions
Fluid incl

3363 based on the estimated volumetric proportions of the phases present at room temperature,
3370 based on the estimated volumetric proportions of the phases present at room temperature,
338 based on the estimated volume 373 5367
368 5.3. Fluid inclusions
371 **phase transitions during heating and cooling runs**, and laser Raman spectroscopy. These are:
372 Type1 – liquid-rich two-phase inclusions (the volume percentage of vapor is 0-30 vol% 368 5.3. Fluid inclusions
369 Fluid inclusion petrography Fluid inclusions in quartz veins are classified into four types
370 based on the estimated volumetric proportions of the phases present at room temperature,
371 ph 373 8d); Type2 – liquid-vapor two-phase inclusions (30−60 vol%, Fig. 8e); Type3 – vapor-rich two-phase inclusions (60–100 vol%; Fig. 8f); Type4 – saline inclusions (i.e., halite-bearing two-phase inclusions (60–100 vol%; 1373 based on the estimated volumetric proportions in quark vents are classified into four types
370 based on the estimated volumetric proportions of the phases present at room temperature,
372 Type1 – liquid-rich two-pha based on the estimated volumetic proportions of the phases present at foom temperations during heating and cooling runs, and laser Raman spectroscopy. These Type 1 – liquid-rich two-phase inclusions (the volume percentage 977 Type 1 – liquid-rich two-phase inclusions (the volume percentage of vapor is 0–30 vol%, Fig.
373 8d); Type 2 – liquid-vapor two-phase inclusions (30–60 vol%, Fig. 8e); Type 3 – vapor-rich
374 two-phase inclusions (60–1 373 8d); Type1 – iight-vapor two-phase inclusions (ine volume percentage of vapor is 0–50 vorta, 1 ig.
373 8d); Type2 – liquid-vapor two-phase inclusions (30–60 vol%, Fig. 8e); Type3 – vapor-rich
374 two-phase inclusions

373 od), 19982 – iiquid-vapor two-phase inclusions (30-00 vorme, Fig. 8e), 19983 – vapor-fiction
374 two-phase inclusions (60-100 vol%; Fig. 8f); Type4 – saline inclusions (i.e., halite-bearing
375 fluid inclusions with o 375 fluid inclusions with or without sylvite daughter crystal; Fig. 8g-i).
376 fluid inclusions with or without sylvite daughter crystal; Fig. 8g-i).
376 Traces of gases such as CO₂ are not observed by clathrate melting Traces of gases such as CO_2 are not observed by clathrate melting nor are they detected
by laser-Raman spectroscopy in vapor bubbles of type1, 2, and 3 inclusions (Fig. 8). The only
nonelectrolyte in these inclusions is by laser-Raman spectroscopy in vapor bubbles
378 nonelectrolyte in these inclusions is H_2O , s
 $H_2O-NaCl$ system. In addition, halite in saline in
380 isotropy (Fig 8g-i), with sylvite being distinguis
381 relief (Fig 8g

Microthermometry The majority of fluid inclusions homogenize to the liquid phase with the
383 exception of type3 and a few type2 inclusions that are homogenized by the vapor phase. The Microthermometry The majority of fluid inclusions homogenize to the liquid phase with the
sxeeption of type3 and a few type2 inclusions that are homogenized by the vapor phase. The
results of the microthermometric data are Microthermometry The majority of fluid inclusions homogenize to the liquid phase with the exception of type3 and a few type2 inclusions that are homogenized by the vapor phase. The results of the microthermometric data are 382 Microthermometry The majority of fluid inclusions homogenize to the liquid phase with the
383 exception of type3 and a few type2 inclusions that are homogenized by the vapor phase. The
384 results of the microthermome 982 Microthermometry The majority of mud inclusions homogenize to the exception of type3 and a few type2 inclusions that are homogenized b
1984 results of the microthermometric data are summarized in Table 2, and
1985 In Exception of types and a few typez inclusions that are homogenized by the vapor phase. The

1884 In the stage 1 quartz (quartz1), FIAs are dominated by type1 and type2 inclusions and

1886 In the stage 1 quartz (quartz1), 385 In the stage 1 quartz (quartz1), FIAs are dominated by type1 and type2 inclusions and
386 show a broad range in homogenization temperatures (308–377 °C) but a small variation in
387 salinities (4.6–9.1 wt% NaCl equiv.

380 show a broad range in homogenization temperatures (308–377 °C) but a small variation in
381 show a broad range in homogenization temperatures (308–377 °C) but a small variation in
383 salinities (4.6–9.1 wt% NaCl equi siow a bioad range in nonlogenization temperatures (300-377 °C) but a small variation in
salinities (4.6-9.1 wt% NaCl equiv.) (Fig. 9).
Bioad is and 9 FIAs; Fig. 9) that share similar salinities (3.2-9.1 wt% NaCl equiv.) t Saltimus (4.0–9.1 wto ivac i equiv.) (rig. 9).

388 In the stage 2 quartz (quartz2), FIAs are generally two-phase inclusions (e.g., Nos. 5", 6, 7,

389 8, and 9 FIAs; Fig. 9) that share similar salinities (3.2–9.1 wt% NaCl 393 entitier stage 2 quariz (quarizz), it is are generally two-phase inclusions (e.g., it is 3, 0, 7, 388 e.g., it is are generally two-phase inclusions (e.g., it is 3, 0, 7, 1).
393 8, and 9 FIAs; Fig. 9) that share simil 393 homogenization temperatures of 345−374 °C with exceedingly high salinities of 40.4−42.4 wt% NaCl equiv. (Fig. 9). between 295 and 340 °C). In addition to two-ph
inclusions are measured. The dissolution of halite
earlier than bubble disappearance. Type4 inc
homogenization temperatures of 345-374 °C with
wt% NaCl equiv. (Fig. 9).
In the 392 inclusions are measured. The dissolution of halite in these type4 inclusions generally occurs
393 entier than bubble disappearance. Type4 inclusions (i.e., No. 5' FIAs) show final
394 homogenization temperatures of 34 393 earlier than bubble disappearance. Type4 inclusions (i.e., No. 5' FIAs) show final
393 earlier than bubble disappearance. Type4 inclusions (i.e., No. 5' FIAs) show final
394 homogenization temperatures of 345−374 °C w

393 eanier unarrow disappearance. Type-4 inclusions (i.e., 100. 3 Thes) show muan
394 homogenization temperatures of 345-374 °C with exceedingly high salinities of 40.4-42.4
395 wt% NaCl equiv. (Fig. 9).
396 In the stage 3 395 wt% NaCl equiv. (Fig. 9).
396 in the stage 3 quartz (quartz3), fluid inclusions (e.g., Nos. 10-13 FIAs) are homogenized
397 into the liquid phase at temperatures of 198-329 °C, with low salinities between 1.0 and 6.5
3 400 stage1 and 2 veins, indicating distinct cooling and dilution of the hydrothermal system.
400 stage1 and 2 veins, indicating distinct cooling and dilution of the hydrothermal system.
400 stage1 and 2 veins, indicating d

-
-

 5.4. Trace element characteristics of pyrite 5.4. Trace element characteristics of pyrite
403 A total of 68 spot analyses were conducted on the pyrite set, including 14 spots on pyrite1, 18
404 spots on pyrite2a, 31 spots on pyrite2b, and 5 spots on pyrite3. A summar 402 5.4. Trace element characteristics of pyrite
403 A total of 68 spot analyses were conducted on the pyrite set, including 14 spots on pyrite1, 18
404 spots on pyrite2a, 31 spots on pyrite2b, and 5 spots on pyrite3. A su 402 5.4. Trace element characteristics of pyrite

403 A total of 68 spot analyses were conducted on the pyrite set, including 14 spots on pyrite1, 18

404 spots on pyrite2a, 31 spots on pyrite2b, and 5 spots on pyrite3. A 5.4. Trace element characteristics of pyrite

403 A total of 68 spot analyses were conducted on the pyrite set, including 14

404 spots on pyrite2a, 31 spots on pyrite2b, and 5 spots on pyrite3. A summa

405 concentrations 402 3.4. Trace element characteristics or pyrite

403 A total of 68 spot analyses were conducted on the pyrite set, including 14 spots on pyrite1, 18

404 spots on pyrite2a, 31 spots on pyrite2b, and 5 spots on pyrite3. A 408 Sh of all analyzed pyrite are fluctuating (i.e., time vs. intensity) of Au, Cu, Pb, Zn, Ag, and
408 Sb of all analyzed pyrite are fluctuating (i.e., time vs. intensity) of Au, Cu, Pb, Zn, Ag, and
408 Sb of all analyzed

409 high level (Fig. 10). However, the signal of As is relatively smooth and steady. A parallel pattern between As and Au is yielded from most pyrite (Fig. 10a, c), especially in pyrite2b. In the signal of As is relatively 410 concentrations is given in Table 5. The fun dataset is given in Table A.2. The concentration of trace elements is illustrated by boxplots (Fig. 11).
407 The time-resolved LA-ICP-MS profiles (i.e., time vs. intensity) o 417 The time-resolved LA-ICP-MS profiles (i.e., time vs. intensity) of Au, Cu, Pb, Zn, Ag, and
408 Sb of all analyzed pyrite are fluctuating (i.e., with spikes), although they remain at a relatively
409 high level (Fig. 10 418 Sb of all analyzed pyrite are fluctuating (i.e., wille solutions) of Ad, Cd, PD, 2H, Ag, and
408 Sb of all analyzed pyrite are fluctuating (i.e., with spikes), although they remain at a relatively
409 high level (Fig. 413 Franching (I.e., what spikes), and the bubble distributed pattern between As and Au is yielded from most pyrite (Fig. addition, the signals of Co and Ni are generally consistent supporting that these siderophile elemen Hight level (Fig. 10). Howevel, the sightar of As is Felatively shootni and steady. A paralletic pattern between As and Au is yielded from most pyrite (Fig. 10a, c), especially in pyrite2b. In addition, the signals of Co a patent between As and Ad is yielded nont most pyrite (i.ig. 10a, c), espectany in pyritezo. in
addition, the signals of Co and Ni are generally consistent with those of Fe and S (Fig. 10),
supporting that these siderophile

412 supporting that these siderophile elements are commonly distributed in different pyrite types
413 via isomorphism (Zhao et al., 2011).
414 Elements such as Co, Ni, Au, Cu, Zn, As, Ag, Sb, Pb, Mn, Bi and Ti are presente 413 via isomorphism (Zhao et al., 2011).
413 via isomorphism (Zhao et al., 2011).
414 Elements such as Co, Ni, Au, Cu, Zn, As, Ag, Sb, Pb, Mn, Bi and Ti are presented to show
415 similarities and differences between four p 413 diasomorphism (zhao et al., zori).
414 Elements such as Co, Ni, Au, Cu, Zn, As, Ag, Sb, Pb, Mn, Bi and Ti are presented to show
415 similarities and differences between four pyrite types, as the concentration of these 414 concentrations compared to pyrite1, notably Cu, Ag, Pb, The Au concentration of these elements
416 is largely above the minimum detection limits (Table 3). Pyrite1 shows a narrow range in trace
417 element concentratio 413 similanties and unterences between four pyrite types, as the concentration of these elements
416 is largely above the minimum detection limits (Table 3). Pyrite1 shows a narrow range in trace
417 element concentrations 421 oncentrations with the exception of Ti (Fig. 11). The median Au content of pyrite1 is
448 0.1 ppm (Table 3). Pyrite2a contains a wider range of trace elements at measurable
449 concentrations compared to pyrite1, notab element concentrations with the exception of it (rig. 11). The ineutal Ad content of pyrite is

418 0.1 ppm (Table 3). Pyrite2a contains a wider range of trace elements at measurable

419 concentration of pyrite2a is also

 higher than those of other pyrite types (Fig. 11). Pyrite3 shows a similar trace element higher than those of other pyrite types (Fig. 11). Pyrite3 shows a similar trace element
424 distribution pattern to that of pyrite1, with Au concentration less than 0.5 ppm.
425 higher than those of other pyrite types

424 distribution pattern to that of pyrite1, with

425
 6. Discussion

427 distribution pattern to that of pyrite1, with Au concentration less
425
426 **6. Discussion**
427 **6.1. Fluid characteristics and evolution**
429 **Fluid inclusions** hosted in the stage 1 quartz (quartz1)

424 **6. Discussion**
425 **6. Discussion**
427 **6.1.** *Fluid characteristics and evolution*
429 **Fluid inclusions hosted in the stage 1 quartz (quartz1) show intermediate-density,
430 homogenization temperatures well above 31** 427
428 **6.1.** *Fluid characteristics and evolution*
429 Fluid inclusions hosted in the stage 1 quartz (quartz1) show intermediate-density,
430 homogenization temperatures well above 310 °C, and salinities below 10 wt% NaC 427
428 6.1. Fluid characteristics and evolution
429 Fluid inclusions hosted in the stage 1 quartz (quartz1) show intermediate-density,
430 homogenization temperatures well above 310 °C, and salinities below 10 wt% NaCl (F 428 6.1. Fluid characteristics and evolution
429 Fluid inclusions hosted in the stage 1 quartz (quartz1) show intermediate-density,
430 homogenization temperatures well above 310 °C, and salinities below 10 wt% NaCl (Fig. 428 **a.** Fluid inclusions hosted in the stage 1 quartz (quartz1) show intermediate-density,
439 Fluid inclusions hosted in the stage 1 quartz (quartz1) show intermediate-density,
430 homogenization temperatures well above 134 magmatic-hydrothermal systems generally possess a magmatic origin (Zhong et al., 2017b;

431 magmatic-hydrothermal systems (e.g., porphyry, high- and intermediate-sulfidation epithermal, and hydrothermal

432 systems (Holi Chang et al., 2018). In addition, the constant decrease in temperatures with minor change in salinities of the stage 1 hydrothermal fluids in these magmatic-hydrothermal vein-type; Heinrich et al., 2004; Redmond et al Friese characteristics are comparable to those of huits in some magnitatic-hydrothermal
systems (e.g., porphyry, high- and intermediate-sulfidation epithermal, and hydrothermal
vein-type; Heinrich et al., 2004; Redmond et systems (e.g., potphyty, ingite and intermediate-samidation epitiemial, and hydrothermal
vein-type; Heinrich et al., 2004; Redmond et al., 2004). The fluids in these
magmatic-hydrothermal systems generally possess a magmat vent-type, Hennich et al., 2004, Redinond

magmatic-hydrothermal systems generally posses

Chang et al., 2018). In addition, the constant decr

salinities of the stage 1 hydrothermal fluids (Fi

commonly observed in proxim Hotel Chang et al., 2018). In addition, the constant decrease in temperatures with minor change in
435 Chang et al., 2018). In addition, the constant decrease in temperatures with minor change in
436 salinities of the sta Unany et al., 2010). In addition, the constant decrease in temperatures with inition change in
salinities of the stage 1 hydrothermal fluids (Fig. 9) suggests a cooling process and is
commonly observed in proximal hydroth

sammes of the stage 1 hydrothermal hands (i.g. 9) suggests a cooling process and is
commonly observed in proximal hydrothermal systems related to magmatic intrusions (e.g.
Hedenquist and Lowenstern, 1994)
The low-salinity Lonmioniy observed in proximal nydromermal systems related to maginatic intuisions (e.g.
438 Hedenquist and Lowenstern, 1994)
449 The low-salinity fluids (3.2–9.1 wt% NaCl equiv.) characterized by moderate temperatures
440 Frederiquist and Loweristerin, 1994)

439 The low-salinity fluids (3.2–9.1 wt% NaCl equiv.) characterized by moderate temperatures

6 of 295–340 °C are recorded by abundant two-phase inclusions (Fig. 9) in the stage 2 quar

the gold, formed from the homologous fluids. In figure 9 temperatures of low-salinity fluids of
445 the stage 2 are slightly lower than those of the stage 1 fluids (Fig. 9), but are broadly the gold, formed from the homologous fluids. In figure 9 temperatures of low-salinity fluids of
the stage 2 are slightly lower than those of the stage 1 fluids (Fig. 9), but are broadly
consistent with those of the epither the gold, formed from the homologous fluids. In figure 9 temperatures of low-salinity fluids of
445 the stage 2 are slightly lower than those of the stage 1 fluids (Fig. 9), but are broadly
446 consistent with those of the the gold, formed from the homologous fluids. In figure 9 temperatures of low-salinity fluids of
the stage 2 are slightly lower than those of the stage 1 fluids (Fig. 9), but are broadly
consistent with those of the epither the gold, formed from the homologous fluids. In figure 9 temperatures of low-salinity fluids of
the stage 2 are slightly lower than those of the stage 1 fluids (Fig. 9), but are broadly
consistent with those of the epither the stage 2 are slightly lower than those of the stage 1 fluids (Fig. 9), but are broadly
consistent with those of the epithermal deposits, in particular of gold-precipitation-stage in
most intermediate-sulphidation depois 445 consistent with those of the epithermal deposits, in particular of gold-precipitation-stage in
446 consistent with those of the epithermal deposits, in particular of gold-precipitation-stage in
447 most intermediate-su 2447 most intermediate-sulphidation depoists (e.g., wang et al., 2019). Liquid-rich inclusions in
443 most intermediate-sulphidation depoists (e.g., wang et al., 2019). Liquid-rich inclusions in
443 quartz2 commonly coexis 447 broad intermediate-suipmidation depoists (e.g., wang et al., 2019). Elquid-nich inclusions in
448 quartz2 commonly coexist with vapor-rich inclusions, e.g., No. 6 FIAs (Fig. 9) and share
449 similar homogenization temp quarizz commonly coexist with vapor-field inclusions, e.g., No. 0 First (Fig. 3) and share
similar homogenization temperatures and salinities (Table 2). This indicates that low-salinity
fluids of the stage 2 intersected th 449 similar nonlogenization temperatures and sammes (rabie 2). This indicates tract low-sammy
450 fluids of the stage 2 intersected the solvus and boiled to form low-density vapors (Driesner
451 and Heinrich, 2007). The o How indus of the stage 2 intersected the solvus and bolled to form low-defisity vapors (bitestier)
and Heinrich, 2007). The occurrence of various styles breccia mineralization (e.g. crackle
breccia, breccia veins) along s and Heinrich, 2007). The occurrence of various styles breccia infineralization (e.g. crackle
breccia, breccia veins) along some stage 2 quartz veins is also accepted as evidence of
boiling (Canet et al., 2011). In this ca bolling (Canet et al., 2011). In this case, fluid characteristics shown by No. 6 FIAs (i.e., boiling
inclusions with salinity of ~5 wt% NaCl and homogenization temperature of ca. 329 °C),
coupled with a pure H₂O-NaCl sys boling (callet et al., 2011). In this case, null characteristics shown by NO. 01148 (i.e., boling
inclusions with salinity of ~5 wt% NaCl and homogenization temperature of ca. 329 °C),
coupled with a pure H₂O-NaCl system Final solitions with salinity of -5 with Nach and nonlogenization temperature of ca. 329 CJ, coupled with a pure H₂O-NaCl system (Fig. 8), the entrapment pressure for the stage 2 low-salinity fluids is calculated to b Low-salinity fluids is calculated to be approximately 120 bar (Driesner and Heinrich, 2007).

Apart from low-salinity fluids, high-salinity fluids (>40 wt% NaCl equiv.) are recorded by a

small amount of saline inclusions As the method of saling inclusions in the stage 2 veins (Fig. 9). The absence of coexisting

4458 small amount of saline inclusions in the stage 2 veins (Fig. 9). The absence of coexisting

4459 saline inclusions and vapor 462 2 veins (Fig. 9). Given that most of saline inclusions are homogenization temperatures of saline inclusions and vapor-rich inclusions makes it plausible to rule out the role of fluid immiscibility (Heinrich et al., 200 443 sinal amount of same inclusions in the stage 2 vents (trg. 3). The absence of coexisting

449 saline inclusions and vapor-rich inclusions makes it plausible to rule out the role of fluid

460 immiscibility (Heinrich e Example inclusions and vapor-non-inclusions makes it plausible to rule out the role of hud

460 immiscibility (Heinrich et al., 2004). In addition, homogenization temperatures of saline

461 inclusions (>345 °C) are highe

trapping pressure (Roedder and Bodnar, 1980). This estimated minimum pressure is slightly
466 higher than the ones of the stage 2 low-salinity fluids (ca. 120 bar). By inference, the trapping pressure (Roedder and Bodnar, 1980). This estimated minimum pressure is slightly
higher than the ones of the stage 2 low-salinity fluids (ca. 120 bar). By inference, the
presence of abundant low-salinity fluids an trapping pressure (Roedder and Bodnar, 1980). This estimated minimum pressure is slightly

466 higher than the ones of the stage 2 low-salinity fluids (ca. 120 bar). By inference, the

467 presence of abundant low-salinity trapping pressure (Roedder and Bodnar, 1980). This estimated minimum pressure is slightly
higher than the ones of the stage 2 low-salinity fluids (ca. 120 bar). By inference, the
presence of abundant low-salinity fluids an trapping pressure (Roedder and Bodnar, 1980). This estimated minimum pressure is slightly

466 higher than the ones of the stage 2 low-salinity fluids (ca. 120 bar). By inference, the

467 presence of abundant low-salinity Hotary ends and the ones of the stage 2 low-salinity fluids (ca. 120 bar). By inference, the presence of abundant low-salinity fluids and a much smaller amount of high-salinity fluids during the stage 2 may be related to t France of abundant low-salinity fluids and a much smaller amount of high-salinity fluids
468 during the stage 2 may be related to the pressure fluctuation due to faulting or seismic
469 pumping (Roedder and Bodnar, 1980). presence or abundant low-saming mads and a much sinalier amount or ingir-saming mads
during the stage 2 may be related to the pressure fluctuation due to faulting or seismic
pumping (Roedder and Bodnar, 1980). This is cons 473 al., 1988). In fact, faulting or seismic pumping is consistent with the observation that the mineralization at the Dongij and Maluntou is apparently associated with fault systems (Fig. 2) and the development of comb st pumping (its also bound), 1980). This is consistent wint the observation that the
mineralization at the Dongji and Maluntou is apparently associated with fault systems (Fig. 2)
and the development of comb structures in qua 474 and the development of comb structures in quartz veins (Fig. A.2). The faulting or seismic
472 and the development of comb structures in quartz veins (Fig. A.2). The faulting or seismic
473 pumping mechanism may have c 477 and the development of comb structure
277 pumping mechanism may have caused i
273 al., 1988). In fact, faulting or seismic
274 gold-quartz deposits formed at high pres
275 Chi et al. (2017) suggested that such
276 (<20 473 al., 1988). In fact, faulting or seismic pumping is commonly observed in mesothermal
473 al., 1988). In fact, faulting or seismic pumping is commonly observed in mesothermal
474 gold-quartz deposits formed at high pres and the deposits formed at high pressure bumping is commonly observed in mesolutement
and gold-quartz deposits formed at high pressure about 2 to 4 kbar (Sibson et al., 1988), whereas
Chi et al. (2017) suggested that such

479 temperatures (220−250 °C) and low salinities (1.0−6.5 wt% NaCl equiv.) (Fig. 9). Such temperatures and salinities are similar to the ones of fluids in typically low-sulfidation
479 temperatures (220−250 °C) and low sa 475 Circlet al. (2017) suggested that such process could also occur in a shallow environment
476 (<200 bar).
477 The formation of quartz3 associated with calcite and pyrite3 marks a waning stage of the
480 temperatures (22 The formation of quartz3 associated with calcite and pyrite3 marks a waning stage of the

478 hydrothermal system. Quartz3 deposited from the late-stage (stage 3) fluids with low

480 temperatures (220-250 °C) and low sal 478 hydrothermal system. Quartz3 associated with catcle and pyrites niariss a warning stage of the
478 hydrothermal system. Quartz3 deposited from the late-stage (stage 3) fluids with low
480 temperatures (220–250 °C) and 483 erapsistem. Collar to deposited in the face-stage (stage 3) hads with low
temperatures (220–250 °C) and low salinities (1.0–6.5 wt% NaCl equiv.) (Fig. 9). Such
temperatures and salinities are similar to the ones of flu temperatures (zzo=zoo of and low sammets (1.0-0.3 who Nach equive, (1.9. 3). Such
temperatures and salinities are similar to the ones of fluids in typically low-sulfidation
epithermal system within the SCFB, which possess emperatures and salinities are similar to the ones of hidds in typically low-sumulation
epithermal system within the SCFB, which possess a mixed origin of magmatic and meteoric
water (Zhong et al., 2017b). In addition, the

Overall, the hydrothermal fluids in ore system are dominated by low salinity fluids. Fluid
187 inclusions from the stage 1 quartz veins are most likely to represent the initial fluids that Overall, the hydrothermal fluids in ore system are dominated by low salinity fluids. Fluid
inclusions from the stage 1 quartz veins are most likely to represent the initial fluids that
potentially have a magmatic origin. T Overall, the hydrothermal fluids in ore system are dominated by low salinity fluids. Fluid
inclusions from the stage 1 quartz veins are most likely to represent the initial fluids that
potentially have a magmatic origin. T (308−377 °C) and low salinities (4.6−9.1 wt% NaCl equiv.). Subsequently, fluid boiling took place at pressure of ca.120 bar and most sulfides precipitated during the deposition of place at pressure of ca.120 bar and most Overall, the hydrothermal fluids in ore system are dominated by low salinity fluids. Fluid
inclusions from the stage 1 quartz veins are most likely to represent the initial fluids that
potentially have a magmatic origin. T by the stage 1 quartz veins are most likely to represent the initial fluids that
1487 inclusions from the stage 1 quartz veins are most likely to represent the initial fluids that
1488 potentially have a magmatic origin. T Hiclasions from the stage 1 quartz verifs are most then y to represent the final fluids unated potentially have a magmatic origin. These initial fluids possess moderate temperatures
489 (308−377 °C) and low salinities (4. Hold CONS-377 °C) and low salinities (4.6–9.1 wt% NaCl equiv.). Subsequently, fluid boiling took

place at pressure of ca.120 bar and most sulfides precipitated during the deposition of

quartz2, forming the stage 2 sulfi (300–377 C) and low salinities (4.0–8.1 wt/8 NaCl equiv.). Subsequently, halo boling took
490 place at pressure of ca.120 bar and most sulfides precipitated during the deposition of
491 quartz2, forming the stage 2 sulfid quartz2, forming the stage 2 sulfide-bearing quartz veins. The temperatures of boilineties (295-340 °C) decreased from the initial fluids but the salinities were still low (3.2-4
NaCl equiv.). Finally, the fluids character NaCl equiv.). Finally, the fluids characterized by lower temperatures
salinities (1.0–6.5 wt% NaCl equiv.) may be related to the mixing of
water and then formed the quartz3 in the late-stage veins.
496
6.2. Correlation bet 493 Rock equiv.). Finany, the hads characterized by lower temperatures (zzo-zoot O) and lower
494 salinities (1.0–6.5 wt% NaCl equiv.) may be related to the mixing of magmatic and meteoric
495 water and then formed the qua

For an interest in the details and head of the four pyrincipal and meteoric water and then formed the quartz3 in the late-stage veins.

499 **Invisible gold and visible gold occur in the Dongji and Maluntou deposits.**
 Inv water and then lonned the quarizo in the late-stage vents.

490 6.2. Correlation between gold and pyrite

498 Both invisible gold and visible gold occur in the Dongji and Maluntou deposits.

499 Invisible gold and pyrite L 502 consistent with the characteristics of invisible gold-bearing pyrite in epithermal gold pyrite LA-ICP-MS analyses of the four pyrite types from the Dongji
 Invisible gold and pyrite LA-ICP-MS analyses of the four pyr 502 (e.g., Cook and Chryssoulis 1990; Sung et al. 2009). A parallel pattern between the signals of the four pyrite types from the Dongji

499 **Invisible gold and pyrite** LA-ICP-MS analyses of the four pyrite types from the **Invisible gold and pyrite LA-ICP-MS** analyses of the four pyrite types from the Dongji
and Maluntou deposits yield a positive correlation between Au and As (Fig. 12a), which is
consistent with the characteristics of invis 504 the Reich et al. (2005) Au-saturation line in figure 12a could be used to recognize the occurrence of invisible gold solution or nanoparticles; Ciobanu et al., 2012). Apparently, accurrence of invisible gold (solid sol 501 consistent with the characteristics of invisible gold-bearing pyrite in epithermal gold deposits
502 (e.g., Cook and Chryssoulis 1990; Sung et al. 2009). A parallel pattern between the signals of
503 As and Au from mos 502 (e.g., Cook and Chryssoulis 1990; Sung et al. 2009). A parallel pattern between the signals of
503 As and Au from most pyrite (Fig. 10) also supports the presence of invisible gold. Therefore,
504 the Reich et al. (200

- -

 that the concentration of Au exhibits an increasing trend from pyrite1, pyrite2a to pyrite2b, and that the concentration of Au exhibits an increasing trend from pyrite1, pyrite2a to pyrite2b, and
550 then decreases significantly during pyrite3 precipitation. The similar distribution pattern is also
551 shown by Ag, As, that the concentration of Au exhibits an increasing trend from pyrite1, pyrite2a to pyrite2b, and
550 then decreases significantly during pyrite3 precipitation. The similar distribution pattern is also
551 shown by Ag, As, that the concentration of Au exhibits an increasing trend from pyrite1, pyrite2a to pyrite2b, and
550 then decreases significantly during pyrite3 precipitation. The similar distribution pattern is also
552 shown by Ag, As, that the concentration of Au exhibits an increasing trend from pyrite1, pyrite2a to pyrite2b, and

then decreases significantly during pyrite3 precipitation. The similar distribution pattern is also

shown by Ag, As, Zn an then decreases significantly during pyrite3 precipitation. The similar distribution pattern is also

shown by Ag, As, Zn and Sb elements (Fig. 11). Such trend is consistent with that previous

reported in the Lihir gold de shown by Ag, As, Zn and Sb elements (Fig. 11). Such trend is consistent with that previous
seported in the Lihir gold deposit (Sykora et al., 2018). For the Lihir deposit, the low level of
most trace elements in the early shown by Ag, As, $2n$ and 3b elements (rig.
 552 reported in the Lihir gold deposit (Sykora et
 553 most trace elements in the early stage pyrite
 554 solubility of trace elements in aqueous solut

elements en For the Dongji and Maluntou deposit (Uykola et al., 2016). To the Elimi deposit, the low level of most trace elements in the early stage pyrite is related to slow growth rate of pyrite and high solubility of trace elements 553 shows trace elements in the early stage pyrite is related to slow grown rate or pyrite and high
solubility of trace elements in aqueous solution due to high temperatures. The suite of trace
elements enriched in the mid Solution of the elements in aqueous solution due to high temperatures. The sulte of trace
elements enriched in the middle stage pyrite results from disequilibrium precipitation of pyrite
(Sykora et al., 2018).
For the Dong Experience entried in the middle stage pyric results in on disequinonant precipitation or pyrite
556 (Sykora et al., 2018).
557 For the Dongji and Maluntou deposits, temperatures of the stage 1 hydrothermal fluids (up
558 557 For the Dongji and Maluntou deposits, temperatures of the stage 1 hydrothermal fluids (up

558 to 377 °C) are comparable with the ones of the Lihir gold deposit (Sykora et a. 2018),

559 probably suggesting a connectio 558 to 377 °C) are comparable with the ones of the Lihir gold deposit (Sykora et a. 2018),
559 probably suggesting a connection between the high-temperature environment and the low
560 concentrations of trace elements in p 559 probably suggesting a connection between the high-temperature environment and the low
560 concentrations of trace elements in pyrite1. The possible scenario responsible for high
561 concentrations of Au, Ag, As, Zn, an 569 concentrations of trace elements in pyrite1. The possible scenario responsible for high
561 concentrations of Au, Ag, As, Zn, and Sb in pyrite2b are various (e.g., temperature, absorption
562 properties of pyrite, flui Solider-
561 concentrations of Au, Ag, As, Zn, and Sb in pyrite2b are various (e.g., temperature, absorption
562 properties of pyrite, fluid composition, precipitation rate, and availability of Fe and/or S;
563 Sykora et a 566 concentrations of Aut, Ay, As, 2.1, and 35 in pyritezo are various (etg., temperature, assorption
566 properties of pyrite, fluid composition, precipitation rate, and availability of Fe and/or S;
568 Sykora et al., 201 563 Sykora et al., 2018 and references therein). We suggest that the rapid precipitation of pyrite2b due to fluid boiling probably play a key role, although other parameters should also be carefully considered. Disequilibr Sos Sykora et al., 2010 and references therein). We suggest that the rapid precipitation of pyritezo
564 due to fluid boiling probably play a key role, although other parameters should also be
565 carefully considered. Dis 565 carefully considered. Disequilibrium precipitation of pyrite is enhanced under conditions of capid precipitation (Huston et al., 1995 and references therein), and helps to incorporate trace elements into pyrite as a so

 Au) and associated chalcophile elements (e.g., As, Ag, Cu, Pb, Zn, and Sb) in hydrothermal 570 Au) and associated chalcophile elements (e.g., As, Ag, Cu, Pb, Zn, and Sb) in hydrothermal
571 fluids have been consumed during the precipitation of pyrite2b. Additionally, the influx of
572 meteoric water during the l 426 Au) and associated chalcophile elements (e.g., As, Ag, Cu, Pb, Zn, and Sb) in hydrothermal
571 fluids have been consumed during the precipitation of pyrite2b. Additionally, the influx of
572 meteoric water during the l 42573 fluids. In summary, the differences in trace element composition of pyrite fluids. In summary, the differences in trace element composition of pyrite from different generations are related to the complicated process, 424 577 Au) and associated chalcophile elements (e.g., As, Ag, Cu, Pb, Zn, and Sb) in hydrothermal
571 fluids have been consumed during the precipitation of pyrite2b. Additionally, the influx of
572 meteoric water during t 407 and associated chatedphile elements (e.g., As, Ag, Cu, FD, 2h, and 3b) in hydro
571 fluids have been consumed during the precipitation of pyrite2b. Additionally, the
6572 meteoric water during the late stage of the hyd fluids. In summary, the differences in trace element c
generations are related to the complicated process, and
(both invisible and visible gold) and pyrite2b is well define
576
576
5.3. Timing of gold mineralization
578 Pr Frevious are related to the complicated process, and the close relationship between gold
575 (both invisible and visible gold) and pyrite2b is well defined.
576 6.3. Timing of gold mineralization
578 Previous geochronolog

979 series alus are related to the complicated process, and the close relationship between gold
576 (both invisible and visible gold) and pyrite2b is well defined.
579 Previous geochronology, on the bases of Rb−Sr (on qua 576 (bout invisible and visible gold) and pyritezD is well defined.
578 Previous geochronology, on the bases of Rb-Sr (on quartz and whole-rock), K-Ar (on alunite,
579 sericite, and adularia), Ar-Ar (on alunite and adular 577 6.3. Timing of gold mineralization
578 Previous geochronology, on the bases of Rb-Sr (on quartz and whole-rock), K-Ar (on alunite,
579 sericite, and adularia), Ar-Ar (on alunite and adularia), Re-Os (on molybdenite) a 578 Previous geochronology, on the bases of Rb-Sr (on quartz and whole-rock), K-Ar (on alunite,
579 sericite, and adularia), Ar-Ar (on alunite and adularia), Re-Os (on molybdenite) and TIMS
580 U-Pb (on zircon) dating meth 579 sericite, and adularia), Ar-Ar (on alunite and adularia), Re-Os (on molybdenite) and TIMS
580 U-Pb (on zircon) dating methods, shows that gold mineralization in the SCFB are of
581 Oxfordian-Toarcian (ca. 157-181 Ma) 584 584 584 584 584 584 584 104 the age of 104 ± 2 Ma (Fig. 6) obtained from the rhyolication in the SCFB are of α 2017b and references therein). In the DVB, the indirect timing constraints of gold mineralization are g 581 Oxfordian-Toarcian (ca. 157-181 Ma) and Turonian-Albian (ca. 91-110 Ma) (Li, 2016; Zhong
582 et al., 2017b and references therein). In the DVB, the indirect timing constraints of gold
583 mineralization are given by t 582 et al., 2017b and references therein). In the DVB, the indirect timing constraints of gold
583 mineralization are given by the age of host-rocks and post-mineralization dikes. For example,
584 the age of 104 ± 2 Ma (F 583 mineralization are given by the age of host-rocks and post-mineralization dikes. For example, the age of 104 \pm 2 Ma (Fig. 6) obtained from the rhyolitic ignimbrite (in which orebodies in the Maluntou deposit are ho 583 Initeralization are given by the age of host-tooks and post-initeralization dikes. For example, the age of 104 \pm 2 Ma (Fig. 6) obtained from the rhyolitic ignimbrite (in which orebodies in the Maluntou deposit are Saar the age of 104 1 2 Ma (11g. 6) obtained from the might
585 Maluntou. Similarly, the rhyolitic porphyry (154
1587 orebodies in the Dongji deposit (Fig. 2a), together v
1588 dike (95.1 ± 0.7 Ma; Fig. 6) bracket the timi

- -

620 therefore does not adversely affect geochronology based on the Osi composition (Cumming
621 therefore does not adversely affect geochronology based on the Osi composition (Cumming
621 et al., 2014).
622 Regression of 621 of 99 ± 10 Ma (MSWD = 0.47, Osi = 1.35 ± 0.26; Fig. 7c). The remaining four samples with a satigned uncertainties produce the scatter about the best-fit line; Ludwig, 2008) Re-Os date of 99 ± 10 Ma (MSWD = 0.47, Osi = 622 Regression of the Re–Os data based on Osi data groupings, six pyrite separates
623 characterized by similar and high Osi (>1) yield a Model 1 (which considers that only the
624 assigned uncertainties produce the scatt 623 characterized by similar and high Osi (>1) yield a Model 1 (which considers that only the assigned uncertainties produce the scatter about the best-fit line; Ludwig, 2008) Re-Os date
625 of 99 ± 10 Ma (MSWD = 0.47, Os 628 (328 (Galacterized by similar and ingrit Ost (\div 1) yield a model 1 (winter considers that only the assigned uncertainties produce the scatter about the best-fit line; Ludwig, 2008) Re-Os date
625 of 99 ± 10 Ma (MSWD 625 of 99 ± 10 Ma (MSWD = 0.47, Osi = 1.35 ± 0.26; Fig. 7c). The remaining four samples with
626 of 99 ± 10 Ma (MSWD = 0.47, Osi = 1.35 ± 0.26; Fig. 7c). The remaining four samples with
626 lower and scattered Osi (<0.7) 626 deposit. Therefore, although the data shows large uncertainty, it is considered to represent the best estimate for the timing of gold mineralization (91–110 Ma) in the SCFB (Zhong et al., 2017b and references therein) 627 well with the general temporal understanding of gold mineralization (91–110 Ma) in the SCFB
628 (Zhong et al., 2017b and references therein). The data also enters the indirect gold
629 mineralization age window (<ca.

may be related to the variability in the Osi (Osi₉₉ = 1.32–1.41; Table 1). The Turonian to Albian
633 is a key period for gold mineralization in the DVB. may be related to the variability in the Osi (Osi₉₉ = 1.32–1.41; Table 1). The Tu
633 is a key period for gold mineralization in the DVB.
634 may be related to the variability in the Osi (Osi₉₉ = 1.3
633 is a key period for gold mineralization in the DVB.
634
635 6.4. Origin of gold deposits
636 LA-ICP-MS zircon U-Pb data (Fig. 6) of the rh

632 may be related to the variability in the Osi (Osi₉₉ = 1.32–1.41; Table 1). The Turonian to Albian
633 is a key period for gold mineralization in the DVB.
634 6.4. Origin of gold deposits
636 LA–ICP–MS zircon U–Pb dat 633 Formation, the rhyolite from the DVB.
633 Formation is a key period for gold mineralization in the DVB.
635 Formation, the rhyolite from the Zhaixia Formation, the Xiaoshao syenogranite porphyry, and
637 Formation, the 638 6.4. Origin of gold deposits
636 LA-ICP-MS zircon U-Pb data (Fig. 6) of the rhyolitic ignimbrite from the Huangkeng
637 Formation, the rhyolite from the Zhaixia Formation, the Xiaoshao syenogranite porphyry, and
638 th 635 6.4. Origin of gold deposits
636 LA-ICP-MS zircon U-Pb data (Fig. 6) of the rhyolitic ignimbrite from the Huangkeng
637 Formation, the rhyolite from the Zhaixia Formation, the Xiaoshao syenogranite porphyry, and
638 th 6.36 LA–ICP–MS zircon U–Pb data (Fig. 6) of the rhyolitic ignimbrite from the Huangkeng
636 LA–ICP–MS zircon U–Pb data (Fig. 6) of the rhyolitic ignimbrite from the Huangkeng
638 Formation, the rhyolite from the Zhaixia Fo 637 Formation, the rhyolite from the Zhaixia Formation, the Xiaoshao syenogranite porphyry, and
638 the post-mineralization granite porphyry dike bracket the duration of volcanism-subvolcanism
639 in the Dongkeng district Follindion, the hilyone from the Zirabia Follindion, the Maositao syenogramic polphyty, and
638 the post-mineralization granite porphyty dike bracket the duration of volcanism-subvolcanism
639 in the Dongkeng district betw 639 in the Dongkeng district between 95.1 and 104 Ma (Cenomanian-Albian). The pyrite Re–Os age of 99 \pm 10 Ma is shown to record the bulk Au mineralization in the DVB (Fig. 7). By inference, magmatism and gold mineraliz 644 on the wide distribution of the coeval A- and I-type composite granites (e.g., Li et al., 2016), and σ and σ and σ and σ are comparable in time with the Cretaceous magmatism and gold mineralization in the 646 GHO et al., 2016), bimodal continental margin arc basalts and rhyolites (Xia et al., 2008).
643 During this period, the SCFB is considered to be under an extensional tectoric setting based
643 During this period, the S 642 Cretaceous magmatism and gold initialization in the DVB are complarable in this with the
642 Cretaceous magmatism and metallogenesis in the SCFB at 110–80 Ma (Mao et al., 2008).
643 During this period, the SCFB is cons Cretaceous inagmaushi and inetallogeness in the SCFB at 110-60 wa (wao et al., 2006).

643 During this period, the SCFB is considered to be under an extensional tectonic setting based

644 on the wide distribution of the c bunny ans penod, the SCFD is considered to be under an extensional rectoric setting based
on the wide distribution of the coeval A- and I-type composite granites (e.g., Li et al., 2014;
Zhao et al., 2016), bimodal continen A2). 2.1ao et a.:, 2010), bimodal continental margin atc basalis and higolities (xia et al., 2010), and
646 pull-apart basins (Shu and Zhou, 2002). In this case, gold mineralization at Dongji and
647 Maluntou is potentially occ 647 Maluntou is potentially occurred in the regional extensional setting. Apparently, this inference
648 is strongly supported by the presence of comb quartz and cavities in the stgae 2 veins (Fig.
651 A2).
650 Open-space

648 is strongly supported by the presence of comb quartz and cavities in the stgae 2 veins (Fig.
652 discussed above), indicate an epithermal environment for ore system. In addition, the
652 discussed above), indicate an e

653 chemistry of pyrite is also used to constrain the origin of gold deposits. Generally, pyrite
654 formed in epithermal stage is characterized by high As concentration (10²-10⁴ ppm) with Au chemistry of pyrite is also used to constrain the origin of gold deposits. Generally, pyrite
formed in epithermal stage is characterized by high As concentration (10²-10⁴ ppm) with Au
concentration of 0.5-100 ppm (Syko chemistry of pyrite is also used to constrain the origin of gold deposits. Generally, pyrite
formed in epithermal stage is characterized by high As concentration $(10^2-10^4$ ppm) with Au
concentration of 0.5-100 ppm (Syk 653 chemistry of pyrite is also used to constrain the origin of gold deposits. Generally, pyrite
654 formed in epithermal stage is characterized by high As concentration $(10^{2} - 10^{4} \text{ ppm})$ with Au
655 concentration of 0 653 chemistry of pyrite is also used to constrain the origin of gold deposits. Generally, pyrite
formed in epithermal stage is characterized by high As concentration (10²-10⁴ ppm) with Au
concentration of 0.5-100 ppm 653 chemistry of pyrite is also used to constrain the origin of gold deposits. Generally,
654 formed in epithermal stage is characterized by high As concentration (10²-10⁴ ppm) w
655 concentration of 0.5-100 ppm (Syko 653 Colemistry of pyrite is also used to constraint the origin of gold deposits. Generally, pyrite
654 formed in epithermal stage is characterized by high As concentration $(10^2 \text{-} 10^4 \text{ ppm})$ with Au
655 concentration o 655 concentration of 0.5-100 ppm (Sykora et al., 2018). The As and Au concentrations of pyrite2b range from 12 to 31528 ppm (average of 3457 ppm) and 0.11 to 27 ppm (average of 3.49 ppm) (Table A.2), and therefore well sup

Concentration of 0.5-100 ppm (system et al., 2016). The AS and Ad Concentrations of pyrite2b

factor range from 12 to 31528 ppm (average of 3457 ppm) and 0.11 to 27 ppm (average of 3.49 ppm)

(Table A.2), and therefore we 657 (Table A.2), and therefore well support the epithermal condition.
658 Cobalt and Ni contents, and Co/Ni ratios of pyrite are controlled by physical and chemical
669 conditions of gold mineralization, and are considere Cobalt and Ni contents, and Co/Ni ratios of pyrite are controlled by physical and chemical

conditions of gold mineralization, and are considered to be empirical indicators to study the

formation conditions (e.g., Li et cobatival of concentration, and are considered to be empirical indicators to study the
formation conditions (e.g., Li et al., 2015; Zhao et al., 2011). Co/Ni ratios for pyrite1, pyrite2b,
and pyrite3 range 0.2-10.7 (mean = 669 formation conditions (e.g., Li et al., 2015; Zhao et al., 2011). Co/Ni ratios for pyrite1, pyrite2b, and pyrite3 range 0.2-10.7 (mean = 4.3), 0.1-8.7 (mean = 2.2), and 0.4-4.9 (mean = 2.0) (Table A.2), are typical of m 661 and pyrite3 range 0.2-10.7 (mean = 4.3), 0.1-8.7 (mean = 2.2), and 0.4-4.9 (mean = 2.0)
662 (Table A.2), are typical of magmatic-hydrothermal pyrite (Bajwah et al., 1987). The low Ni
663 concentration (less than 98 ppm 662 (Table A.2), are typical of magmatic-hydrothermal pyrite (Bajwah et al., 1987). The low Ni
663 concentration (less than 98 ppm; Table 3) of pyrite from different generations also suggests a
664 magmatic-hydrothermal or 663 concentration (less than 98 ppm; Table 3) of pyrite from different generations also suggests a magmatic-hydrothermal origin, as pyrite from granite-related deposits is expected to contain negligible Ni (Rudnick and Ga concernization (iess trait so pprit, trable 3) or pyrite from
magmatic-hydrothermal origin, as pyrite from granite-re
negligible Ni (Rudnick and Gao, 2003). In this case, the
gold deposits is potentially related to an epit Inaginian engligible Ni (Rudnick and Gao, 2003). In this case, the formation of the Dongji and Maluntou
666 negligible Ni (Rudnick and Gao, 2003). In this case, the formation of the Dongji and Maluntou
666 gold deposits is Fregingthe Ni (Natinux and Gao, 2005). In this case, the formation of the Dorigy and Maturicus
666 gold deposits is potentially related to an epithermal magmatic-hydrothermal system. This
667 suggestion is similar to the o

9667 suggestion is similar to the origin of most epithermal gold deposits in the SCFB (e.g., Zhong et al., 2017b; Chen et al., 2020).
669 to the epithermal gold deposits in the SCFB are distinguished on the basis of the su suggestion is similar to the origin of most epithermial gold deposits in the SCFB (e.g., Zhong
et al., 2017b; Chen et al., 2020).
The epithermal gold deposits in the SCFB are distinguished on the basis of the sulfidation
s 669 The epithermal gold deposits in the SCFB are distinguished on the basis of the sulfidation
670 state of the sulfide mineralogy, alteration zones, and geochemical associations as belonging
671 to three sub-types: (1) hi deposits potentially show many features in common with IS epithermal deposits (Heald et al.,
1987; White and Hedenquist, 1995). For example, gold mineralization typically has a close deposits potentially show many features in common with IS epithermal deposits (Heald et al.,
1987; White and Hedenquist, 1995). For example, gold mineralization typically has a close
temporal and spatial relationship with deposits potentially show many features in common with IS epithermal deposits (Heald et al.,

1987; White and Hedenquist, 1995). For example, gold mineralization typically has a close

temporal and spatial relationship wit deposits potentially show many features in common with IS epithermal deposits (Heald et al.,
1987; White and Hedenquist, 1995). For example, gold mineralization typically has a close
temporal and spatial relationship with deposits potentially show many features in common with IS epithermal deposits (Heald et al.,

1987; White and Hedenquist, 1995). For example, gold mineralization typically has a close

temporal and spatial relationship wit 675 1987; White and Hedenquist, 1995). For example, gold mineralization typically has a close
676 temporal and spatial relationship with rhyolitic-dactic volcanic-subvolcanic rocks (Chen et al.,
677 2020), which is differ 676 temporal and spatial relationship with rhyolitic-dacitic volcanic-subvolcanic rocks (Chen et al., 2020), which is different from the LS ore system. In addition, the hydrothermal fluids generating gold deposits contain 681 2019). Einaudi et al. (2003) peoposed that the average Ag/Au concentration ratio in IS ore system should be more than 10. The ratio in this study is of 22 and thus supporting an IS system should be more than 10. The ra generating gold deposits contain significant magma components and therefore with
moderate-low temperatures (198-377 °C). Such temperatures are higher than the ones of
typically LS deposits (e.g., Chen et al., 2020) but sim generating your deposits contain signincant magina components and therefore with
moderate-low temperatures (198–377 °C). Such temperatures are higher than the ones of
typically LS deposits (e.g., Chen et al., 2020) but sim 680 typically LS deposits (e.g., Chen et al., 2020) but similar to some IS deposits (e.g., Wang et al., 2019). Einaudi et al. (2003) peoposed that the average Ag/Au concentration ratio in IS or system should be more than 1 681 2019). Einaudi et al. (2003) peoposed that the average Ag/Au concentration ratio in IS ore system should be more than 10. The ratio in this study is of 22 and thus supporting an IS epithermal origin. Moreover, hydrothe 682 system should be more than 10. The ratio in this study is of 22 and thus supporting an IS
683 epithermal origin. Moreover, hydrothermal alteration at Dongji and Maluntou is featured by
684 assemblage of quartz-sericite 683 epithermal origin. Moreover, hydrothermal alteration at Dongji and Maluntou is featured by
684 assemblage of quartz-sericite-chlorite-illite, which is apparently different from
685 kaolinite-adularia alteration in LS g ephriemial origin. Moreover, riyulouremial alteration at Dorigiji and Malunitou is readiled by
assemblage of quartz-sericite-chlorite-illite, which is apparently different from
kaolinite-adularia alteration in LS gold depo dessentiality of details and the scenario is appearing direct from kalendaria atteration in LS gold deposit in the DVB (Chen et al., 2020) and alunite-dickite alteration in HS gold deposit in the SCFB (Zhong et al., 2017). Radimite-adularia anteratori in LS gold deposit in the DVB (Crien et al., 2020) and
dunite-dickite alteration in HS gold deposit in the SCFB (Zhong et al., 2017).
Therefore, on the basis of our field and petrographic obser 687 Therefore, on the basis of our field and petrographic observations, LA-ICP-MS analysis
688 results, pyrite Re-Os data, fluid inclusion studies, and characteristics of trace elements in
699 pyrite, a possible scenario i 688 results, pyrite Re–Os data, fluid inclusion studies, and characteristics of trace elements in
689 results, pyrite Re–Os data, fluid inclusion studies, and characteristics of trace elements in
692 pyrite, a possible sc Fractions, pyrite Ne-Os data, individuation studies, and characteristics of trace elements in
pyrite, a possible scenario is proposed herein to explain the formation of IS epithermal gold
deposits in the DVB. Volcanism-sub by the, a possible scenario is proposed neterm to explain the formation of the epithermial gold
deposits in the DVB. Volcanism-subvolcanism related to the regional extensional tectonic
setting occurred during the 95–104 Ma

 The reaction between hydrothermal fluids and host rocks led to extensive hydrothermal The reaction between hydrothermal fluids and host rocks led to extensive hydrothermal
definition, e.g., sericitization and chloritization. However, the most important process was fluid
boiling at ca. 329 °C with pressure o The reaction between hydrothermal fluids and host rocks led to extensive hydrothermal

alteration, e.g., sericitization and chloritization. However, the most important process was fluid

boiling at ca. 329 °C with pressure The reaction between hydrothermal fluids and host rocks led to extensive hydrothermal

alteration, e.g., sericitization and chloritization. However, the most important process was fluid

boiling at ca. 329 °C with pressur The reaction between hydrothermal fluids and host rocks led to extensive hydrothermal

alteration, e.g., sericitization and chloritization. However, the most important process was fluid

boiling at ca. 329 °C with pressure The Feacuori between riyaroutennal nulles and riost rocks led to extensive riyaroutennal
alteration, e.g., sericitization and chloritization. However, the most important process was fluid
bolling at ca. 329 °C with pressur 2011 bolling at ca. 329 °C with pressure of ca.120 bar, which potentially triggered the precipitation
3069 bolling at ca. 329 °C with pressure of ca.120 bar, which potentially triggered the precipitation
3069 of massive or 302 intermediate-sulfidation epithermal origin. The latter potentially ungered the precipitation
702 intermediate-sulfidation epithermal origin. The Muslim exhibited by the Dongli and Maluntou deposits, and thus may also h 703 metallogenic belt of intermediate-sulfidation epithermal deposits in the SCFB.
The Huaixi (Li et al., 2011), Jinjiyan (Zhong et al., 2017b), and Longtoushan (Wang, 2011)
apithermal gold deposits within the SCFB (Fig. 1 exhibited by the Dongji and Malu

1702 intermediate-sulfidation epithermal or

1703 metallogenic belt of intermediate-sulfidat

1704

1705 **7. Conclusions**

1706 The Theorem is metallogenic belt of intermediate-sulfidation epithermal deposits in the SCFB.

The Tatler potentially proposes and entire

The SCFB.

The Tatler potentially had a magmatic component at high temperature (up 708 7. Conclusions
708 7. Conclusions
708 7. Conclusions
707 1. Hydrothermal fluids potentially had a magmatic component at high temperature (up to
708 377 °C; stage 1), and boiled at ca. 329 °C (stage 2), and mixed with i 705 **7. Conclusions**

706 **707** 1. Hydrothermal fluids potentially had a magmatic compone

708 377 °C; stage 1), and boiled at ca. 329 °C (stage 2), and mixe

709 during the late-stage (stage 3).

710 2. Visible gold and 105 1. Conclusions

1. Hydrothermal fluids potentially had a magmatic component at high temperature (up to

1070 377 °C; stage 1), and boiled at ca. 329 °C (stage 2), and mixed with infiltrating meteoric water

1070 during 1. Hydrothermal fluids potentially had a magmatic component at high temperature (up to

1703 377 °C; stage 1), and boiled at ca. 329 °C (stage 2), and mixed with infiltrating meteoric water

1709 during the late-stage (sta 2071 1. Tryanomermar hulds potentially had a hiagmatic component at high temperature (d

208377 °C; stage 1), and boiled at ca. 329 °C (stage 2), and mixed with infiltrating meteoric w

2093 during the late-stage (stage 3) 213 3. Gold mineralization in the Dongji deposit formed at ca. 99 Ma, which is coeval with the volcanism-subvolcanism (95–104 Ma) related to the regional extensional tectonic setting. 2. Visible gold and invisible gold are both closely associated with pyrite2b. Visible gold forms

2. Visible gold and electrum and precipitates directly from the fluids during fluid boiling. Invisible

2. gold is in the fo

 4. Gold mineralization is related to an epithermal magmatic-hydrothermal system. The Dongji 4. Gold mineralization is related to an epithermal magmatic-hydrothermal system. The Dongji
216 and Maluntou gold deposits have an intermediate-sulfidation epithermal origin.
217

4. Gold mineralization is related to an epithermal magmatic-hydrothermal system. The Dongji
and Maluntou gold deposits have an intermediate-sulfidation epithermal origin.
717
Acknowledgements We express our thanks to rev 4. Gold mineralization is related to an epithermal magmatic-hydrothermal system. The Dongji

116 and Maluntou gold deposits have an intermediate-sulfidation epithermal origin.

117

117

118 **Acknowledgements** We express o 4. Gold inmeralization is related to air epithermal haginatu-hydrothermal system. The Dongir
20 and Maluntou gold deposits have an intermediate-sulfidation epithermal origin.
213 **Acknowledgements** We express our thanks to 217 **Acknowledgements** We express our thanks to reviewers for their critical reviews and
219 **Acknowledgements** We express our thanks to reviewers for their critical reviews and
219 comments. The authors also thank Editor-The **Acknowledgements** We express our thanks to reviewers for their critical reviews and

comments. The authors also thank Editor-in-Chief Prof. Franco Pirajno and associated

Editor-in-chief for their editorial help and c Fis Acknowiedgements we express our marks to reviewers for their chitcar reviews and
comments. The authors also thank Editor-in-Chief Prof. Franco Pirajno and associated
Editor-in-chief for their editorial help and constru 219 Chinnens. The admoss also thank Editor-in-chief Prof. Tranco Pirajho and associated

221 Antonia Hofmann, Chris Ottley, Geoff Nowell, Zeyang Liu and Junjie Liu for analytical support

222 of the Re–Os work, and Chenjin Editor-in-chief for their editorial help and consudcive suggestions. Triants are extended to
721 Antonia Hofmann, Chris Ottley, Geoff Nowell, Zeyang Liu and Junjie Liu for analytical support
723 of the Re–Os work, and Chen Fritonia Frommann, Crinis Ottey, Geon Nowen, Zeyang Eta and Junjie Eta ior analytical support
222 of the Re–Os work, and Chenjin Chen from the Fujian goldmine for assistance during field
323 work. This study was financiall 222 Of the Ne-Os work, and Cherijin Cheri nont the Tujan goldniline for assistance during field

223 work. This study was financially supported by the National Natural Science Foundation of

224 China (grants No. 41772071) China (grants No. 41772071), the Fundamental Research Fund of Xinjiang Univers

725 No. 620320026), and the Fund from the School of Earth Resource, China Univ

726 Geosciences (CUG, Wuhan) for Meng-Ting Chen during her stu 725 No. 620320026), and the Fund from the School of Earth Resource, China University of

726 Geosciences (CUG, Wuhan) for Meng–Ting Chen during her study at Durham University, UK.

727 DS acknowledges the Total Endowment F Geosciences (CUG, Wuhan) for Meng–Ting Chen during her study at Durham University, UK.

727 DS acknowledges the Total Endowment Fund and the Dida Scholarship of CUG Wuhan.

738 **Fig. 1 a** Tectonic map of China showing the **127** DS acknowledges the Total Endowment Fund and the Dida Scholarship of CUG Wuhan.
 128 Fig. 1 a Tectonic map of China showing the location of the Southeast China Fold Belt (SCFB).
 131 Revised after Zhong et al. **Figure captions**
 Fig. 1 a Tectonic map of China showing the location of the Southeast China Fold Belt (SCFB).

Revised after Zhong et al. (2017a). **b** Simplified geological map of the SCFB with Cretaceous

volcanic ba **Figure captions**
 Fig. 1 a Tectonic map of China showing the location of the Southeast China Fold Belt (SCFB).

Revised after Zhong et al. (2017a). **b** Simplified geological map of the SCFB with Cretaceous

volcanic bas **Fig. 1 a** Tectonic map of China showing the location of the Southeast China Fold Belt (SCFB).

The Sevised after Zhong et al. (2017a). **b** Simplified geological map of the SCFB with Cretaceous

volcanic basin, intrusions Zhenghe-Dapu Fault, SYF = Shanghang-Yunxiao Fault, CSF = Chong'an-Shicheng Fault, 2001 - Time Analytical Board of the Standard CNF = Changle-Nan'ao Fault

2008 - Time Coolegias I mana of the Densii (a) and Makintal

2008 - Time Coolegias I mana of the Densii (a) and Makintal

The Phaple-Dapu Fault, SYF = Shanghang-Yunxiao Fault, CSF = Chong'an-Shicheng Fault,

The CNF = Changle-Nan'ao Fault

T38
 Fig. 2 Geological maps of the Dongji (**a**) and Maluntou (**b**) gold deposits. Simplified and

T40 2007 736 Zhenghe-Dapu Fault, SYF = Shanghang-Yunxiao Fault, CSF = Chong'an-Shicheng Fault,

737 CNF = Changle-Nan'ao Fault

738 **Fig. 2** Geological maps of the Dongji (a) and Maluntou (b) gold deposits. Simplified and

740 216 Zhenghe-Dapu Fault, SYF = Shanghang-Yunxiao Fault, CSF = Chong'an-Shicheng Fault,

216 CNF = Changle-Nan'ao Fault

2138 Fig. 2 Geological maps of the Dongji (a) and Maluntou (b) gold deposits. Simplified and

216 revis Zhenghe-Dapu Fault, SYF = Shanghang-Yunxiao Fault, CSF = Chong'an-Shicheng Fault,

CNF = Changle-Nan'ao Fault
 Fig. 2 Geological maps of the Dongji (a) and Maluntou (b) gold deposits. Simplified and

revised from Liu (20 CNF = Changle-Nan'ao Fault

738
 Fig. 2 Geological maps of the Dongji (a) and Maluntou (b) gold deposits. Simplified and

revised from Liu (2011) and Wang (2013). **c** Geological ichnography of the Dongji deposit at

416 Fig. 2 Geological maps of the Dongji (a) and Maluntou (b) gold deposits. Simplified and

revised from Liu (2011) and Wang (2013). c Geological ichnography of the Dongji deposit at

416 elevations, showing the structurally revised from Liu (2011) and Wang (2013). **c** Geological ichnography of the Dongji deposit at

416 elevations, showing the structurally controlled orebodies and post-mineralization granite

porphyry, and locations for pyrit

241 **416** elevations, showing the structurally controlled orebodies and post-mineralization granite

242 porphyry, and locations for pyrite samples for Re–Os dating. **d** Typical hydrothermal alteration

243 and zonation pr prophyry, and locations for pyrite samples for Re-Os dating. **d** Typical hydrothermal alteration

and zonation proximity to quartz-sulfide veins (the Maluntou deposit)
 Fig. 3 Photos showing three mineralization stages a and zonation proximity to quartz-sulfide

744
 Fig. 3 Photos showing three mineralizati

746 gold deposit. **a-b** The stage 1 quartz veir

747 **c-i** Ten pyrite separates collected from t

748 quartz vein with chlorite and **Fig. 3** Photos showing three mineralization stages and alteration characteristics of the Dongji

gold deposit. **a-b** The stage 1 quartz veins are cut by the stage 2 sulfide-bearing quartz veins.
 c-i Ten pyrite separate gold deposit. **a b** The stage 1 quartz veins are cut by the stage 2 sulfide-bearing quartz veins.
 c-i Ten pyrite separates collected from the stage 2 veins for Re–Os analyses. j The stage 2

quartz vein with chlorite

747 **c-i** Ten pyrite separates collected from the stage 2 veins for Re–Os analyses. **j** The stage 2 quartz vein with chlorite and epidote halos is cut by stage 3 quartz vein. **k** The stage 3 barren quartz vein
750 **Fig. 4** quartz vein with chlorite and epidote halos is cut by stage 3 quartz vein. **k** The stage 3 barren
quartz vein
quartz vein
Fig. 4 Photos showing three mineralization stages and alteration characteristics of the
Maluntou g quartz vein

750
 Fig. 4 Photos showing three mineralization stages and alteration characteristi

752 Maluntou gold deposit. **a** The stage 1 quartz vein with fine-grained pyrite (py

753 K-feldspar halos. **b** Cross-cutti **Fig. 4** Photos showing three mineralization stages and alteration characteristics of the

Maluntou gold deposit. **a** The stage 1 quartz vein with fine-grained pyrite (pyrite1) and

K-feldspar halos. **b** Cross-cutting rela Maluntou gold deposit. **a** The stage 1 quartz vein with fine-grained pyrite (pyrite1) and

K-feldspar halos. **b** Cross-cutting relationship between the stage 1 vein and stage 2 vein. **c**

Mineral assemblage of the stage 2

The stage 1 veins and stage 2 veins. **c** Mineral assemblage of the stage 2 quartz veins. **d** The stage 2 quartz vein with
1755 sulfide-bearing bands is cut by the stage 3 quartz vein
1756 **Fig. 5** Photomicrographs and scan Mineral assemblage of the stage 2 quartz veins. **d** The stage 2 quartz vein with

sulfide-bearing bands is cut by the stage 3 quartz vein

756
 Fig. 5 Photomicrographs and scanning electron microscope (SEM) images illust 9757 sulfide-bearing bands is cut by the stage 3 quartz vein

756
 Fig. 5 Photomicrographs and scanning electron microscope (SEM) images illustrating the

2758 petrographic characteristics of sulfides in gold deposits. **Fig. 5** Photomicrographs and scanning electron microscope (SEM) image
petrographic characteristics of sulfides in gold deposits. **a** Euhedral arsenopy
by pyrite1 in the stage 1 veins. **b** Pyrite2a is enveloped by pyrite2b

 Fig. 6 Petrography, zircon CL images and LA–ICP–MS zircon U–Pb ages of early Fig. 6 Petrography, zircon CL images and LA–ICP–MS zircon U–Pb ages of early
765 Cretaceous volcanic units at the DVB. **a** and **e** Rhyolitic ignimbrite (HK-1). **b** and **f** Rhyolite
766 (ZX-1). **c** and **g** The xiaoshao syen **Fig. 6** Petrography, zircon CL images and LA-ICP-MS zircon U-Pb ages of early

Cretaceous volcanic units at the DVB. **a** and **e** Rhyolitic ignimbrite (HK-1). **b** and **f** Rhyolite

(ZX-1). **c** and **g** The xiaoshao syenogra 763
 Fig. 6 Petrography, zircon CL images and L.

Cretaceous volcanic units at the DVB. **a** and **e** RI

766 (ZX-1). **c** and **g** The xiaoshao syenogranite porphy

granite porphyry (DJ-1)

768 **Fig. 7 a** ¹⁸⁷Re/¹⁸⁸Os vs **Fig. 6** Petrography, zircon CL images and LA-ICP-MS zircon U-Pb ages of early

765 Cretaceous volcanic units at the DVB. **a** and **e** Rhyolitic ignimbrite (HK-1). **b** and **f** Rhyolite

766 (ZX-1). **c** and **g** The xiaoshao

Fig. 6 Petrography, zircon CL images and LA-ICP-MS zircon U-Pb ages of early

765 Cretaceous volcanic units at the DVB. **a** and **e** Rhyolitic ignimbrite (HK-1). **b** and f Rhyolite

767 (ZX-1). **c** and **g** The xiaoshao syen Cretaceous volcanic units at the DVB. **a** and **e** Rhyolitic ignimbrite (HK-1). **b** and **f** Rhyolite (ZX-1). **c** and **g** The xiaoshao syenogranite porphyry (XS-1). **d** and **h** The post-mineralization granite porphyry (DJ-1 766 (ZX-1). **c** and **g** The xiaoshao syenogranite porphyry (XS-1). **d** and **h** The post-mineraliza

767 granite porphyry (DJ-1)

768 **Fig. 7 a** ¹⁸⁷Re/¹⁸⁸Os vs. ¹⁸⁷Os/¹⁸⁸Os plot for all data. **b** Plot of the percen Timestage of deviation from
 Fig. 7 a ¹⁸⁷Re/¹⁸⁸Os vs. ¹⁸⁷Os/¹⁸⁸Os plot for all data. **b** Plot of the percentage of deviation from

the 139 Ma best-fit line. c Pyrite Re–Os best-fit lines based on initial ¹⁸⁷Os/ **Fig. 7 a** ¹⁸⁷Re/¹⁸⁸Os vs. ¹⁸⁷Os/¹⁸⁸Os plot for all data. **b** Plot of the percentage of deviation from
the 139 Ma best-fit line. **c** Pyrite Re–Os best-fit lines based on initial ¹⁸⁷Os/¹⁸⁸Os data clusters
and 99

the 139 Ma best-fit line. c Pyrite Re–Os best-fit lines based on initial ¹⁸⁷Os/¹⁸⁸Os data clusters

and 99 Ma reference lines. See text for discussion. Data-point ellipses shown with 2s

absolute uncertainty. MSWD = me 771 and 99 Ma reference lines. See text for discussion. Data-point ellipses shown with 2s

272 absolute uncertainty. MSWD = mean squared weighted deviation

773
 Fig. 8 Distribution and characteristics of fluid inclusion absolute uncertainty. MSWD = mean squared weighted deviation

773
 Fig. 8 Distribution and characteristics of fluid inclusions in quartz veins.

4 quartz. **b** Distribution of primary and pseudosecondary fluid inclusions. Fig. 8 Distribution and characteristics of fluid inclusions in quartz veins. a Growth zone of
quartz. b Distribution of primary and pseudosecondary fluid inclusions. c Linear distributed
pseudosecondary fluid inclusions. d quartz. **b** Distribution of primary and pseudosecondary fluid inclusions. **c** Linear distributed
pseudosecondary fluid inclusions. **d** Liquid-rich two-phase FIA (type1). **e** Liquid-vapor
two-phase FIA (type2). **f** Vapor-ri

176 pseudosecondary fluid inclusions. **d** Liquid-rich two-phase FIA (type1). **e** Liquid-vapor

1777 two-phase FIA (type2). 1 Vapor-rich two-phase FIA (type3). **g**-i saline FIA (type4). j-I Laser

1782 Raman spectra for dif two-phase FIA (type2). **f** Vapor-rich two-phase FIA (type3). **g**-i saline FIA (type4). j-I Laser

Raman spectra for different fluid inclusion types.
 Fig. 9 Homogenization temperature vs. Salinity, and histograms of homo **Fig. 9** Homogenization temperature vs. Salinity, and histograms of homogenization

temperatures of fluid inclusions from the different mineralization stages. Numbers with

different colors indicate the FIA number discusse **Fig. 9** Homogenization temperature vs. Salinity, and histograms of homogenization

temperatures of fluid inclusions from the different mineralization stages. Numbers with

different colors indicate the FIA number discusse

Pyrite2b. **d** Pyrite3

Fig. 11 Box and whisker plots of Co, Ni, Au, Cu, Ag, As, Pb, Zn, Sb and Ti contents in four

pyrite types. The horizontal line represents the median, the solid black dot represents the

mean, and the box represents the 2 Fig. 11 Box and whisker plots of Co, Ni, Au, Cu, Ag, As, Pb, Zn, Sb and Ti contents in four

190 pyrite types. The horizontal line represents the median, the solid black dot represents the

191 mean, and the box represents **Fig. 11** Box and whisker plots of Co, Ni, Au, Cu, Ag, As, Pb, Zn, Sb and Ti contents in four
pyrite types. The horizontal line represents the median, the solid black dot represents the
mean, and the box represents the 25 **Fig. 11** Box and whisker plots of Co, Ni, Au, Cu, Ag, As, Pb, Zn, Sb and Ti contents in four
point point point point of the represents the median, the solid black dot represents the
mean, and the box represents the $25^{\$ Fig. 11 Box and whisker plots of Co, Ni, Au, Cu, μ pyrite types. The horizontal line represents the m
mean, and the box represents the 25^{th} to 75^{th} per
the last data point that is 2 times the length for t
O **Fig. 11** Box and whisker plots of Co, Ni, Au, Cu, Ag, As, Pb, Zn, Sb and Ti contents in four
pyrite types. The horizontal line represents the median, the solid black dot represents the
mean, and the box represents the 2 790 pyrite types. The horizontal line represents the median, the solid black dot represents the

791 mean, and the box represents the 25^{th} to 75^{th} percentile of the data. Whiskers are drawn to

792 the last da

The mean, and the box represents the 25th to 75th percentile of the data. Whiskers are drawn to

The last data point that is 2 times the length for the box from the maximum and minimum.

Open circles are outliers
 Fi the last data point that is 2 times the length for the box from the maximum and minimum.

93 Open circles are outliers

94

95 Fig. 12 Binary plots of As vs. Au (a). Co vs. Ni (b). Cu vs. Au (c). Ag vs. Sb (d). Pb vs. S 793 Open circles are outliers

794 **Fig. 12** Binary plots of As vs. Au (**a**). Co vs. Ni (**b**). Cu vs. Au (**c**). Ag vs. Sb (**d**). Pb vs. Sb (**e**).

296 **and** Ag vs. Au (**f**) for different pyrite types. The trace element co **Fig. 12** Binary plots of As vs. Au (a). Co vs. Ni (b). Cu vs. Au (c)

and Ag vs. Au (f) for different pyrite types. The trace element of

A.2, and all measurements below minimum detection limit are

line in (a) is define 908 and Ag vs. Au (f) for different pyrite types. The trace element concentrations are from Table

927 A.2, and all measurements below minimum detection limit are discarded. The Au-saturation

928 line in (a) is defined b Fig. A.2 Plane polarized tight (PPL) and cold-cathodoluminescence (CL) image of quartz

804 **Fig. A.1** Summarized stratigraphic column for the Dongkeng volcanic basin

802 **Fig. A.1** Summarized stratigraphic column for th

199 et al. (2005) that showed the maximum amount of Au that can be contained in the pyrite

1980 lattice is dependent on the As content

1991 **Fig. A.1** Summarized stratigraphic column for the Dongkeng volcanic basin

1993 800 lattice is dependent on the As content

801

802 **Fig. A.1** Summarized stratigraphic column for the Dongkeng volcanic basin

804 **Fig. A.2** Plane polarized light (PPL) and cold-cathodoluminescence (CL) image of quartz
 802 **Fig. A.1** Summarized stratigraphic column for the Dongkeng volcanic basin
803
804 **Fig. A.2** Plane polarized light (PPL) and cold-cathodoluminescence (CL) image of quartz
805 formed in three mineralization stages (i.e Fig. A.1 Summarized stratigraphic column for the Dongkeng volcan
803
Fig. A.2 Plane polarized light (PPL) and cold-cathodoluminescer
formed in three mineralization stages (i.e., quartz1, 2, and 3). **a**-k
(quartz1) with b formed in three mineralization stages (i.e., quartz1, 2, and 3). **a-b** Euhedral quartz crystals

(quartz1) with bright brown fluorescence and growth zone are surrounded by anhedral quartz

(quartz2) that shows blue fluores 805 formed in three mineralization stages (i.e., quartz1, 2, and 3). **a-b** Euhedral quartz crystals

806 (quartz2) that shows blue fluorescence and growth zone are surrounded by anhedral quartz

807 (quartz2) that shows bl (quartz1) with bright brown fluorescence and growt

807 (quartz2) that shows blue fluorescence without grounds

808 quartz2 and quartz3 (without any fluorescence)

809

810 **References:**

811 Bajwah ZU, Seccombe PK, Offler 813 (quartz2) that shows blue fluorescence without growth zone. c–f The relationship between

808 quartz2 and quartz3 (without any fluorescence)

810 **References:**

Bajwah ZU, Seccombe PK, Offler R (1987) Trace element dis

References:

-
- 807 (quartz2) that shows blue fluorescence without growth zone. c–f The relationship between

808 quartz2 and quartz3 (without any fluorescence)

810 **References:**

811 Bajwah ZU, Seccombe PK, Offler R (1987) Trace elemen 216 808 quartz2 and quartz3 (without any fluorescence)

809

810 **References:**

811 Bajwah ZU, Seccombe PK, Offler R (1987) Trace element distribution, Co: Ni ratios and

812 genesis of the Big Cadia iron-copper deposit, N 819

810 **References:**

811 Bajwah ZU, Seccombe PK, Offler R (1987) Trace element distribution, Co: Ni ratios and

812 genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Miner

813 Deposita 22: 292–3 810 **References:**
811 Bajwah ZU, Seccombe PK, Offler R (1987) Trace element distribution, Co: Ni ratios a
812 genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mii
813 Deposita 22: 292–300
814 Baum
-
-
-
- Sannet C, Franco SI, Prol-Ledesma RM, González-Partida E, Villanueva-Estrada RE (2011) A

820 model of boiling for fluid inclusion studies: Application to the Bolaños Ag–Au–Pb–Zn

821 epithermal deposit, Western Mexico. J Canet C, Franco SI, Prol-Ledesma RM, González-Partida E, Villanueva-Estrada RE (2011) A

820 model of boiling for fluid inclusion studies: Application to the Bolaños Ag–Au–Pb–Zn

821 epithermal deposit, Western Mexico. J G Canet C, Franco SI, Prol-Ledesma RM, González-Partida E, Villanueva-Estrada RE (2011) A

820 model of boiling for fluid inclusion studies: Application to the Bolaños Ag–Au–Pb–Zn

821 epithermal deposit, Western Mexico. J G
- Chang Cannet C, Franco SI, Prol-Ledesma RM, González-Partida E, Villanueva-Estrada RE (2011) A

820 model of boiling for fluid inclusion studies: Application to the Bolaños Ag-Au-Pb-Zn

821 epithermal deposit, Western Mexi 819 Canet C, Franco SI, Prol-Ledesma RM, González-Partida E, Villanueva-Estrada RE (2011) A

820 model of boiling for fluid inclusion studies: Application to the Bolaños Ag-Au-Pb-Zn

821 epithermal deposit, Western Mexico. 819 Canet C, Franco SI, Prol-Ledesma RM, González-Partida E, Villanueva-Estrada RE (2011) A

820 model of boiling for fluid inclusion studies: Application to the Bolaños Ag-Au-Pb-Zn

821 epithermal deposit, Western Mexico. 181–205 819 Canet C, Franco SI, Prol-Ledesma RM, González-Partida E, Villanueva-Estrada RE (2011) A

820 model of boiling for fluid inclusion studies: Application to the Bolaños Ag-Au-Pb-Zn

821 epithermal deposit, Western Mexico. 819 Canet C, Franco SI, Prol-Ledesma RM, González-Partida E, Villanueva-Estrada RE (2011) A

820 model of boiling for fluid inclusion studies: Application to the Bolaños Ag-Au-Pb-Zn

821 epithermal deposit, Western Mexico. 829 Chi Galentic Jurianus State Control and the Holandison studies: Application to the Bolandis Ag-Au-Pb-Zn epithermal deposit, Western Mexico. J Geochem Explor 110: 118-125 Chang J, Li JW, Audétat A (2018) Formation and e 821 and deposit, Material and minutalsion success. Application to the Botalius Ag-Au--- b-2.11
831 epithermal deposit, Western Mexico. J Geochem Explor 110: 118–125
832 chang J, Li JW, Audétat A (2018) Formation and evolu epinemial deposit, western mextool 3 depotent Exp

822 Chang J, Li JW, Audétat A (2018) Formation

823 magmatic-hydrothermal fluids at the Yulong porph

824 Insights from LA-ICP-MS analysis of fluid inclusion

825 181–205
 State Chain of Thinks and Hevidion and Evolution of Thinks and magnitic-hydrothermal fluids at the Yulong porphyry Cu-Mo deposit, eastern Tibet:

Insights from LA-ICP-MS analysis of fluid inclusions. Geochim Cosmochim Acta
- 103335 Insights friyonouerinal ninks at the Tutong polynyly Curlind deposit, eastern Thether Insights of Rudi net are Tutong polynyly Curlind deposit, eastern Thether Standard Mineral 2016

823 Bolden MT, Wei JH, Li YJ, Shi WJ, L 832 Cook NJ, Christmannia SLC (1990) Concentrations of initial substitute of the Shangshangang deposit. Ore Geol Rev 118:
825 Colen MT, Wei JH, Li YJ, Shi WJ, Liu NZ (2020) Epithermal gold mineralization in Cretaceous
827
-
-
-
- 826 Chen MT, Wei JH, Li YJ, Shi WJ, Liu NZ (2020) E

827 volcanic belt, SE China: insight from the Sh

828 103335

829 Chi GX, Haid T, Quirt D, Fayek M, Blamey N, C

830 analysis, and geochronology of the End ura

831 Mine 837 Cook NJ, Christ, 311 W, Sui N2 (2020) Cplurelinial glotal interferences of NB:
837 Coloric belt, SE China: insight from the Shangshangang deposit. Ore Geol Rev 118:
838 Chi GX, Haid T, Quirt D, Fayek M, Blamey N, Chu H From the Bleikvassli Zn-Pb (Cu) deposited minimisms and relationships and relations analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada.

Miner Deposita 52: 211–232

Size Ciobanu CL, Cook NJ, 19333 Colar Charles and geochronology of the End uranium de

830 Chi GX, Haid T, Quirt D, Fayek M, Blamey N, Chu HX

830 analysis, and geochronology of the End uranium de

831 Miner Deposita 52: 211–232

832 Ciobanu CL, Co 839 Creaser RA, Papanastassion DA, Wasserburg GJ (1991) Petrographiy, india nicusion
839 analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada.
831 Miner Deposita 52: 211–232
832 Ciobanu CL, Coo 831 Miner Deposita 52: 211–232

Miner Deposita 52: 211–232

Sharu CL, Cook NJ, Utsunomiya S, Kogagwa M, Green L, Gilbert S, Wade B (2012)

Gold-telluride nanoparticles revealed in arsenic-free pyrite. Am Mineral 97: 1515–1
-
- Salt Colomic Leybosia U.C., Cook NJ, Ustanomiya S, Kogagwa M, Green L, Gilbert S, Wade B (2012)

Soloch --elluride nanoparticles revealed in arsenic-free pyrite. Am Mineral 97: 1515–1518

Soloch --elluride nanoparticles re State of Collect Hellurich anoparticles revealed in arsenic-free pyrite. Am Mineral 97: 1515–1518

Sold-felluride nanoparticles revealed in arsenic-free pyrite. Am Mineral 97: 1515–1518

Sold-felluride nanoparticles reveal S34

Sook NJ, Chryssoulis SL (1990) Concentrations of invisible gold in the common sulfides. Can

Mineral 28: 1–16

S36 Cook NJ, Spry PG, Vokes FM (1998) Mineralogy and textural relationships among

sulphosalts and related 844 COOK NO, Chryssoular Sc (1990) Concentrations of invisible gold in the common sum
835 Cook NJ, Spry PG, Vokes FM (1998) Mineralogy and textural relationships
836 Cook NJ, Spry PG, Vokes FM (1998) Mineralogy and textura Sock NJ, Spr PG, Vokes FM (1998) Mineralogy and textural relationships among

Sock NJ, Spr PG, Vokes FM (1998) Mineralogy and textural relationships among

sulphosalts and related minerals in the Bleikvassli Zn-Pb-(Cu) dep 838

837 clear two controls in the Bleikvassli Zn-Pb-(Cu) deposit, Nordland, Norway.

837 cleaser RA, Papanastassiou DA, Wasserburg GJ (1991) Negative thermal ion mass

846 spectrometry of osmium, rhenium and iridium. Geoc significance. Geochim Cosmochim Acta 72: 2919–2933

Stare TRA, Papanastassiou DA, Wasserburg GJ (1991) Negative thermal

Spectrometry of osmitim, thenium and iridium. Geochim Cosmochim Acta 55: 31

Stare image VM, Selby D, Frace RA, Papanatsaiou DA, Wasserburg GJ (1991) Negative thermal ion mass

spectrometry of osmium, rhenium and iridium. Geochim Cosmochim Acta 55: 397–401

841 Cumming VM, Selby D, Lillis PG, Lewan MD (2014) Re–Os geochron SHO spaces in the membersure of the membersure of the space in the space of the Cumming VM, Selby D, Lillis PG, Lewan MD (2014) Re-Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrin spectrometry of osmatri, memain and maturi. Geochim cosmochim Acta 33. 397–46

841 Cumming VM, Selby D, Lillis PG, Lewan MD (2014) Re–Os geochronology and Os iso

fingerprinting of petroleum sourced from a Type I lacustrin 852 Einaul MT, Heinrich per University Cross Hotter (Schema) State of the matrix (State and Type I lactustrine kerogen: Insights from the matrix characteristing of petroleum system in the Unita Basin and hydrous pyrolysis
-
-
- 842

842 hydrothermal sorten Reviewer from a 1yee Facts and hydrous pyrolysis

844 experiments. Geochim Cosmochim Acta 138: 32–66

845 Deditius AP, Utsunomiya S, Renock D, Ewing RC, Ramana CV, Becker U, Kesler SE (2008) A

- matural enerr river periodiant system in the onta Basin and nydrods proposed and the proposed in Cosmook D, Ewing RC, Ramana CV, Becker U, Kesler SE (2001) proposed new type of arsenian pyrite: Composition, nanostructure a State Characteristics. Seecolmin Consideration Concerting CR, Ramana CV, Becker U, Kesler SE (2008) A

State proposed new type of arsenian pyrite: Composition, nanostructure and geological

significance. Geochim Cosmochim beations Are Usualmy 3, tentoon in China. Composition, nanostructure and geological
significance. Geochim Cosmochim Acta 72: 2919–2933
Stass Driesner T, Heinrich CA (2007) The system H₂O-NaCl. Part I: Correlation formula Proposed Trew type of arseniant pyrite. Composition, nanositical significance. Geochim Cosmochim Acta 72: 2919–2933

848 Driesner T, Heinrich CA (2007) The system H₂O–NaCl. Part I: Correlation

relations in temperature–p SHAM Diesner T, Heinrich CA (2007) The system H_{2O}-NaClear T. For Fan Window Figure T, Heinrich CA (2007) The system H_{2O}-NaClear from 0 to 1000 C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochim Cosmochim Acta 71: 4880-4901

S State of Networth Constraints from the State of Network of Network of Network of Network and O to 1 NNaCl. Geochim Cosmochim Acta 71: 4880–4901

859 and 0 to 1 NNaCl. Geochim Cosmochim Acta 71: 4880–4901

851 Einaudi MT, H 859

850 and 0 to 1 XNaCl. Geochim Cosmochim Acta 71: 4880–4901

851 Einaudi MT, Hedenquist JW, Inan EE (2003) Sulfidation state of fluids in active and extinct

852 binaudi MT, Hedenquist JW, Inan EE (2003) Sulfidation st
-
-

-
-
-
- 19860 Hazarika P, Mishra B, Pruseth KL (2017) Trace-element geochemistry of pyrite and
19861 Transenopyrite: ore genetic implications for late Archean orogenic gold deposits in southern
19862 Heald P, Foley NK, Hayba DO (1 1860 Baranchia Report Contains and Maranchia Baranchia State Archean orogenic gold deposits in southern
1862 Baranchy in the archean orogenic gold deposits in southern
1862 Heald P, Foley NK, Hayba DO (1987) Comparative an Hazarika P, Mishra B, Pruseth KL (2017) Trace-elemer

861 arsenopyrite: ore genetic implications for late Archean or

862 India. Mineral Mag 81: 661–678

863 Heald P, Foley NK, Hayba DO (1987) Comparative anatom

864 depos Hazarika P, Mishra B, Pruseth KL (2017) Trace-element geochemistry of pyrite and

861 arsenopyrite: ore genetic implications for late Archean orogenic gold deposits in southerm

862 Heald P, Foley NK, Hayba DO (1987) Compa Hazarika P, Mishra B, Pruseth KL (2017) Trace-element geochemistry of pyrite and

861 arsenopyrite: ore genetic implications for late Archean orogenic gold deposits in southern

1862 Irelation Mineral Mag 81: 661–678

863 860 Hazarika P, Mishra B, Pruseth KL (2017) Trace-element geochemistry of pyrite and
861 are are appropriate: ore genetic implications for late Archean orogenic gold deposits in southern
862 Irela Mineral Mag 81: 661–678
8 Hazarika P, Mishra B, Pruseth KL (2017) Trace-element

861 arsenopyrite: ore genetic implications for late Archean oroge

862 India. Mineral Mag 81: 661–678

863 Heald P, Foley NK, Hayba DO (1987) Comparative anatomy c

48 1866 Hazarika P, Mishra B, Pruseth KL (2017) Trace-element geochemistry of pyrite and

1867 are approximations for the Archean orogenic gold deposits in southern

1862 Irela Mag 81: 661–678

1864 Heinrich Magmatic vapor co transport of gold from the porphyry environment to epithermal ore deposits. Geology 9:
-
-
- 761–764
- Frazaina Fr, Wishin Di, Frusenti Cr. (2017) Trace-elementi geocherinsury of pyrine and

861 arsenopyrite: ore genetic implications for late Archean orogenic gold deposits in southern

1963 Heald P, Foley NK, Hayba DO (1987 882 India. Mineral Mag 81: 661–678

8782 India. Mineral Mag 81: 661–678

874 Heald P, Foley NK, Hayba DO (1987) Comparative anatomy of volcanic-hosted epithermal

874 deposits; acid-sulfate and adularia-sericite types. Eco bead P, Foley NK, Hayba OO (1987) Comparative anatomy of volcanic-hosted epithermal

863 Heald P, Foley NK, Hayba DO (1987) Comparative anatomy of volcanic-hosted epithermal

866 deposits: acid-sulfate and adularia-serici 1152–1157 874 Huston Desires and administration of the comparation of hydrothermal
865 Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal
866 Telements. Nature 370: 519
867 Heinrich CA, Driesner
- From eraptist Jav. Convenised in the STS. Nature 370: 519

866 ore deposits. Nature 370: 519

867 Heinrich CA, Driesner T, Nsson AS, Seward TM (2004) Magmatic vapor contraction and the

868 transport of gold from the porph Start Heinrich CA, Driesner T, Nsson AS, Seward TM (2004) Magmatic vapor contraction and the

Start transport of gold from the porphyry environment to epithermal ore deposits. Geology 9:

T61-764

Start Land W, Liu YS, Gao in the threat Comparison with the source of gold from the porphyry environment to epithermal ore deposits. Geology 9:

761–764

870 Hu ZC, Zhang W, Liu YS, Gao S, Li M, Zong KQ, Chen HH, Hu SH (2014) "Wave"

871 signal-smo 1889 869 868 1890 and the porphyry environment to epithemial of deposits. Geology

878 Hu ZC, Zhang W, Liu YS, Gao S, Li M, Zong KQ, Chen HH, Hu SH (2014) "Wav

871 signal-smoothing and mercury-removing device for laser ab 879 Hu ZC, Zhang W, Liu YS, Gao S, Li M, Zong KQ, Chen HH, Hu SH (2014) "Wave"

871 Hu ZC, Zhang W, Liu YS, Gao S, Li M, Zong KQ, Chen HH, Hu SH (2014) "Wave"

871 signal-smoothing and mercury-removing device for laser abl 881
881 in Exc, Zinany v. Lu 13, Gao 3, Li wi, Zong Koz, Cherr ini, introduced and
882 multiple collector ICP-MS analysis: application to lead isotope analysis. Anal Chem 87:
881 multiple collector ICP-MS analysis: applica 881 multiple collector ICP-MS analysis: application to lead isotope analysis. Anal Chem 87:

881 multiple collector ICP-MS analysis: application to lead isotope analysis. Anal Chem 87:

881 multiple collector ICP-MS analys 1822

882 munique consideration of F-wis analysis. application to lead isolope analysis. Anal Chien of.

8823 1152–1157

1821–1157

874 Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace elements in sulfide minera 1132–1137

883 Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace eleme

883 from eastern Australian volcanic-hosted massive sulfide depo

microprobe analyses of pyrite, chalcopyrite, and sphalerite, and P-

in py France of the state of the state of the giant Music enteries in summer minimization on microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta ³⁴ S value bout eastern reastern tracture-instead interactional conducts in the Archive analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels
in pyrite; comparison with delta ³⁴ S values and implications fo
-
- 988 stable isotope data. J Geochem Explor 195:157–177
889 stable isotope data. J Asian Earth Sci 105:4
881 Jiang SH, Bagas L, Liang QL (2017) Pyrite Re-Os isotope systematics at t
882 deposit of SW Fujian, China: Constrain
-
- 887 myrie; comparison with delta ³⁴ S village and impliciations for the source of sulfur in volcanogenic hydrothermal systems. Econ Geol 90: 1167–1196
8879 Jiang SH, Bagas L, Liang QL (2015) New insights into the petroge 887 volcangen in yunter team in the team in the source of summarization of the state and intervents of the Shanghang Basin in the Fujian Province, China. J Asian Earth Sci 105: 48–67

880 the Shanghang Basin in the Fujian 888 The Ancun epithermal Systems: Ecoli Southeast China: China: China: China: China: China: China: Asian Earth Sci 105: 48–67

881 Jiang SH, Bagas L, Liang QL (2015) Pyrite Re–Os isotope systematics at the Zijinshan

882 d Search Controllary and The Tuglian From The Units of Isotope systematics at the Zijinshan

881 Jiang SH, Bagas L, Liang QL (2017) Pyrite Re-Os isotope systematics at the Zijinshan

882 die Bosit of SW Fujian, China: Const 882 element signatures of pyrine interests isotope systematics at the zignisirant deposit of SW Fujian, China: Constraints on the timing and source of Cu-Au and Luoboling porphyry Cu-Mo deposits in the Zijinshan ore distri eignation. Ore Geol Rev 80: 612–622

883 mineralization. Ore Geol Rev 80: 612–622

885 porphyry Cu–Mo deposits in the Zijinshan ore district, Fu

886 porphyry Cu–Mo deposits in the Zijinshan ore district, Fu

886 multi-iso II B, Jiang SY (2017) Generatives in the giant Zijinshan epithermal Cu-Au and Luoboling

884 Li B, Jiang SY (2017) Genesis of the giant Zijinshan credistrict, Fujian Province, SE China: A

886 porphyry Cu-Mo deposits in th Earth Sci 18: 293–305

Le B, Jang ST (2017) Genesis of the giant Zijn

885 porphyry Cu-Mo deposits in the Zijinshan or

multi-isotope and trace element investigation. C

Li SN, Ni P, Bao T, Xiang HL, Chi Z, Wang GG, Hua

t bourges and the expension of expective the matter of the matter investigation. Ore Geol Rev 88: 753-767

11 SN, Ni P, Bao T, Xiang HL, Chi Z, Wang GG, Huang B, Ding JY, Dai BZ (2018) Genesis of

the Ancun epithermal gold d 887 Li SN, Ni P, Bao T, Xiang HL, Chi Z, Wang GG, Huang B, Ding JY, Dai BZ (2018) Genesis of
887 Li SN, Ni P, Bao T, Xiang HL, Chi Z, Wang GG, Huang B, Ding JY, Dai BZ (2018) Genesis of
889 the Ancun epithermal gold depos
- 1997 11. Int, Bao 1, Alang TiL, Cili Z, Wang Go, Tidang D, Ding J1, Dal D2

888 the Ancun epithermal gold deposit, southeast China: Evidence from

889 stable isotope data. J Geochem Explor 195:157–177

890 Li W, Cook NJ, X 889 stable isotope data. J Geochem Explore 1951-177

890 Li W, Cook NJ, Xie GQ, Mao JW, Ciobanu CL, Li JW, Zhang ZY (2019) Textures and trace

element signatures of pyrite and arsenopyrite from the Gutaishan Au–Sb deposit, Seppe cata. 3 Geolientic Lypton 133.137–117

899 Li W, Cook NJ, Xie GQ, Mao JW, Colohar CL, Li JW, Zhang ZY (2019) Textures and trace

891 element signatures of pyrite and arsenopyrite from the Gutaishan Au–Sb deposit, Sou
-
- 1 W, COOK NO, Ale GQ, Mao JW, Cloband CL, L1 JW, Zhang 891

element signatures of pyrite and arsenopyrite from the Guina. Miner Deposita 54: 591–610

Li X (2000) Cretaceous magmatism and lithosphere extension

Earth Sci 18
-
-

-
-
-
- Li Z, Qiu JS, Yang XM (2014) A review of the geochronology and geochemistry of Late

902 Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China:

903 Implications for magma evolution related to Li Z, Qiu JS, Yang XM (2014) A review of the geochronology and geochemistry of Late

902 Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China:

903 Implications for magma evolution related to 1901 Li Z, Qiu JS, Yang XM (2014) A review of the geochronology and geochemistry of Late

902 Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China:

903 Implications for magma evolution relat 2012 Li Z, Qiu JS, Yang XM (2014) A review of the geochrical

902 Yanshanian (Cretaceous) plutons along the Fujian c

903 Implications for magma evolution related to slab breal

2014 Earth Sci Rev 128: 232–248

905 Liu AL, 901 Li Z, Qiu JS, Yang XM (2014) A review of the geochronology and geochemistry of Late

902 Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China:

903 Inplications for magma evolution relate 901 Li Z, Qiu JS, Yang XM (2014) A review of the geochronology and geochemistry of Late

902 Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China:

903 Iru AL, Jiang MR, Ulrich T, Zhang J, Zh 1 Li Z, Qiu JS, Yang XM (2014) A review of the geochronology and geochemistry of Late

902 Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China:

903 Iru AL, Jiang MR, Ulrich T, Zhang J, Zhan 901 Li Z, Qiu JS, Yang XM (2014) A review of the geochronology and geochemistry of Late

902 Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China:

903 Iru AL, Jiang MR, Ulrich T, Zhang J, Zh 901 Li Z, Qiu JS, Yang XM (2014) A review of the geochronology and geochemistry of Late

902 Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China:

903 Implications for magma evolution relate Li Z, Qiu JS, Yang XM (2014) A review of the geochronology and geom Yanshanian (Cretaceous) plutons along the Fujian coastal area of som Implications for magma evolution related to slab break-off and rollback in Earth Sci 912

1912 C., Card 35, Tany Awr (2014) A teaw of the Fujian coastal area of southeastern China:

1912 C., Vanshanian (Cretaceous) plution related to slab break-off and rollback in the Cretaceous.

Earth Sci Rev 128: 232–24
-
-
-
- 913 Implications for magnus and eventual of stab break-off and rollback in the Cretaceous.

Earth Sci Rev 128: 232–248

903 Liu AL, Jiang MR, Ulrich T, Zhang J, Zhang XJ (2018) Ore genessis of the Bake gold deposit,

south 913 Example and the metallogenic physicochemical condition and the metallogenic scheme and sufficient Sci Rev 128: 323-248

903 Liu AL, Jiang MR, Ulrich T, Zhang J, Zhang XJ (2018) Ore genesis of the Bake gold deposit,

so 915 Liu AL, Jang MR, Ulrich T, Zhang J, Zhang XJ (2018) Ore genesis of the Bake gold deposit,
906 Liu AL, Jang MR, Ulrich T, Zhang J, Zhang XJ (2018) Ore genesis of the Bake gold deposit,
907 submeterated multiprovince, Ch Eta A.C., Janig wits, United T, Zitary 3, Zitary A3 (2010) Ore ger

southeastern Guizhou province, China: Constraints fr

element and sulfur isotope analysis of pyrite. Ore Geol Rev

southeastern Zhejiang, SE China: petrog 917 Liu NZ (2017) Analysis of pyrite. One Geol Rev 102: 740–756
907 element and sulfur isotope analysis of pyrite. Ore Geol Rev 102: 740–756
908 Liu L, Xu XS, Zou HB (2012) Episodic eruptions of the Late Mesozoic volcanic element and statut isotope anaysis of pyrice. Ore Geol Nev 102. 740–750

918 Liu L, Xu XS, Zou HB (2012) Episodic eruptions of the Late Mesozoic volcanic seque

southeastern Zheijang, SE China: petrogenesis and implication 918 State As 2011 Dealing, SE China: perforgenesis and implications for the geodynamics of solute-astern Zhejiang, SE China: perforgenesis and implications for the geodynamics of paleo-Pacific subduction. Lithos 154: 166–1 919 bulletastern Zriejiany, Se Chinnar, Perugeries and implications for the geodynamics of paleo-Pacific subduction. Lithos 154: 166–180
911 Liu L, Xu XS, Xia Y (2016) Asynchronizing paleo-Pacific slab rollback beneath SE paleo-Pacific subduction. Litrius 154. 100–100
911 Liu L, Xu XS, Xia Y (2016) Asynchronizing paleo-Pacific slab r
912 Insights from the episodic Late Mesozoic volcanism. Gondwa
913 Liu NZ (2017) Analysis on the metallogeni 921 Lu Y, Zhow Yoo, May Treation Coloration Surface Interaction and the episodic Interaction of the metallogenic physicochemical condition and the genesis of Maluntou gold deposit in the Zhenghe County, Fujian Province. Ge 913 I.iu N2 (2017) Analysis on the metallogenic physicochemical condition and the genesis of
914 I.iu N2 (2017) Analysis on the metallogenic physicochemical condition and the genesis of
914 Maluntou gold deposit in the Zhe
-
- 913 Europe with Englorian and the Englorian conduct and the geness of Maluntou gold deposit in the Zhenghe County, Fujian Province. Geol Fujian 36: 239–250 (in Chinese with English abstract)
916 Liu YF (2011) Geology and g 923 In Wallendo Booth English abstract)
916 Lu YF (2011) Geology and genesis of Dongji gold (silver) deposit in Fujian, South China.
917 Geol Fujian 30: 21–28 (in Chinese with English abstract)
918 Lu YS, Hu ZC, Gao S, Gün
-
-
- 913

16 Liu YF (2011) Geology and genesis of Dongji gold (silver) deposit in Fujian, Sc

1916 Liu YF (2011) Geology and genesis of Dongji gold (silver) deposit in Fujian, Sc

1918 Liu YS, Hu ZC, Gao S, Günter D, Xu J, Gao 926 Mao JP, 2009) and Teness of Dongin gond Sincer, 1995 and track and track the Cel Fujian 30: 21–28 (in Chinese with English abstrate) 918 Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao GG, Chen HH (2008) In situ analysis of 928 I. W. Y. Y. The Caledonian Shangyou pluton in South Jiangxi Province. Acta Geologica Sinder C. Xu J, Gao CG, Chen HH (2008) In situ analysis of major
919 and trace elements of anhydrous minerals by LA-ICP-MS without ap 218 Cla 13, Ha 2C, Gao 3, Guntier D, Ad 3, Gao G, Cherri 1

919 and trace elements of anhydrous minerals by LA–ICP

standard. Chem Geol 257: 34–43

921 Lu Y, Zhou Y, Zhang HL, Yang K, Chen SZ, Xi WW, Xiu L

alteration and 929 standard. Chem Geol 257: 34–43

921 Lu Y, Zhou Y, Zhang HL, Yang K, Chen SZ, Xi WW, Xiu LC, Xing GF (2017) Hydrothermal

922 standard. Chem Geol 257: 34–43

922 lu Y, Zhou Y, Zhang HL, Yang K, Chen SZ, Xi WW, Xiu LC, X Starland. Crient Geol 257: 34–43

921 Lu Y, Zhou Y, Zhang HL, Yang K, Chen SZ, Xi WW, Xiu LC, Xing GF (20

922 alteration and its significance for exploration at the Dongji gold–silver de

623 Fujian province. Geol Explor 921 Mumin H., Flamin C. Christian and the Dongli gold -silver and the Distribution and its significance for exploration at the Dongle alient Dengthe, Fujian province. Geol Explor 53: 1039–1050 (in Chinese with English abs Figure The Bogosu-The Bogosu-The Bogosu-The Bogosu-Prester of the Bogosu-Prester of the Ashani Zhengler

1923 Fulain province. Geol Explor 53: 1039–1050 (in Chinese with English abstract)

1924 Ludwig K (2008) Isoplot vers Fujial plovince. Geol Explor 33: 1039–1030 (in Chinese wirl English absuact)

924 Ludwig K (2008) Isoplot version 4.15: a geochronological toolkit for microsoft Excel. Berke

926 Geochronology Center, Special Publiciation: 924 Redmond Particles (Geochronology Carel Control 14.15. a geochronology Carel Control intervisorist Excel. Berkeley

926 Geochronology Center, Special Publication: 247–270

926 Mao JR, Zeng QT, Li ZL, Hu Q, Zhao XL, Ye 936 fluid cooling venter, special runders and reduction-247-220

935 Mao JR, Zeng QT, Li ZL, Hu Q, Zhao XL, Ye HM (2008) Precise dating and geological

937 significance of the Caledonian Shangyou pluton in South Jiangxi Pr
-
- 937 Madi Jrk, Zerig Qri, Li Z.E., Tiu Qr, Zhao A.E., Te Tim (2000) Pre
927 significance of the Caledonian Shangyou pluton in Sou
928 deologica Sinica 82: 399–408
930 Mikucki EJ (1998) Hydrothermal transport and depositiona 938

932 Geologica Shica B2: 399–408

932 Geologica Shica B2: 399–408

932 Mikucki EJ (1998) Hydrothermal transport and depositional processes in Archean lode-gold

932 Mikucki EJ (1998) Hydrothermal transport and depositi Seologica Sinica oz. 393—400

939 systems: A review. Ore Geol Rev 13: 307–321

931 Mumin AH, Fleet ME, Chryssoulis SL (1994) Gold mineralization in As-rich mesothermal gold

932 ores of the Bogosu-Prestea mining district o 939 Stens: A Review. Ore Geol Rev 13: 307-321
931 Mumin AH, Fleet ME, Chryssoulis SL (1994) Gold mineralization in As-rich mesothermal gold
932 Stens: A Review. Ore Geol Rev 13: 307-321
933 Mumin AH, Fleet ME, Chryssoulis 991

Mumin AH, Fleet ME, Chryssoulis SL (1994) Gold mineralization in As-rich mesothermal gold

932

932 Gress of the Bogosu-Prestea mining district of the Ashanti Gold Belt, Ghana:

933 remobilization of "invisible" gold.
- Multim Art, Heet M.C., Chryssoulis S.C. (1994) Gold Interalization

932 ores of the Bogosu-Prestea mining district of the

remobilization of "invisible" gold. Miner Deposita 29: 445–4

Redmond PB, Einaudi MT, Inan EE, Land
-
-
-
-

- Saintilan NJ, Selby D, Creaser RA, Dewaele S (2018) Sulphide Re–Os geochronology links

orogenesis, salt and Cu–Co ores in the Central African Copperbelt. Sci Rep 8: 14946

Schaefer BF, Pearson DG, Rogers NW, Barnicoat AC
- Saintilan NJ, Selby D, Creaser RA, Dewaele S (2018) Sulphide Re–Os geochronology links

orogenesis, salt and Cu–Co ores in the Central African Copperbelt. Sci Rep 8: 14946

Schaefer BF, Pearson DG, Rogers NW, Barnicoat AC Saintilan NJ, Selby D, Creaser RA, Dewaele S (2018) Sulphide Re–Os geochronology links

943 orgenesis, salt and Cu–Co ores in the Central African Copperbelt. Sci Rep 8: 14946

944 Schaefer BF, Pearson DG, Rogers NW, Barnic Saintilan NJ, Selby D, Creaser RA, Dewaele S (2018) Sulphide Re–Os geochronology links

943 constraints on the Central African Copperbelt. Sci Rep 8: 14946

944 Schaefer BF, Pearson DG, Rogers NW, Barnicoat AC (2010) Re–Os
- Saintilan NJ, Selby D, Creaser RA, Dewaele S (2018)

943 orogenesis, salt and Cu–Co ores in the Central Afri

944 Schaefer BF, Pearson DG, Rogers NW, Barnicoat 4

945 constraints on the timing and origin of gold mine

946 942 Saintilan NJ, Selby D, Creaser RA, Dewaele S (2018) Sulphide Re–Os geochronology links

943 orogenesis, salt and Cu–Co ores in the Central African Copperbelt. Sci Rep 8: 14946

944 Schaefer BF, Pearson DG, Rogers NW, B Saintilan NJ, Selby D, Creaser RA, Dewaele S (2018) Sulphide Re–Os geochronology links

943 orogenesis, salt and Cu–Co ores in the Central African Copperbelt. Sci Rep 8: 14946

944 Schaefer BF, Pearson DG, Rogers NW, Barni 197–204 Saintilan NJ, Selby D, Creaser RA, Dewaele S (2018) Sulphide Re–Os geochronology links

943 orogenesis, salt and Cu–Co ores in the Central African Copperbelt. Sci Rep 8: 14946

944 Schaefer BF, Pearson DG, Rogers NW, Barni Saintilan NJ, Selby D, Creaser RA, Dewaele S (2018) Sulphide Re–Os

orogenesis, salt and Cu–Co ores in the Central African Copperbelt. So

Schaefer BF, Pearson DG, Rogers NW, Barnicoat AC (2010) Re–Os

constraints on the t 952 Selby D, Creaser RA, Fowler MG (2007) Re-Os sulfide (bornite, chalcopyrite, and Bottles (bornical Schaefer BF, Pearson DG, Rogers NW, Barnicoat AC (2010) Re-Os isotope and PGE
constraints on the timing and origin of go 953

953 Pyrite) Schaef BF, Pearson DG, Rogers NW, Barnicoat AC (2010) Re-Os isotope and PGE

945 Constraints on the timing and origin of gold mineralisation in the Witwatersrand Basin.

946 Chem Geol 276: 88–94

947 Selby Scribter Dr., Fearson Do., Royers Kwy, Barnicoat Ac (2010) Re-Os sto

constraints on the timing and origin of gold mineralisation in the Witwa

Chem Geol 276: 88–94

949 Endako porphyry molybdenum deposit, British Columbia 955 Shu Localinis of the unimple and origin of gould interesting and origin.

946 Chem Geol 276: 88–94

946 Endako porphyry molybdenum deposit, British Columbia, Canada. Econ Geol 96:

951 Selby D, Creaser RA, Fowler MG (2 Selby D, Creaser RA (2001) Re-Os geochronology and systematics in Endako porphyry molybdenum deposit, British Columbia, Cana

949 596 957 197–204

956 596 967 197–204

956 596 967 1989 D, Creaser RA, Fowler MG (2007) Re-Os
-
- 957 Sibson Reason NATUS (2007) Ne-Os geocinomology and systematics in indypotente noni the

951 Sibson RA, Fowler MG (2007) Re-Os elemental and isotopic systematics in crude

951 Sibson Cosmochim Acta 71: 378-386

952 Selb
-
-
- Eniato Polphyry Indybuelann deposit, British Columbia, Canada. Econ Geor (197-204

958 Selby D, Creaser RA, Fowler MG (2007) Re-Os elemental and isotopic systematics in cru

951 oils. Geochim Cosmochim Acta 71: 378–386

95 959 Selby D, Creaser RA, Fowler MG (2007) Re–Os elemental and isotopic systematics in crude
951 oils. Geochim Cosmochim Acta 71: 378–386
952 Selby D, Kelley KD, Hitzman MW, Zieg J (2009) Re-Os sulfide (bornite, chalcopyrit 990 Selby D, Cleasel MA, Fowell NG (2007) Nee-Os sulfide (bornite, chalcopyrite, and
952 Selby D, Kelley KD, Hitzman MW, Zieg J (2009) Re-Os sulfide (bornite, chalcopyrite, and
953 poly D, Kelley KD, Hitzman MW, Zieg J (20 962 Selby D, Kelley KD, Hitzman MW, Zie-3009) Re-Os sulfide (bornite, chalcopyrite, and
953 Selby D, Kelley KD, Hitzman MW, Zieg J (2009) Re-Os sulfide (bornite, chalcopyrite, and
963 pyrite) systematics of the carbonate-h 962

962 Brooks Range, Alaska. Econ Geol 104: 437–44

955 Brooks Range, Alaska. Econ Geol 104: 437–44

955 Shu LS, Zhou XM (2002) Late Mesozoic tecton

966 249–260 (in Chinese with English abstract)

957 Sibson RH, Robert 963 Stein HJ, Sundblad K, Markey RJ, Morgan JW, Motuza G (1998) Re–Os dates for AB-144
955 Shu LS, Zhou XM (2002) Late Mesozoic tectonism of Southeast China. Geol Rev 48:
956 249–260 (in Chinese with English abstract)
957 995 Shu LS, Zhou XM (2002) Late Mesozoic tectonism of Southeast China. Geol Rev 48:
956 Shu LS, Zhou XM (2002) Late Mesozoic tectonism of Southeast China. Geol Rev 48:
956 249–260 (in Chinese with English abstract)
957 Sib 965 and Est, 2nou AM (2002) Late Mesozolc tectorism of 3

965 249–260 (in Chinese with English abstract)

967 sibson RH, Robert F, Poulsen KH (1988) High-angle rever

and mesothermal gold-quartz deposits. Geology 16: 551-
 967 Sibson P.H. Robbert F, Poulsen KH (1988) High-angle reverse faults, fluid-pressure cycling,
958 and mesothermal gold-quartz deposits. Geology 16: 551–555
959 Stein HJ, Sundblad K, Markey RJ, Morgan JW, Motuza G (1998) 998 and mesobermal gold-quartz deposits. Geology 16: 551–555
978 and mesobermal gold-quartz deposits. Geology 16: 551–555
969 Stein HJ, Sundblad K, Markey RJ, Morgan JW, Motuza G (1998) Re-Os ages for Archean
960 molybdeni Stein HJ, Sundblad K, Markey RJ, Ciology 10. 331–333

969 Stein HJ, Sundblad K, Markey RJ, Morgan JW, Motuza G (1998) Re-Os ages for Archean

960 molybdenite and pyrite, Kuittila-Kivisuo, Finland and Proterozoic molybdenit
-
-
- Suen 113, Sumusian N, Warrey 13, Willyam 30t, Willyam 30t, Willyam 30t, Cases of Auchean

molybdenite and pyrite, Kuittlila-Kivisuo, Finland and Proterozoic molybdenite, Kabeliai,

1969 Chromosovia Stephan and Protecoic mo 970 Evolution of pyrinc, Nutura-Kivisto, Prinalid and Piotelozolc Inolyotenine, Rabeliai, Lithuania: Testing the chronometer in a metamorphic and metasomatic setting. Miner Deposita 33: 329–345

963 Stein HJ, Morgan JW, Sc 992

29 Deposita 33: 329–345

963 Stein HJ, Morgan JW, Scherstén A (2000) Re-Os dating of low-level highly radiogenic (LLHR)

964 sulfides: The Harnas gold deposit, southwest Sweden, records continental-scale tectonic

965 Bein HJ, Morgan JW, Scherstén A (2000) Re-Os datin

963 Stein HJ, Morgan JW, Scherstén A (2000) Re-Os datin

964 sulfides: The Harnas gold deposit, southwest Swe

events. Econ Geol 95: 1657–167

966 Sung Y, Brugger J, Ciob Sultain Sultain Syrue and Homostics. The Harmas gold deposit, southwest Sweden, records continental-scale tectonic

sultides: The Harmas gold deposit, southwest Sweden, records continental-scale tectonic

events. Econ Geol 9965 events. Ere riarans you ceptosit, souriwest owedent, records continiental-scale tectome
965 events. Econ Geol 95: 1657–167
966 Sung Y, Brugger J, Ciobanu CL, Pring A, Skinner W, Nugus M (2009) Invisible gold in
967 ar 976 Wang Cholistic Evilin Service Political Science (Super J, Ciobanu CL, Pring A, Skinner W, Nugus M (2009) Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern 976 Geological Sciences, Beijing, pp 1–717 (in Chinese with English abstract)

976 Guangxi 2017 (Science Academy in The Theorem and Mathematical Academy Chinese Dam,

596 Eastern Goldfields Province, Western Australia. Min Frame Tyline and subseque in our a molusisary extended and province. Western Australia. Miner Deposita 44: 765–791
969 Sykora S, Cooke DR, Meffre S, Stephanov AS, Gardner K, Scott R, Selley D, Harris AC (2018)
870 Evolutio 998 Wang GC, Nie Medies From the existent abused and well beyond the existen Scocke DR, Meffre S, Stephanov AS, Gardner K, Scott R, Seldy D, Harris AC (2018)
970 Evolution of pyrite trace element compositions from porphyry 979 Sylona 3, Coole Dry (Editor and isotopic geochemistry study of the Zhilingtou Mo deposited and the Lihir gold deposit: implications for ore genesis and mineral processing.

972 Econ Geol 113: 193–208

973 Völkening J,
-
-
- Exploration of pyric acteristic compositions from porphyly-style and epitieminal

conditions at the Lihir gold deposit: implications for ore genesis and mineral processing.

Econ Geol 113: 193–208

To Völkening J, Walczyk
-

-
-
-
-
- Wang HB (2013) Metallogenic regularity and prospecting direction of gold deposits between
982 Hudun of Zhenghe area and Dongyou of Jian'ou area, Fujian province. Master's thesis,
083 China University of Geosciences, Beijin Wang HB (2013) Metallogenic regularity and prospecting direction of gold deposits between
982 Hudun of Zhenghe area and Dongyou of Jian'ou area, Fujian province. Master's thesis,
983 China University of Geosciences, Beijin Wang HB (2013) Metallogenic regularity and prospecting direction of gold deposits between

982 Hudun of Zhenghe area and Dongyou of Jian'ou area, Fujian province. Master's thesis,

China University of Geosciences, Beijing, Wang HB (2013) Metallogenic regularity and prospecting direction of gold deposits between

982 Hudun of Zhenghe area and Dongyou of Jian'ou area, Fujian province. Master's thesis,

China University of Geosciences, Beijing, Wang HB (2013) Metallogenic regularity and prospecting direction of gold deposits bet

982 Hudun of Zhenghe area and Dongyou of Jian'ou area, Fujian province. Master's the

983 China University of Geosciences, Beijing, pp Wang HB (2013) Metallogenic regularity and prospecting direction of gold deposits between

982 Hudun of Zhenghe area and Dongyou of Jian'ou area, Fujian province. Master's thesis,

984 China University of Geosciences, Beij Wang HB (2013) Metallogenic regularity and prospecting direction of

982 Hudun of Zhenghe area and Dongyou of Jian'ou area, Fujian pro

983 China University of Geosciences, Beijing, pp 1–40 (in Chinese with

984 Wang L,Qin
-
-
-
- Wang HB (2013) Metallogenic regularity and prospecting direction of gold deposits between

982 Hudun of Zhenghe area and Dongyou of Jian'ou area, Fujian province. Master's thesis,

983 China University of Geosciences, Beij Wang HB (2013) Metallogenic regularity and prospecting direction of gold deposits between

982 Hudun of Zhenghe area and Dongyou of Jian'ou area, Fujian province. Master's thesis,

983 China University of Geosciences, Beij 981 Wang HB (2013) Metallogenic regularity and prospecting direction of gold deposits between

992 Hudun of Zhenghe area and Dongyou of Jian'ou area, Fujian province. Master's thesis,

993 China University of Geosciences,
- 992 Hudun of Zhenghe area and Dongyau of Jian'ou area, Fujian province. Master's thesis, China University of Geosciences, Beijing, pp 1–40 (in Chinese with English abstract)

983 China University of Geosciences, Beijing, p 993

992 China University of Geosciences, Beijing, pp 1–40 (in Chinese with English abstract)

993 China University of Geosciences, Beijing, pp 1–40 (in Chinese with English abstract)

993 China University of Geosciences, 993 Gold (silver) versources, Depinyi, Primo (in Chinese with English abstract)

9934 Wang L.Qin KZ, Song GX, Li GM (2019) A review of intermediate sulfidation epithermal

9956 White NC, Hedenquist JW (1995) Epithermal gol
- Valigo L, Chin Kz, Soligo GX, Et GM (2019) A

985 deposits and subclassification. Ore Geol F

996 White NC, Hedenquist JW (1995) Epitherm

997 exploration. SEG newsletter 23: 9–13

998 Wilkinson JJ (2001) Fluid inclusions 995 White NC, Hedenquist JW (1995) Epitermal gold deposits: styles, characteristics and
986 White NC, Hedenquist JW (1995) Epitermal gold deposits: styles, characteristics and
987 Wilkinson JJ (2001) Fluid inclusions in hy 998 Willie Techniquist 300 Wunder (1999) Publishan are deposits. Syles, characteristics and exponention J. (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55: 229–272
988 Wilkinson JJ (2001) Fluid inclusions i 987 Wilkinson JJ (2001) Fluid inclusions in hydrothermal ore deposits. Lith

989 Xia Y, Xu XS, Liu L (2016) Transition from adakitic to bimodal mag

990 paleo-Pacific plate subduction and slab rollback beneath SE

991 pet
- From Solution 30 (20016) Transition from adaktic to bimodal magnatism induced by the paleo-Pacific plate subduction and slab rollback beneath SE China: evidence from petrogenesis and tectonic setting of the dike swarms. L And T, Au A.S. Lu Let 1007 Haristoni Inniti auatisatic burioud Inaglianism intuiced by the
paleo-Pacific plate subduction and slab rollback beneath SE China: evidence from
perogenesis and technic setting of the dike swarms 1000 Jacket Predictions and The State Source and State Source and State Source and State Source and State State Are State State Are State State 1900 Jacket State Are State State China: Ithis 24: 182–204
1992 Xiao F, Ban YZ For Ferrogenesis and ectonic setting of the direct swaring. Litrius 244. 102–20

1002 Siao F, Ban YZ (2015) S-Pb isotopes and typomorphic characteristics of py

1001 gold (silver) deposit, Fujian province. Acta Mineralogic
- Zeng QD, Wang YB, Zhang S, Liu JM, Qin KZ, Yang JH, Sun WD (2013) U–Pb and Re–Os 993 Studies abstract)

994 English abstract)

995 Xu XB (2011) Research on Phanerozoic Structural Defonnation and Geochronology in

996 Wuyishan area, South China. Doctor's dissertation, Nanjing University, Nanjing, pp

80 204 Silver Euressians and Controllary and Geochronology in

2016 Wuyishan area, South China. Doctor's dissertation, Nanjing University, Nanjing, pp

30-81 (in Chinese with English abstract)

2016 Pang LG, Deng J, Wang ZL, 99–109 1009 Volysimal area, boutine Uninal: Doctoring Stassenation, ivanjing University, ivanjing, PP

1006 Sea Ad (D. Chinese with English abstract)

1000 XL, Zhang H, Wang ZL, Guo LN, Li RH, Groves DI, Danyushevsky LV, Zhang C 1008 Yang C, Deng J, Wang Z, Guo LN, Li RH, Groves DI, Danyushevsky LV, Zhang C, Zheng

1999 XL, Zhao H (2016) Relationships between gold and pyrite at the Xincheng gold deposit,

1000 Jaodong Peninsula, China: Implication Frang Ed, Deng 3, wang Ed, dub Erv, Erviri, Gloves Dr.

999 XL, Zhao H (2016) Relationships between gold and

1000 Jiaodong Peninsula, China: Implications for gold

1001 epizonal environment. Econ Geol 111: 105–126

1002 Z 2009 Many 1000 Netations in the USID, Frimmel HE, Jiang SY, Dai BZ (2011) LA-ICP-MS trace element analysis of pyrite at the Allichergy good deposition in a brittle epizonal environment. Econ Geol 111: 105–126
1002 Zeng QD, 1000

1010 epizonal environment. Econ Geol 111: 105–126

1001 epizonal environment. Econ Geol 111: 105–126

1002 Zeng QD, Wang YB, Zhang S, Liu JM, Qin KZ, Yang JH, Sun WD (2013) U–Pb and Re–Os

1003 geochronology of the T 1002 Zeng Geochronology of the Tongcun molybdenum deposit and Zhilingtou gold-silver deposit in 2heijang Province, Southeast China, and its geological implications. Resour Geol 63:

99–109

2hang X, Liu Q, Ma Y, Wang H (2
- 21 posteroid of States China, and its geological implications. Resource to the 21 post-collisional of the Paishanlou shear zone-hosted gold deposit, North China Crate of Geol Rev 26: 325–348

1009 Chang X, Liu Q, Ma Y, Wan
- 142–153
- 1013 association of southeast China: Intervigoral methods associated by a 2.1 associated and 2.1 associated by 2.1 and 2.1 and 1006 2hang X, Liu Q, Ma Y, Wang H (2005) Geology, fluid inclusions, isotope geochemistry, and g 1006 Zhang X, Liu Q, Ma Y, Wang H (2005) Geology, fluid inclusions, isotope geochemistry, and

1007 geochronology of the Paishanlou shear zone-hosted gold deposit, North China Craton.

1008 Chen Rev 26: 325–348

2hao HX, F 21 Geocole (1016 Geoled National Schemistry, and the Paishanlou shear zone-hosted gold deposit, North China Craton.

1007 geochemistry, and Green Schemistry, and the Paishanlou shear zone-hosted gold deposit, North China C
-
- 1018

1008 Ore Geol Rev 26: 325–348

1009 Zhao HX, Frimmel HE, Jiang SY, Dai BZ (2011) LA-ICP-MS trace element analysis of pyrite

1010 The Xiaoqinling gold district, China: implications for ore genessis. Ore Geol Rev 43:
 1019 21 isotope study of the Yueyang SY, Dai BZ (2011) LA-ICP-MS trace element analysis of pyrite

1010 from the Xiaoqinling gold district, China: implications for ore genesis. Ore Geol Rev 43:

1011 112-153

2hao JL, Qiu 2ndo Hx, Finnmer He, Jang 31, Dat BZ (2011) LA-ICF-MS to
1010 from the Xiaoqinling gold district, China: implications for of
1011 142–153
2hao JL, Qiu JS, Liu L, Wang RQ (2016) The Late Cret
1013 ssociation of southeast Ch 1011 112 Zhao JL, Qiu JS, Liu L, Wang RQ (2016) The Late Cretaceous l-and A-type granite

1012 Zhao JL, Qiu JS, Liu L, Wang RQ (2016) The Late Cretaceous l-and A-type granite

1022 Zhao JL, Qiu JS, Liu L, Wang RQ (2016) Th 1012 2 association of southeast China: Implications for the origin and evolution of post-collisional extensional magnatism. Lithos 240: 16–33

1013 Zhong J, Pirajno F, Chen YJ (2017a) Epithermal deposits in South China: Ge
-
-

--Table 1

-
-
-
-
-

Table 1

21
Re−Os isotopic data of pyrite2b dominated samples from the stage2 veins in the Dongji deposit.

[Click here to access/download;Table;Table 1.xls](https://www.editorialmanager.com/orgeo/download.aspx?id=160645&guid=1c64ca26-be4e-42d5-8227-dceb591adff8&scheme=1) \geq

 $\rm\AA$ bbreviations: % $\rm^{187}Os$ = the percentage of radiogenic $\rm^{187}Os$ in $\rm^{187}Os$ budget; Osi $_{139}$ = initial $\rm^{187}Os/\rm^{188}Os$ ratio $\rm^{187}Os/\rm^{188}Os$ ratio at 95 $\rm^{187}S$ M a; Osi $_{110}$ = initial 187 Os/ 188 Os ratio at 110 Ma; Rho = error correlation of the 187 Re/ 188 Os and 187 Os/ 188 Os. 4Ma

Table 2

--

-
-
-
-
-
-
-

Table 2

Microthermometric data of different fluid inclusion assemblages in quartz veins from three mineralization stages at the Dongkeng volcanic basin. 24°

4Al temperatures in °C. Salinity expressed as wt% NaCl equivalent. Mode, fluid inclusion totally homogenized to liquid (L) or vapor (V) phase; Tm,H, melting temperature o Tm,ice, temperature of final ice melting; Th,total, temperature of total homogenization; n, number of individual fluid inclusions measured within a sample.

-
-

-
-
-
-
-
-
-
-
- **Table 3**

The values of "bdl" mean the contents are below minimum detection limits 5咢 $52''$

-
-
-
-

Click here to access/download [Supplementary Material](https://www.editorialmanager.com/orgeo/download.aspx?id=160648&guid=d6662589-1280-4af8-8dcd-8fce819cdd96&scheme=1) Fig. A.1.pdf

Click here to access/download [Supplementary Material](https://www.editorialmanager.com/orgeo/download.aspx?id=160649&guid=e3549749-d024-4b85-97b1-ed311928b74a&scheme=1) Fig. A.2.pdf

Click here to access/download [Supplementary Material](https://www.editorialmanager.com/orgeo/download.aspx?id=160650&guid=5281f09a-d4d6-4734-bd72-c0ffc4845e15&scheme=1) Table A.1.xls

Click here to access/download [Supplementary Material](https://www.editorialmanager.com/orgeo/download.aspx?id=160651&guid=16febca5-7090-40ea-ad62-4a282a47392e&scheme=1) Table A.2.xlsx