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Abstract: 
 

Analysing high-resolution images to gain insight into anatomical properties is an essential tool 
for investigation in many scientific fields. In plant biology, studying plant phenotypes from 

micrographs is often used to build hypotheses on gene function. In this report, we discuss a 
bespoke method for inspecting the significance in the differences between the morphologies  

of several plant mutants at cellular level. By examining a specific example in the literature, we 
will detail the approach previously used to quantify the effects of two gene families on the 

vascular development of hypocotyls in Arabidopsis thaliana. The method incorporates a 
MATLAB algorithm and statistical tools which can be modified and enhanced to tailor to 
different research questions in future studies. 
 
 
In many branches of science, an important step in investigating a mechanism or structure 
involves obtaining high-resolution images of the observed behaviours and/or morphology. In 

biology, the incorporation of image analysis tools has been increasing in popularity (Roeder 
et al., 2012; Wunderling et al., 2016). Several methods to analyse histology of roots and root 

architecture were introduced over the past decade (Burton et al., 2012; Chopin et al., 2015; 
Lartaud et al., 2015) and more recently, machine-learning based tools have begun to emerge 

(Hall et al., 2016; Sankar et al., 2014). Additionally, open-source platforms such as 
LithoGraphX, developed from MorphoGraphX (Barbier de Reuille et al., 2014) have also been 

established.  
 

In the study of plant vascular tissue, one means of investigating genetic interactions includes 
the use of microscopy to image transverse or longitudinal cross-sections of plants and plant 

mutants. By studying the phenotypes generated through genome editing, it is possible to 
characterise the contribution of a specific gene to the plant growth and development. 

However, while intuitive understanding of the differences between genotypes is crucial for 
formulating hypotheses and prompting further tests, it is oftentimes difficult to quantify how 
significant certain variabilities are, especially between mutants with grossly irregular 
anatomy. Here, we describe a bespoke method for quantifying the vascular mutations  
between a range of genotypes using a MATLAB algorithm and appropriate statistical tools. 

This method can be applied for a range of similar research questions in various disciplines  but 
was specifically employed in Wang et al. (2019) to quantify phenotypic variation in 



Arabidopsis stems and hypocotyls. The discussion below may be viewed as an addendum to 
the Wang et al. (2019) publication, and as an illustrative example to provide clarity of the 
described approach. 
 
 
In Wang et al. (2019), we aimed to address the question of how two gene families, the 
PHLOEM INTERCALATED WITH XYLEM (PXY) family of genes (PXf) (Fisher and Turner, 2007) 
and the ERECTA (ER) family of genes (ERf) (Shpak et al., 2004) function in concert to coordinate 
cell division and organisation. Here, we will detail the procedure we employed to quantify the 
morphological discrepancy we observed across different pxf and erf genotypes. 
 
The desired Arabidopsis mutant lines, including those with sextuple mutations across the 
gene families, were generated through crossing of previously described lines. A total of six 
mutant lines were analysed. The mutant lines were grown using standard protocols, and 
tissue was prepared for light microscopy imaging following fixation with FAA, embedding in 

JB4 resin, and sectioning (Wang et al., 2019).  
 

To study the morphological differences, six images obtained through brightfield microscopy 
from each genotype were selected. The focus of our study were four of the main vascular cell 

types: xylem vessels, xylem fibers, phloem cells and parenchyma. From each image, a 
minimum of 10 cell representatives from each cell type were selected from a wedge of pre-
defined size (60°). In order to account for the naturally occurring size variation from centre to 
border, all the cells along the length of the radius were included. The four cell types were 
assigned a unique colour and using the software GIMP, the cell interiors were manually 
coloured as appropriate (see: Supplemental Data S1).  
 
Next, a MATLAB code was generated to study the properties of the individual cell types across 
the genotypes. The MATLAB Image Processing Toolbox was used, with the overall logic of the 
algorithm described below. 
 
The manually manipulated images were separated into folders according to genotype. The 
programme then looped over the images in that folder. For each image in the folder, four 

entirely black images of the same size were generated. The original images were scanned, 
and the pre-defined cell colours were recognised. The entirely black images were then 

manipulated as follows: whenever a pixel of a ‘known’ colour was identified in a position (i,j), 
the pixel in position (i,j) in the new black image was coloured white. This was performed for 

each individual colour, isolating the different cell types for analysis , with one original cross-
section image yielding four (new) binary images corresponding to the four cell types of 

interest (Fig. 1; Fig. 2).  
 
The new images were read as binary images in the programme. The previously selected cells 
were now represented as white objects on a black background and their properties (area, 
perimeter, major and minor axis) could be quantified as follows. Each white object represents  
a connected component of pixels. Specifically, the binary images are scanned by the 
programme as a matrix of pixels, where each region of adjacent pixels with the same value 
(here, the colour white) is assigned a number identity by the programme. The various 
properties of that region can then be measured in pixels (Fig. 1b). 



 
The correspondence between pixel size and actual size can be determined using an image of 
known size and calculating the micrometre per pixel ratio. Using this method, the data was 
transformed from pixels to microns/microns squared to calculate the correct perimeter and 
area of the sampled cells. The ellipticity of the objects (arguably, their level of deformity) were 
measured as the ratio of major to minor axis, which is a dimensionless parameter not 
requiring conversion.  
 
In Wang et al. (2019), the converted measurements were then saved into an excel 
spreadsheet where each row corresponded to measurements taken from a different plant. 
This was done in order to implement a nested ANOVA analysis using R (packages multicomp, 
ggplot2, graphics). 
 
The data from MATLAB was rearranged in an R-readable format of one column of 
measurements matched to a column of corresponding plant ID’s and a column of 

corresponding plant genotypes. A nested ANOVA analysis and a post-hoc Tukey HSD test were 
performed to identify which genotypes were pairwise significantly different. 

 
The method described above was employed due to its relative ease of design compared to 

other tools and ability to be readily adjusted and tailored to a specific research question. For 
instance, the method can be used to investigate the influence of different factors on 
organisms through changes in cell deformation and cell size using images of long itudinal and 
transverse sections. Other questions that can be addressed include extracting measurements 
of bubbles or polyhype structures in physics, engineering and chemistry as well as topological 
research (especially regarding objects of similar colour scheme) and applying statistical 
analysis.  
 
The first step of the method represents its largest source of limitations. While in certain 
instances, where the objects of interest can be defined by a particular colour or colour range 
this step can be automated, in cases where the objects are not easily distinguished, the 
samples must be chosen manually which can be rather time-consuming. Notably, using digital 
tablets which are supplied with a pen, such as Wacom Drawing Tablets, could speed up the 

process and improve accuracy. In future studies, one might seek to refine the method for 
more speedy and automated results. The code used in Wang et al. (2019) can be obtained 

from Github (https://bit.ly/2Kht0BI). A standard operating procedure is available as 
Supplemental Data S1. 
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Figure 1. Example of transforming
microscopic image (A) into binary images (B)
with each image corresponding to four cell
types: xylem vessels (xy), xylem
parenchyma (pa), fibres (fi) and phloem
cells (ph). Scale is 100μM in the first image
(A). Each white object on the binary images
(B) can be investigated as a connected
component of white pixels and its
properties such as area, perimeter and axis,
measured.



Figure 2. Block diagram, illustrating the
main parts of the algorithm. The first row of
blocks show the key stages of obtaining the
data, with the steps comprising the
extraction phase in the bubble below.
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