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Abstract 

The theoretical conditions for small angle inelastic scattering where the incident electron can 

effectively be treated as a particle moving in a uniform potential is examined. The motivation 

for this work is the recent development of a multislice method that combines plasmon energy 

losses with elastic scattering using Monte Carlo methods. Since plasmon excitation is 

delocalised it was assumed that the Bloch wave nature of the incident electron in the crystal 

does not affect the scattering cross-section. It is shown here that for a delocalised excitation the 

mixed dynamic form factor term of the scattering cross-section is zero and the scattered 

intensities follow a Poisson distribution. These features are characteristic of particle-like 

scattering and validate the use of Monte Carlo methods to model plasmon losses in multislice 

simulations. 
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Quantitative electron microscopy requires accurate modelling of all interactions of the high 

energy electron beam with the solid. Frozen phonon multislice simulations include both elastic 

[1] and thermal diffuse scattering [2], and can be extended to include core ionisation losses as 

well [3-4]. Recently plasmon energy losses have also been combined with multislice 

simulations using Monte Carlo methods [5]. In Monte Carlo the high energy incident electron 

is assumed to be a particle moving in a uniform potential [6]. Strictly speaking incident 

electrons in a crystal are Bloch waves [7], but the effect this has on the scattering cross-section 



was overlooked, since plasmon excitations are delocalised [8-9]. The scattering angles for 

individual plasmon excitation events are then governed by a Lorentz cross-section derived for 

an incident electron plane wave [10]. Furthermore, the scattering path length is governed by 

Poisson statistics with a constant mean free path [5]. Computer generated random numbers are 

used to estimate the scattering depth and scattering angle from the Poisson distribution and 

Lorentz cross-section respectively. Many such plasmon ‘configurations’ can be generated, 

similar to modelling thermal diffuse scattering using frozen phonons. For a given plasmon 

configuration the transmission and propagator functions in the multislice simulation are 

updated to that of a tilted beam following plasmon excitation [5]. Averaging over many 

plasmon configurations then gives a statistically valid image or diffraction pattern. For 

example, it has been demonstrated that plasmon scattering reduces the Kikuchi band contrast 

in diffraction patterns as well as the atom column intensity in high angle annular dark field 

(HAADF) images [5].  

 

In this letter quantum mechanics is used to rigorously demonstrate that inelastic scattering of a 

Bloch electron in a crystal is similar to a particle in a uniform potential provided the excitation 

is delocalised. Specifically it is shown that for a delocalised excitation the mixed dynamic form 

factor [11] is zero, due to the close relationship between the form factor and interaction 

potential in reciprocal space [4,12]. This means that apart from ‘preservation of elastic contrast’ 

[13-14] the periodic intensity oscillations in a Bloch electron are not important for inelastic 

scattering. This is in contrast to localised excitations such as core shell ionisation, where 

channeling of the incident beam is important [15]. Furthermore, it is shown that for a 

delocalised excitation the inelastic scattered intensities follow a Poisson distribution [16], 

which is also characteristic of particle-like scattering [6].  

 



 Following Yoshioka [17] the inelastic wavefunction m for the mth-excited state (wavenumber 

km) is given by: 
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Vmn(r) is the potential for inelastic scattering from the nth to mth excited state with state ‘0’ 

being the ground state. The other parameters are the electron charge (e) and mass (m), and 

Planck’s reduced constant (ħ). 

 

Within the Born approximation only the elastic wave 0 has appreciable intensity to scatter 

into the m inelastic channel. Furthermore, set Vmm(r) = 0 in Equation (1); this means that 

elastic scattering of m in the crystal is suppressed. The resulting cross-section d/d can 

therefore be directly compared to a particle in a uniform potential without the influence of 

channeling of the inelastic wave as it propagates through the crystal. Under these conditions 

the solution to Equation (1) is given by [17-18]: 
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In a crystal 0 is a linear superposition of Bloch waves [7]: 

𝜓0(𝐫) =∑𝜀(𝑗)𝐶𝐠
(𝑗)
exp⁡[2𝜋𝑖(𝐤0
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+ 𝐠 + 𝛄(𝒋)) ∙ 𝐫] 

… (3) 

where for an incident wavevector k0 the jth- Bloch wave has excitation (j), change in 

wavevector (j) and expansion coefficient Cg
(j) for the g reciprocal vector. In principle (j) is a 

function of the depth z within the crystal due to inelastic scattering, but since the Born 

approximation is assumed this dependence is ignored.  In the far field m has the form of a 



distorted spherical wave fm()[exp(2ikmr)/r], where fm() is the inelastic scattering factor. 

Substituting Equation (3) in (2) and taking the asymptotic r ∞ value [18] gives: 
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The integral is the Fourier transform of Vm0, i.e. 𝑉̃𝑚0(𝐪) where q = km – k0 - g - (j). For 

delocalised excitations 𝑉̃𝑚0(𝐪) is non-zero when q  0. Furthermore, km  k0 for small angle 

scattering and small energy loss, such as plasmon excitations, so that g = 0 (recall that (j) is 

much smaller compared to g, km or k0 [7]). Equation (4) therefore simplifies to: 
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where the substitution 0(z) = Σ(j)C0
(j)exp(2i(j)z) has been made [7], with 0 being the 

unscattered beam amplitude at depth z. The inelastic scattering cross-section d over the solid 

angle d is given by (km/k0)| fm()|2d [18-19], so that from the normalisation condition |0(z 

= 0)|2 =1 and Equation (5) we obtain: 
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… (6) 

Importantly Equation (6) does not contain a mixed dynamic form factor (i.e. terms of the form 

𝑉̃𝑚0(𝐪1)𝑉̃𝑚0
∗ (𝐪2) where q1  q2). The mixed dynamic form factor represents the interference 

contribution in inelastic scattering [11], an example being the interference of Bragg diffracted 

beams that gives rise to the periodic intensity oscillations of Bloch electrons.  Equation (6) 

indicates that channeling of the incident electrons does not affect the inelastic scattering cross-

section when the excitation is delocalised.  



 

Next consider the inelastic scattered intensities. Expressing 0 and m as 0(r)exp(2ik0·r) 

and m(r)exp(2ikm·r) respectively and substituting in Equation (1) we obtain the inelastic 

amplitude m generated within an infinitesimal slice of thickness ∆z at depth z as [3-4]: 

𝑑Φ𝑚(𝐑, 𝑧)

𝑑𝑧
= 𝑖𝜎𝑚𝑉𝑚0(𝐑, 𝑧)exp⁡[−2𝜋𝑖(𝑘𝑚 − 𝑘0)z]Φ0(𝐑, 𝑧) 

… (7a) 

Φ𝑚(𝐑, 𝑧) = 𝑖𝜎𝑚𝑉𝑚0
𝑝 (𝐑)Φ0(𝐑, 𝑧) 

… (7b) 

𝑉𝑚0
𝑝 (𝐑) = ∫ 𝑉𝑚0(𝐑, 𝑧) exp[−2𝜋𝑖(𝑘𝑚 − 𝑘0)𝑧] 𝑑𝑧

𝑧+
∆𝑧
2

𝑧−
∆𝑧
2

 

… (7c) 

here m is the inelastic interaction constant (me/2ħ2km) and R is the position vector in the xy-

plane. In deriving Equation (7a) it is assumed that the Born approximation is valid (i.e. only 0 

is included in the right hand side of Equation 1), backscattering is neglected (i.e. 2m/z2 is 

zero) and k0, km are parallel to the z-axis (i.e. small angle scattering at normal beam incidence). 

Equation (7b) is the integral of (7a) assuming 0(R,z) does not vary significantly in ‘z’ within 

the slice. For a delocalised excitation Vm0(R,z) and 𝑉𝑚0
𝑝 (𝐑) are slowly varying and can therefore 

effectively be treated as constants denoted by V and Vp respectively. Assuming small energy 

loss (i.e. km  k0) the rate of generation of inelastic intensity, 𝑑𝐼𝑚
gen

/𝑑𝑧, is given by: 

𝑑𝐼𝑚
gen

𝑑𝑧
= ∫

𝑑(Φ𝑚Φ𝑚
∗ )

𝑑𝑧
𝑑𝐑 = 2Re (∫Φ𝑚

𝑑Φ𝑚
∗

𝑑𝑧
𝑑𝐑) =

1

𝜆
𝐼0(𝑧) 
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where  = [2m
2Re(V*·Vp)]-1 and ‘Re’ denotes the real part of a complex number. Equation (8) 

can be generalised to multiple plasmon scattering, i.e.: 



𝑑𝐼𝑚,𝑛
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𝑑𝑧
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where Im,n denotes nth-order multiple scattering. The derivation is similar to Equation (8) and 

assumes that ψm,n is primarily generated by inelastic scattering of ψm,n-1, analogous to the Born 

approximation used for single inelastic scattering. As an example the double plasmon scattered 

intensity is due to inelastic scattering of single plasmon loss electrons. Double plasmon 

excitation of elastic electrons or energy gain of triple plasmon loss electrons are considered to 

be unlikely events. Furthermore, it has been shown previously that plasmon excitation does not 

perturb the crystal potential significantly [5], so that the inelastic potential terms Vmn for 

multiple scattering are similar to single scattering, and consequently ‘’ in Equation (9) is 

unchanged from Equation (8). 

 

The intensity Im,n(z) at depth z is given by: 

𝑑𝐼𝑚,𝑛

𝑑𝑧
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𝑑𝐼𝑚,𝑛

gen
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The −𝑑𝐼𝑚,𝑛+1
gen

/𝑑𝑧 term represents the rate of intensity loss due to inelastic scattering of Im,n to 

Im,n+1. By inspection it is clear that Im,n has a Poisson distribution, i.e. Im,n(z) = [(z/)nexp(-

z/)]/n!. A characteristic feature of Poisson statistics is that individual events are independent 

of one another and have the same average rate [16]. This is also the expected behaviour for the 

scattering path length of a particle [6], with the average ‘rate’ here being the mean free path . 

Since  = [2m
2Re(V*·Vp)]-1 it would appear that the mean free path is a function of the slice 

thickness ∆z through the Vp term (Equation 7c), although in reality  is a constant. In fact the 

smallest slice thickness that preserves the properties of the inelastic scattering event should be 

used to calculate . For core losses ∆z is roughly the size of the ionised atom. The bulk plasmon 



energy depends on the electron density [20] and consequently ∆z for plasmon losses should be 

of the order of the unit cell dimension. 

 

In summary it is shown that both the scattering path length and cross-section for Bloch 

electrons are particle-like when the excitation is delocalised. This justifies the use of Monte 

Carlo methods to model plasmon energy losses in multislice simulations. 
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