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ABSTRACT
We propose a new scheme to reconstruct the baryon acoustic oscillations (BAO) signal, which contains key cosmological
information, based on deep convolutional neural networks (CNN). Trained with almost no fine tuning, the network can recover
large-scale modes accurately in the test set: the correlation coefficient between the true and reconstructed initial conditions
reaches 90 per cent at k ≤ 0.2 hMpc−1, which can lead to significant improvements of the BAO signal-to-noise ratio down to
k � 0.4 hMpc−1. Since this new scheme is based on the configuration-space density field in sub-boxes, it is local and less
affected by survey boundaries than the standard reconstruction method, as our tests confirm. We find that the network trained in
one cosmology is able to reconstruct BAO peaks in the others, i.e. recovering information lost to non-linearity independent of
cosmology. The accuracy of recovered BAO peak positions is far less than that caused by the difference in the cosmology models
for training and testing, suggesting that different models can be distinguished efficiently in our scheme. It is very promising
that our scheme provides a different new way to extract the cosmological information from the ongoing and future large galaxy
surveys.
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1 IN T RO D U C T I O N

Understanding observations and using them to constrain the nature of
physics is a long-term task in modern cosmology, which requires both
obtaining high-quality data and developing accurate data analysis
methods. The baryon acoustic oscillations (BAOs), imprinted on
large-scale structure, is a standard ruler in cosmology and play an
important rule in studying the cosmic expansion history, and the
properties of dark energy.

BAOs arise from the coupling of baryons and photons in the
early Universe (for a recent review see Weinberg et al. 2013).
After recombination, this feature is imprinted in both the cosmic
microwave background (CMB) and the matter distribution. CMB
anisotropy measurements have provided highly precise constraints
on the sound horizon at high redshift (Peebles & Yu 1970; Sunyaev &
Zeldovich 1970, and for more recent results see Bennett et al. 2013;
Planck Collaboration XIII 2016). In the case of galaxy clustering, the
BAO feature imprinted in the form of a characteristic scale provides
an absolute distance scale, and can be used to map the expansion
history H(z). It has been detected at redshift about 0.1 ∼ 0.8 and 2.5
(for recent results and a summary of BAO measurements, see e.g.
Alam et al. 2017) as a peak in the correlation function or as a harmonic
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sequence of oscillations in the power spectrum. Fortunately, the
relatively large scale of the BAO feature (about 145 Mpc) protects it
from substantial non-linearity, making it straightforward to interpret,
and a powerful tool for measuring the cosmological distance
scale.

However, late-time non-linear evolution does broaden and shift the
BAO peak in the correlation function, or, equivalently, dampen high-
k oscillations in the power spectrum, which decreases the accuracy
and precision of the detection of the BAO signal (Meiksin, White &
Peacock 1999; Angulo et al. 2005; Seo & Eisenstein 2005; Springel
et al. 2005; Jeong & Komatsu 2006; Huff et al. 2007; Eisenstein,
Seo & White 2007a; Angulo et al. 2008; Padmanabhan & White
2009; Seo et al. 2010; Mehta et al. 2011; Sherwin & Zaldarriaga
2012). Furthermore, a number of other effects can also introduce
difficulties in BAO measurement, such as the survey boundary,
galaxy bias, and redshift-space distortions. In order to correct this
blurring caused by non-linear evolution, Eisenstein et al. (2007b) pro-
posed a reconstruction method (hereafter ‘standard reconstruction’)
by moving the galaxies back along large-scale bulk flows, which
considerably enhances the BAO peak both in theory (Seo et al. 2008;
Noh, White & Padmanabhan 2009; Padmanabhan, White & Cohn
2009; Seo et al. 2010; Mehta et al. 2011; Schmittfull et al. 2015;
White 2015) and in observations (Padmanabhan et al. 2012; Xu et al.
2013; Anderson et al. 2014; Kazin et al. 2014; Ross et al. 2015;
Beutler et al. 2016, 2017; Hinton et al. 2017).
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Recently, motivated by the success of standard reconstruction and
the current or upcoming observations (e.g. 2MASS, Skrutskie et al.
2006; 4MOST, de Jong et al. 2012; 6dF, Jones et al. 2009; SDSS,
Alam et al. 2017; DES, Dark Energy Survey Collaboration 2016;
PFS, Takada et al. 2014; DESI, DESI Collaboration 2016); EUCLID,
Laureijs et al. 2011; LSST, Ivezić et al. 2008; Tianlai, Xu, Wang &
Chen 2015; CHIME, Bandura et al. 2014; HIRAX, Newburgh
et al. 2016; BINGO, Battye et al. 2016; and SKA, Godfrey et al.
2012), various other reconstruction methods have been proposed and
gained broader applications (for a review, see Schmittfull, Baldauf &
Zaldarriaga 2017). For example, Zhu, Pen & Chen (2016), Zhu
et al. (2017) proposed a non-linear reconstruction technique based on
iteratively solving the coordinate transform between the Lagrangian
and Eulerian frames. It has been tested for dark matter density fields
(Zhu et al. 2016, 2017), and it has been investigated with respect to
Fisher information (Pan et al. 2017), BAO (Wang et al. 2017), biased
tracers (Yu, Zhu & Pen 2017; Wang & Pen 2019), and redshift-
space distortions (Zhu, Yu & Pen 2018). Schmittfull et al. (2017)
described an iterative method to reconstruct the initial conditions,
and Seljak et al. (2017), Feng, Seljak & Zaldarriaga (2018), Modi,
Feng & Seljak (2018) converted the reconstruction to an optimization
problem by forward modelling. For similar purposes, Shi, Cautun &
Li (2018) proposed a multigrid relaxation algorithm and extended
it for biased tracers (Birkin et al. 2019) and to remove redshift-
space distortions from galaxy clustering (Wang, Li & Cautun 2020).
Most of these methods achieve substantial improvements beyond the
standard reconstruction and some other methods have been designed
to gain more information in some specific cases (e.g. Kitaura 2013;
Jasche & Wandelt 2013; Wang et al. 2013; Burden, Percival &
Howlett 2015; Obuljen et al. 2017; Hada & Eisenstein 2018, 2019;
Bos, Kitaura & van de Weygaert 2019; Kitaura et al. 2019; Leclercq
et al. 2019; Sarpa et al. 2019).

Another potential approach to extract the BAO features from
galaxy surveys is by using neural networks (hereafter networks;
for some reviews see Lecun, Bengio & Hinton 2015; Goodfellow,
Bengio & Courville 2016), which have been widely used in various
fields in astronomy, such as gravitational lensing (Gupta et al.
2018; Morningstar et al. 2018, 2019; Li et al. 2019; Tewes et al.
2019; Springer et al. 2020), the Cosmic Microwave Background
(Caldeira et al. 2019), neutral hydrogen (Shimabukuro & Semelin
2017; Rafieferantsoa, Andrianomena & Davé 2018; Gillet et al. 2019;
Villanueva-Domingo & Villaescusa-Navarro 2020), constraining
cosmological parameters (Ravanbakhsh et al. 2017; Schmelzle et al.
2017; Gupta et al. 2018; Mathuriya et al. 2018), large-scale structure
classification (Aragon-Calvo 2019), and generation (Rodrı́guez et al.
2018) and structure formation (Lucie-Smith et al. 2018; Modi et al.
2018; Berger & Stein 2019; He et al. 2019; Lucie-Smith, Peiris &
Pontzen 2019).

In this paper, we propose a new, network-based method to
reconstruct the BAO signal from a dark matter density field. We
use high-resolution N-body simulations, which provide all necessary
information to construct our network model. In this case, we convert
the reconstruction problem to a non-linear mapping from final non-
linear density to initial linear density, by introducing a large number
of parameters, which are optimized by feeding simulation data to the
network for training.

This is an independent method from the ones commonly used in
BAO analyses, and can be used to identify and understand potential
modelling systematics in BAO measurements. Unlike methods based
on perturbation theory, our method is more robust in regions close to
the survey boundary, because it reconstructs the initial linear density
from the local final non-linear density in configuration space. In

contrast, in Fourier space, the effect of the survey boundary is a broad
window function that is convolved on to the density field, which can
have a global impact on reconstruction. This effect becomes local in
configuration space, reducing the impact on our reconstruction.

This paper is organized as follows. In Section 2 we describe our
network model and the simulations used in this work. It is followed by
results of the reconstruction in Section 3. We then discuss cosmology
dependence and survey boundary effects in Section 4, and finally
conclude in Section 5.

2 ME T H O D

In this section, we first describe the reconstruction problem by way
of maximum-likelihood estimation and show that the reconstruction
can be represented by the network. After that, we review traditional
and convolutional neural networks and describe the network model
we used in this work. Finally, we show the training process and
describe the data set used in this paper.

2.1 Maximum-likelihood estimation

In general, the non-linear power spectrum of the final density field
can be expressed as a sum of two parts (Crocce & Scoccimarro
2006):

Pnl(k) = G2(k)Pini(k) + Pmc(k), (1)

where the Pini(k) is the linear power spectrum, G(k) is the propagator,
and Pmc(k) indicates the power spectrum from mode coupling. The
propagator term encodes the memory of the initial conditions, and
G(k) → 1 as k → 0, indicating that the information on large scales
is well preserved even at late times. On intermediate scales, mode
coupling modulates large-scale information into smaller, non-linear,
scales. In regions where shells cross, small-scale information is
lost, and it cannot be estimated uniquely if only the final density
field is provided. Since the BAO features are located on large and
intermediate scales, shell crossing is not a major concern for BAO
reconstruction. As we focus on BAO reconstruction in this paper, we
shall, following the standard practice in the reconstruction literature,
assume there is no shell crossing.

We suppose a parametric model f (δf ; θ ), with parameter set θ , that
can predict the initial linear density field δi above a certain length
scale, given the corresponding final density field δf. It can be written
as

δi = f (δf ; θ ), (2)

and the corresponding conditional probability is P (δi|δf ; θ ). Under
the assumption of independent and identically distributed (i.i.d.) data
points, the likelihood is

L =
Np∏
k=1

P (δi|δf ; θ ), (3)

where Np is total number of data points, i.e. pixels or cells where the
density fields are evaluated, and the maximum-likelihood estimation
of θ is

θ̂ML = arg max
θ

L = arg max
θ

∑
k

log P (δi|δf ; θ ). (4)

If we assume

P (δi|δf ; θ ) = N (δi; f (δf ; θ ), σ ), (5)

where the measured (or simulated) δi is regarded as a data point
sampled from a Gaussian distribution N , the function f (δf ; θ ) gives
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the prediction of the mean of N and a fixed standard deviation σ is
assumed to simplify the problem. In such conditions, the maximum-
likelihood estimation is equivalent to minimizing the mean square
error (MSE),

θ̂ML = arg min
θ

k∑ (
f (δk

f ; θ ) − δk
i

)2
, (6)

where the superscript k again indicates i.i.d. data points. We assume
a Gaussian distribution of N in equation (5) because there is no
preferred distribution. The Gaussian distribution is a natural choice
according to the central limit theorem, which applies when the
number of data points is large.

In the reconstruction problem, it is not easy to estimate θML

directly because we do not know the mathematical form of the model
f (δf ; θ ). A possibility is fitting the parameters θ from observed
data with the help of an optimization method. However, due to
the complexity of the model and the huge number of parameters,
traditional optimization methods, such as Markov chain Monte Carlo
(MCMC) are not efficient. In this work, we tackle this difficulty by
using gradient-based neural network to construct model and optimize
parameters.

2.2 Artificial neural networks

Artificial neural networks (see some reviews, Lecun et al. 2015;
Goodfellow et al. 2016) are suitable for solving problems with no
known specific mathematical expressions. By constructing a non-
linear parametric model, the network converts complex problems
into non-convex optimization and optimizes the trainable parameters
by gradient-descent based methods (e.g. stochastic gradient descent;
Bottou 1998). The process of optimizing trainable parameters by
feeding a series of data points into a fixed network architecture is
called training.

A standard feed-forward neural network consists of multiple
layers. Each layer performs a weighted linear combination of its
inputs, followed by an element-wise non-linear activation function
and a bias term. These weights and biases on all layers constitute the
trainable parameters of the network.

For layer n, if we set the input vector as xn−1, weight matrix Wn

and bias vector bn, then the output of this layer is

xn = a(Wnxn−1 + bn). (7)

Here the a denotes a non-linear activation function. In this paper, we
use the rectified linear unit (ReLU; Nair & Hinton 2010) activation
function. For the network, the output of one layer is the input of
the next layer. By stacking a series of functions in equation (7),
the network will have the potential to approximate the f (δf ; θ ) in
equation (6) and the trainable parameters correspond to the parameter
set θ .

In deep learning, increasing the number of layers N always expands
the capacity of the network, by enlarging the hypothesis space of
solutions that the algorithm is able to choose from, although it
may lead to difficulties in training. Once the network architecture is
determined, the trainable parameters in the network will be optimized
by minimizing a loss function. The loss function describes a kind of
distance between the network prediction and the target value. In this
paper, we choose MSE loss as the loss function.

2.3 Convolutional neural networks

Convolutional neural networks (hereafter CNNs, see e.g. LeCun et al.
1990; Krizhevsky, Sutskever & Hinton 2012) are well known in

processing visual imagery because of their shift-invariant property
and reduced number of free parameters. In this study, we will perform
the MSE estimation described in equation (6) using a 3D CNN.

CNNs replace the matrix-vector product Wnxn−1 in equation (7)
by a sum of convolutions, the latter being more efficient and having
fewer trainable parameters. Like in equation (7), we represent the
output of the l-th kernel in layer n as

xl
n = a

(
k∑

Wl
n ⊗ xk

n−1 + bl
n

)
, (8)

where ⊗ indicates the 3D convolution operation, Wl
n denotes

trainable convolutional kernels for layer n, l indicates the l-th kernel
in this layer, and k indicates the output corresponding to the k-th
convolutional kernel in the previous layer, which is also called the
k-th channel.

In addition to the convolutional layers, standard CNNs usually
contain pooling layers (e.g. Krizhevsky et al. 2012). In our network,
the pooling layers are replaced by a striding in 2 voxels per side in the
convolutional calculation. For all convolutional kernels in this paper,
we set their size as 3 × 3 × 3 voxels, except the last convolution layer
whose kernel size is 1 × 1 × 1. The detailed network architecture is
shown in Table 1.

As described in equation (2), the input and output of the network
are the final density field δf and the initial density field δi, respectively.
To further reduce the computational and memory requirements in the
training, we generate δf and δi fields in a small sub-box instead of
the whole simulation box. δf is generated in a cubic region with a
length of 76 Mpc h−1 per side. For δi, we choose the corresponding
central region at initial time with a length of 1.95 Mpc h−1 per side.
This is because as the structure evolves, the particles initially located
in a small region can diffuse to a larger volume.1 In other words, a
big region with enough volume contains almost all information of its
central sub-region at the initial time. More details about the data can
be found in Section 2.5.

2.4 Training

Once the network architecture is fixed, training can help us optimize
the random parameters to suitable values. In the training process,
there are some hyper-parameters which should be selected, such as
in the activation function a and the loss function. The search for
the optimal hyperparameters is called fine-tuning, which requires us
to train the network multiple times with different hyperparameters
(Goodfellow et al. 2016). In this paper, we report our preliminary
results of BAO reconstruction by using a neural network, for which
the hyperparameters are selected roughly and we defer further fine-
tuning to a future study. Below, we list the hyperparameters that are
used:

(i) We initialize the parameters following Jia et al. (2014), using
the function variance scaling initializer in TensorFlow
(Abadi et al. 2016). The xavier initialization (Glorot & Bengio 2010)
also worked well in our test.

(ii) The learning rate is a hyperparameter that controls how much
we adjust the trainable parameters based on the loss gradient.
Reducing the learning rate helps us to depress the gradient noise,
which makes the network tend to converge to a local or global
minimum. However, the gradient noise can also be beneficial in

1The opposite can also happen, but our sub-box volume choices automatically
account for such situations.
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Table 1. The network architecture. Our network consists of seven convolutional layers and one fully
connected layer. Here, the kernel size shows the shape of convolutional kernels in each convolutional layer.
The output shape describes the output size of each layer. For convolutional layers, each dimension means
[batch size, depth, height, width, channels]. For the fully connected layer, each dimension indicates [batch
size, channels]. In the layer before fully connected, we average the output of the conv7 layer in dimensions
of performing convolution, which can also be seen as an average pooling layer. All convolutional layers are
followed by a ReLU (Nair & Hinton 2010) activation function in our network.

Layer Kernel size Output shape Stride Activation function

input None (None, 39, 39, 39, 1) None None
conv1 (3, 3, 3) (None, 20, 20, 20, 32) (2, 2, 2) ReLU
conv2 (3, 3, 3) (None, 20, 20, 20, 32) (1, 1, 1) ReLU
conv3 (3, 3, 3) (None, 10, 10, 10, 64) (2, 2, 2) ReLU
conv4 (3, 3, 3) (None, 10, 10, 10, 64) (1, 1, 1) ReLU
conv5 (3, 3, 3) (None, 5, 5, 5, 128) (2, 2, 2) ReLU
conv6 (3, 3, 3) (None, 5, 5, 5, 128) (1, 1, 1) ReLU
conv7 (1, 1, 1) (None, 5, 5, 5, 128) (1, 1, 1) ReLU
Mean None (None, 128) None None
Fully connected None (None, 1) None None

Figure 1. The batch size (upper panel) and loss functions (lower panel).
The loss functions are normalized by the variance of initial conditions,
cf. equation (9) and are shown in solid and dotted lines for training and
validation set, respectively. The loss functions in both the training and the
validation sets decrease with training progress, and there is no obvious
overfitting.

some cases, such as helping to escape ‘sharp minima’ (Smith & Le
2017). In general, the algorithm calculates the gradient in a mini-
batch, i.e. by computing the gradient against more than one training
data point, but less than the full data set, at each iteration. As shown
in Smith et al. (2017), in the training, decreasing the learning rate is
usually equivalent to increasing the minibatch size (hereafter, batch
size). Therefore, we fixed the learning rate to 0.0001 and changed
the batch size as shown in Fig. 1.

(iii) Batch normalization has become a part of the standard toolkits
recently for accelerating and improving the training of deep network
by reducing the internal covariate shift (Ioffe & Szegedy 2015).
However, since batch normalization uses the mean and variance
values in the mini-batch, it is not suitable for small or non-i.i.d.
mini-batch training (Ioffe 2017). In our task, on the one hand, we use
sub-box density fields (see Section 2.5) when training the network

which are non-i.i.d. data sets. On the other hand, the memory usage
of 3D convolutions limits the batch size of our network. Therefore,
we remove all batch normalization layers in our network.

(iv) We use the moment-based Adam Optimizer (Kingma & Ba
2014) in this work.

In the training, the loss function is the most important indicator.
It can be used to monitor the network’s ability and overfitting. Here,
overfitting means the network is trained to work so well on the
training set that it works poorly on data it has not seen before. The
training set is the data set fed into the network and used to calculate
the gradients for updating trainable parameters. In the training, the
data that the network ‘has not seen before’ is called the validation
set. The validation set will also be fed into the network, but only its
loss will be used to indicate overfitting or not. When the network
is overfitted, the loss of training set reduces but the validation loss
increases instead.

In Fig. 1, we show the batch size and loss function in training.
In the top panel, the batch size increases gradually with the training
progress to reduce the gradient noise. In the bottom panel, the loss
functions of the training set and validation set are represented by
black and red solid lines, respectively. The loss function shown here
is normalized by the variance of initial conditions, in other words

MSE

σ 2
=

∑k
(
f (δk

f ; θ) − δk
i

)2

∑k
(
δ̄i − δk

i

)2 , (9)

where δ̄i denotes mean of the initial density field. In this case, the
loss will be 1 if the network predicts initial density only by its mean
value. We find the losses in both the training set and the validation set
decrease gradually in the training, and there is no obvious overfitting.
Thus, we do not use regularizations such as L2 regularization or
dropouts (Srivastava et al. 2014) in our network, aimed to avoid
overfitting. We tested adding residual architectures (He et al. 2015)
to the network as well, but found no significant improvement; this
may be because our network is not very deep. Therefore, we did not
use residual layers in our model.

2.5 Data set

The data set in this study is based on the INDRA simulations (Falck et
al, in preparation), a suite of N-body simulations (512 runs) evolved
from different initial conditions using L-Gadget (Springel 2005),
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each with 10243 dark matter particles in a periodic cube of 1 h−1Gpc
on a side. The cosmological parameters in these simulations are taken
to be the best-fitting parameters of WMAP7 (Komatsu et al. 2011):
�m = 0.272, �� = 0.728, �b = 0.045, h = 0.704, σ 8 = 0.81, and
ns = 0.967, where �m, ��,and �b are respectively the present-day
density parameters for matter, cosmological constant, and baryons;
h = H0/(100 km s−1 Mpc−1), σ 8 is the rms matter density fluctuations
at z = 0, and ns the index of the primordial power spectrum of the
density perturbations.

In total, 24 simulations were used to build the data set, equally split
between training, validation, and test sets. We define the snapshot
z = 10 as the initial condition and the snapshot z = 0 as the final
condition. Here, we choose the initial time arbitrarily: if we instead
define the initial time as a redshift higher than 10, we only need to
retrain the network with the data at that corresponding redshift.

For each simulation, we assign the dark matter particles on to a
5123 grid using Piecewise Cubic Spline (PCS; see e.g. Chaniotis &
Poulikakos 2004), and smooth the initial density field with a
3 Mpc h−1 Gaussian filter. The network is designed to input 393 cells
and output one value for reducing computational complexity. Here,
the input is a cubic region of the final density field, and the output is
the predicted density δi in the central (i, j, k) = (20, 20, 20) cell of
this 393 cube. Since the side length of each cell is 1.95 Mpc h−1, the
input is a cubic sub-box with side length 76 Mpc h−1.

For the training and validation sets, we separate each simulated
final density field into sub-boxes in stride of 16 grids per side. Thus,
in both the training and validation sets, we generate 32 768 sub-boxes
per simulation and 262 144 sub-boxes in total. When training, we use
all sub-boxes in the training set but randomly select 4096 sub-boxes
from the validation set to monitor the overfitting.

To further enlarge the training set, we augment each sub-box
with six different rotations and eight different axis-reflections to
expand the training set by a factor of 48 (Ravanbakhsh et al. 2017).
Note that expanding the training set with more simulations is an
alternative possibility. However, the sub-box data of each simulation
occupies a huge storage space (about 14 GB) in our method, thus
expanding the data set by using more simulations would have caused
storage pressure; data augmentation is more efficient. Additionally,
since overfitting is not an urgent problem as shown in Fig. 1, more
simulations are not necessary in our study.

Besides the training set and the validation set, an independent
test set is also needed to test the final results of our model, because
even though the validation set makes no contribution to the gradient,
it is used to choose the hyperparameters. Unlike the training and
validation sets, we do not use the test set to measure the loss. In the
test results, the network is seen as a complex convolutional kernel
and we convolve it on the whole final density field. In this way, we
get the corresponding reconstructed density field. We note that all
results in Section 3 are calculated from eight simulations in a test set
with the same cosmology, but different initial conditions compared
to the training and validation sets.

3 R ESULTS

3.1 Density maps and probability density functions

Visualization of density maps can provide intuition of the quality
of the reconstruction. In Fig. 2, we show the density maps of the
initial condition δi, final condition δf, reconstruction δr, and the
residual between reconstruction and the initial condition, RES ≡
δr − δi, respectively. To show these density maps clearly, we linearly

extrapolate the corresponding density contrasts δ to z = 0 using
the linear growth factor D+ and perform a 4 Mpc h−1 Gaussian
smoothing on all density fields. The projection depth of all slices
is 1.95 Mpc h−1. As shown in the residual map, δr is almost identical
to the initial density δi.

To further quantify the quality of the reconstruction, we show
the probability density functions (PDFs) in Fig. 3. The dashed,
dotted-dashed, and solid lines indicate the PDFs for δi, δf, and δr,
respectively. As in Fig. 2, we linearly extrapolate the corresponding
density fields to z = 0 and perform a 4 Mpc h−1 Gaussian smoothing.
We find that, compared with the final condition, the PDF of the
reconstruction is much closer to the initial conditions, and have a
shape that is closer to Gaussian.

3.2 Transfer function

The transfer function can be used to quantify the discrepancy between
the power spectra of the initial condition and reconstruction. It is
defined as

T (k) =
√

Pr(k)/Pi(k), (10)

where Pr(k) and Pi(k) are respectively the power spectra of δr and δi.
Fig. 4 shows the transfer function averaged over eight simulations.

The transfer function decays towards small scales, which is as
expected since the complicated small-scaling clustering features
are harder to reproduce. We also note that the reconstructed
density field is slightly biased on the largest scales, where the
transfer function T is larger than 1. To test if this result is due
to sample variance, we have measured the standard deviations
over the eight simulations, and found that for all scales except
the first k bin shown in Fig. 4, the scatters are smaller than
5‰. Even for the first k bin which suffers most from cosmic
variance, the standard deviation is only ∼ 1.2 per cent. Therefore
this bias seems indeed to be systematic. A possible reason for
this is that our method reconstructs the initial conditions from
a small sub-box volume, which lacks larger scale information.
Fortunately, these scales on which the bias occurs are not impor-
tant in BAO reconstruction, since they are nearly unaffected by
non-linear evolution and do not need reconstruction. Furthermore,
if we can measure this bias in simulations and it turns out to
stable in different cases, we can calibrate the density fluctua-
tion by transfer function, as is widely used in other reconstruc-
tion methods (Schmittfull et al. 2017; Seljak et al. 2017; Zhu
et al. 2017).

3.3 Correlation coefficient

The correlation coefficient between two fields describes their corre-
lation in Fourier phases. It is defined as

r(k) = P12(k)/
√

P1(k)P2(k), (11)

where P1 and P2 are the auto power spectra of the two fields, and
P12 their cross-power spectrum. In Fig. 5, we show the correlation
coefficient between the initial condition and reconstruction with
the black solid curve, and use the dotted-dashed curve to denote
the correlation between the initial and final conditions. We can see
that the reconstruction increases r to ∼0.5 at k = 0.4 hMpc−1. The
restoration of the information larger than this scale is enough to
recover the BAO signal, because the BAO peaks at k � 0.4 hMpc−1

are weaker than 1 per cent (see Fig. 6), not currently detectable in
observations.
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1504 T.-X. Mao et al

Figure 2. Density maps. We show the density map in a 1.95 Mpc h−1 slice of IC: initial condition δi, FC: final condition ln (δf + 1), REC: reconstruction δr

and RES: residual between reconstruction and initial condition δr − δi. For clarity, we have linearly extrapolated the corresponding density contrast δ to z = 0
using the linear growth factor, and smoothed all density fields with a Gaussian filter with σ = 4 Mpc h−1.

Figure 3. Probability density functions. The dashed, dotted-dashed, and
solid lines indicate the PDFs of δi, δf, and δr. We have linearly extrapolated
the initial and reconstructed density fields to z = 0 with the linear growth
factor, and perform a 4 Mpc h−1 Gaussian smoothing as in Fig. 2. Unlike δf,
the PDF of δr is close to δi.

As comparison, we also show the correlation between the initial
conditions and the standard reconstruction with the dashed curve.
Here, the standard reconstruction is performed using ‘Nbodykit’
(Hand et al. 2018), with Gaussian smoothing on a scale of

Figure 4. The mean transfer function over eight simulations. For most points,
the standard deviations are smaller than 5‰ compared to the transfer function,
and so they are not shown in the figure.

20 Mpc h−1. On scales larger than k = 0.2 hMpc−1, the standard
reconstruction method works slightly better, which again could
be because the limited sub-box size in our method removes the
clustering information on those large scales. On scales between
k = 0.2 hMpc−1 and 0.4 hMpc−1, where the BAO signal is still
strong, our method is better correlated with the initial conditions.
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BAO reconstruction 1505

Figure 5. The correlation coefficient between the initial condition and the
reconstruction (the black solid line). The reconstructed density field is about
90 per cent correlated with the initial density at k � 0.2 hMpc−1 and about
50 per cent correlated at k � 0.4 hMpc−1. As a comparison, the correlation
between the initial condition and standard reconstruction is shown as the
dashed line. Compared with the standard reconstruction, our result is more
correlated with the ground truth between k � 0.2 hMpc−1 and 0.5 hMpc−1.
On scales larger than 0.2 hMpc−1, the standard reconstruction works better,
possibly because of the small sub-box size in our method which means that
the large-scale information is not used. The dotted-dashed line shows the
correlation between the initial and final conditions.

Figure 6. Fractional BAO signals, equation (12), in the power spectrum. To
reduce the cosmic variance, we run a pair of simulations from two initial
conditions with the same initial random seed but generated by initial power
spectra with and without BAO wiggles. Upper panel: the black solid line,
green cross points and red hollow circles indicate, respectively, the fractional
BAO signals in the initial conditions, final conditions and reconstruction.
Compared with the final nonlinear case, reconstruction increases the signal-
to-noise ratio until k � 0.4 hMpc−1. Lower panel: the difference of fractional
BAO signals measured from the initial conditions (Si) and the reconstruction
(Sr).

3.4 BAO signal

To directly test the quality of our reconstruction of the BAO signal,
we show the fractional BAO signal in Fig. 6. The latter is defined as

S = (Pwiggle − Pnowiggle)/Pnowiggle, (12)

where the subscripts ‘wiggle’ and ‘nowiggle’ denote simulations
evolved from initial power spectra with and without BAO wiggles
(Vlah, White & Aviles 2015). These simulation pairs have the same
initial random seed, which helps to cancel the cosmic variance in the
fractional BAO signal (Schmittfull et al. 2017). In the top panel, the
black solid curve is the fractional BAO signal calculated from the
initial conditions, in which we can clearly see a series of BAO peaks.
However, for the final conditions, shown by the green cross points, the
BAO peaks are broadened, which means that the signal-to-noise ratio
of the peaks decreases because of non-linear evolution, especially
on scales 0.2–0.4 hMpc−1. After reconstruction, shown by the red
hollow circles, the signal-to-noise ratio of BAO peaks is improved,
until about k = 0.4 hMpc−1. We also show the difference between
initial conditions and our reconstruction in the bottom panel. On all
scales, we find the differences of fractional BAO signals measured
from the initial condition and the reconstruction are smaller than
1 per cent. This indicates our reconstruction succeeds in removing
the effect of non-linear evolution, and recovering the BAO wiggles in
the initial conditions. As Fig. 6 shows, we can recover the peak around
k = 0.32 hMpc−1 and partly the peak around k = 0.38 hMpc−1.

4 D ISCUSSION

4.1 Cosmology dependence

In this study, we train our network using simulations with specific
cosmological parameters, which introduces a cosmological depen-
dence into our model. In this subsection, we check this dependence
in more detail.

To check the cosmology dependence, we run another two pairs
of simulations with a 500 Mpc h−1 box size from initial conditions
with and without BAO wiggles like in Fig. 6. These simulations
use different cosmological parameters from the training set: in the
training set, the INDRA simulation use the best-fitting cosmological
parameters of WMAP+BAO + H0 based on the 7-yr WMAP results,
while in these new simulations, we choose the best-fitting parameters
based on the WMAP-only data in WMAP5 (Hinshaw et al. 2009)
and WMAP9 (Bennett et al. 2013), to increase the difference from
the training sample. For clarity, in the discussion below about
cosmology dependence, we call the universe of the training set the
‘training cosmology’ and use ‘truth cosmology’ to indicate both
new simulations of WMAP5 and WMAP9 in the corresponding
comparisons. In the following comparisons, we train our model in
the training cosmology, but use it to reconstruct the BAO signal in
the two truth cosmologies.

The results from the WMAP5 cosmology are shown in Fig. 7.
In the upper panel, the black solid and red dotted-dashed lines
indicate the fractional BAO signals of the initial conditions in the
training and truth cosmologies, respectively. The reconstruction in
the truth cosmology is shown by the blue cross points. We find
our reconstruction is closer to the truth cosmology than to the
training cosmology on almost all scales. This indicates that, instead
of ‘remembering’ the BAO signal of the training set, the network
model has indeed successfully learned the relation δi = f (δf ; θ ),
which is model-independent and allows it to reconstruct the initial
condition for general cosmologies. In the lower panel, the black
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1506 T.-X. Mao et al

Figure 7. Cosmology dependence. The network is trained in the training
(WMAP7) cosmology, while the reconstruction is applied in the truth
(WMAP5) cosmology. In the upper panel, the black solid and red dot-dashed
lines indicate the fractional BAO signals of the initial conditions in the training
and truth cosmologies, respectively. The cyan crosses show the reconstruction
in the truth cosmology. Although the network is trained by simulations in the
training cosmology, we find the reconstructed signal is closer to the truth
cosmology than the signal in the training cosmology. In the lower panel,
the black solid and red dotted-dashed lines show the differences between
the reconstruction and initial conditions in training and truth cosmologies,
respectively.

solid and red dotted-dashed lines show the differences between the
reconstruction and the initial condition in the training and truth
cosmologies, respectively. It is interesting to note that the differences
are actually smaller for the truth cosmology than for the cosmology
upon which the network has been trained.

Fig. 8 is similar to Fig. 7, but shows a second test of cosmology
dependence using WMAP9 as the truth cosmology. Since the cos-
mological parameters of the training and truth cosmologies are very
close in this case, there is only a slight discrepancy of the BAO signals
in those two cosmologies. We again find that the reconstruction is
closer to the truth cosmology, although there are only very small
discrepancy between the two, especially on scales between 0.1 and
0.3 hMpc−1.

To quantify whether this method can be used to distinguish
between different cosmologies, we define a scale dilation parameter
α that is used to adjust the location of the BAO peaks, as

S(k) = St(k/α), (13)

where the S is the fractional BAO signal defined in equation (12)
and St indicates the initial fractional BAO signal in the training
cosmology. Since the definition of the fractional BAO signal has
removed most of the cosmic variance and the reconstruction has
removed non-linear damping, the parameter α will show how
much the peak location of S is shifted with respect to St. We fit
α with S being the fractional BAO signal of the reconstruction
and initial condition respectively, for the training, WMAP5 and
WMAP9 cosmologies. In Fig. 9, the black points indicate the
α fitted from the initial conditions and the red cross points are
fitted from the reconstruction. Note that α = 1 by definition for
the initial condition of the training cosmology (the second black

Figure 8. The same as Fig. 7, but with the WMAP9 cosmology as the truth
cosmology. Since the training and truth cosmologies are so close, there are
only very small differences between the BAO signals of the training, truth,
and reconstruction at k � 0.2 hMpc−1, although the reconstruction does agree
better with the truth cosmology as expected.

Figure 9. The scale dilation parameter α, cf. equation (13), which quantifies
the shift of the BAO peak position in a given density field with respect to the
peak positions in the initial condition of the training cosmology. The x-axis
shows the three different cosmologies used in our tests, and the black points
and red crosses indicate the best-fitting α values from the initial condition and
reconstruction, respectively. The difference between the BAO peak positions
in the initial condition and the reconstruction for both truth cosmologies
(WMAP5 and WMAP9) is much smaller than the difference between its
locations in the different cosmologies. This is consistent with the results
shown in Figs 7 and 8.

dot). There is a (very) slight shift of the reconstructed BAO peaks
even in the training cosmology (α > 1 for the second red cross),
and this shift seems to be the same for the reconstruction results
of the two truth cosmologies, indicating again that the trained
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BAO reconstruction 1507

network has negligible cosmology dependence.2 More importantly,
this shift is much smaller than the difference in α that is due to
the underlying cosmology (which is at the per cent level), suggesting
that different models can be distinguished between our reconstruction
method.

It should be noted that, to overcome the cosmology dependence
completely, we should train the network with simulations in a series
of cosmological parameters as done by Ravanbakhsh et al. (2017). A
more detailed analysis of this is beyond the scope of this paper and
will be left for future work.

4.2 Boundary effects

The discussion so far has been in the idealized case of dark matter,
with no boundary effects. BAO measurement in galaxy survey data
faces other complications, such as redshift-space distortions, shot
noise, galaxy bias, and survey boundaries. Most perturbation based
reconstruction algorithms estimate the displacement field in Fourier
space. In this case, the irregular survey boundary and incomplete
information near it disturbs the reconstruction results as far as
100 Mpc h−1 from the boundary (Zhu et al. 2020).

In order to deal with the irregular survey boundary, one can build
a forward model that includes the boundary, and optimize them
together (see e.g. Seljak et al. 2017; Feng et al. 2018; Modi et al.
2018). If we only focus on the effects of survey boundary, a forward-
modelling method is a suitable choice because the boundary is fixed
and we know it very well. However, limited by computing power
and memory, the forward model usually cannot be too complicated.
In practice, a limited forward model may be hard to generalize, and
there is a trade-off between variance and bias, e.g. much effort is
required to understand the bias of the forward model and make it
close to the actual problem. The survey boundary is easy to handle
in forward modelling, though not all observational effects are.

Since our network model estimates the initial conditions from a
sub-box instead of the global density field, we expect that survey
boundaries should have a small impact in this method. In this sub-
section, we check such a boundary dependence of our reconstruction
(hereafter, boundary reconstruction) by assuming a survey boundary
like the Apple logo, which provides a couple of separated irregular
regions. For comparison, we use ‘full reconstruction’ to indicate the
reconstruction that use all information in the box (i.e. with periodic
boundaries).

Fig. 10 shows the density maps of (a) the full reconstruction,
(b) the boundary reconstruction, and (c) the residual between
them. All these maps are shown in a 1.95 Mpc h−1 slice. For the
boundary reconstruction, we fill all cells outside the assumed survey
boundary with the cosmic mean density during reconstruction.
For clarity, we define a boundary distance db which describes
the nearest distance to the survey boundary of each cell, which
will be helpful for quantifying the impact of survey boundary
in reconstruction. In our method, the area not affected by the
survey boundary (hereafter, critical boundary) is circled by the
black dashed line in the full and boundary reconstruction maps.
The db of critical boundary ranges from 37 to 52.3 Mpc h−1,
depending on the position in the map, because of the sub-box
length used in reconstruction. In the residual panel, from out-
side to inside, the dashed lines indicate db as 0, 26.2, 52.3, and
78.5 Mpc h−1, respectively. Only a slight discrepancy between full

2The shift itself could be a sign that reconstruction cannot fully remove the
broadening of the BAO peaks caused by non-linear structure formation.

and boundary reconstruction maps is found in the area 0 < db <

26.2 Mpc h−1.
In Fig. 11, we show the ratio of correlation coefficients between

boundary and full reconstruction in areas of 0 < db < 26.2 Mpc h−1,
26.2 < db < 52.3 Mpc h−1, and 52.3 < db < 78.5 Mpc h−1, respec-
tively. Note that to calculate the correlation coefficients in these three
areas, we mask out the rest of the field. The solid curves indicate the
results of our method, and the dashed curves are for the standard
reconstruction method. To implement boundary reconstruction in
the standard method, we replace the matter distribution beyond the
survey boundary with a random catalogue. As db increases, in both
methods, the correlation coefficients of the boundary reconstruction
are less and less affected by the survey boundary. In the upper
panel, where the boundary distance is smaller than 26.2 Mpc h−1,
the correlation coefficient ratios in both methods decline quickly,
reaching 90 per cent at k � 0.2 hMpc−1. In the middle panel, where
db is close to the critical boundary, the difference between boundary
and full reconstructions in our method is significantly reduced down
to k � 0.46 hMpc−1. When we calculate the correlation coefficient
in region of 52.3 < db < 78.5 Mpc h−1, the ratio between boundary
and full reconstruction of our method is equal to one because this
region is located entirely inside the critical boundary (lower panel).

While boundary reconstruction based on the standard reconstruc-
tion method works quite well, especially for db < 26.2 Mpc h−1, our
method still offers better consistency between boundary and full
reconstructions in the region of 26.2 < db < 78.5 Mpc h−1. Thus, at
a small price of a degraded performance (compared with standard
reconstruction) in the outermost layer near the survey boundary –
where both methods perform rather poorly anyway – our method
leads to improved reconstruction results further away from the survey
edge, where boundary effects are present in the standard method.

5 C O N C L U S I O N

We present a new method of BAO reconstruction based on deep con-
volutional neural networks, and report its first results when applied to
simulated dark matter density fields. The objective of reconstruction
is to undo the bulk motions of matter, which could dampen and
broaden the BAO peaks that are present in the primordial matter
density field. Therefore, an indicator of its performance is the phase
correlation coefficient between the initial and reconstructed density
fields. Our method can lead to a correlation coefficient of about
90 per cent at k = 0.2 hMpc−1 and 50 per cent at k = 0.4 hMpc−1.
For the fractional BAO signal, the reconstruction can improve the
signal-to-noise ratio down to k = 0.4 hMpc−1, extending the range
of scales at which the power spectrum matches linear theory by a
factor about 2 compared to final condition.

Since the network is trained by simulations with specific cosmo-
logical parameters, we have checked the cosmology dependence by
applying the trained model to two different cosmologies. We do not
find evidence for cosmology dependence, and the method seems
insensitive to the training cosmology. We also demonstrate that it
can distinguish the different cosmologies considered. However, we
caution that the cosmologies on which the method is tested are both
rather close to the training cosmology. In future, we will further this
analysis by using a wider parameter range in the training and test sets.

Because its input data is the non-linear density field in cubic sub-
boxes (which we have chosen to have a side length of 76 Mpc h−1),
this new method is by design robust against boundary effects since
areas inside the critical boundary (37 ∼ 52.3 Mpc h−1 from the
survey edge) are not affected at all. This is an advantage over
the standard reconstruction method, because survey boundaries can
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(a) (b) (c)

Figure 10. (a) The density map of the full reconstruction. (b) The density map of the boundary reconstruction. (c) The residual between the full and boundary
reconstructions. In all panels, only the areas located in the assumed survey boundary are shown. In Panels (a) and (b), the black dashed lines indicate the critical
boundary, while in Panel (c), from outside to inside, the dashed lines indicate the positions at which db is 0, 26.2, 52.3, and 78.5 Mpc h−1, respectively. With db

decreasing, the residual becomes increasingly stronger due to the missed information outside the boundary.

Figure 11. The ratio between the correlation coefficients from the boundary
and full reconstructions. The solid and dashed lines indicate our method
and the standard reconstruction method, respectively. From top to bottom,
different ranges of the boundary distance db are used to define the region that
is used to calculate the correlation coefficient, as indicated in the legends.
These correspond to the three regions between neighbouring dashed lines in
the right-hand panel of Fig. 10.

substantially impact BAO reconstruction in galaxy surveys. Our tests
show that, compared with the standard reconstruction method, the
new method improves the consistency between boundary and full
reconstructions in the region of 26.2 < db < 78.5 Mpc h−1 from the
survey edge.

In this paper, we have tested our new scheme in dark-matter-
only simulations, and found that it can accurately remove non-linear
effects on scales larger than k = 0.4 hMpc−1, and enable us to recover
the BAO wiggles up to k = 0.32 hMpc−1. In the future, we will test
this method by applying it to density field reconstruct using galaxy
surveys (Wang et al. 2009). We expect that using all available galaxies
in a survey can put optimally tight BAO constraints on the underlying
cosmological model.
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