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Abstract 

The photoelectron imaging of the pyramidal sulphite radical monoanion is presented in 

the photon energy range spanning 3.10 to 4.45 eV. Two features are seen corresponding 

to formation of the ground electronic state of the neutral and to thermionic emission, 

which is seen for hv > 3.7 eV. Photoelectron spectra corresponding to direct detachment 

show vibrational structure associated with the v2 umbrella mode of the neutral. A similar 

structure is seen in the photoelectron angular distributions. The photoelectron angular 

distributions were modelled and agree with experiment. However, we cannot provide an 

explanation for the observed vibrational structure in the photoelectron angular 

distributions. The observed thermionic emission is assigned to the excitation to a pair of 

degenerate Feshbach resonances, which can internally convert and subsequently emit 

electrons statistically.    
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1. Introduction 

Anion photoelectron spectroscopy has been extensively used to probe the structure 

of closed- and open-shell anionic and neutral molecules.1–3 The advent of charged-particle 

imaging,4 which was transformed by the development of velocity-map imaging by Eppink 

and Parker,5 provides velocity vector information. For photoelectrons, as all particles have 

the same mass, this information takes the form of photoelectron spectra with 

corresponding photoelectron angular distributions (PADs). The PADs can be described, 

for a single-photon transition with linear polarisation, by6–8 

I(θ) = σ / 4π [1 + β2P2(cosθ)], 

where I is the photoelectron signal at the angle θ between the polarisation vector of the 

light and the outgoing electron velocity vector; σ is the total detachment cross section; β2 

the anisotropy parameter; and P2(cos θ) the second-order Legendre polynomial. The PADs 

can thus be defined through a single parameter, β2, which can take on values between the 

limiting values of +2 for a I(θ) α cos2 θ distribution and −1 for a I(θ) α sin2 θ distribution. 

The PADs contain important electronic structure information about the detachment 

process because the PADs are determined by the molecular orbital from which the electron 

is detached.8 Hence, photoelectron imaging does not only provide direct structural 

information through the Franck-Condon factors between the anion initial and neutral 

final states, but it also provides electronic structure information. Generally, these two 

aspects have been considered separately. Specifically, the spectrally dispersed electrons 

in kinetic energy, eKE, reveal the vibrational levels in the final state, while the PADs are 

analysed to provide a symmetry for the overall transition.9,10 Here, we present the 

photoelectron imaging of SO3
− and show that β2 dispersed in eKE also shows structure 

that can be directly correlated with the vibrational features seen in the photoelectron 

spectrum. Surprisingly, these appear to show greater sensitivity than the photoelectron 

spectrum. 
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 Sulphite (SO3) has attracted interest predominantly because of its roles in 

atmospheric chemistry.11–22 In contrast, its anion has received significantly less 

attention.23–27 Of immediate relevance to the current work is a previous photoelectron 

spectroscopic study by Dobrin et al.28 The ground state of the anion is pyramidal while the 

neutral is planar, leading to a very broad photoelectron spectrum with the dominant 

vibrational progression being the umbrella mode that connects the ground states of the 

neutral and the anion. The 0-0 transition was not visible because of negligible Franck-

Condon overlap. Dobrin et al. also showed that the PADs for emission from SO3
− peaks 

were parallel to the polarisation vector of the light (i.e. β2 > 0) by rotating the polarisation 

of the light field with respect to their detector. Here we build upon this work and present 

a photoelectron imaging study using a range of photon energies. The added dimension 

offered by the PADs provides insight into the electronic structure of SO3
−. Sanov and 

coworkers have developed qualitative descriptions of the PADs based on the symmetry of 

the initial orbital.29–31 This model provides an intuitive guide to the dominant character 

of the orbital. For example, it predicts that s-type or σ molecular orbitals generally have 

β2 > 0, while π molecular orbitals generally have β2 < 0. Dobrin et al. showed that the 

PADs for direct detachment from SO3
− have β2 > 0, which is qualitatively consistent with 

detachment from the totally symmetric 2A1 ground state.28 A more quantitative analysis 

can be offered by modelling the PADs based on the photodetachment from the relevant 

initial orbital. Krylov and coworkers used a Dyson orbital approach, where the Dyson 

orbital is the one-electron molecular orbital from which the electron is lost in the 

photodetachment, to compute laboratory-frame PADs as a function of eKE.32–34 These 

have proven to be quite reliable for photodetachment and have been exploited by us and 

others to probe a range of anion detachment PADs,35–42 including ones with 

conformational flexibility.43,44 We use this method here to assess the measured PADs. 
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2. Methods 

2.1 Experimental 

 The SO3
− gas-phase synthesis presented here differs significantly from that used 

by Dobrin et al.. In their approach, a harsh electric discharge of a supersonic expansion of 

a mix containing Ar, N2O and SO2 was used.28 While SO3
− was clearly produced, they also 

noted the production of S2O−, which is isobaric. Moreover, discharge sources often produce 

vibrationally hot ions as the vibrations are inefficiently quenched in the ensuing 

supersonic expansion. In the present experiment, SO3
− was produced through collision-

induced dissociation of an electrosprayed precursor ion.37,38 Specifically, 9,10-

Anthraquinone-2,6-disulfonic acid disodium salt (Sigma Aldrich) was dissolved in 

methanol and electrosprayed in negative mode. Anions were transferred through a 

capillary into a vacuum chamber with several differentially pumped regions through 

which ions were drawn by RF ion guides. Between the first and second region, where the 

pressure differential is from 1 to 5 × 10−2 Torr, the ions were accelerated by 20 V through 

an orifice, which was sufficient to induce dissociation, with the dominant fragment being 

SO3
−. The SO3

− ion was then guided and thermalised through another set of ion guides 

that culminate in an ion trap at room temperature. The accumulated ions in the trap were 

subsequently injected at 10 Hz into a colinear Wiley-McLaren time-of-flight mass 

spectrometer.45 At the focus of the mass-spectrometer, the SO3
− ion packet was mass-

selected by timing a nano-second laser pulse from a Nd:YAG-pumped OPO. The generated 

photoelectrons were velocity-map imaged using a two-electrode design with a resistive 

glass tube.46 Photoelectrons were amplified using a dual multichannel plate detector and 

impacted onto a phosphor screen. The position sensitive events were captured using a 

CCD camera and accumulated over several 1000 laser shots. The raw photoelectron 

images were analysed using polar onion peeling47 and calibrated using the photoelectron 
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spectrum of iodide. The overall spectral resolution was on the order of 5% of the eKE. 

Details of the instrument are provided elsewhere.48 

 

2.2 Computational 

 The ground state geometries of the SO3 anion and neutral were optimized at the 

coupled cluster singles and doubles (CCSD) with aug-cc-pVDZ level.49,50 Geometries were 

confirmed to be energetic minima by diagonalization of the Hessian. Vertical excitation 

energies of the anion were calculated with EOM-EE-CCSD/aug-cc-pVDZ.51 The Dyson 

orbital for the photodetachment of the SO3 anion was obtained using the ionisation 

potential implementation of EOM-CCSD (EOM-IP-CCSD), using a restricted open 

Hartree Fock reference and the basis set above. The PADs for this direct detachment 

channel was modelled using ezDyson 4.0,52 developed by Krylov and coworkers. All ab 

initio calculations were obtained using the QChem 5.0 computational package.53 

The EOM-IP-CCSD calculation used to obtain the Dyson orbital can also provide 

a direct calculation for the vertical detachment energy, VDE. The VDE corresponds to the 

first EOM-IP state, which represents the difference in energy between the ground state 

of the anion (the EOM-IP reference state) and the ground state of the neutral (the target 

EOM-IP state).32,33 
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3. Results 

  

Figure 1: Photoelectron spectra taken in the range 3.10 ≤ hv ≤ 4.45 eV with 0.05 eV 

increments (a) and corresponding β2 spectra (b). Horizontal lines indicate the zero levels 

(in terms of signal and β2). Successive spectra are offset by +0.4. The photoelectron spectra 

are normalised to a maximum intensity of 1. β2 spectra are on their absolute scale. 

 

The photoelectron spectra taken at photon energies in the range 3.10 ≤ hv ≤ 4.45 

eV with 0.05 eV increments are plotted in Figure 1(a) in terms of their electron binding 

energy, eBE = hv − eKE. To emphasize spectral changes as a function of hv and to aid 

comparison between spectra, each photoelectron spectrum has been normalised to a 

maximum intensity of 1 and have been offset relative to each other with the zero-signal 

level indicated by the respective horizontal lines.  

The photoelectron spectra in Figure 1(a) are dominated by a single broad feature. 

Between 3.10 ≤ hv ≲ 3.40 eV, the maximum of the photoelectron peak appears to shift to 
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higher eBE, while for hv > 3.4 eV, the peak maximum remains constant at eBE ~ 3.4 eV. 

This peak corresponds to direct detachment from the ground state of the SO3 anion to the 

ground state of the SO3 neutral and the maximum in the photoelectron spectrum provides 

a measure of the vertical detachment energy, VDE, which we estimate to be at 3.4±0.1 eV. 

The vibrational structure seen in the direct detachment feature, particularly at lower hv, 

arises from the large structural displacement between the two ground state equilibrium 

geometries. The spacing between vibrational peaks determined from the photoelectron 

spectra is ~500 cm−1. The apparent shift towards lower VDE at hv < 3.4 eV arises because 

these photon energies are insufficient to access the maximum of the Franck-Condon 

envelope.  This also observed in similar geometric differences between anion and neutral 

ground states, such as in the photoelectron spectra of C6F6
−.54 

The PADs quantified by the parameter β2 are shown in Figure 1(b) in the same 

eBE and hv range as the photoelectron spectra. Parts of these β2 spectra are omitted as 

the photoelectron intensity in these ranges is too low to make a physically meaningful 

assignment of the PADs. As with the photoelectron spectra, the β2 spectra are offset from 

each other to aid comparison. The β2 = 0 level is indicated by the respective horizontal 

lines and each successive spectrum is offset by β2 = +0.4. The primary purpose of Figure 

1(b) is to show the qualitative trends as a function of hv and a more quantitative 

consideration is offered below. Figure 1(b) shows that β2 across the direct detachment 

feature is positive, indicating that the photoelectrons are predominantly ejected parallel 

to the polarisation axis. Surprisingly, the β2 spectra also appear to show oscillations that 

appear to reflect the vibrational structure seen in the photoelectron spectra.  

The correspondence between vibrational peaks in the photoelectron spectra and β2 

spectra is shown more clearly in Figure 2, for a representative spectrum at hv = 3.25 eV. 

The correlation between the structure in the photoelectron spectra and β2 spectra is 

highlighted by the dashed vertical lines. Rather unexpectedly, the β2 value shows crisp 
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vibrational structure and appears to be more resolved towards lower eBE (higher kinetic 

energy) than the photoelectron spectrum. The additional and more resolved features offer 

an opportunity to determine the spacing between peaks more accurately. Figure 3 shows 

the β2 spectrum (as a function of eKE) at hv = 3.25 eV, superimposed by a fit to this date 

of a sinusoidal function which has an increasing offset with increasing eKE. Peaks up to 

eKE ~ 0.7 eV are very well reproduced by the fit function. Beyond this eKE, the 

photoelectron signal is too low to determine a meaningful β2 value and these data are 

dominated by noise. The frequency of the sinusoidal oscillation yields a vibrational 

spacing of 517±10 cm−1, which is essentially constant the 11 vibrational levels seen. 

 

Figure 2: Photoelectron spectrum taken at hv = 3.25 eV (a) and corresponding β2 

spectrum (b). Vertical dashed lines are guides to the eye to show the correlation between 

oscillations in the β2 spectrum with the peaks in the photoelectron spectrum. 
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Figure 3: β2 spectrum following detachment at hv = 3.25 eV (blue), with superimposed a 

fit based on a constant amplitude sine wave with an increasing offset (transparent red). 

 

In addition to the direct detachment feature, a second photoelectron feature can 

be seen at higher excitation energies in Figure 1(a). This feature appears as a peak in the 

photoelectron spectra that shifts in eBE with increasing hv. In the PADs, this feature is 

broadly isotropic (β2 ~ 0). 

To supplement the experiments, we have also performed ab initio calculations. The 

SO3 anion has a C3v pyramidal minimum energy structure, whereas the SO3 neutral has 

a planar D3h minimum energy structure, in agreement with previous computational 

work.55,56 The long vibrational progression arising from the v2 umbrella mode of the 

neutral corresponds to the pyrimidalisation of the planar geometry. The EOM-IP-CCSD 

calculation used to obtain the Dyson orbital predicts VDE = 3.51 eV. This computed VDE 

is in good agreement with the experimental VDE = 3.4±0.1 eV determined here. The very 

broad vibrational progression renders the experimental determination of the adiabatic 

detachment (ADE or electron affinity) difficult because it probably has a very small 

(negligible) Franck-Condon factor and, hence, we refrain from assigning it. The literature 

value ADE = 1.9±0.1 eV.26 



10 

 

Figure 4 shows the Dyson orbital for SO3
− detachment together with the computed 

β2 as a function of eKE. Also included are experimentally determined β2 values. Because 

of the observed oscillations in the β2 spectra, we have determined the β2 value for a given 

eKE by taking the β2 value at the peak of a specific vibration and tracking its value for 

different hv (i.e. the vibrational mode stays at a specific eBE but shifts with eKE as hv is 

varied). We have chosen the vibrational mode at eBE = 2.95 eV (see asterisk in Figure 

2(b)). Choosing different modes does not change the results significantly. The result of the 

analysis is shown in Figure 4 and β2 values have a typical error of ±0.1. Overall, excellent 

qualitative agreement is seen between the experimental and computed β2 values. The 

theoretical curve shows that, at low eKE, β2 is more isotropic, and with increasing eKE, 

this tends to a value β2 = +1.7. The experimental data shows the same trend but, on the 

whole, it has a slightly lower value of β2 = +1.5.  

 

 

Figure 4: Calculated (solid line) and measured (symbols) β2 parameters. The measured 

values are determined for a specific vibrational mode in the photoelectron spectra taken 

at several different hv. The Dyson orbital used to compute the β2 spectrum is shown. 
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Figure 5: Measured (black line) and simulated (red line) photoelectron spectrum of SO3
− 

taken at 3.5 eV. The simulation was adopted from reference 28. 

 

4. Discussion 

The spectroscopic parameters determined in the present work are in good 

agreement with previous works.25–28,57 Dobrin et al. performed an in-depth analysis of 

their photoelectron spectrum taken at 355 nm. They found that VDE = 3.41±0.01 eV and 

performed a detailed Franck-Condon analysis of the vibrational progression. Their 

photoelectron spectrum yielded a vibrational frequency of v2 = 548±80 cm−1 for the SO3 

neutral, which is expected to be highly excited given the difference in geometries between 

anion and neutral ground states. High-resolution gas-phase IR spectroscopy has 

determined v2 = 498 cm−1.19,58 In the present experiment, we have determined v2 = 517±10 

cm−1 from Figure 3. This is in good agreement with the value from Dobrin et al. but slightly 

higher than that determined from the IR spectrum. The higher value quoted by Dobrin et 

al. compared to that from the IR spectrum was rationalised by the high vibrational quanta 

of v2 accessed in the neutral (v = 22 at the Franck-Condon peak based on a Franck-Condon 

simulation) and a possible negative quadratic or cubic anharmonicity constant.28 As the 

v2 determined here is close to that determined for the (v = 1 ← v = 0) transition,19,58 but 

slightly higher and outside our uncertainty range, there does appear to be a slight 
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negative anharmonicity, similar to that seen in the methyl radical.59 Nevertheless, the 

anharmonicity is very small. Figure 5 shows the computed photoelectron spectrum based 

on the Franck-Condon simulation presented by Dobrin et al.28 Ignoring the fact the 

difference between computed and measured vibrational frequency, the agreement with 

the photoelectron spectrum measured here is excellent. In fact, it is better than the 

agreement with the photoelectron spectrum by Dobrin et al., which showed signal 

extending to eBE < 2.0 eV.28 We suspect that the discrepancy may be due to a high internal 

energy of SO3
− in the experiments by Dobrin et al.: SO3

− formed in a discharge source can 

lead to high and non-thermal vibrational internal excitation. Note also that the 

discrepancy at highest eBE (low eKE) is due to threshold behaviour which is not accounted 

for in the simulation. 

The PADs offer added insight into the electronic structure of the anion. Based on 

the good agreement between experimental and computed β2 in Figure 4, we can be 

confident that the Dyson orbital shown represents the highest occupied molecular orbital 

(HOMO) of SO3
− and the ground state is X 2A1. This is in agreement with the conclusion 

form Dobrin et al..28  

Based on the measured and computed PADs, we conclude that the outgoing wave 

is predominantly of p-character. Hence, a centrifugal barrier is present for the emission 

leading to the Wigner threshold behaviour where the detachment cross section scales as 

eKE3/2.60 The consequence of this is that the cross section for detachment at the highest 

eBE for a given spectrum (corresponding to lowest eKE) rises initially as shown most 

clearly in Figure 2(a). The associated β2 at low eKE becomes more isotropic as the 

weighting of any s-partial waves increases. This is clearly shown in Figure 2(b) and 3 and 

accounts for the increasing offset required in the fit-function. 
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 The most striking aspect of the current work is the apparent vibrational structure 

in the β2 spectra. Vibrational structure in the photoelectron spectra comes about from the 

excitation of vibrational states in the neutral upon photodetachment (i.e. a simple Franck-

Condon argument). In the case of infinite resolution and ignoring temperature and 

rotation, this should produce a “stick” spectrum. Each of these “sticks” will have an 

associated PAD, which, according to the above arguments, will be predominantly of p-

character. In between, as there is no signal, there can be no defined β2 value. In the 

present experiment, the vibrational peaks are broadened/congested by Boltzmann factors 

and the finite (and not very good) resolution of our experiment. This means that each 

vibrational peak has overlap with the neighbouring peak (Figure 2(a)). However, the β2 

value for each of these peaks should remain what they were in the infinite resolution case 

and no oscillations are expected. Gradual variation for different vibrational levels may be 

expected (as seen in O2
− photodetachment),61 but given the resolution in the current 

experiment, one might expect these to appear then as small and shallow steps in the β2 

spectrum rather than the dramatic oscillations that are observed in Figure 2(b) and 3. 

Perhaps the most obvious consideration is that there is a constant signal (isotropic) 

background in the image that would force β2 → 0 when the photoelectron signal is small. 

This could arise from a second detachment channel. For example, if an excited state ~2.6 

eV above the anion ground state was present, it could lead to autodetachment providing 

a signal with different anisotropy. Our calculations show that a degenerate pair of 

resonances can be excited, but these are located at 3.51 eV and are discussed further 

below. There is an additional excited state at 2.54 eV (SOMO → LUMO), but it is optically 

forbidden with an oscillator strength of 0 and its contribution to the photoelectron signal 

would be very small. Remarkably, even when vibrational structure cannot be resolved in 

the photoelectron spectrum, we appear to be able to resolve the oscillations in the β2 

spectrum (see Figure 2(b)). PADs are determined by the interference between partial 
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waves of the outgoing photoelectron. One might therefore invoke an interference 

mechanism to explain the oscillations. However, the electronic states are not changing 

with eKE and vibrational quantum levels do not have a relative symmetry, so this does 

not explain the observations either. Finally, one could suspect that the analysis method 

of the raw image could introduce artefacts. Here, we used polar onion peeling, but other 

analysis methods were also used and these show similar oscillations in the β2 spectrum. 

In the end, we simply do not have a clear explanation for the observation. 

 Finally, we briefly comment on the second emission channel observed hv > 3.7 eV. 

With increasing hv, this feature appears to have an increasing eBE. That is to say, the 

eKE of this peak is essentially constant and peaks at eKE ~ 0.07 eV. Furthermore, the β2 

associated with this feature is close to zero – i.e. the emission is isotropic.62 Features that 

appears near zero eKE are often signatures of thermionic emission from the anion ground 

state.63–70 Specifically, photoexcitation from the ground state can access excited states of 

the anion that lie in the continuum (resonances). These resonances can then decay either 

by autodetachment that may include some exchange of energy (electronic to nuclear) so 

that the electron leaves with less kinetic energy, or nuclear dynamics on the resonance 

may outcompete autodetachment and internal conversion can reform the ground 

electronic state of the anion.69,71–73 In the latter case, the total energy in the ground state 

anion remains above that of the neutral. Electron emission becomes a statistical process 

reliant on internal vibrational energy redistribution. Because of the statistical nature, the 

emission is generally peaked at low eKE with an exponentially decaying spectral 

distribution. Moreover, as the timescale for the emission can be many microseconds, many 

rotational dephasing precedes electron emission so that the PAD is expected to be 

anisotropic (β2 = 0). As Feshbach resonances, the autodetachment lifetime is expected to 

be relatively long (typically on the order of several 100s of femtoseconds), so that internal 

conversion could compete. Hence, we suspect that the emission at low eKE is indeed 
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thermionic emission from the reformed ground state anion. This is supported by the 

measured β2 = 0 for this feature. Additionally, the shape of the emission spectrum is 

consistent with thermionic emission. For species with relatively high symmetry, the cross-

section rises first before decaying exponentially.66 In the present case, electron emission 

will occur at the C3v geometry to enable emission at the adiabatic binding energy. This 

relatively high symmetry will lead to the observed signal rise, similar to the case of C60
− 

thermionic emission.66 
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