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Abstract 37 

Deep dry soil mixing is a popular ground improvement technique used to strengthen soft compressible soils, 38 

with Portland cement being the most popular binder. However, its continued use is becoming less 39 

sustainable given the high CO2 emissions associated with its manufacture. Alkali-activated cements are 40 

considered to be viable low carbon alternative binders, which use industrial waste products such as blast 41 

furnace slag. This study focusses on the stabilisation of a potentially liquefiable soft alluvial soil using a 42 

dry granulated binder comprising sodium hydroxide-activated blast furnace slag (GGBS-NaOH). This 43 

binder has previously been demonstrated by the authors to have potential as a replacement for Portland 44 

cement due to its excellent engineering performance, positive contributions towards the circular economy, 45 

reducing energy usage and CO2 emissions in the construction sector. A detailed comparison in mechanical 46 

behaviour is presented between the soil in its reconstituted, undisturbed and cemented states after 28 days 47 

curing through the use of advanced monotonic triaxial testing techniques, including small strain 48 

measurements. Mechanical behaviour was specifically analysed regarding peak deviatoric strength, pore 49 

pressure response, stress – volumetric dilatancy, shear stiffness degradation over small to large strain 50 

ranges, critical state and failure surfaces. Using 7.5% GGBS-NaOH increased the stiffness and shear 51 

strength of the soil significantly, whereby the shear strains at which initial shear stiffness degrades is three 52 

times higher than the untreated undisturbed soil. As a result, larger amounts of dilation was observed during 53 

shearing of the material and resulted in an upward shift of the soil’s original critical state line due to the 54 

creation of an artificially cemented soil matrix through the precipitation of C-(N)-A-S-H gels. 55 

 56 

Keywords 57 

Mechanical behaviour, low carbon, GGBS, alluvium, stiffness degradation, triaxial. 58 



4 

Highlights 59 

 Using GGBS in geotechnics contributes towards lowering global CO2 emissions. 60 

 GGBS-NaOH stabilisation of a soft soil enhanced strength over various strain levels. 61 

 Stabilisation successfully delayed the onset of stiffness degradation. 62 

 The new cemented structure significantly improved the soil frictional behaviour. 63 

 64 
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What is already known in this area? 65 

Extensive research has been undertaken focussing on basic mechanical performance (e.g. UCS) of soils 66 

stabilised with CEM-I binders, which have only been partially replaced by GGBS/PFA.  67 

 68 

What does this study add to the literature? 69 

Small strain mechanical behaviour of soils stabilised with an alkali-activated GGBS binder, which can 70 

completely replace CEM-I. This has sustainability benefits in terms of lowering CO2 emissions. 71 
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1.0 Introduction 72 

Alluvial soils are in great abundance in river flood plains, which are problematic in construction due to 73 

their low bearing capacities and high compressibilities. Deep dry soil mixing (DDSM) has become an 74 

increasingly popular technique for improving such ground conditions. DDSM involves injecting a 75 

cementitious binder into the ground via a rotating auger drill; thereby producing soil-cement columns or 76 

panels. Current trends in the European market also involve using DDSM as an alternative technique for 77 

creating deep pile foundations. DDSM is very versatile in that it may be used to treat a wide variety of soil 78 

types [1], is economical and produces considerably less waste and ground vibration compared with other 79 

ground improvement and piling techniques. Ordinary Portland cement (CEM-I) and lime have been 80 

traditionally used as the cementitious binders in DDSM since this technique was developed in Scandinavia 81 

during the 1960’s, due to their favourable strengthening properties. 82 

The mechanism through which strength improvements are generally achieved within cement-treated soils 83 

is via an increase in pH conditions and the hydration of calcium silicates / aluminates within the binder to 84 

form cementitious gels, producing a cemented soil matrix. Whilst the majority of strength development 85 

occurs during the first month of curing through hydration, strength continues to increase slowly with time 86 

through pozzolanic reactions if soil pH ≥10.5 [2]. To ensure DDSM is effective in enhancing a soil's 87 

engineering performance, it’s physico-chemical properties such as particle size distribution, plasticity, pH, 88 

moisture content, cation exchange capacity (CEC), specific surface area, organic and sulphate contents 89 

must be characterised prior to selecting the most appropriate binder. Generally, soils suitable for DDSM 90 

treatment are characterised by low organic contents (<1%), low sulphate contents (<0.3%) and clay contents 91 

of 10–50% [3]. 92 

The continued use of CEM-I and lime in today’s society is becoming less economically and 93 

environmentally sustainable. Cement manufacture is highly energy intensive, requiring 5000MJ per tonne 94 

of CEM-I [4] and contributes up to 7% of the world’s CO2 emissions [5]. To address this issue, efforts have 95 

been made to introduce industrial waste products (IWPs) as partial replacements for CEM-I, including 96 

ground granulated blast-furnace slag (GGBS), pulverised fly ash (PFA), red gypsum (RG) and rice husk 97 

ash (RHA). Alkali-activated cements (AACs) are considered to be popular and viable low carbon and 98 
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economical alternatives to CEM-I and lime. These materials involve the sole use of pozzolanic alumino-99 

silicate based IWPs in combination with alkalis (e.g. sodium hydroxide, NaOH) for raising soil pH to 100 

promote pozzolanic conditions and activate the hydraulicity of the IWP. 101 

There is extensive literature demonstrating that AACs are capable of producing engineering performances 102 

that are either comparable to or exceed those of CEM-I and lime. Cristelo et al. [6] undertook laboratory 103 

and field studies using sodium silicate (Na2SiO3)-NaOH activated type F PFA for stabilising a low plasticity 104 

sandy clay. The binder produced higher strengths more rapidly compared with CEM-I stabilised samples. 105 

Sargent et al. [7] assessed the UCS, compressibility, durability and pH performance of NaOH pellet– 106 

Na2SiO3 solution activated GGBS, PFA and RG binders at a dosage of 10% by dry weight to stabilise an 107 

artificial low plasticity alluvial silty sand. Results indicated that alkali-activated GGBS stabilised mixtures 108 

produced the best engineering performances; whereby 28 day UCS of 6MPa was achieved in comparison 109 

to 3MPa achieved by CEM-I stabilised samples. Whilst the activator used promoted pozzolanic conditions, 110 

there are practicality issues associated with using Na2SiO3 solution in a binder for DDSM. Habert et al. [8] 111 

determined that Na2SiO3 production is also more expensive and has a higher environmental impact than 112 

NaOH. Bernal [9] determined that Na2SiO3 has a higher accelerated carbonation depth over NaOH. These 113 

findings informed Sargent et al.’s [10] study for treating a soft alluvium from Northumberland (UK), 114 

whereby the binder used was GGBS-NaOH, with a GGBS-NaOH ratio of 2:1 at dosages of 0 – 10% by dry 115 

weight. Whilst a 10% dosage produced the best engineering performances, using a 7.5% dosage was 116 

sufficient for achieving EuroSoilStab (2002) [12] 28 day undrained shear strength requirement of 150kPa. 117 

The 7.5% dosage also produced strengths that were superior than using 10% CEM-I and was deemed more 118 

economically and environmentally sustainable. 119 

With the progressive closure of coal fired power stations and extensive use of PFA in concretes and grouts 120 

over the past few decades as a partial replacement for CEM-I, PFA supplies are rapidly disappearing – 121 

especially in the UK. Hence, the future development of AACs needs to utilise IWP waste streams which 122 

have longevity in supply. Whilst the UK steel manufacturing industry is declining, other global economies 123 

(e.g. China, USA) continue to grow – particularly in the construction sector. Hence, the demand for steel 124 

continues to rise meaning that slag waste will continue to be produced worldwide for the foreseeable future. 125 

Slags produced from steel manufacture represent approximately 15% by mass of the steel produced [12]. 126 
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This highlights the continued need to recycle slag to make positive contributions towards the circular 127 

economy and reducing global CO2 emissions. 128 

Other recent studies that have investigated alternative waste streams for developing AACs in soil 129 

stabilisation include NaOH-activated volcanic ash (VA) to stabilise a low plasticity clay [4]. Whilst VA is 130 

naturally pozzolanic, represents a vast worldwide resource and when NaOH-activated produces strengths 131 

200% higher than CEM-I stabilised samples [4], there are potential environmental implications. These 132 

include the need to quarry out ash deposits and that VA can contain elevated concentrations of Cl, S and F 133 

[14], all of which are water-soluble. Depending on the geological setting in which VA is produced, it may 134 

be highly acidic or alkaline and have knock-on effects on the pH of surface waters. Collectively, these could 135 

have negative impacts on soil fertility, groundwater resources and associated ecosystems if VA cements 136 

are used in DDSM. 137 

Whilst there is extensive literature covering laboratory investigations into the performance of IWP, CEM-138 

I and AAC concretes that focus on unconfined compressive strength, there is relatively little material which 139 

investigates their mechanical behaviour in the context of geotechnical materials over small to large strain 140 

ranges using triaxial equipment. Ahnberg [15] undertook triaxial tests on two Swedish clays stabilised with 141 

lime, CEM-I and GGBS at a dosage of 100kg/m3.  Whilst Ahnberg observed variations in shear strengths 142 

due to the soil type, binder design and curing period, stress-strain behaviour was noted to be similar due to 143 

the degree of overconsolidation. Rios et al. [16] investigated the shearing behaviour of a CEM-I stabilised 144 

silty sand, derived from weathered Porto granite. Triaxial testing was undertaken over a range of confining 145 

pressures (30 – 20,000kPa), whereby samples were prepared with controlled binder dosages of 2 – 7%. In 146 

both effective deviatoric and volumetric stress spaces, Rios et al. [16] identified a possible critical state line 147 

(CSL) for the cemented soil at large strains – independent of the binder dosage or porosity/cement index. 148 

Additionally, Rios et al. [16] concluded that normal compression lines (NCL), CSL and state boundary 149 

surface for the cemented soil may be independent of binder dosage but may depend only on binder dosage 150 

in terms of porosity/cement ratio. 151 

Knowledge of how soft soils and cement stabilised soils behave at small strain levels is of key interest in 152 

geotechnical design when considering soil–structure interactions for foundations and retaining walls. 153 

Presented in this paper are results from a suite of drained and undrained isotropically consolidated triaxial 154 
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compression tests undertaken on an alluvium in its natural undisturbed state, reconstituted state and when 155 

treated with a GGBS-NaOH binder after 28 days curing. Tests were undertaken over a range of effective 156 

stress conditions to understand the improvement in mechanical behaviour achieved when using an optimum 157 

binder dosage. Testing data is presented in terms of small strain shear stiffness degradation, critical state 158 

and stress dilatancy. 159 

 160 

2.0 Materials and Testing Methodologies 161 

2.1 Soil and Binder Materials 162 

2.1.1 Lanton Alluvium 163 

The alluvial soil considered in this study was sourced from the River Glen flood plain in Lanton, 164 

approximately 4km North West of Wooler in Northumberland, UK. Disturbed and undisturbed thin-walled 165 

U100 samples were taken from the depth range of 1.5–2.4m. The local superficial geology is characterised 166 

by Holocene alluvium deposits along the course of the River Glen, bounded by river terrace sand and gravel 167 

deposits, Devensian glacial till and fluvioglacial deposits. The index properties of the soil were determined 168 

by Sargent et al. [10], which are summarised in Table 1. A soil grading curve and compaction curves for 169 

the Lanton alluvium soil are provided in Figures 1 and 2 respectively. The particle size distribution and 170 

compaction curves for the soil were obtained using methods in accordance with BS1377 [11]. 171 

 172 

Table 1: Summary of the Lanton alluvium’s index properties. Sourced from Sargent et al. (2016). 173 

Property Unit Value 

In-situ moisture content % 25 

Plasticity Index % 14.95 

Liquid Limit % 35.66 

Saturated unit weight kN/m3 18.44 

Bulk Density Mg/m3 2.0 

Dry density Mg/m3 1.74 

Cation exchange capacity cmol/kg 11.45 

Specific surface area m2/g 6.45 

Total organic content % 0.76 

Sulphate content mg/kg soil 49 

BS 5930 (BSI, 1990) classification - Silty SAND 

 174 

 175 

 176 
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 177 

Figure 1: Soil grading curve for Lanton alluvium. 178 

 179 

 180 

Figure 2: Dry density compaction curve for Lanton alluvium. 181 

 182 

2.1.2 Cementitious Binder 183 

The dry binder and dosage used was based on the results from Sargent et al. [10]. The IWP used was GGBS 184 

as supplied by Hanson Cements Ltd., which was mixed with NaOH in dry pellet form (supplied by Fisher 185 
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Scientific UK Ltd) as an alkali activator. The molarity of the NaOH was 39.997g/mol. Sargent et al. [10] 186 

revealed that an optimum dosage of 7.5% by dry weight is appropriate for stabilising Lanton alluvium, with 187 

a view to achieving engineering performances which are comparable or exceed those of Lanton alluvium 188 

stabilised with lime or CEM-I. Additionally, the 7.5% dosage of GGBS-NaOH ensured that the stabilised 189 

alluvium met the minimum 28 day undrained shear strength requirement of 150kPa defined by 190 

EuroSoilStab [12]. Hence, this is the binder design selected for this study. 191 

 192 

2.2 Testing Methodologies 193 

To gain a comprehensive understanding of the short and long term mechanical behaviour of reconstituted, 194 

undisturbed and GGBS-NaOH treated Lanton alluvium, particularly in defining their respective critical 195 

state lines, yield surfaces and effective shear strength properties; monotonic consolidated drained and 196 

undrained triaxial tests were undertaken under a minimum of four effective confining stress conditions. 197 

Bender elements and local instrumentation were employed to characterise the initial shear stiffness of the 198 

material over a range of stress level and its degradation during shearing. 199 

 200 

2.2.1 Sample Preparation 201 

2.2.1.1  Reconstituted samples 202 

Cylindrical samples 100mm in diameter and 200mm long were prepared by initially drying the disturbed 203 

soil in an oven at 110
o
C for 24 hours. Once dry, the soil was milled into a fine powder (particle size ≤1mm) 204 

for ease of sample mixing and then mixed with water in a Hobart rotary mixer for 10 minutes to achieve a 205 

gravitational moisture content of 25% (per the soil’s in-situ moisture content) and homogeneity. Once 206 

mixed, the soil was compacted into three layers within a standard 100mm diameter compaction mould in 207 

accordance with BS 1377 [11]. All samples were prepared with a bulk density of 1.75Mg/m3, based on 208 

optimum compaction criteria. Once compacted, the sample was extruded and trimmed in preparation for 209 

triaxial testing according to BS1377 [11]. Prior to placing on the triaxial base pedestal and encapsulation 210 

within a latex membrane, sample masses and dimensions were measured. Due to the soil’s high silt content, 211 
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low cohesion, relatively high moisture content and absence of natural internal structure, reconstituted 212 

samples displayed some slumping upon extrusion. 213 

 214 

2.2.1.2  Undisturbed Thin-walled (UT) samples 215 

100mm diameter UT100 sized samples were obtained from the field, wax sealed and wrapped in bubble 216 

wrap to prevent loss of moisture and minimise sample disturbance during transport to the laboratory. Prior 217 

to mounting on the triaxial base pedestal for testing, samples were extruded and trimmed to the appropriate 218 

dimensions, weighed on a mass balance and dimensions measured. Undisturbed samples exhibited little 219 

slumping upon extrusion compared with reconstituted samples, thereby providing an indication of the soil's 220 

initial sedimentation structure. 221 

 222 

2.2.1.3  Alkali activated cemented samples 223 

For practicality purposes in the laboratory, maximising sample homogeneity and the number of reactive 224 

sites for cementitious bond formation, samples were prepared in accordance with the methodology adopted 225 

by Sargent et al. [10] by first mixing the oven dried soil powder with the GGBS-NaOH binder at a dosage 226 

of 7.5% by dry weight in a rotary mixer for 10 minutes. The GGBS – NaOH ratio used was one part NaOH 227 

to two parts GGBS [10]. Once the required quantities of soil and binder had been mixed, water was 228 

incrementally added to the mixture to achieve the pre-treatment (in-situ) soil optimum moisture content of 229 

25%. Samples were tamped and compressed into a split sample mould, inserted into a hydraulic press to 230 

form samples of various sizes (200mm long – 100mm diameter; 100mm long – 50mm diameter; 76mm 231 

long – 38mm diameter) and achieve a target density of 1.9Mg/m3 based on optimum compaction criterion. 232 

Samples were then cured within wax-sealed PVC tubes for 28 days [17] and stored within a temperature-233 

controlled room with a relative humidity of 55% and ambient air temperature of 20oC [7] [10]. Once cured 234 

and extruded, sample ends were carefully trimmed using a surface grinder within a tolerance of 25µm 235 

according to ASTM D4543-08 [18]. This ensured sample ends were smooth, parallel with each other and 236 

reduced bedding errors during testing.  237 

 238 
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2.2.2 Apparatus and Testing procedures 239 

Triplicate samples of each material were tested for each effective confining stress to remove bias, identify 240 

anomalies and maximise data reliability. Table 2 summarises the triaxial testing programme undertaken. A 241 

total number of 53 triaxial tests were performed. 242 

 243 

Table 2: Experimental programme for triaxial testing 244 

Sample ID 

Convention 

Sample type Drainage 

condition 

GGBS-NaOH 

content (%) 

Effective mean confining 

stress, p’0 (kPa) 

ReconCU X [1]_Y [2] Reconstituted Undrained 0 50, 100, 150, 250 

ReconCD X_Y Reconstituted Drained 0 50, 150, 200 

UndisCU X_Y Undisturbed Undrained 0 50, 150, 250 

UndisCD X_Y Undisturbed Drained 0 50, 150, 200 

CemCU X_Y 28 day Cemented Undrained 7.5 50, 100, 200, 300, 400, 600 

CemCD X_Y 28 day Cemented Drained 7.5 50, 100, 200, 400, 600 

Notes: [1] – Value for ‘X’ denotes the p’0 value used for the test. [2] – Value for ‘Y’ denotes the test sample number. 245 

 246 

2.2.2.1  Apparatus 247 

The equipment used comprised a 2MPa capacity perspex cell mounted on an electro-mechanical advanced 248 

digital triaxial system. A 64kN capacity submersible load cell was mounted on the end of the loading ram 249 

within the triaxial cell. Cell pressures were controlled and regulated via a 3MPa digital pressure controller, 250 

whereas a 1MPa digital pressure controller was used to supply and control back pressures and monitoring 251 

sample volume changes. To accurately measure the cell pressure, back pressure and pore pressures at the 252 

top and base of samples during tests, calibrated 15 bar capacity pressure transducers were fitted to the base 253 

of the triaxial cell. An external LVDT was mounted on the exterior of the triaxial cell to measure external 254 

ram displacements. For measuring local axial strains (εa) on samples, two LVDT local strain gauges were 255 

mounted diametrically opposite each other to the middle third section of samples which is considerably less 256 

restrained compared with the sample ends. A further LVDT local strain gauge was used to measure radial 257 

strains at mid-sample height, which was mounted via a radial caliper. To accurately measure changing shear 258 

stiffnesses during shearing over the small to large strain range, bender elements were installed within the 259 

sample top cap and triaxial frame base pedestal. 260 
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 261 

2.2.2.2  Triaxial Testing Procedures  262 

When mounting untreated soil samples within the triaxial cell for testing, bender elements installed within 263 

the top cap and base pedestal protruded by 10mm, which ensured they were of sufficient length to penetrate 264 

through the porous discs and then pressed by hand into the sample ends by 3–5 mm – ensuring a good 265 

contact. However, for cemented samples the bender elements could not simply be pushed in by hand. 266 

Instead, 5mm deep slots were formed in the sample ends by using a Stanley knife. To ensure good coupling 267 

between the cemented samples and the bender elements, any gaps between the slot walls and the bender 268 

elements were infilled by using a filler made from the Lanton alluvium – GGBS-NaOH mixture. The top 269 

cap was then directly connected to the submersible load cell to reduce bedding errors. After filling the 270 

triaxial cell with de-aired water, samples were saturated in general accordance with BS1377 [11]. Cell and 271 

pore pressures were incrementally increased by 50-100kPa per day until a minimum back/pore pressure of 272 

350kPa was achieved to ensure dissolution of air bubbles within the back pressure system. An effective 273 

confining stress of 5-10kPa was maintained throughout saturation. Samples were considered saturated once 274 

a minimum Skempton's B value of 0.95 was recorded. Following saturation, samples were isotropically 275 

consolidated until the required effective confining stress (p’0) had been reached and the volume change 276 

stabilised. The p’0 conditions used for tests are summarised in Table 2. Throughout saturation and 277 

consolidation stages, the submersible load cell maintained a constant deviatoric stress (q) on the sample of 278 

0kPa to reduce bedding errors and enabled the constant measurement of changing sample height throughout 279 

tests. After consolidation, samples were compressed at constant εa rates of 0.01mm/minute and 280 

0.05mm/minute for undrained and drained tests respectively, based on BS1377 [11] calculations. The 281 

failure criteria selected for this work were peak effective stress ratio and ultimate state (i.e. reaching εa of 282 

15%) to capture the residual (i.e. critical state) mechanical behaviour of samples. 283 

At the end of saturation, consolidation and during compression stages of each test, bender element 284 

measurements were taken to determine degradations in sample shear stiffnesses. An S-wave was 285 

transmitted from the bender element housed within the sample top cap, through samples and received by 286 

the bender element within the base pedestal. A minimum of three wavelengths were required to pass through 287 
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samples during bender element tests. The frequency used for the source bender element’s signal bursts was 288 

based on prior knowledge of the stiffness of the Lanton alluvium in its untreated and cemented states, in 289 

addition to a sensitivity analysis whereby frequency was varied between 1 and 50kHz to identify which 290 

frequency produced the highest quality S-wave signal. It was determined that S-wave signals produced for 291 

bender element measurements using lower frequencies were characterised by higher degrees of noise, due 292 

to the influence of the near field effect [19]. The optimum frequency for bender element measurements 293 

taken for all sample types was found to be 20kHz. The time domain method for determining S-wave arrival 294 

times from bender element tests was adopted, which assumes no reflected/refracted waves are detected. 295 

The arrival of the received signal tends to be characterised by an initial downward deflection relative to the 296 

travel time (x) axis, which arises from the “near field effect”. This effect is caused by wave front spreading 297 

and coupling between waves that are characterised by similar particle motions but propagating at different 298 

velocities [19] [20]. The GDS BEAT tool was predominantly used as a convenient method for analysing 299 

the bender element data sets, by using the time and frequency domain techniques. Based on the experience 300 

of the authors in the use and interpretation of bender elements, the first bump maximum was considered 301 

the most suitable point on the received signal as the first S-wave arrival. Figures 3 and 4 show the 302 

experimental apparatus used for taking bender element measurements and some representative S-wave 303 

signals observed for the untreated and GGBS-NaOH treated Lanton alluvium, respectively.304 
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 305 

 306 

Figure 3: Bender element apparatus used within triaxial apparatus. 307 
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 308 

 309 

Figure 4: Source and received signals recorded for bender element measurements taken at frequencies of 10-30kHz during 310 
triaxial tests on samples of undisturbed Lanton alluvium (left) and 28 day GGBS-NaOH stabilised Lanton alluvium (right). 311 

 312 

3.0 Results 313 

3.1 General stress-strain behaviour 314 

3.1.1 Reconstituted Lanton alluvium 315 

The mechanical response under consolidated undrained triaxial shearing of the reconstituted samples are 316 

displayed in Figure 5 in terms of q-εa response (Figure 5a), excess pore pressure (U) - deviatoric strain (εq) 317 
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response (Figure 5b) and q versus mean isotropic stress (Figure 5c). The undrained q-εa behaviour of the 318 

reconstituted alluvium all exhibited work hardening up to peak strength at deviatoric strains of 5–6%. 319 

Irrespective of the confining stress level, ranging from 50–250kPa, U shows a pronounced tendency to 320 

contraction with increases in the applied confining stress. For p’0=50kPa, pressures increased up to 20–40 321 

kPa at εq of 1%; where pressures equalised with further straining until failure. In contrast, U values within 322 

undrained samples tested at p’0=100–250kPa reached peak values of 50–90kPa at 2% εq. With increasing 323 

εa, a gradual reduction in U of 30–50kPa was then observed until failure. 324 

 325 

Figure 5: (a) Undrained deviatoric stress – strain response; (b) excess pore pressure – deviatoric strain response and (c) drained 326 
and undrained effective stress paths in the deviatoric stress – mean isotropic stress plane for reconstituted Lanton alluvium 327 

during shear tests. 328 

 329 

The q and volumetric response of reconstituted samples under drained conditions with increasing εq is 330 

presented in Figure 6. Most samples sheared under initial effective stresses of 50 and 150kPa displayed 331 

work hardening between small and large strains up to failure. However, at p’0 values of 200–250kPa 332 
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samples exhibited some limited evidence of strain softening at larger strains (>10% for drained tests). Along 333 

with the contractional behaviour typical of normally consolidated samples, the volumetric response shows 334 

an overall compressive behaviour as observed in Figure 6b. Compressive behaviour increased with 335 

confining cell pressure and very limited dilation of 0.2% at large strains only. 336 

 337 

Figure 6: (a) Drained deviatoric stress – shear strain and (b) dilational behaviour of reconstituted Lanton alluvium during shear 338 
tests. 339 

 340 

For drained tests undertaken at p’0 = 50, 150 and 200kPa, peak dilation occurred at εq values corresponding 341 

to peak strength. Upon reaching εq of 12–15% where most samples reached their final q value, dilation 342 

became suppressed, suggesting that most samples had reached their critical state. Volumetric trends for the 343 

samples tested are seen tending towards zero volumetric strain (εp). Strain localisation or shear plane 344 

development were generally not observed for reconstituted samples. 345 

Using the slope (M*) from the dilation segments of the εp–εq curves in Figure 6b, dilation angles (ψ) values 346 

for the reconstituted material generally ranged between 1.37–1.81
o
. Higher ψ values of up to 2.3

o
 were 347 

recorded in some samples, which may be attributable to slight density variations between samples. 348 

 349 

3.1.2 Undisturbed Lanton alluvium 350 

The typical mechanical responses for undisturbed Lanton alluvium samples are reported in Figure 7 in 351 

terms of undrained q versus εq (Figure 7a), U versus εq (Figure 7b) and q versus mean isotropic stress (p’) 352 

(Figure 7c). The undrained q-εq behaviour of undisturbed samples consolidated to p’0=50 and 150kPa 353 
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displayed work hardening up to failure. Whereas samples consolidated to p’0=250kPa experienced strain 354 

softening at strains >7%. In general, it can be seen from Figures 5a and 7a that the peak q achieved for 355 

reconstituted samples were markedly higher than those for undisturbed samples. This apparent higher 356 

strength is likely due to a degree of over-compaction during preparation of reconstituted samples. 357 

 358 

Figure 7: (a) Undrained deviatoric stress – strain response; (b) excess pore pressure – deviatoric strain response and (c) drained 359 
and undrained effective stress paths in the deviatoric stress – mean isotropic stress plane for undisturbed Lanton alluvium 360 

during shear tests. 361 

 362 

The U trends show a general increase with strain, with a peak reached between 1.5 and 3% εq, followed by 363 

a slow reduction under further straining. However, with continued shearing post-peak, U slightly increased 364 

before equalising. This behaviour coincides with the onset of strain localisation and softening. Compared 365 

with reconstituted samples, it appears that slightly larger build ups were observed for undisturbed samples. 366 

During the consolidated drained triaxial tests, as reported in Figure 8, work hardening is observed up to 367 

approximately 2–2.5% εq for samples consolidated and tested at p’0 of 50–150kPa. This was followed by a 368 
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pronounced period of strain softening, most likely resulting from the damage of the natural soil structure 369 

during shearing. The sample UndisCD 200_1 tested at a higher confining stress exhibited a much more 370 

limited softening response, showing work hardening behaviour up to approximately 5% εq. 371 

 372 

Figure 8: (a) Drained deviatoric stress – shear strain and (b) dilational behaviour of reconstituted Lanton alluvium during shear 373 
tests. 374 

 375 

Strain localisation and shear plane development were observed within all undisturbed samples. Based on 376 

the soil’s OCR of 1 obtained from oedometer testing [21], Lanton alluvium is considered normally 377 

consolidated. p’0 normalised undrained elastic stiffness (Eu p’0) and drained elastic stiffness (E’p’0) for the 378 

undisturbed soil were recorded as Eu p’0 = 63–139MPa and E’p’0 = 166–600MPa. The undrained stiffnesses 379 

were lower and drained stiffnesses were higher compared with those recorded for the reconstituted soil; 380 

namely Eu p’0 = 223–297MPa and E’p’0 = 150–215MPa. The slightly higher stiffness values recorded for the 381 

undrained reconstituted samples are likely to be attributed to considered to a degree of over-compaction 382 

during sample preparation. From these figures, it is clear that p’0 conditions used during testing influences 383 

the elastic moduli. Furthermore, considering the higher yield stresses of undisturbed samples over 384 

reconstituted samples, the post-yield softening behaviour can be attributed to the degradation of the bonding 385 

based sedimentation structure within the soil. During drained tests, higher peak q values were noted 386 

compared with reconstituted samples due to their internal structure which would have caused dilation. Once 387 

the peak q had been reached, softening was observed. 388 
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The radial stiffness of some undisturbed samples as measured from local strain gauges appeared higher 389 

than their axial stiffness, which in turn produced a Poisson’s ratio (ν) of approximately 0.33. Such a value 390 

is typical for a soft silty alluvial soil, whereby Bowles [22] stated that ν values of 0.3–0.35 may typically 391 

be expected. This observation may indicate a degree of stiffness anisotropy within the soil. Further testing 392 

with horizontally mounted bender elements at the centre of samples would be required to investigate this 393 

postulate. 394 

As for reconstituted samples, higher degrees of dilation were observed within samples which had been 395 

consolidated to lower p’0 values. Figure 6b shows that for tests conducted at p’0=50 and 150kPa, dilation 396 

initiated at much smaller shear strains of 0.3 and 1.2% respectively, compared with reconstituted samples. 397 

At these strain levels, samples were generally within 1% εq of reaching their yielding points, indicating that 398 

samples stress paths were close to the CSL. The sample tested at p’0=50kPa reached maximum effective 399 

stress ratio and therefore failure at εq = 3%. 400 

The contraction experienced by sample UndisCD 200_1 became negligible with further straining at εq >6%. 401 

The dilation coupled with loss of structure may explain the observed post-yielding softening behaviour for 402 

samples UndisCD 50_1 and UndisCD 150_1 [23]. 403 

Ψ values were calculated to range between 4.2–13.6
o
, whereby such variation confirms that higher p’0 404 

values inhibit soil particle rearrangement. Based on the typical friction angle value of 33o for loose silty 405 

sand as given by Carter and Bentley [24] and the formula of ψ = φ – 30, the ψ values measured for Lanton 406 

alluvium are considered high, regardless of any natural bonding structure and the associated peak and 407 

softening behaviour. 408 

 409 

3.1.3 28 day cured stabilised alluvium 410 

The effect of stabilisation was observed to produce shear strengths up to four times higher than those 411 

measured for reconstituted Lanton alluvium, which was accompanied by brittle behaviour upon failure due 412 

to strain localisation and shear plane development. The overall undrained response for the stabilised 413 

alluvium is shown in Figure 9a and 9b. The q-εa behaviour is generally characterised by work hardening up 414 

to peak conditions, followed by strain softening. Increasing confining stress results in peak q values being 415 
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reached at lower εq values; whereby peak values were recorded at approximately 6% strain for samples 416 

tested at p’0<100kPa and 2–3% strain for samples tested at p’0>200kPa. The U trends show an initial 417 

contraction, proportional with the applied confining stress. A peak in U appears to be coincident with the 418 

onset of yielding followed by a reduction in U. A stable U value is reached beyond εq = 4–5%. This 419 

behaviour is typical of densely cemented soils; whereby for less dense cemented soils, U would be expected 420 

to continue increasing towards a steady state [16]. 421 

 422 

 423 

Figure 9: (a) Undrained deviatoric stress – strain response; (b) excess pore pressure – deviatoric strain response and (c) drained 424 
and undrained effective stress paths in the deviatoric stress – mean isotropic stress plane for 28 day cured stabilised Lanton 425 

alluvium during shear tests. 426 

 427 

For samples tested at p’0<200kPa, once U had peaked and started decreasing, they decreased towards 428 

negative values. Although this behaviour was not observed by [16] on an artificially cemented silty sand, 429 

it was recorded by Ahnberg [15] for cemented post-glacial Swedish clays. This behaviour is commonly 430 

observed within dense rocks, whereby the generation of suction occurs close to failure when the material 431 
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starts to dilate [25] with strain localisation. This U reduction ultimately increased the effective confining 432 

stress and therefore strength. 433 

The drained q–εq response of the 28 day cured GGBS-NaOH cemented alluvium is displayed in Figure 10a. 434 

All samples exhibited non-linear elastic work hardening behaviour up to peak q, followed by strain 435 

softening. This behaviour became less pronounced with increasing p’0; particularly for ≥400kPa. The 436 

magnitude of strains at which yielding occurred also increased with increasing p’0. 437 

The p’0 applied to samples during testing appears to influence the q-εq behaviour of the material. For drained 438 

samples tested at p’0≤200kPa, the peak q and corresponding strains were similar – resembling 439 

overconsolidated behaviour. However, for drained samples tested for p’0>400kPa the maximum q values 440 

recorded by samples and their corresponding εq increased and resembled normally consolidated behaviour. 441 

This was similarly observed by Ahnberg [15] for lime and cement stabilised clays from Sweden, which can 442 

be attributed to the material’s vertical yield stress (σ’qp) (aka quasi preconsolidation pressure) as derived 443 

from one-dimensional consolidation oedometer tests. Ahnberg [15] indicated that σ’qp for cemented soils 444 

depends on the level of cementation within the soil matrix and the magnitude of stress applied to the 445 

material during curing. A value for σ’qp can be estimated based on an empirical correlation with unconfined 446 

compressive strength (UCS), namely σ’qp = 1.3UCS. Sargent et al. [10] undertook UCS and oedometer tests 447 

in accordance with BS1377 [11] on the Lanton soil stabilised with 7.5% GGBS-NaOH after 28 days curing. 448 

UCS values of approximately 1500kPa were recorded, indicating σ’qp = 430kPa. Hence, for samples tested 449 

in this study which had been consolidated to effective stresses ≥σ’qp, a transition in mechanical behaviour 450 

from overconsolidated to normally consolidated behaviour occurred. 451 

 452 

 453 
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 454 

Figure 10: (a) Drained deviatoric stress – shear strain and (b) volumetric – shear strain behaviour of 28 day cured stabilised 455 
alluvium samples during shear tests. 456 

 457 

Eu p’0 and E’p’0 value ranges for the stabilised Lanton alluvium were recorded as 552–2593MPa and 531–458 

3750MPa, respectively. Evidence for stabilised Lanton alluvium’s dilative behaviour during shearing is 459 

shown in Figure 10b. Volumetrically, samples experienced a combination of contractional and dilational 460 

behaviour. Samples characterised by more dilation were tested at p’0=200kPa, whereby the onset of dilation 461 

occurred at εq of 1.7%. Negative εp was observed over the εq range of 3–3.5%. Such pronounced dilation 462 

corresponds with the softening, due to the breakdown of the newly formed cementitious bonding structure. 463 

For samples consolidated to p’0>400kPa, their behaviour was predominantly contractional; thereby 464 

demonstrating the influence of p’0 on shearing behaviour. However, at larger εp of 3–5%, samples 465 

experienced varying degrees of dilation; albeit no negative εp. This complements the suppressed peak and 466 

softening behaviour observed in Figure 10a; whereby work hardening dominates particularly for samples 467 

tested at p’0=600kPa. Under such stress conditions, particle rearrangement within samples was less 468 

permissible compared with at lower p’0 of 200kPa. Once samples had failed and reached their critical state, 469 

no further εp was anticipated as they continued to be sheared. Zero εp was not encountered by samples 470 

during testing. 471 

Ψ values for the material ranged between 1.2–3.5
o
, with higher values obtained for samples tested at lower 472 

effective stress conditions. Samples achieving their peak effective stress ratios marked the onset of 473 
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dilational behaviour. Particularly for samples tested at p’0=200kPa, once the dilation rate peaked at shear 474 

strains of approximately 5%, the degree of dilation and the effective stress ratio reduced. 475 

 476 

3.2 Failure Envelopes 477 

Using the Mohr’s circle at peak strength conditions, the failure envelopes for the three materials have been 478 

determined and provided in Figure 11. The reconstituted alluvium was characterised by average values for 479 

average effective cohesion (c’) of 2.35kPa and effective friction angle (φ’) of 34.1o, whereas the undisturbed 480 

Lanton alluvium exhibited a rather similar average φ’of 32o but higher values of c’ equal to 12kPa as a 481 

result of the internal natural structure. Theoretically, the undisturbed soil ought to possess higher shear 482 

strength properties compared with its reconstituted state, due to the presence of inter-particle bonding 483 

within the soil structure. However, at higher stress levels (i.e. σ’n>200 kPa) the opposite was observed 484 

whereby that the Mohr-Coulomb failure envelope for the undisturbed soil is positioned beneath that for the 485 

reconstituted soil. This appears emphasised for undrained tests. Considering peak q values recorded during 486 

undrained tests were generally lower compared with drained tests under identical p’0 conditions, the 487 

apparent higher strength of reconstituted Lanton alluvium may be attributed to a degree of sample over-488 

compaction. Some of the soil's bonding-based structure may also have collapsed during transport from the 489 

field to the laboratory. 490 

Whilst the untreated alluvium behaved as a typical frictional granular material, the mechanical behaviour 491 

of the cemented alluvium is largely controlled by its cement content. As previously mentioned, strain 492 

localisation and the development of shear failure planes occurred during triaxial compression when stress 493 

conditions closely approached their peak. 494 

The applied GGBS-NaOH stabilisation process had a significant impact on the peak strength of the 495 

alluvium, whereby the failure envelope was characterised by an average c’ of 360kPa as a result of 496 

cementation within the soil matrix, and an average φ’ of 37o. This suggests that the applied stabilisation 497 

procedure improved not only the cohesive components of the shear strength, but also its frictional 498 

components. 499 
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 500 

Figure 11: Mohr-Coulomb failure envelopes at peak strength conditions for: (a) reconstituted, (b) undisturbed and (c) 28 day 501 
cured stabilised Lanton alluvium. 502 

 503 

The effective stress paths followed by the three different materials during both undrained and drained 504 

triaxial shearing tests are reported in Figure 12. q and p’ have been normalised by p’0 to bring the stress 505 

paths together for the purpose of defining a single locus within the q / p’0 – p’ / p’0 plane. Both reconstituted 506 

and undisturbed Lanton alluvium undrained stress paths within q-p’ stress space demonstrate strain 507 

hardening with little softening. Drained stress paths followed by all three materials exhibited the 1:3 slope 508 

typically expected for drained shear tests. It is possible that the occurrence of localisation within samples 509 

during shear testing may have affected the location of the CSL’s for the three materials. Therefore, this 510 

study provides an estimation of the CSL locations to enable comparisons with different soils. 511 
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 512 

Figure 12: p’0 normalised drained and undrained effective stress paths for: (a) reconstituted, (b) undisturbed and (c) 28 day 513 
cured stabilised Lanton alluvium. 514 

 515 

The CSL’s for all three materials pass through the origin, as typically expected for frictional granular soils. 516 

Per Figure 12a, the average gradient (M) measured for the estimated location of CSL(Recon) was 1.42, 517 

deriving a φ’ = 35
o
. Whereas in Figure 12b for the undisturbed alluvium, an M value of 1.37 was measured 518 

for the estimated location of the CSL(Undis), deriving φ’ = 34
o
. By examining the stress path data for the 519 

stabilised Lanton alluvium in Figure 12c, the estimated CSL(Cem) has a steeper gradient compared with the 520 

reconstituted and undisturbed Lanton alluvium, thereby giving a higher M value of 1.88. This provides an 521 

estimate of φ’ = 40
o
. Whilst the CSL estimates for effective friction angle are similar to those measured 522 

from peak Mohr circles for the reconstituted and undisturbed Lanton alluvium, there seems to be some 523 

disparity regarding the friction angle estimates for the stabilised alluvium. This is largely attributed to 524 

sample variability regarding level of cementation. 525 
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Whilst p’ generically influences the shear stiffness of soils, it appears less significant for the stabilised 526 

alluvium at p’ ≤200kPa. Peak q values for undrained samples were similar at p’0 values of 50 and 100kPa. 527 

For undrained tests undertaken at p’0>400kPa, increases in peak q and a change in shape of the effective 528 

stress paths in q-p’ stress space were observed. The normalisation of effective stress paths in Figure 11 529 

shows that samples consolidated to higher p’0 achieved higher peak q. Per Muir Wood [26], this proved 530 

useful in defining a single locus for the stabilised material within the q / p’0 – p’ / p’0 plane. 531 

The shapes of undrained effective stress paths varied according to the level of effective confining stress. 532 

For samples tested at p’0 ≤200kPa, stress paths followed a 1:3 slope similar to drained tests until they 533 

reached their yielding point when a sharp phase transformation occurred. The stress paths then followed 534 

the failure envelope until sample rupture and failure occurred. For undrained stress paths taken by samples 535 

tested at confining stresses ≥400kPa, their shapes resemble those typically expected for soils which 536 

predominantly experience work hardening with limited softening. Once these samples started to reach 537 

advanced stages of yielding and their corresponding stress paths had reached their failure envelopes, a phase 538 

transformation occurred. p’ increased whilst q stabilised. Once stress paths reached their peak strength (i.e. 539 

defining the failure envelope), q started to decrease. It is thought that this resulted in the stress paths coming 540 

down to meet the CSL. However, the stress paths only followed the CSL briefly, as q often suddenly 541 

decreased due to brittle rupturing and volumetric increase within the samples. 542 

 543 

3.3 Ultimate State Locus in the Volumetric Stress Plane 544 

The end points of stress paths followed by all samples tested in the typical specific volume versus logarithm 545 

of mean effective stress (ν – ln p’) are reported in Figure 13. The end points are highlighted to determine 546 

the likely location of the CSL’s for the reconstituted, undisturbed and stabilised Lanton alluvium. It should 547 

be noted that the occurrence of strain localisation or non-homogeneity of deformation within the tested 548 

samples can prevent the determination of the exact location of the critical state line. Nevertheless, a general 549 

approximation of the position of the ultimate state locus for the three materials can still be obtained. The 550 

data plotted in Figure 13 shows how the compression curve end points and the CSL’s for the GGBS-NaOH 551 
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stabilised alluvium samples plot well above the respective data for the reconstituted and undisturbed 552 

samples. 553 

 554 

 555 

Figure 13: Possible CSL surfaces for reconstituted, undisturbed and stabilised Lanton alluvium in the ν – ln p’ stress plane. 556 

 557 

It is clear that the presence of internal structure, either in the form of natural post-sedimentation structure 558 

or artificial cementation, results in an upward movement of the CSL. Such movement is greater for the 559 

stronger structure provided by the GGBS-NaOH stabilisation. However, it is difficult to comment on the 560 

relationship between the slope of the CSL’s, due to the relatively limited range of mean effective stress and 561 

the uncertainty relating to strain localisation and inhomogeneity of deformation. According to critical state 562 

soil mechanics theory, it may be assumed that the ultimate compression locus for the undisturbed and 563 

stabilised Lanton alluvium will converge with the intrinsic compression line for the Lanton alluvium at 564 

very high stress levels. The data trends shown in Figure 13 appears to generally corroborate such an 565 

assumption, based on the mean effective stresses experienced by the samples tested. However, Todisco and 566 

Coop [27] determined that soils characterised by more complex particle size distributions and mineralogies 567 



31 

may not exhibit convergence behaviour. Given the cement bonding-based structure and thus more complex 568 

mineralogy of the stabilised Lanton alluvium due to the inclusion of the GGBS-NaOH binder and 569 

cementitious gels, further triaxial testing involving higher strains and effective confining stresses would be 570 

required to determine whether convergence will occur. 571 

 572 

3.4 Stress – Dilatancy Relationship 573 

The stress-dilatancy relationships for the three investigated materials are reported in Figure 14 to allow a 574 

direct comparison among the materials and understand the influence of the presence of both natural and 575 

artificial cemented structure. The stress-dilatancy behaviour of reconstituted samples is displayed in Figure 576 

14b, whereby all samples display frictional behaviour. They compress to ultimately reach similar critical 577 

state M values of 1.3–1.4, with some limited dilation associated with reaching the peak strength ratio. The 578 

data seems to follow the typical linear trend between stress ratio and incremental strain ratio, after the elastic 579 

component of deformation becomes negligible. The undisturbed Lanton alluvium samples also reached 580 

critical state ratio (M) values (i.e. q / p’) of 1.3–1.4, although they experienced larger dilation during testing 581 

(Figure 14a). The relationship between stress ratio and strain ratio seems to be governed by a much flatter 582 

line if compared with the reconstituted Lanton alluvium. This is thought to be a consequence of internal 583 

structure and some natural bonding between the soil particles. 584 

The presence of strong cementitious bonding within the stabilised Lanton alluvium results in a unique 585 

critical state stress ratio, which appears to decrease with the applied stress level as shown in Figure 14c. 586 

The strength contribution provided by the cementitious bonding is generally stress dependent and becomes 587 

less significant as the testing confining stress increases. Interestingly, for all of the samples tested, the 588 

dilatancy stress- relationship is initially very flat (gradient close to zero), which confirms that the peak 589 

strength of the stabilised alluvium samples is not related to a frictional mechanism, but largely governed 590 

by the artificial cementation. After a peak rate, the dilation reduces together with the stress ratio which 591 

agrees with the observations of Rios et al. [16] on artificially cemented soils and Coop and Wilson [28] on 592 

sandstones. For the stabilised soil, the ultimate value of the peak strength ratio is considerably higher than 593 
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that of the reconstituted and undisturbed alluvium. This suggests that during shearing, the stabilised material 594 

does not evolve in the original non-cemented reconstituted alluvium. 595 

 596 

 597 

Figure 14: Stress-dilatancy relationship for (a) reconstituted, (b) undisturbed and (c) 28 day cured stabilised Lanton alluvium. 598 

 599 

3.5 Shear stiffness 600 

3.5.1 Characterisation of the Small Strain Stiffness 601 

Bender elements and measurements from local instrumentation attached to the middle third of samples were 602 

used to assess the relationship between the initial shear stiffness (Gmax) and the applied p’0. An average 603 

Gmax value of 89MPa was obtained from bender element measurements performed on samples consolidated 604 

to a p’0 of 50kPa prior to shearing. For the stabilised alluvium, bender element and local strain 605 

measurements indicated Gmax values to range between 1053 and 1813MPa for the p’0 range of 50–600kPa. 606 
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The relationship between Gmax and the applied confining stress for the three investigated materials are 607 

reported in Figure 15. While the derivation of such a relationship for the reconstituted and undisturbed 608 

Lanton alluvium is beyond the scope of this paper, the results of Figure 15 demonstrate that the proposed 609 

stabilisation method provides an approximate 13 fold increase in initial shear stiffness. 610 

 611 

 612 

Figure 15: Relationship between Gmax and initial mean effective stress for undisturbed and 28 day cured stabilised Lanton 613 
alluvium. 614 

 615 

Figure 15 shows that the value of Gmax for the stabilised Lanton alluvium is not proportional to the applied 616 

confining stress. Variability of the data does not assist in this situation, but it may appear that, for lower 617 

values of mean isotropic stress (i.e. <200kPa), the Gmax is constant or may even decrease with increasing 618 

mean isotropic stress. This was similarly observed by Verastegui-Flores and Van Impe [29] for a cemented 619 

kaolin soil. In this stress range, the structure of the stabilised material is entirely governed by the 620 

cementation and an eventual reduction in shear stiffness (G) with stress level may be associated with a 621 

collapse of the cemented soil structure. For isotropic stress levels greater than 200kPa, the Gmax value 622 
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increases as it would be expected for non-cemented frictional soils. This suggests that the frictional nature 623 

of the soil matrix is activated for these stress levels. 624 

 625 

3.5.2 Degradation of shear stiffness during shearing 626 

The measured G degradation behaviour for the undisturbed and stabilised Lanton alluvium is presented in 627 

Figure 16, whereby G values were normalised with respect to the measured Gmax value. Data scatter is 628 

observed within the small strain range, which may be due to the slightly lower resolution of stiffnesses 629 

calculated from the axial and radial LVDT’s local strain gauges compared with bender element 630 

measurements. For the undisturbed Lanton alluvium, G degrades significantly at small strains. The 631 

degradation is much more rapid if compared with highly structured cohesive soils such as London Clay, as 632 

tested by Gasparre [19] whose initial structure and highest stiffnesses are retained up to shear strains of 633 

approximately 0.01%. 634 

For the majority of stabilised alluvium samples, the onset of G degradation during compression occurs at 635 

approximately 1% shear strain. The shear strain levels at which the shear stiffness of the cemented samples 636 

starts to degrade is approximately three orders of magnitude higher than those measured for the undisturbed 637 

alluvium. This highlights the level of improvement in mechanical behaviour provided by the addition of 638 

the GGBS-NaOH binder and 28 days curing. 639 

 640 
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 641 

Figure 16: Normalised shear stiffness degradation curves for the undisturbed and 28 day cured stabilised Lanton alluvium. 642 

 643 

4.0 Conclusions 644 

An extensive experimental triaxial testing programme was undertaken on reconstituted, undisturbed and 645 

stabilised Lanton alluvium samples to characterise the improvement in mechanical behaviour provided by 646 

the precipitation of cementitious gels (most likely C-(N)-A-S-H) derived from a new low carbon GGBS-647 

NaOH binder [21]. Findings presented by Sargent et al. [10] informed the work presented in this paper, 648 

which revealed that the engineering performance of the GGBS-NaOH binder at a dosage of 7.5% was 649 

comparable to using a 10% dosage of CEM-I, thereby meeting minimum strength requirements defined by 650 

the EuroSoilStab [12] standard. All cemented samples had a controlled binder dosage of 7.5% (i.e. 107kg 651 

m-3). The analysis of the experimental results has revealed the following insights: 652 

 The use of the GGBS-NaOH binder proved successful in significantly increasing the shear strength 653 

of the initially soft and sensitive Lanton alluvium soil by a factor of 13 after 28 days curing. The 654 

relationship between initial shear stiffness and effective stress level is non-linear: the stiffness 655 

appears to be chiefly governed by the cemented structure of the material for low stress levels up to 656 

200kPa. The initial stiffness of the cemented soil was also significantly improved, which only 657 

started to degrade at shear strain levels of 1% - approximately three orders of magnitude higher than 658 

the untreated undisturbed alluvium. 659 
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 GGBS-NaOH stabilised samples exhibited higher values of maximum dilation for the same 660 

confining stresses. Such pronounced dilation corresponds with the onset of softening, due to the 661 

breakdown of the newly formed internal cementitious bonding structure. 662 

 The peak strength of the stabilised Lanton alluvium was less influenced by the frictional mechanism 663 

but largely governed by the artificial cementation. Only after the peak rate is reached, the dilation 664 

reduces together with the stress ratio to eventually reach their ultimate values. 665 

 Possible locations for the untreated and GGBS-NaOH cemented alluvium’s critical state lines have 666 

been defined in the mean effective stress and ν – ln p’ stress planes. The CSL surfaces for the 667 

reconstituted and undisturbed soil are indicated to be approximately in parallel with each other in 668 

the v – ln p’ stress plane. The stress paths for the cemented alluvium were akin to heavily over-669 

consolidated soils or soft rocks, defining a new CSL surface located above those for the natural soil. 670 

Further research is required for characterising the mechanical behaviour of the GGBS-NaOH cemented soft 671 

alluvial soils under higher effective confining pressures, with focus on fatigue, creep and response to 672 

dynamic and cyclic loading conditions associated with earthquake phenomena and modern engineering 673 

infrastructure such as high-speed railways. 674 

For soils that are softer and more problematic compared with Lanton alluvium, higher binder dosages (i.e. 675 

≥10%) may be required to achieve high strengths. Additionally, the GGBS-NaOH ratio will require careful 676 

customisation for individual projects, whereby higher NaOH concentrations would be required to 677 

effectively stabilise soils characterised by a low pH. However, using high concentrations of NaOH will 678 

result in the binder becoming less environmentally and financially sustainable. The mineralogy / chemistry 679 

of a soil (i.e. organic and sulphate contents) being considered for stabilisation must be investigated prior to 680 

selecting the binder to be used on site. Failure to do so may result in ineffective stabilisation and potentially 681 

worsen ground conditions in the long term due to the formation of structurally unfavourable minerals such 682 

as ettringite. 683 

 684 

 685 
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