
Journal Pre-proof

Complete Simulation of Automata Networks

Florian Bridoux, Alonso Castillo-Ramirez, Maximilien Gadouleau

PII: S0022-0000(19)30082-0

DOI: https://doi.org/10.1016/j.jcss.2019.12.001

Reference: YJCSS 3245

To appear in: Journal of Computer and System Sciences

Received date: 28 April 2015

Revised date: 30 November 2019

Accepted date: 1 December 2019

Please cite this article as: F. Bridoux et al., Complete Simulation of Automata Networks, J. Comput. Syst. Sci. (2020),
doi: https://doi.org/10.1016/j.jcss.2019.12.001.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2020 Published by Elsevier.

https://doi.org/10.1016/j.jcss.2019.12.001
https://doi.org/10.1016/j.jcss.2019.12.001

Complete Simulation of Automata Networks

Florian Bridouxa, Alonso Castillo-Ramirezb, Maximilien Gadouleauc

aAix-Marseille Univ., Toulon Univ., CNRS, LIS, Marseille, France
bDepartamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenieŕıas,

Universidad de Guadalajara, México
cSchool of Engineering and Computing Sciences, Durham University, South Road,

Durham, DH1 3LE, United Kingdom

Abstract

Consider a finite set A and n ≥ 1. We study complete simulation of transfor-

mations of An, also known as automata networks. For m ≥ n, a transforma-

tion of Am is n-complete of size m if it may simulate every transformation of

An by updating one register at a time. Using tools from memoryless compu-

tation, we establish that there is no n-complete transformation of size n, but

there is one of size n + 1. By studying various constructions, we conjecture

that the maximal time of simulation of any n-complete transformation is at

least 2n. We also investigate the time and size of sequentially n-complete

transformations, which may simulate every finite sequence of transformations

of An. Finally, we show that there is no n-complete transformation updating

all registers in parallel, but there exists one updating all but one register

in parallel. This illustrates the strengths and weaknesses of sequential and

parallel models of computation.

Keywords: Complete simulation, automata networks, memoryless

Email addresses: florian.bridoux@lif.univ-mrs.fr (Florian Bridoux),
alonso.castillor@academicos.udg.mx (Alonso Castillo-Ramirez),
m.r.gadouleau@durham.ac.uk (Maximilien Gadouleau)

Preprint submitted to Journal of Computer and System Sciences December 5, 2019

computation, transformation semigroups, symmetric group, models of

computation, computational difficulty.

1. Introduction

Memoryless computation (MC) is a modern paradigm for computing any

transformation of An, with A a finite set and n ≥ 2, by updating one co-

ordinate at a time while using no memory. Its basic idea was developed in

[3, 4, 5, 6, 7, 8, 9], and expanded in [10, 11, 14]. The seminal example of

MC is the famous XOR swap algorithm, which is analogous to the butterfly

network, the canonical example of network coding (see [1]). In the following

paragraphs, we shall introduce notation and review the main definitions of

MC.

Let q be the cardinality of A. Without loss, we usually regard A as the

ring Zq = Z/qZ or, when q is a prime power, the field GF(q). Since the

case when q = 1 is trivial, we shall assume q ≥ 2 henceforth. We refer the

coordinates of An as registers and the elements of An as states. Denote by

ek ∈ An the state with 1 at its k-th register and zero everywhere else, and by

e0 ∈ An the state with zeros in all its registers. For any a ∈ An, we denote

by ai the image of a under the i-th coordinate projection.

We are interested in studying transformations of An, i.e., functions from

An to An. Denote by Tran(An) the set of all transformations of An, and by

Sing(An) and Sym(An) the set of all singular and nonsingular transforma-

tions of An, respectively. The sets Tran(An) and Sing(An), equipped with

the composition of transformations ◦, form semigroups called the full trans-

formation semigroup on An and the singular semigroup on An, respectively.

2

The set Sym(An), equipped with ◦, forms a group called the symmetric group

on An.

In general, if Y is a subset of a semigroup S, let 〈Y 〉 be the smallest

subsemigroup of S containing Y . Say that Y is a generating set of S when

S = 〈Y 〉. In particular, if S is a subsemigroup of Tran(An), and Y is a gen-

erating set of S, the triple (An, S, Y) is referred as a finite state-homogeneous

automata network (see [12, p. 200]).

Throughout this paper, we adopt the convention of applying functions on

the right; then (x)f denotes the image of x ∈ An under f ∈ Tran(An), and

f ◦g (or simply fg) denotes the composition of functions (x)(f ◦g) = ((x)f)g.

The size of the image of a transformation f is referred as its rank and denoted

by rk(f).

We view each transformation ofAn as a tuple of functions f = (f1, . . . , fn),

where fi : A
n → A is referred to as the i-th coordinate function of f . In

particular, an i-th coordinate function is trivial if it is equal to the i-th pro-

jection: (x)fi = xi, for all x ∈ An.

The following is the key definition of memoryless computation.

Definition 1 (Instruction). An instruction of An is a transformation f :

An → An with at most one nontrivial coordinate function. A permutation

instruction is an instruction which maps An bijectively onto An.

The previous definition implies that the identity transformation of An is

an instruction. We denote the set of instructions of An as Ī(An), and the set

of permutation instructions as I(An). We shall simply write Ī and I when

there is no ambiguity. Note that any nontrivial instruction f ∈ Ī is uniquely

determined by its nontrivial coordinate function fi; hence, in this case, we

3

say that f updates the i-th register, and we shall often denote f by its update

form:

f : xi ← (x)fi.

For instance, if A = GF(2) and n = 2, then I is given by

{x1 ← x1, x1 ← x1 + 1, x1 ← x1 + x2, x1 ← x1 + x2 + 1,

x2 ← x2, x2 ← x2 + 1, x2 ← x1 + x2, x2 ← x1 + x2 + 1},

where the identity may be represented by either x1 ← x1 or x2 ← x2.

One of the most important features of the instruction sets Ī and I is that

they are generating sets of Tran(An) and Sym(An), respectively (see [3, 14]).

Definition 2 (Program). For any g ∈ Tran(An), a program of length �

computing g is a sequence of instructions h(1), . . . , h(�) ∈ Ī such that

g = h(1) ◦ . . . ◦ h(�).

For reminder, we apply functions from the left to the right. Thus, the

image of x by g is obtained by applying on x, first h(1), then h(2), . . . , and at

least h(l). Unless specified otherwise, we assume that every instruction in a

program is different from the identity. Moreover, since the set of instructions

updating a given register is closed under composition, we may always assume

that h(k+1) updates a different register than h(k) for all k. In this paper, we

shall work with particular subsets of instructions Y ⊆ Ī. Hence, for any

transformation g ∈ 〈Y 〉, we define the procedural complexity of g with respect

to Y as the minimum length of a program computing g with instructions

from Y . The procedural complexity of g with respect to Ī is simply called

the procedural complexity of g.

4

Example 1. In order to illustrate our notations, let us write the program

computing the swap of two variables, i.e. g : Z2
q → Z

2
q where (x1, x2)g =

(x2, x1). It is given as follows:

g = h(1) ◦ h(2) ◦ h(3),

where

h(1) : x1 ← x1 + x2

h(2) : x2 ← x1 − x2

h(3) : x1 ← x1 − x2,

or, equivalently

(x1, x2)h
(1) = (x1 + x2, x2),

(x1, x2)h
(2) = (x1, x1 − x2),

(x1, x2)h
(3) = (x1 − x2, x2).

By simple extension of g we have,

(x1, x2)g = (x1, x2)(h
(1) ◦ h(2) ◦ h(3)),

= (x1 + x2, x2)(h
(2) ◦ h(3)),

= (x1 + x2, x1)h
(3)

= (x2, x1).

This paper is organised as follows. In Section 2, we introduce our notion

of simulation, which is a way of computing a transformation of An using

m ≥ n instructions that may depend on m − n extra registers. We say

5

that a transformation of Am is n-complete if the instructions induced by

its coordinate functions may simulate any transformation of An. We show

that there is no n-complete transformation that uses no extra registers, but

that there is one that uses only one extra register. Then, we construct an n-

complete transformation with maximal time of simulation 2n, and conjecture

that 2n is the lower bound for the maximal time of simulation of any n-

complete transformation.

In Section 3, we introduce the notion of sequential simulation. A trans-

formation of Am is sequentally n-complete if it may sequentially simulate

any sequence of transformations of An. We establish that any such transfor-

mation requires at least n extra registers, and we construct one with n + 2

extra registers when q ≥ 3, and n + 3 extra registers when q = 2. Then,

we establish lower bounds for the maximal and minimal time of simulation

of sequentially n-complete transformations, and construct explicit examples

that asymptotically tend to these bounds.

Finally, in Section 4, we show that there is no complete transformation

that updates all the registers in parallel; however, we construct a sequen-

tially n-complete transformation that updates all but one register in parallel.

The first result shows that some asynchronism is required in order to obtain

completeness; conversely, the second result shows that the least amount of

asynchronism is enough to obtain completeness.

Simulation on automata networks is a well-studied subject, e.g. see [12,

13, 15, 16, 17, 18, 19, 20, 21]. The emphasis in the majority of these works

has been on the structure of the so called interaction graph of f ∈ Tran(An),

which is a directed graph on {1, . . . , n} with an arc from j to i if and only

6

if fi really depends on xj. On the other hand, in this paper we always allow

every interaction and focus on other aspects such as the space and time of

simulations.

Our work differentiates in several aspects from results on completeness

in other models of computation. First, we always consider a finite compu-

tational space, so well-known models, such as Turing machines, are incom-

parable. Second, as we allow our registers to be updated asynchronously,

our model is more general and flexible than synchronous models like cellular

automata. This point is illustrated by the results in Section 4, especially in

the sequentially n-complete transformation that updates all but one register

in parallel. Indeed, this transformation only uses asynchronism to reset a

counter, i.e. to place the state in a special initial configuration; once this is

done, the parallel updates are then sequentially n-complete.

2. Simulation of transformations

Denote [n] := {1, . . . , n}. For m ≥ n, let pr[n] : Am → An be the

[n]-projection of Am to An, i.e., (x1, . . . , xm)pr[n] = (x1, . . . , xn). This is

extended to any I ⊆ [m] in the natural way. We shall simplify notation and

write xI = (x)prI .

For any f : Am → Am and i ∈ [m], F (i) : Am → Am is the instruction

induced by the coordinate function fi:

F (i) : xi ← (x)fi.

We then consider

Sf := 〈F (1), . . . , F (m)〉 ⊆ Tran(Am).

7

In order to make notation more concise, for any sequence σ = (σ1, . . . , σt) of

coordinates in [m], we denote

F σ = F (σ1,...,σt) := F (σ1) ◦ F (σ2) ◦ · · · ◦ F (σt).

Then Sf is the set of all possible F σ.

Definition 3 (Simulation). Let m ≥ n ≥ 1. We say that f : Am → Am

simulates g : An → An if there exists h ∈ Sf such that h ◦ pr[n] = pr[n] ◦ g, or
equivalently (x)h[n] = (x[n])g for all x ∈ Am. The time of simulation, denoted

by tf (g), is the procedural complexity of h with respect to {F (1), . . . , F (m)}.

Compare our previous definition of simulation with the definition of sim-

ulation by projection for finite state-homogeneous automata networks that

appears in [12, p. 208].

Definition 4 (n-Complete). Let m ≥ n ≥ 1. A transformation f : Am →
Am is called n-complete of size m if it may simulate any transformation in

Tran(An). The time of f is tf (n) := max{tf (g) : g ∈ Tran(An)}.

We exhibit a simple example of an n-complete transformation. This

example will also allow us to introduce some concepts and notation used

throughout this paper. We begin by constructing a simple, yet powerful

tool: a switch. This will allow us to encode bits (or q-ary symbols) and as

such, to be able to describe anything we want. Note that we cannot use only

one register to encode one bit, because we do not know the initial state of

that register. Instead, we will use two registers a and b, and we let

(xa, xb)fa = xb,

(xa, xb)fb = xa + 1.

8

(There are several variants to this construction.) In this case, we can say

that the switch is on if xa
= xb and the switch is off if xa = xb. Then the

instruction F (b) turns the switch on, while F (a) turns it off.

Example 2. For any n ≥ 2, there is an elementary example of an n-complete

transformation f ∈ Tran(Am), with sizem = 2n+2T , where T = |Tran(An)|.
In order to describe it, we let [m] = [n] ∪ [n]′ ∪ {a1, . . . , aT } ∪ {b1, . . . , bT },
where [n]′ = {1′, . . . , n′} has cardinality n. We also enumerate by p1, . . . , pT ,

all the transformations in Tran(An). Then f is defined as follows: for v ∈ [n],

v′ ∈ [n]′ and 1 ≤ s ≤ T ,

(x)fv =

⎧⎪⎨
⎪⎩
(x[n]′)p

s
v if xas
= xbs and xar = xbr ∀1 ≤ r ≤ T , r
= s

xv otherwise.

(x)fv′ = xv,

(x)fas = xbs ,

(x)fbs = xas + 1.

We now show that f is indeed an n-complete transformation. Suppose

that we want to simulate ps. Then, this may be achieved as follows.

Step 1. Copy the first n registers into [n]′: F (1′,...,n′).

Step 2. Turn all switches off: F (a1,...,aT).

Step 3. Turn the right switch on: F (bs).

9

1 2 ... n

[n]: First n registers

1′ 2′ ... n′

[n]′: Copy of [n]

a1 ... as ... aT

b1 ... bs ... bT

S: Switches

Figure 1: The n-complete transformation of Example 2

Step 4. Compute ps: F (1,...,n).

Or more concisely, the transformation h = F σ, where

σ = (1′, . . . , n′, a1, . . . , aT , bs, 1, . . . , n),

satisfies (x)h[n] = (x[n])p
s.

In the following sections, we study n-complete transformations with min-

imal size and time.

2.1. Complete transformations of minimal size

In this section, we denote the transposition of u, v ∈ An as (u, v), where,

for any x ∈ An,

(x)(u, v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v if x = u

u if x = v

x otherwise,

10

and the assignment of u to v as (u → v), where

(x)(u → v) =

⎧⎪⎨
⎪⎩
v if x = u

x otherwise.

For any f ∈ Tran(An) and g ∈ Sym(An), the conjugation of f by g is

f g := g−1fg ∈ Tran(An).

It was determined in [11] that, unless |A| = n = 2, there exists a set

Y ⊂ I of size n that generates the whole symmetric group Sym(An); hence,

the set Y ∪ {(e0 → e1)} of n + 1 instructions suffices to generate the full

transformation semigroup Tran(An). In the following theorem, we prove

there is no set of n instructions that generate Tran(An), which implies that

there is no n-complete transformation of size n.

Theorem 1. For any n ≥ 1, there is no transformation f ∈ Tran(An) such

that Sing(An) ⊆ Sf .

Proof. The case n = 1 is trivial, so assume that n ≥ 2. Suppose that Y :=

{F (1), . . . , F (n)} is a set of instructions that generate a semigroup containing

all singular transformations, where F (i) updates the i-th register. Since the

composition of permutations is a permutation, at least one of these generating

instructions must be singular.

First, assume that at least two instructions of Y , say F (1) and F (2), are

singular. We claim that no assignment g = (a → b), with ai
= bi, i = 1, 2,

can be computed using only instructions in Y . Indeed, suppose that F (1) is

the first singular instruction in a program computing g, so g = π ◦ F (1) ◦ h,
for some h ∈ Tran(An) and π ∈ 〈F (3), . . . , F (n)〉. As π ◦F (1) is singular, there

exist u, v ∈ An, u
= v, such that (u)π ◦F (1) = (v)π ◦F (1), which implies that

11

(u)g = (v)g. However, as π ◦ F (1) does not update the second register, we

have {u, v}
= {a, b}, which contradicts the definition of the assignment g.

By the previous paragraph, there may be only one singular instruction

in Y , say F (1). Let u, v ∈ An, u1
= v1, be such that (u)F (1) = (v)F (1). For

any g ∈ Sing(An), we may write g = π ◦ F (1) ◦ h, where h ∈ Tran(An) and

π ∈ 〈F (2), . . . , F (n)〉 ⊆ Sym(An). Letting x = (u)π−1 and y = (v)π−1, we see

that x1
= y1 and (x)g = (y)g. However, this means that assignments such

as g = (a → b), with a
= b, a1 = b1, cannot be computed.

Corollary 1. For any n ≥ 1, there is no n-complete transformation of size

n.

In fact, the minimum size is exactly n+ 1.

Theorem 2. For all n ≥ 1 and q ≥ 2, there exists an n-complete transfor-

mation of size n+ 1.

We first deal with the special case n = 1.

Lemma 1. If n = 1 and q = 2, then there exists a 1-complete transformation

of size 2.

Proof. Let (x1, x2)f = (¬(x1 ∧ x2), x1). It is easy to verify that f is indeed

1-complete. We shall do it explicitly in order to illustrate some notation

used later on. For all x = (x1, x2), we have the following chain, where y
i−→ z

means z = (y)F (i).

(x1, x2)
2−→ (x1, x1)

1−→ (¬x1, x1)
1−→ (1, x1)

2−→ (1, 1)
1−→ (0, 1).

Then all four functions of one Boolean variable (namely, x1, ¬x1, 0 and 1)

are simulated by f .

12

Lemma 2. If n = 1 and q ≥ 3, then there exists a 1-complete transformation

of size 2.

Proof. Let f : A2 → A2 be defined as follows

(x1, x2)f1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + 1 if x1 = x2

1 if x1 = 0 and x2 = q − 1

0 if x1 = 1 and x2 = 0

x1 otherwise

(x1, x2)f2 = x1

Let us prove that f is 1-complete. We shall use the following generating

set of Tran(A): the cycle c = (0, 1 . . . , q − 1), the transposition k = (0, 1),

and the assignment d = (0 → 1). All that is left to prove is that those

transformations, acting on A, can be simulated by f . Firstly, it is easy to

check that F (2,1) simulates the cycle c = (0, 1 . . . , q − 1), since

(x1, x2)
2−→ (x1, x1)

1−→ (x1 + 1, x1)

Secondly, F ((2,1)q ,1) simulates the transposition k = (0, 1), since for any 2 ≤
i ≤ q − 1,

(i, x2)
(2,1)q−−−→ (i, i− 1)

1−→ (i, i− 1)

(0, x2)
(2,1)q−−−→ (0, q − 1)

1−→ (1, q − 1)

(1, x2)
(2,1)q−−−→ (1, 0)

1−→ (0, 0)

Thirdly, F ((2,1)q ,1,1) simulates the assignment d = (0 → 1), since for any

13

2 ≤ i ≤ q − 1,

(i, x2)
(2,1)q−−−→ (i, i− 1)

1−→ (i, i− 1)
1−→ (i, i− 1)

(0, x2)
(2,1)q−−−→ (0, q − 1)

1−→ (1, q − 1)
1−→ (1, q − 1)

(1, x2)
(2,1)q−−−→ (1, 0)

1−→ (0, 0)
1−→ (1, 0)

We now tackle the case n = q = 2.

Lemma 3. If n = 2 and q = 2, then there exists a 2-complete transformation

of size 3.

Proof. Let f be defined as

(x)f1 :=

⎧⎪⎨
⎪⎩
x1 + 1 if x1 = x3

x2 otherwise

(x)f2 := x2 + x3

(x)f3 := x1

Firstly, F (3,1,2) simulates the cycle c = (00, 10, 01, 11), since

(0, 0, x3)
3−→ (0, 0, 0)

1−→ (1, 0, 0)
2−→ (1, 0, 0)

(0, 1, x3)
3−→ (0, 1, 0)

1−→ (1, 1, 0)
2−→ (1, 1, 0)

(1, 0, x3)
3−→ (1, 0, 1)

1−→ (0, 0, 1)
2−→ (0, 1, 1)

(1, 1, x3)
3−→ (1, 1, 1)

1−→ (0, 1, 1)
2−→ (0, 0, 1)

Secondly, F (3,1,1,2) simulates the cycle k = (10, 01, 11), since

(0, 0, x3)
3−→ (0, 0, 0)

1−→ (1, 0, 0)
1−→ (0, 0, 0)

2−→ (0, 0, 0)

(0, 1, x3)
3−→ (0, 1, 0)

1−→ (1, 1, 0)
1−→ (1, 1, 0)

2−→ (1, 1, 0)

(1, 0, x3)
3−→ (1, 0, 1)

1−→ (0, 0, 1)
1−→ (0, 0, 1)

2−→ (0, 1, 1)

(1, 1, x3)
3−→ (1, 1, 1)

1−→ (0, 1, 1)
1−→ (1, 1, 1)

2−→ (1, 0, 1)

14

Thirdly, F (3,1,1,2,1,2) simulates the transformation d = (01, 11)(00 → 10),

since

(0, 0, x3)
3−→ (0, 0, 0)

1−→ (1, 0, 0)
1−→ (0, 0, 0)

2−→ (0, 0, 0)
1−→ (1, 0, 0)

2−→ (1, 0, 0)

(0, 1, x3)
3−→ (0, 1, 0)

1−→ (1, 1, 0)
1−→ (1, 1, 0)

2−→ (1, 1, 0)
1−→ (1, 1, 0)

2−→ (1, 1, 0)

(1, 0, x3)
3−→ (1, 0, 1)

1−→ (0, 0, 1)
1−→ (0, 0, 1)

2−→ (0, 1, 1)
1−→ (1, 1, 1)

2−→ (1, 0, 1)

(1, 1, x3)
3−→ (1, 1, 1)

1−→ (0, 1, 1)
1−→ (1, 1, 1)

2−→ (1, 0, 1)
1−→ (0, 0, 1)

2−→ (0, 1, 1)

We now solve all the other cases.

Lemma 4. If n ≥ 3 and q = 2 or if n ≥ 2 and q ≥ 3, then there exists an

n-complete transformation of size n+ 1.

Proof. If n ≥ 3 and q = 2 or if n ≥ 2 and q ≥ 3, by [11], there exists a set of n

(permutation) instructions g(1), . . . , g(n) generating Sym(An) such that there

exists z ∈ An fixed by g(1) but not by g(2). We then denote the assignment

instruction (x)d = (x)D(1) = (z → z + e1), where e1 is the unit vector

(1, 0, . . . , 0). We also denote the product of the orders of g(v) for v ∈ [n] as

Ω; by definition, g(v)
Ω
= id for all v. Since d is idempotent, we have dΩ = d.

Finally, we denote an element of An+1 as (x, α) where x ∈ An and α ∈ A.

15

We define f as follows.

(x, α)f1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(x)g1 if α = 0

(x)d1 if α = 1

x1 otherwise,

(x, α)fv = (x)gv 2 ≤ v ≤ n

(x, α)fn+1 = δ ((x, α), (z, 0)) ,

where δ(s, t) is the Kronecker delta function.

This time, the initialisation step brings α to 0. For all (x, α),

(x, α)F (n+1,2,n+1,n+1,(2)Ω−1) = (x, 0).

Indeed, for any α ∈ A, any β ∈ A \ {0}, and any x
= z we have

(z, 0)
n+1−−→ (z, 1)

2−→ (g(2)(z), 1)
(n+1)2−−−−→ (g(2)(z), 0)

(2)Ω−1

−−−−→ (z, 0)

(z, β)
n+1−−→ (z, 0)

2−→ (g(2)(z), 0)
(n+1)2−−−−→ (g(2)(z), 0)

(2)Ω−1

−−−−→ (z, 0)

(x, α)
n+1−−→ (x, 0)

2−→ (g(2)(x), 0)
(n+1)2−−−−→ (g(2)(x), 0)

(2)Ω−1

−−−−→ (x, 0).

Thus, we focus on the set Ã = {(x, 0) : x ∈ An} and we prove that f

can simulate the generating set {g(1), . . . , g(n), d} of Tran(An) acting on Ã.

Firstly, (x, 0)F (v) = ((x)g(v), 0) for all v ∈ [n]. Secondly, (x, 0)F (n+1,(1)Ω,n+1) =

((x)d, 0), since for every y
= z we have

(z, 0)
n+1−−→ (z, 1)

(1)Ω−−→ (z + e1, 1)
n+1−−→ (z + e1, 0)

(y, 0)
n+1−−→ (y, 0)

(1)Ω−−→ (y, 0)
n+1−−→ (y, 0).

16

2.2. Time of n-complete transformations of size n+ 2

We now exhibit an n-complete transformation of size n + 2 and time at

most 6�log2(q)�(q−1)nqn−1+O(qn). Before this, we need the following result

of memoryless computation.

Theorem 3. Let |A| = q and n ≥ 2. Then Tran(An) is generated by a set of

instructions Y , containing at most q instructions per register, such that any

transformation of An has procedural complexity with respect to Y of at most

3�log2(q)�(q − 1)nqn−1 +O(qn).

Proof. We consider the following instructions:

T (1) : x1 ← x1 + δ(x, e0)− δ(x, e1),

A(2) : x2 ← x2 + δ(x, e0),

I(1) : x1 ← x1 + 1− δ(x, e0) + δ(x, (q − 1)e1),

I(i) : xi ← xi + 1−
∑
λ∈A

δ(x, λei), (for 2 ≤ i ≤ n),

where δ(x, y) denotes the Kronecker delta function, and λei is the state with

λ ∈ A in its i-th register and zero elsewhere. In order to simplify notation, we

shall identify x ∈ An with its lexicographic index
∑n

i=1 xiq
i−1 ∈ {0, 1, . . . , qn−

1}. With this, we may write A(2) = (0 → q) and T (1) = (0, 1). Observe that

the instructions I(i) are permutations with the following cyclic structure: I(1)

consists of one cycle of length q − 1 and qn−1 − 1 cycles of length q, while,

for 2 ≤ i ≤ n, the instruction I(i) consist of just qn−1 − 1 cycles of length q.

Let ρ := �log2(q)� and define

Y :=
{
T (1), A(2), (I(i))2

j

: 1 ≤ i ≤ n, 0 ≤ j ≤ ρ− 1
}
.

17

We shall follow several steps in order to prove that Y is the required gener-

ating set.

(i) Any transposition T (k) := (0, k), with k ∈ An, has procedural com-

plexity with respect to Y of at most ρw(k) + O(1), where w(k) is the

number of non-zero coordinates of k.

Proof. First, we determine the procedural complexity of (I(i))λ, for

1 ≤ i ≤ n and 1 ≤ λ ≤ q − 1 with respect to Y . Using the binary

expansion λ =
∑ρ

j=1 λj2
j−1, λj ∈ {0, 1}, it is clear that

(I(i))λ = (I(i))λ1 ◦ ((I(i))2)λ1 ◦ · · · ◦ ((I(i))2ρ−1

)λρ .

Thus, we need at most ρ instructions from Y to compute (I(i))λ.

Fix k ∈ An, and suppose that 1 ≤ j1, . . . , jw ≤ n, with w = w(k), are

the non-zero coordinates of k. If k is not a multiple of q (i.e. j1 = 1),

we have

T (k) := (0, k) =
(
T (1)

)(I(1))k1−1(I(j2))
kj2 ...(I(jw))kjw

,

while if k is a multiple of q, we have

T (k) =
(
T (1)

)(I(j1))kj1 ...(I(jw))kjw (I(1))q−1

.

The result follows because
(
(I(i))λ

)−1
= (I(i))q−λ, for any 1 ≤ λ ≤ q−1

and 2 ≤ i ≤ n.

(ii) Any permutation in Tran(An) has procedural complexity with respect

to Y of at most 2ρ(q − 1)nqn−1 +O(qn).

18

Proof. Note that any transposition (a, b) may be expressed as

(a, b) = T (b)T (a)T (b).

Since any permutation with r non-fixed points may be expressed as

at most r− 1 transpositions, cyclic permutations of length qn have the

maximum procedural complexity. In particular, if π = (a1, a2, . . . , aqn) ∈
Sym(An), then

π = (a1, a2) . . . (aqn−1, aqn)

= (T (a2)T (a1)T (a2))(T (a2)T (a3)T (a2)) . . .

(T (aqn−1)T (aqn−2)T (aqn−1))(T (aqn−1)T (aqn)T (aqn−1))

= (T (a2)T (a1)T (a3)T (a2)) . . . (T (aqn−1)T (aqn−2)T (aqn)T (aqn−1)).

In this decomposition, T (a1) and T (aqn) appear once, while every other

transposition T (as), s
∈ {1, qn}, appears twice. By step (i), T (as) re-

quires at most ρw(as) +O(1) instructions from Y . Since

∑
k∈An

w(k) =
n∑

i=1

i(q − 1)i
(
n

i

)
= (q − 1)nqn−1 (1)

it takes at most

2

qn−1∑
s=2

(ρw(as) +O(1)) ≤ 2ρ(q − 1)nqn−1 +O(qn)

instructions from Y to compute π.

(iii) Any transformation in Tran(An) has procedural complexity with re-

spect to Y of at most 3ρ(q − 1)nqn−1 +O(qn).

19

Proof. Let g be any transformation of rank r < qn. Consider the par-

tition ker(g) := {P1, ..., Pr} of An induced by the following equivalence

relation: a ∼g b if and only if (a)g = (b)g. (This equivalence relation

is called the kernel of g). For 1 ≤ i ≤ r, let Pi = {pi,1, . . . , pi,ni
}.

Depending on two cases, we shall find a transformation h such that

ker(g) = ker(h), which implies that g = h ◦ π for some π ∈ Sym(An).

Case 1: States 0 and q are in a same set of ker(g). Without loss,

assume p1,1 = 0 and p1,2 = q. Then, define

h := A(2)T (p1,3)A(2) . . . T (p1,n1)A(2)(q, p2,1)T
(p2,2)A(2) . . . T (pr,nr)A(2).

Case 2: States 0 and q are in distinct sets of ker(g). Without loss,

assume p1,1 = 0 and pr,nr = q. Then, define

h := (0, q)T (p1,2)A(2) . . . T (p1,n1)A(2)(q, p2,1)T
(p2,2)A(2) . . .

T (pr,nr−1)A(2)(pj,2, q),

where j is the smallest index for which pj,2 exists. (Clearly, such

an index j always exists because g does not have full rank.)

Each transposition in h takes at most ρw(pi,j) +O(1) instructions and

each assignment takes O(1) instructions. The result follows by Equa-

tion (1) and Step (ii).

Theorem 4. There exists an n-complete transformation of size n + 2 and

time at most

6�log2(q)�(q − 1)nqn−1 +O(qn).

20

Proof. Let ρ := �log2(q)�. We consider the generating set of instructions Y

given in the proof of Theorem 3. For each instruction in Y , we denote the

corresponding nontrivial coordinate function in lowercase, e.g., the nontrivial

coordinate function of (I(1))2 is (x)i21 = x1 + 2− 2δ(x, e0) + 2δ(x, (q − 1)e1).

Consider the transformation f ∈ Tran (An+2) with coordinate functions

21

defined as follows (with a = n+ 1 and b = n+ 2):

(x)f1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x[n])i1 if xa − xb = 0

(x[n])i
2
1 if xa − xb = 1

...
...

(x[n])i
2ρ−1

1 if xa − xb = ρ− 1

(x[n])t1 if xa − xb = ρ,

(x)f2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x[n])i2 if xa − xb = 0

(x[n])i
2
2 if xa − xb = 1

...
...

(x[n])i
2ρ−1

2 if xa − xb = ρ− 1

(x[n])a2 if xa − xb = ρ,

(x)fj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x[n])ij if xa − xb = 0

(x[n])i
2
j if xa − xb = 1

...
...

(x[n])i
2ρ−1

j if xa − xb = ρ− 1

xj if xa − xb = ρ,

(3 ≤ j ≤ n),

(x)fa = xb,

(x)fb = xb + 1.
22

The main idea behind the definition of f is that the additional registers a

and b work as a switch to decide which instruction the program shall use.

Let F (i) ∈ Tran(An+2) be the instruction induced by the coordinate func-

tion fi. For any g ∈ An, we may now find h ∈ Sf such that pr[n]◦g = h◦pr[n].
Suppose that g = g(1) ◦ g(2) ◦ · · · ◦ g(�), where g(k) ∈ Y . By grouping together

the powers of I(j), we may assume that g(k) ∈ Y ∪ {(I(j))λ : 1 ≤ λ ≤ q − 1},
so � ≤ 3(q− 1)nqn−1+O(qn). Denote λ =

∑ρ
i=1 λi2

i−1, with λi ∈ {0, 1}. Let
h(0) = F (a), and for each 1 ≤ k ≤ �, let

h(k) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(F (b))ρF (1)F (a) if g(k) = T (1)

(F (b))ρF (2)F (a) if g(k) = A(2)

(F (j))λ1F (b)(F (j))λ2 . . . F (b)(F (j))λρF (a) if g(k) = (I(j))λ.

Therefore, we may take h = h(0)◦h(1)◦· · ·◦h(�), which uses at most 2ρ� of the

instructions F (1), . . . , F (n), F (a), F (b). This shows that f is an n-complete

transformation of size n+ 2 and time 6ρ(q − 1)nqn−1 +O(qn).

Remark 1. For q = 3 or q = 5, there is a simpler n-complete transformation

of size n + 2 whose time is strictly less than the time of the n-complete

23

transformation f constructed in the proof of Theorem 4. Defining

(x)f̃1 =

⎧⎪⎨
⎪⎩
(x[n])i1 if xa = xb

(x[n])t1 if xa
= xb,

(x)f̃2 =

⎧⎪⎨
⎪⎩
(x[n])i2 if xa = xb

(x[n])a2 if xa
= xb,

(x)f̃j = (x[n])ij, (3 ≤ j ≤ n)

(x)f̃a = xb,

(x)f̃b =

⎧⎪⎨
⎪⎩
xb if xa
= xb

xb + 1 if xa = xb,

we obtain an n-complete transformation f̃ of size n + 2 and time tf̃ (n) =

3(q − 1)nqn +O(qn).

Observe that, for q = 7 or q ≥ 9, we have tf̃ (n) > tf (n), while, for

q ∈ {2, 4, 6, 8}, tf̃ (n) = tf (n). However, for q = 3 or q = 5, we have

tf̃ (n) < tf (n); Table 1 compares explicitly the times of f̃ and f .

2.3. Complete transformations with minimal time

We now turn to the problem of minimising the time of an n-complete

transformation.

24

tf̃ (n) tf (n)

q = 3 6n3n +O(3n) 8n3n +O(3n)

q = 5 60n5n−1 +O(5n) 72n5n−1 +O(5n)

Table 1: Times of f̃ and f .

Theorem 5. For all n ≥ 1, there is an n-complete transformation of time

2n.

Proof. Let Q = qq
n
and enumerate the functions An → A as φ1, . . . , φQ. We

let m = n+Qn and [m] = [n]∪ ([n]× [Q]). Let f ∈ Tran(Am) be defined as

(x)fv =

Q∑
s=1

xvs v ∈ [n]

(x)fvs = (x[n])φ
s −

∑
t �=s

xvt vs ∈ [n]× [Q].

Then let g = (φi1 , . . . , φin) ∈ Tran(An). It can be simulated as follows.

Step 1. For v = 1 to n, compute the value of φiv : F (viv).

Step 2. For v = 1 to n, copy that value into xv: F
(v).

In [2] it is shown that for any n there exists h ∈ Tran(An) whose proce-

dural complexity (with respect to Ī(An)) is at least �4n/3�, if q ≥ 2, and

at least �3n/2 − logq(n)�, if q ≥ 4. It is clear that the time of simulation

tf (n) of any n-complete transformation f is at least the maximal procedu-

ral complexity of any transformation of Tran(An). This gives us some lower

25

1 2 . . . n

[n]: First n registers

11 . . . 1s

(x[n])φ
s −∑

t x(t,1)

. . . 1Q

21 . . . 2s

(x[n])φ
s −∑

t x(t,2)

. . . 2Q

n1 . . . ns

(x[n])φ
s −∑

t x(t,n)

. . . nQ

Figure 2: The n-complete transformation of Theorem 5

bounds for the time of any n-complete transformation. In [2] it is also proved

that any transformation h ∈ Tran(An) can be simulated by a transformation

f ∈ Tran(Am) for some m ≥ n with a time �3n/2 + logq(n)�. However, it is
clear that the time to simulate all transformations of An is larger than the

time to simulate a unique transformation of An.

Conjecture 1. The time of any n-complete transformation is at least 2n,

for any n and q.

3. Sequential simulation of transformations

Definition 5 (Sequential simulation). Let m ≥ n ≥ 1. We say that

f : Am → Am sequentially simulates g(1), . . . , g(�) ∈ Tran(An) if there ex-

ist h(1), . . . , h(�) ∈ Sf ⊆ Tran(Am) such that, for any 1 ≤ i ≤ �,

pr[n] ◦ g(i) = h(1) ◦ · · · ◦ h(i) ◦ pr[n].

26

The sequential time of simulation, denoted by stf (g
(1), . . . , g(�)), is the pro-

cedural complexity of h(1) ◦ · · · ◦ h(�) with respect to {F (1), . . . , F (m)}.

Definition 6 (Sequentially n-complete). A transformation of Am is called

sequentially n-complete if it may sequentially simulate any finite sequence in

Tran(An).

Define the maximal and minimal sequential times of f , denoted by stmax
f

and stmin
f , respectively, as follows:

stmax
f = max

{
stf (g

(1), . . . , g(q
nqn)) : g(i)
= g(j) for i
= j

}
,

stmin
f = min

{
stf (g

(1), . . . , g(q
nqn)) : g(i)
= g(j) for i
= j

}
.

As the sequences considered in the above definitions must include each trans-

formation in Tran(An) exactly once, the relevant aspect when calculating

maximal and minimal sequential times is the order in which the transforma-

tions of An appear in the sequence.

Example 3. The n-complete transformation of Example 2 is in fact a se-

quentially n-complete transformation. Let g1 = ps1 , . . . , g� = ps� , then this

sequence can be simulated as follows.

Step 1. Make a copy of the first n registers: F (1′,...,n′).

Step 2. Turn all switches off: F (a1,...,aT).

Step 3. For j from 1 to � do:

Step 3.1. Turn the switch on: F (bsj).

Step 3.2. Compute psj : F (1,...,n).

27

Step 3.3. Turn the switch off: F (asj).

The maximal sequential time of f then satisfies

stmax
f ≤ (n+ 3 + o(1))T .

By considering a sequence where gj−1 and gj only differ by one coordinate

function (i.e. a Gray code, which we shall use later on), Step 3.2 can be sim-

plified by updating only the register corresponding to the differing coordinate

function. The minimal sequential time of f then satisfies

stmin
f ≤ (4 + o(1))T .

3.1. Sequentially complete transformations of minimal size

Theorem 6. The size of a sequentially n-complete transformation is at least

2n.

Proof. Let f be a sequentially n-complete transformation of size m < 2n.

Consider the sequence g1, g2 of transformations in Tran(An), where (x)g1 = 0

and (x)g2 = x for all x ∈ An. Let h1 simulate g1 and h2 ◦h1 simulate g2. We

have

rk(h1) ≥ rk(h2 ◦ h1) ≥ rk(g2) = qn.

However, since h1 simulates g1, we have

rk(h1) ≤ qm−nrk(h1
[n]) < qnrk(h1

[n]) = qnrk(g1) = qn,

which is the desired contradiction.

The exact minimum size of a sequentially n-complete transformation is

an open problem. Instead, we study the time of a sequentially n-complete

transformation of size 2n+ 2 or 2n+ 3.

28

Theorem 7. Let |A| = q ≥ 2. Then, there exists a sequentially n-complete

transformation f̂ of size m and stmax
f̂

(n) as given in Table 2.

m stmax
f̂

(n)

q = 2 2n+ 3 3n2n2
n+n +O(2n2

n+n)

q = 3 or q = 5 2n+ 2 6(q − 1)nqnq
n+n−1 +O(qnq

n+n)

q = 4 or q ≥ 6 2n+ 2 6�log2(q)�(q − 1)nqnq
n+n−1 +O(qnq

n+n)

Table 2: Sequentially n-complete transformations.

Proof. Assume first that q = 4 or q ≥ 6, and let ρ := �log2 q�. Consider

the n-complete transformation f of size n + 2 constructed in the proof of

Theorem 4. Now, define the coordinate functions of f̂ by

(x)f̂i =

⎧⎪⎨
⎪⎩
xi′ if xb − xa = ρ+ 1

(x[n+2])fi otherwise,

(1 ≤ i ≤ n),

(x)f̂a = xb,

(x)f̂b = xa + 1,

(x)f̂[n]′ = x[n].

Intuitively, registers in [n]′ maintain a copy of the original configuration of

registers in [n]; again, registers a = n + 1 and b = n + 2 indicate which

29

coordinate function to use but now the position ρ + 1 indicates that fi,

1 ≤ i ≤ n, must copy back the original values of the input from registers in

[n]′.

Let F (i) and F̂ (i) be the instructions induced by the coordinate func-

tions fi and f̂i, respectively. Suppose that we want to sequentially simulate

g(1), . . . , g(�) ∈ Tran(An). Since f is n-complete, there exist h(1), . . . , h(�) ∈
Sf = 〈F (1), . . . , F (n+2)〉 such that pr[n] ◦ g(i) = h(i) ◦ pr[n]. For 1 ≤ i ≤ �,

define ĥ(i) ∈ Sf̂ by replacing every instruction F (k) in h(i) by F̂ (k). Let

C := F̂ (1′,...,n′) and B := (F̂ (b))ρ+1(F̂ (1,...,n))F̂ (a).

Then, for every 1 ≤ i ≤ �, we have

pr[n] ◦ g(1) ◦ · · · ◦ g(i) = (F̂ (a)Cĥ(1))(Bĥ(2))(Bĥ(3)) . . . (Bĥ(i)) ◦ pr[n].

By Theorem 4, each ĥ(i) has procedural complexity of at most 6ρ(q −
1)nqn−1+O(qn). Hence, sequences of length � = qnq

n
have maximal sequential

time of 6ρ(q − 1)nqnq
n+n−1 +O(qnq

n+n).

For q = 3 or q = 5, let ρ := 1, and use the above construction of f̂ with

f̃ , as in Remark 1, instead of f .

The proof for q = 2 is very similar. The main difference is that, as the first

and second coordinate functions must choose among three possibilities (i1,

t1, or x1′ , and i2, a2, or x2′ , respectively), a switch consisting of two registers

does not suffice; however, a switch of three registers a, b, c is enough for our

purposes. More formally, we now define the transformation f̂ ∈ Tran(A2n+3)

30

by

(x)f̂i =

⎧⎪⎨
⎪⎩
xi′ if xb
= xc

(x[n+2])fi otherwise,

(1 ≤ i ≤ n),

(x)f̂a = xb,

(x)f̂b = xb + 1,

(x)f̂c = xb,

(x)f̂[n]′ = x[n].

Using a similar notation as above, define

C := F̂ (1′,...,n′) and B := F̂ (c,b)(F̂ (1,...,n))F̂ (b).

For 1 ≤ i ≤ �, define ĥ(i) ∈ Sf̂ by replacing every instruction F (k) in h(i) by

F̂ (k) for k ≤ n + 1 and by replacing every instruction F (b) in h(i) by F̂ (b,c).

Then, for every 1 ≤ i ≤ �, we have

pr[n] ◦ g(1) ◦ · · · ◦ g(i) = (F̂ (a)Cĥ(1))(Bĥ(2))(Bĥ(3)) . . . (Bĥ(i)) ◦ pr[n].

The time analysis is similar as before.

3.2. Sequentially complete transformations with minimal sequential times

Theorem 8. Let f be a sequentially n-complete transformation. Then,

qnq
n ≤ stmin

f . Conversely, there exists a sequentially n-complete transfor-

mation f such that stmin
f = (1 + o(1))qnq

n
.

31

Clearly, one always needs at least qnq
n
updates to compute any sequence

of length qnq
n
, so qnq

n ≤ stmin
f . In order to prove the upper bound in the

theorem, we need several preliminary results about Gray codes.

As usual, let |A| = q and n ≥ 2. An (n, q)-Gray code is an ordering

(a(0), . . . , a(q
n−1)) of the states in An such that two consecutive states differ

by only one coordinate: dH(a
(i−1 mod qn), a(i)) = 1 for all 0 ≤ i ≤ qn−1, where

dH is the Hamming distance. For any Gray code G = (a(0), . . . , a(q
n−1)), we

denote the sequence C(G) = (c(0), . . . , c(q
n−1)) ∈ [n]q

n
where c(i) ∈ [n] is the

coordinate in which a(i−1 mod qn) and a(i) differ. We also denote by S the

successor function of G, i.e. S ∈ Tran(An) and (a(i))S = a(i+1 mod qn).

We first give an example of how to achieve a minimum time of (2 +

o(1))T . We view Tran(An) as [Q]n and use an (n,Q)-Gray code to list the

functions in Tran(An). We thus denote Tran(An) = {g0, . . . , gT −1} so that

two consecutive functions gi−1 and gi only differ by the ci-th local function:

gici
= gi−1
ci

. Independently, we enumerate {0, . . . , T − 1} according to an

(nqn, q)-Gray code Ĝ with C(Ĝ) = (ĉ(0), . . . , ĉ(q
n−1)) and successor function

Ŝ. The transformation f is defined as follows. We let m = 2n + Q + 2 and

[m] = [n] ∪ [n]′ ∪ Σ ∪ {a, b}, and we identify xΣ = (xk1 , . . . , xknqn
) with its

32

index in the Gray code Ĝ. Then

(x)f[n] = (x[n]′)g
xΣ ,

(x)f[n]′ = x[n],

(x)fΣ =

⎧⎪⎨
⎪⎩
(xΣ)Ŝ if xa
= xb

0 if xa = xb,

(x)fa = xb,

(x)fb = xa + 1.

This is illustrated in Figure 3.

The sequence g0, . . . , gT −1 is then simulated as follows.

Step 1. Initialisation.

Step 1.1. Copy x[n] into [n]′: F (1′,...,n′).

Step 1.2. Turn the switch off and reset the counter: F (a,k1,...,knqn).

Step 1.3. Turn the switch on: F (b).

Step 2. For 0 ≤ i ≤ T − 1

Step 2.1. Compute gi: F (ĉ(i)).

Step 2.2. Increment the counter: F (k
ĉ(i)

).

33

1 2 ... n

[n]: First n registers

1′ 2′ ... n′

[n]′: Copy of [n]

Σ: counter

a

b

S: Switch

Figure 3: The sequentially n-complete transformation with minimal sequential time (2 +

o(1))T

We now turn to proving an upper bound of (1 + o(1))T . In the previous

example, we had to update the Gray code counter at each time step, thus T
times in total; the main improvement is to (almost) construct a Gray code

where we only need to update the counter o(T) times.

A run of length l forG is a sequence c(i), . . . , c(i+l−1) of consecutive distinct

elements of C(G). We say that G has r(G) runs if C(G) can be partitioned

into r(G) runs. For instance, the canonical (n, 2)-Gray code has 2n−1 runs.

For n = 2, we have

a(0) = 00, a(1) = 01, a(2) = 11, a(3) = 10,

c(0) = 1, c(1) = 2, c(2) = 1, c(3) = 2.

For n = 3, we have

34

a(0) = 000, a(1) = 001, a(2) = 011, a(3) = 010,

a(4) = 110, a(5) = 111, a(6) = 101, a(7) = 100,

c(0) = 1, c(1) = 3, c(2) = 2, c(3) = 3,

c(4) = 1, c(5) = 3, c(6) = 2, c(7) = 3.

Clearly, any Gray code has at least qn/n runs; we shall construct (n, q)-Gray

codes with o(qn) runs for even q.

Lemma 5. For any n a power of 2, there exists an (n, 2)-Gray code with

o(2n) runs.

Proof. We shall prove the result by induction on n. The code G2 is the

canonical Gray code. Suppose Gn = (a(0), . . . , a(2
n−1)) (or simply written, 0

up to 2n − 1), then G2n is given by

(
(0, 0), (0, 1), (1, 1), (1, 2), . . . , (2n − 1, 2n − 1), (2n − 1, 0),

(2n − 2, 0), (2n − 2, 1), . . . , (2n − 3, 2n − 1), (2n − 3, 0),

...

(2, 0), (2, 1), . . . , (1, 2n − 1), (1, 0)
)
.

There are 2n−1 rows, each containing 2n+1 elements. The code G4 is then

G4 =
(
0000, 0001, 0101, 0111, 1111, 1110, 1010, 1000,

1100, 1101, 1001, 1011, 0011, 0010, 0110, 0100
)
,

C(G4) = (2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 2, 3, 1, 4, 2, 3),

which can be partitioned into six runs (instead of eight for the canonical

code).

35

Let Ψ(n, d) denote the set of indices i such that the next occurrence of c(i)

appears at least d indices later. More formally, let Γn = (V,E) be the directed

graph on V = {0, . . . , 2n − 1} with arcs E = {(i, i+ 1 mod 2n − 1) : i ∈ V }
and let d(i, j) be the length of the path from i to j in Γn, then

Ψ(n, d) = {i : 0 < d(i, j) < d ⇒ c(j)
= c(i)}.

For any d, the Gray code Gn has at most

|Ψ(n, d)|/d+ 2(2n − |Ψ(n, d)|) + 1

runs. Indeed, split Ψ(n, d) into sequences s1, . . . , sm of consecutive indices,

where m ≤ 2n − |Ψ(n, d)| + 1. Each sequence st of length lt (1 ≤ t ≤
m) can be partitioned into �lt/d� ≤ lt/d + 1 runs, thus requiring at most

|Ψ(n, d)|/d + 2n − |Ψ(n, d)| + 1 runs to partition Ψ(n, d). Moreover, the

indices outside of Ψ(n, d) can be partitioned into singleton runs; altogether,

this yields |Ψ(n, d)|/d+ 2(2n − |Ψ(n, d)|) + 1 runs.

Our strategy is then to find a distance d such that d = ω(1) and 2n −
|Ψ(n, d)| = o(2n). We have |Ψ(n, 2)| = 2n for all n and by construction,

|Ψ(2n, 2d)| ≥ 2n|Ψ(n, d)| − 2nd,

since the only ones that do not follow the simply doubling pattern are the

ones at the end of every row. Denoting the largest power of two less than or

36

equal to log2 n as l, we then obtain

|Ψ(n, l)| ≥ 2n/2|Ψ(n/2, l/2)| − 2n/2l

≥ 23n/4|Ψ(n/4, l/4)| − l(23n/4−1 + 2n/2)

...

≥ 2n−2n/l|Ψ(2n/l, 2)| − l(2n−2n/l−l + · · ·+ 2n/2)

= 2n − o(2n).

Lemma 6. For any n, there exists an (n, 2)-Gray code with o(2n) runs.

Proof. This is obtained by the usual “product” construction of Gray codes.

Let m be the largest power of two less than or equal to n. Denote the (m, 2)-

Gray code from Lemma 5 by (0, 1, . . . , 2m − 1) and an (n−m, 2)-Gray code

by (0, 1, . . . , 2n−m − 1). Now, construct an (n, 2)-Gray code as follows:

(
(0, 0), . . . , (0, 2m − 1),

(1, 0), . . . , (1, 2m − 1),

...

(2n−m − 1, 0), . . . , (2n−m − 1, 2m − 1)
)
.

This has at most 2n−m · o(2m) = o(2n) runs.

Lemma 7. For any even q and any n, there exists an (n, q)-Gray code with

o(qn) runs.

Proof. Here again, we use a “product” construction, viewing each element of

[q]n(= An) as an element of [p]n × [2]n, where p = q
2
. We then combine any

37

(n, p)-Gray code with the (n, 2)-Gray code from Lemma 6 as follows:

(
(0, 0), . . . , (0, 2n − 1),

(1, 0), . . . , (1, 2n − 1),

...

(pn − 1, 0), . . . , (pn − 1, 2n − 1)
)
.

Clearly, this has at most pn · o(2n) = o(qn) runs.

For odd q, we do not use a Gray code. Instead, an (n, q)-pseudo-Gray

code of length L is a sequence P = (p(0), . . . , p(L−1)) of elements of [q]n such

that every element of [q]n appears in the sequence and any two consecutive

elements of the sequence only differ by one coordinate. (A pseudo-Gray code

is a Gray code if every element appears exactly once.) Runs are defined for

pseudo-Gray codes in the natural way and the number of runs is still denoted

r(P); the redundancy R(P) of a pseudo-Gray code is R(P) = r(P) +L− qn.

Lemma 8. For any q and any n, there exists an (n, qq
n
)-pseudo-Gray code

with redundancy o(qnq
n
).

Proof. If q is even, we use the Gray code from Lemma 7. Suppose that q is

odd. Then Q := qq
n
is odd, so, again by Lemma 7, there is an (n,Q−1)-Gray

code G with o(Qn) runs. We shall construct an (n,Q)-pseudo-Gray code by

using G first, and then enumerating all the remaining states in [Q]n. It takes

at most n steps to go from of these remaining states to another, and there

are Qn − (Q− 1)n of them. Thus, the redundancy of this pseudo-Gray code

38

is at most

2n(Qn − (Q− 1)n) + o(Qn) = 2n(qnq
n − (qq

n − 1)n) + o(Qn)

≤ 2n · nq(n−1)qn + o(Qn) = o(Qn).

Finally, we may prove Theorem 8.

Proof of Theorem 8. We explicitly construct the sequentially n-complete trans-

formation f of the statement of the theorem. Let Q = qq
n
and P = (p(0) =

id, . . . , p(T −1)) be the (n,Q)-pseudo Gray code of Lemma 8. We use the

notation C(P) = (c(0), . . . , c(T −1)), which is partitioned into r = r(P) runs

R1 = (c(0), . . . , c(ρ1−1)), . . . , Rr = (c(ρr−1), . . . , c(T −1)) and

τ : [r]× [n] → {0, . . . , T − 1}

(s, i)τ =

⎧⎪⎨
⎪⎩
λ if ∃λ : i = cλ ∈ Rs

0 if i /∈ Rs.

Let Ḡ = (ā(0), . . . , ā(q
σ−1)) be a (σ, q)-Gray code, where σ = �logq r�+ 1.

Denoting Σ = (k1, . . . , kσ), again we identify xΣ with its index in Ḡ. We also

use C(Ḡ) = (c̄0, . . . , c̄qσ−1) and the successor function for this code is S̄.

Letm = 2n+σ+2 and [m] = [n]∪[n]′∪Σ∪{a, b}. Then the transformation

39

f is defined as follows:

(x)fi = (x[n]′)p
((xΣ, i)τ)
i , (1 ≤ i ≤ n),

(x)f[n]′ = x[n],

(x)fΣ =

⎧⎪⎨
⎪⎩
(xΣ)S̄ if xa = xb

1 if xa
= xb,

(1 ≤ i ≤ σ),

(x)fa = xb,

(x)fb = xb + 1.

Intuitively, registers in [n]′ maintain a copy of the original configuration of

registers in [n]; registers in Σ form a counter indicating the run number in

the pseudo-Gray code P ; registers a and b form a reset switch for the run

counter. This transformation is illustrated in Figure 4.

The program computing P = (p(0) = id, . . . , p(T −1)) in order goes as

follows.

Step 1. Make a copy of the first n registers: F (1′,...,n′).

Step 2. Reset switch on: F (a).

Step 3. Reset run counter: F (k1,...,kσ).

Step 4. Reset switch off: F (b).

40

1 2 ... n

[n]: First n registers

1′ 2′ ... n′

[n]′: Copy of [n]

Σ: counter

a

b

S: switch

d1 d2 ... dk̂

D: Data bits

p1 p2 ... pr̂

P : Parity bits

Figure 4: The sequentially n-complete transformation with time (2 + o(1))T

Step 5. For s from 1 to r do:

Step 5.1. Compute p(ρ(s−1)) to p(ρs−1): F

(
c
(ρ(s−1)),...,c(ρs−1)

)
;

Step 5.2. Increment the run counter: F (kc̄s+1).

Total time:

n+ 1 + σ + 1 +
r∑

s=1

(ρs − ρs−1 + 1) = T + r +O(log r) = T + o(T).

We finally prove that this transformation is sequentially complete. Let

p(i1), . . . , p(i�) ∈ Tran(An) be a sequence of transformations. It is clear that

applying Step 1 and then repeating � times Steps 2 to 5 will simulate � times

the full sequence p(0), . . . , p(T −1). As such, p(i1) is simulated during the first

iteration, p(i2) during the next, and so on until p(i�).

Theorem 9. Let f be a sequentially n-complete transformation. Then,

nqnq
n ≤ stmax

f . Conversely, there exists a sequentially n-complete transfor-

mation f such that stmax
f = (n+ 1 + o(1))qnq

n
.

41

Proof. Viewing any coordinate function An → A as an element in ZQ, with

Q = qq
n ≥ 4, we give an ordering of Tran(An) ∼= Z

n
Q such that any two

consecutive transformations differ in all n coordinate functions:

(
(0, . . . , 0), (1, . . . , 1), . . . , (Q− 1, . . . , Q− 1),

(1, 0, . . . , 0), (2, 1, . . . , 1), . . . , (0, Q− 1, . . . , Q− 1),

...

(0, 1, . . . , 0), (1, 2, . . . , 1), . . . , (Q− 1, 0, . . . , Q− 1),

...

(Q− 1, . . . , Q− 1, 0), (0, . . . , 0, 1), . . . , (Q− 2, . . . , Q− 2, Q− 1)
)
.

Clearly, the time of simulation of such a sequence of transformations is at

least nqnq
n
, so nqnq

n ≤ stmax
f .

The construction of f is based on Hamming codes, and describes a whole

sequence of transformation of An at once. Firstly, for k̂ := QnQ, r̂ =

�log2 k̂� + 1 and n̂ := k̂ + r̂, consider the (n̂, k̂, 3)-shortened Hamming code

C in systematic form. Let M ∈ GF(2)k̂×n̂ be its generator matrix and, for

H ⊆ [n̂], let MH be the matrix formed with the H-th columns of M . This is

42

a binary code, so in order to use it, let

odd : A → GF(2)

(a)odd =

⎧⎪⎨
⎪⎩
1 if a ≡ 1 mod 2

0 if a ≡ 0 mod 2,

err : A → A

(a)err =

⎧⎪⎨
⎪⎩
a+ 1 if a < q − 1

a− 1 if a = q − 1.

By applying them component-wise, we extend these functions to odd : Ak →
GF(2)k and err : Ak → Ak, for any k ≥ 1. The shortened Hamming code

can correct one error, thus let

dec : GF(2)n̂ → {0, . . . , n̂}

(v)dec =

⎧⎪⎨
⎪⎩
j if v = c+ ej for some c ∈ C

0 otherwise.

Denote (Tran(An))Q = {Γ(1), . . . ,Γ(k̂)}, where Γ(j) = (g(j;0), . . . , g(j;Q−1)),

and r = �(�log2 k̂�+1)/ρ�. Let m := 2n+ k̂+ r̂+qn+2 and [m] = [n]∪ [n]′∪
D ∪ P ∪ Σ ∪ {a, b}, where D = (d1, . . . , dk̂) are the indices corresponding to

the data bits and P = (p1, . . . , pr̂) correspond to the parity bits instead, and

where Σ = (k1, . . . , kqn). Again, we identify xΣ with its index in the (qn, q)-

Gray code G = (a(0), . . . , a(Q−1)), and let C(G) = (c(0), . . . c(Q−1)). The index

xΣ shall work as a counter to decide which transformation will be simulated.

For x ∈ Am, define (x)τ := (xD∪P)odd dec. The sequentially n-complete

43

transformation f is given as follows:

(x)fi =

⎧⎪⎨
⎪⎩
xi, if (x)τ > k̂,

(x[n]′)g
((x)τ ; xΣ)
i , otherwise,

(1 ≤ i ≤ n),

(x)f[n]′ = x[n],

(x)fdi = (xdi)err, (1 ≤ i ≤ k̂),

(x)fP = ((xD) odd)MP ,

(x)fΣ =

⎧⎪⎨
⎪⎩
(xΣ)S if xa = xb,

0 if xa
= xb,

(x)fa = xb,

(x)fb = xb + 1.

Let λ ≥ 1 and Λ = Qλ. The sequence

g(i1;0), . . . , g(i1;Q−1), . . . , g(iλ;0), . . . , g(iλ;Q−1)

of length Λ is simulated as follows:

Step 1. Make a copy of the first n registers: F (1′,...,n′).

Step 2. Encode xD into a codeword of C: F (p1,...,pr̂).

44

Step 3. Reset the counter xΣ: F
(a) ◦ F (b) ◦ F (k1,...,kqn) ◦ F (a).

Step 4. For μ from 1 to λ do:

Step 4.1. Add an error to Γ(iμ) = (g(iμ;0), . . . , g(iμ;Q−1)): F (dμ).

Step 4.2. For σ from 0 to Q− 1 do:

Step 4.2.1. Compute g(iμ;σ): F (1,...,n).

Step 4.2.2. Increment the counter Σ according to the Gray code:

F (k
c(σ+1)).

Step 4.3. Remove the error: F (dμ).

For Λ = T , the time to simulate this sequence is then given by

n+ r̂ + (qn + 3) +Qn−1(Q(n+ 1) + 2) = (n+ 1 + o(1))T .

Note that the sequentially n-complete transformation f̂ of size 2n+2 (or

2n + 3 when q = 2) given in Theorem 7 does not have a very high sequen-

tial time compared with sequentially n-complete transformations of minimal

sequential time; indeed, we may see that stmax
f̂

is equal O(stmax
f log stmax

f),

with f as in Theorem 9.

4. Simulation of transformations in parallel

So far, we have looked at sequential updates (i.e. one register at a time).

This is a strong constraint for MC: if we were allowed to update all registers at

once, then any function could be computed in only one time step. However, in

our model of complete simulation, this is actually a strength and a necessity.

We extend our framework to consider the following type of simulations.

45

Definition 7 (Parallel simulation). Let m ≥ n ≥ 1. We say that f : Am →
Am simulates in parallel g : An → An if there exists h ∈ 〈f〉 such that

pr[n] ◦ g = h ◦ pr[n].

We also consider the slightest form of asynchronism in sequential simula-

tions. For f ∈ Am → Am, define F (−m) : Am → Am by

(x)F (−m) := ((x)f1, (x)f2, . . . , (x)fm−1, xm) .

Definition 8 (Quasi-parallel sequential simulation). Let m ≥ n ≥ 1. We

say that f : Am → Am sequentially simulates in quasi-parallel g(1), . . . , g(�) ∈
Tran(An) if there exist h(1), . . . , h(�) ∈ 〈F (−m), F (m)〉 such that, for all 1 ≤
i ≤ �,

pr[n] ◦ g(i) = h(1) ◦ · · · ◦ h(i) ◦ pr[n],

and the instruction F (m) appears at most once in the program h(1) ◦ · · · ◦h(�).

Say that f : Am → Am is a quasi-parallel n-complete transformation if it

may sequentially simulate in quasi-parallel any finite sequence in Tran(An).

Theorem 10. For any m ≥ n ≥ 1, there is no transformation f : Am → Am

that may simulate in parallel every transformation in Tran(An). However,

for any n ≥ 1, there exists a quasi-parallel n-complete transformation.

Proof. Suppose that f : Am → Am may simulate in parallel every transforma-

tion in Tran(An). For a, b ∈ An, a
= b, consider the constant transformations

g(a), g(b) ∈ Tran(An) defined by (x)g(a) = a and (x)g(b) = b, for all x ∈ An.

Then, by definition of parallel simulation, there exist integers ka < kb such

that, for all x ∈ Am,

(x)fka ◦ pr[n] = (x)pr[n] ◦ g(a) = a and (x)fkb ◦ pr[n] = (x)pr[n] ◦ g(b) = b.

46

But now we obtain a contradiction:

b = (x)fkb ◦ pr[n] =
(
(x)fkb−ka

)
fka ◦ pr[n] = a.

Denote Tran(An) = {p2, . . . , pT +1 = id}; moreover, let pc = id for all

c /∈ {2, . . . , T +1}. Let m = (T +2)n+�logq(T +1)�+2 and let us decompose

[m] as [n] ∪ [n]0 ∪ · · · ∪ [n]T ∪ C ∪ {a,m}; moreover we let [n]−1 = [n] and

we denote the elements of [n]j as (j, 1), . . . , (j, n) for all j. Now we shall

construct a quasi-parallel n-complete transformation f . The registers [n]0 to

[n]T will hold successive copies of x[n]; the registers in C are a counter for

Tran(An), as such we identify xC with its lexicographic index c. Define f by:

(x)f[n] = (x[n]c−1)p
c+1,

(x)f[n]j = x[n]j−1
, 0 ≤ j ≤ T ,

(x)fC =

⎧⎪⎨
⎪⎩
c+ 1 mod T + 2 if xm = xa

2 if xm
= xa,

(x)fa = xm,

(x)fm = xa + 1.

We prove that f is a quasi-parallel n-complete transformation by giving a

program simulating the sequence p1, . . . , pT +1 repeated l times for any l ≥ 1.

47

Step 1. Do F (−m). This copies x[n] into x[n]0 and turns the switch off: xa =

xm.

Step 2. Do F (m). This turns the switch on: xm
= xa.

Step 3. Do F (−m). This resets the counter to c = 2, and turns the switch

off: xa = xm. Note that the original contents of the first n registers are

now contained in x[n]1 .

Step 4. Do
(
F (−m)

)T
. At each iteration, this increases the counter c =

(c+1) mod T +2, and so it computes the whole sequence p2, . . . , pT +1.

Note that the original value of x[n] is back in x[n].

Step 5. Do
(
F (−m)

)(l−1)(T +2)
in order to compute l − 1 iterations of the

sequence p1, . . . , pT +1.

Now, as in the proof of Theorem 8, in order to simulate an arbitrary

sequence pi1 , . . . , pil ∈ Tran(An), we use the program above to simulate l

times the full sequence p2, . . . , pT +1.

5. Conclusions and future work

In this paper, we studied n-complete automata networks over an alphabet

A. These are transformations f : Am → Am which can simulate any trans-

formation of An by updating the registers using the coordinate functions of

f . We showed that there is no n-complete transformation of size n, but we

can always construct one of size n+1. We constructed a n-complete transfor-

mation which simulates any transformation with a maximal time of 2n, and

conjectured that this is the optimal time. We also studied transformations

48

1 2 ... n

[n]: First n registers

10 20 ... n0

[n]0

11 21 ... n1

[n]1

1T 2T ... nT

[n]T : Ultimate copy of [n]

...
...

...

C: counter

a

m

S: Switch

Figure 5: The quasi-parallel n-complete transformation of Theorem 10

49

of Am which can sequentially simulate every sequence of transformations of

An. We proved that the optimal time for such a transformation is between

s := qnq
n
and cs, where c is a constant larger than 1, and that its optimal

size is at least 2n. Finally, we established that there is no complete transfor-

mation updating all registers in parallel, but there exists one that updates

all but one register in parallel.

A natural generalization to our notion of n-completeness is to allow the

transformation f to work with a larger alphabet that the transformations it

has to simulate. There are several definitions of simulation in this case. We

could fix a projection μ from alphabet B to A and say that f ∈ Tran(Bn)

simulates h ∈ Tran(An) if there is an update order w such that,

Fw ◦ ϕ = ϕ ◦ h with ϕ : x �→ ((x1)μ, (x2)μ, . . . , (xn)μ).

With this definition we can already construct an n, q-complete transformation

f ∈ Tran(Bn), for any q = |A| and n ≥ 3, with |B| = 2q. Alternatively, we

could say that f ∈ Tran(Bn) simulates h ∈ Tran(An) if there is a certain

update order w such that,

∀x ∈ An, (x)Fw = (x)h.

With this definition, we can construct a n, q-complete transformation f ∈
Tran(Bn), for any q and n ≥ 3q, with |B| = q + 1. We could modify these

definitions by considering, for example, any projection from Bn to An.

6. Acknowledgment

We would like to thank Adrien Richard and Jean-Paul Comet for stimu-

lating discussions. We also thank both of the anonymous referees of this pa-

50

per for their valuable comments; in particular, the first referee independently

found constructions of n-complete transformations of size n + 1 when q = 2

and q ≥ 3. This work was supported by the EPSRC grant EP/K033956/1.

7. References

References

[1] Ahlswede, R., Cai, N., Li, S.-Y., and Yeung, R. (2000). Network infor-

mation flow. IEEE Trans. Inform. Theory, 45(4):1204–1216.

[2] Bridoux, F. (2018). Sequentialization and procedural complexity in au-

tomata networks. LNCS, page to appear. Springer-Verlag.

[3] Burckel, S. (1996). Closed iterative calculus. Theoret. Comput. Sci.,

158:371–378.

[4] Burckel, S. (2004). Elementary decompositions of arbitrary maps over

finite sets. J. Symbolic Comput., 37(3):305–310.

[5] Burckel, S., Gioan, E., and Thomé, E. (2009). Mapping computation

with no memory. In Proc. International Conference on Unconventional

Computation, pages 85–97, Ponta Delgada, Portugal.

[6] Burckel, S., Gioan, E., and Thomé, E. (2014). Computation with no

memory, and rearrangeable multicast networks. Disc. Math. Theor. Com-

put. Sci., 16:121–142.

[7] Burckel, S. and Morillon, M. (2000). Three generators for minimal

writing-space computations. Theor. Inform. Appl., 34:131–138.

51

[8] Burckel, S. and Morillon, M. (2004a). Quadratic sequential computations

of boolean mappings. Theory Comput. Sys., 37(4):519–525.

[9] Burckel, S. and Morillon, M. (2004b). Sequential computation of linear

boolean mappings. Theoret. Comput. Sci., 314:287–292.

[10] Cameron, P. J., Fairbairn, B., and Gadouleau, M. (2014a). Computing

in matrix groups without memory. Chicago J. Theoret. Comput. Sci.,

(08):1–16.

[11] Cameron, P. J., Fairbairn, B., and Gadouleau, M. (2014b). Computing

in permutation groups without memory. Chicago J. Theoret. Comput. Sci.,

(07):1–20.

[12] Dőmősi, P. and Nehaniv, C. L. (2005). Algebraic Theory of Automata

Networks: An Introduction. SIAM Monographs on Discrete Mathematics

and Applications.

[13] Ésik, Z. (1991). A note on isomorphic simulation of automata by net-

works of two-state automata. Discrete Appl. Math., 30:77–82.

[14] Gadouleau, M. and Riis, S. (2015). Memoryless computation: New

results, constructions, and extensions. Theoret. Comput. Sci., 562:129–

145.

[15] Soulie, F. F., Robert, Y., and Tchuente, M. (1987). Automata networks

in computer science: theory and application. Manchester University Press.

[16] Tchuente, M. (1979). Parallel calculation of a linear mapping on a

computer network. Linear Algebra Appl., 28:223–247.

52

[17] Tchuente, M. (1982). Parallel realization of permutations over trees.

Discrete Math., 39:211–214.

[18] Tchuente, M. (1983). Computation of boolean functions on networks of

binary automata. J. Comput. Systems Sci., 26:269–277.

[19] Tchuente, M. (1985). Permutation factorization on star-connected net-

works of binary automata. SIAM J. Algebraic Discrete Methods, 6:537–540.

[20] Tchuente, M. (1986). Computation on binary tree network. Discrete

Appl. Math., 14:295–310.

[21] Tchuente, M. (1988). Computation on finite networks of automata. In

Choffrut, C., editor, Automata Networks, volume 316 of Lecture Notes in

Comput. Sci., pages 53–67, New York. Springer-Verlag.

53

Declaration of interests

 The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

