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In this paper, we confirm, with absolute certainty, a
conjecture on a certain oscillatory behaviour of higher
auto-ionizing resonances of atoms and molecules
beyond a threshold. These results not only definitely
settle a more than 30 year old controversy in Rittby
et al. (1981 Phys. Rev. A 24, 1636-1639 (doi:10.1103/
PhysRevA.24.1636)) and Korsch ef al. (1982 Phys. Rev.
A 26, 1802-1803 (doi:10.1103/PhysRevA.26.1802)),
but also provide new and reliable information on
the threshold. Our interval-arithmetic-based method
allows one, for the first time, to enclose and to exclude
resonances with guaranteed certainty. The efficiency
of our approach is demonstrated by the fact that we
are able to show that the approximations in Rittby
et al. (1981 Phys. Rev. A 24, 1636-1639 (d0i:10.1103/
PhysRevA.24.1636)) do lie near true resonances,
whereas the approximations of higher resonances
in Korsch et al. (1982 Phys. Rev. A 26, 1802-1803
(doi:10.1103 /PhysRevA.26.1802)) do not, and further
that there exist two new pairs of resonances as
suggested in Abramov et al. (2001 J. Phys. A 34, 57-72
(doi:10.1088/0305-4470/34/1/304)).
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1. Introduction

Reliable and precise information on the location of resonances is very hard to obtain. While
numerical approximations are widely used in physics, so far there has been no way to show
that they produce results near, or not near, true resonances. The reason is that computations
of complex eigenvalues in the presence of continuous spectrum are not backed up by any
convergence results. This paper presents a new method that, for the first time, permits one to
locate resonances with absolute certainty and high accuracy and, at the same time, to show
that numerical approximations fail to lie near true resonances. We provide new and reliable
information on the oscillatory behaviour of the real parts of certain resonance strings and on
the threshold beyond which it occurs.

The key ingredient in our method is interval arithmetic. It allows us to carry out every
computational step with absolute accuracy by operating on intervals rather than on numbers.
Remarkably, this theoretical idea has had convincing impact in different practical physical
applications recently: to control the stability of difficult nonlinear systems in robotics to navigate a
sailboat autonomously over a distance of 100 km (see [1]); to perform rigorous global optimization
of impulsive planet-to-planet transfer (see [2]) or to rigorously govern the long-term stability in
particle accelerators (see [3]).

In this paper, we demonstrate the efficacy of interval approaches for the computation of
resonance enclosures and exclosures with absolute certainty. The power of our method is
substantiated by the fact that it can be applied to definitely settle a more than 30 year old
controversy in [4,5] which could not be resolved by any other method before.

In connection with auto-ionizing resonances of atoms and molecules lying above a ionization
threshold, Moiseyev et al. [6] studied resonances of the Sturm-Liouville problem

—y'(x) + %((O.sz —08)e /101 08— €)y(x)=0, xeR. (1.1)

A first resonance was suggested to lie near 2.124 — 0.0185i (with ;L/h2 set to 1); moreover, one
bound state was proposed to lie near 0.5. The resonance was found by complex scaling of the
self-adjoint Hamiltonian and approximation using a variational principle with 10 real Gauss-type
basis functions for the scaled Hamiltonian. Because the latter is no longer self-adjoint, the authors
pointed out that further exploration is needed to obtain information on the true position of a
nearby resonance.

In the two subsequent papers [4] and the more detailed version [7], Rittby et al. combined
complex scaling with some Weyl-type analysis and numerical integration methods to compute
44 resonance approximations, including approximations for the first resonance and bound state
suggested in [6]; the second resonance therein was further studied by Engdahl & Briandas in [8]
by computing lower bounds for norms of Riesz projections. The main conclusion of [4,7] is that
there exists a complex threshold €yesh With Re(€thresh) > 0, Im(€enresh) < 0 such that all resonance
approximations of (1.1) satisfy Re(e) < Re(€gnresh) ~ 4.68 and beyond this threshold, i.e. for Im(¢) <
Im(€resh) < 0, their real parts exhibit a certain oscillatory behaviour.

Shortly after the publication of [4] and the submission of [7], Korsch et al. announced in
[5, comment] that they had computed a different set of resonance approximations beyond the
threshold which did not exhibit any oscillatory behaviour, whereas their earlier computations of
lower resonances in [9] had not shown such a disagreement. They used a complex-rotated Milne
method and they believed to have backed up their computations by some WKB approximations.
Korsch et al. concluded that the results of Rittby et al. for higher resonances were incorrect; they
conjectured this might be due to numerical instabilities or to the too limited range 0 < 6 < 7 /4 of
angles in the complex scaling method in [4,7].

In an immediate reply (see [10, reply to comment]), Rittby et al. [5] defended their results
and attributed the discrepancies of the results to wrongly chosen outgoing boundary conditions.
They argued that the asymptotic solutions of the complex Riccati equation associated with (1.1)
undergo a dramatic change when 6 passes the critical value 6.t = /4 of the potential in (1.1)
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and hence the rotation angle § =50° used by Korsch et al. was too large. Because of this and
the stability of the computations in [4,7] against variations of the rotation angle 6, Rittby et al.
[4,7] believed to have found approximations to true resonances. About 10 years later, Andersson
corroborated the arguments and conclusions of Rittby ef al. by a careful multiple-transition point
WKRB analysis and explained the failure of the complex-rotated Milne method of Korsch et al. by
semi-classical theory in [11].

Almost 20 years after the 1982 dispute, the resonance problem (1.1) was studied as an example
in two papers in the mathematical literature. In [12], for more general classes of exponentially
decaying potentials, Brown ef al. developed a resonance-finding procedure for resonances close
to points of spectral concentration on the real axis. This method relies on analytic continuation of
the Weyl-Titchmarsh function rather than on complex scaling and was first used by Hehenberger
et al. [13] in numerical computations for the Stark effect. As an example, Brown et al. computed
approximations to the first three resonances of (1.1) which were very close to the ones found in
[7]; note that /h2 =11in [7] and that the potential g and spectral parameter A in [12] are related to
the potential V and spectral parameter € in (1.1) by

h? 2
gx) = (% — 1.6)e /10 = VW16 x= hiz‘(e ~0.8).

Not long after, Abramov et al. [14] proved some global analytical bounds for resonances for
various classes of potentials. They combined complex scaling with operator theoretic techniques
such as numerical ranges and Birman-Schwinger type arguments. Moreover, for the particular
case of (1.1), they also performed numerical computations. The analytical results in [14] supported
the conjecture of Rittby et al. that a wrong asymptotic boundary condition was used by Korsch
et al. [5]. The numerical results of [14] reproduced the resonances found in [4,7] and they suggested
three pairs of additional resonances. Each pair consists of an even and an odd resonance so close
to each other that they could not be computed accurately. These new resonance pairs may be
related to the oscillatory behaviour of the real parts; because two of these pairs satisfy —9.57 ~
Im(€tnresh) < Im(e) <O0.

As it was rightly put in [14], none of the above methods for finding resonances can be used
to locate them accurately, but there is clear evidence that they exist. Moreover, none of these methods
allows for a proof that a numerically computed candidate for a resonance is nof near any true
resonance.

The method presented here permits us to settle both questions definitely and adds new
information on the threshold beyond which oscillatory behaviour of the real parts of resonances
occurs. We prove that the 44 numerical approximations of resonances from [4,7] do lie near
true resonances and that the numerical approximations labelled 16-28 in [5] do not lie near true
resonances. Moreover, we prove that two of the additional pairs of resonances conjectured in [14]
do exist. Our provably correct computations are based on a combination of two key tools, the
argument principle on the analytic side and interval arithmetic on the computational side.

Briefly, our approach is as follows. By means of complex scaling x — e’ x with 6 € [0, 7/4), the
resonances € of (1.1) are given in terms of the eigenvalues z = e%?(2¢ — 1.6) of a Sturm-Liouville
problem on R with complex potential. These eigenvalues can be characterized as the zeros of
an analytic function A. Hence, their number in a rectangle R can be counted by means of the
argument principle. On the other hand, we can compute the contour integral in the argument
principle in interval arithmetic, using a code based on the software library VNODE developed by
Nedialkov et al. [15]. Roughly speaking, this means that all computations, from adding numbers
up to integration, amount to working with two-sided estimates; e.g. the sum of two real numbers
a € [ay,az] and b € [by, by] is the interval [ay + by, a2 + bo] which is guaranteed to contain a + b (see
[16, §2] for a more detailed description). If we obtain that

/
L. J A@ dzelci,c2] and [c1,c0] N Ng = {np}, (1.2)
27i Jr, Alz)
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then there are precisely 1y eigenvalues of the complex-scaled Hamiltonian in the rectangle Rg
and hence precisely 1 resonances in the rotated rectangle e IR,

Our method is the first, in both physical and mathematical literature, that accomplishes the
following three different tasks:

1. Enclose resonances with prescribed accuracy, by choosing the size of the rectangle
accordingly small and achieving 19 = 1.

2. Exclude resonances in certain rectangles by achieving ny = 0.

3. Check if the number of resonances in a rectangle of arbitrary size computed with non-
reliable methods is correct by checking if it coincides with ng.

2. Complex scaling and lack of analytic information

There are various mathematical definitions of resonances and different methods to study them;
for details, we refer to the comprehensive review articles by Simon [17], Siedentop [18] and
Harrell [19]. Here, we use the method of complex scaling where resonances are characterized
as eigenvalues of certain non-self-adjoint Schrédinger operators.

As an example, we consider the spectral problem (1.1), with ;/h* =1 for the sake of simplicity.
If we set A :=2¢ — 1.6, it is easy to see that (1.1) is equivalent to the spectral problem

—y'(x) + (x> — 1.6) e_xz/loy(x) - y(x)=0, xeR, (2.1)
for the linear operator L in the Hilbert space Ly (RR) given by
D(L)==W3(R) = {y € L2(R):y,y" € La(R)},
(L)@ = —y'() + 6~ 16) e y();

note that W%(R) is the closure of Cj°(R) with respect to the norm of W%(R) given by |lyll22 =
(||y||% + ||y’||§ + ||y”||§)1/2, where i/, iy’ denote the weak derivatives and || - ||z denotes the norm of
Lr(R) ([20, ch. V]).

According to the method of complex scaling ([21,22], [23, §5] and also [24]), for every 6 €
[0, w/4), the spectral problem (2.1) is equivalent to the spectral problem for the operator Hy in
Ly(R) given by D(Hy) = W3(R) and

(Hoy)(x) = =" (1) + go ()y(0) =zy(x), x€R, z:=e?’), (22)
with complex-valued potential
o (x) := 9 (X052 — 1.6)e’emx2/10, xeR. (2.3)

Hence, z is an eigenvalue of (2.2) if and only if A = e 2197 is a resonance of (2.1) or, equivalently, if
e=(h+1.6)/2=(e "%z 4 1.6)/2 is a resonance of (1.1).
Because gy is even, the spectral problem (2.2) for the operator Hy is equivalent to the two
spectral problems
—Y' @)+ gy =zy(x), x€[0,00), y(0)=0 (2.4)
and
—y' (@) + 99 (y(x) =zy(x), x€[0,00), y'(0)=0, (2.5)

for the operators HY and H) induced by the differential expression gy := —y” + goy in L»([0, 00))
with Dirichlet and with Neumann boundary condition, respectively. This was proved in [12, §5]
using the Weyl-Titchmarsh function. For eigenvalues, this follows from the following elementary
argument.

If zg € C is an eigenvalue of (2.2) with eigenfunction yg € D(Hg) C Lo(R), then, by (2.3), the
function o given by Jo(x) :=yo(—x) is an eigenfunction as well. Because yo(0)=7o(0), the
functions o, o must be linearly dependent. The particular form of iy implies that o= yyo
with y ==+1. Because yp € W%(R) C CY(R), the continuity of 1o and y; in 0 yields that y;,(0)=0
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if y =1 and y(0) =0 if y = —1. Hence, yol[o,o0) is either an eigenfunction of (2.4) or of (2.5). Vice
versa, if zg € C is an eigenvalue of (2.4) with eigenfunction y € D(HE ) C L2([0, 00)), we obtain an
eigenfunction yy € D(Hp) C L2(R) of (2.2) at Ao by setting yo(x) := —yo(—x), x € (—00,0); if zg € C is
an eigenvalue of (2.5), we set yp(x) := yo(—x), x € (—00,0).

Because the potential gs is complex-valued and hence all the above operators Hy along
with HGD , Hg] are no longer self-adjoint, numerical approximations of eigenvalues—and hence
of resonances—are prone to be unstable. Examples for such instabilities may be found in [23]
for resonances, but they occur already for eigenvalues of matrices (see e.g. [16] for the famous
Godunov matrix).

Analytic bounds for resonances are commonly based on numerical range estimates for each
complex-scaled problem (2.2) with 6 € [0, 7/4) (comp. [14]). For the set of resonances of (1.1), we
obtain the following result.

Theorem 2.1. The resonances of (1.1) in the sector —m/2 <arge <0 are contained in the closed
convex set

C:= ﬂ {e € C:Re(e)sin(20) + Im(e€) cos(20) < 0.5a4(9) + 0.8 sin(20)}
0€[0,7/4)

where ay(0) := SUP,c[0,00) Im(gg(x)) for 0 € [0, w/4) with

2 2
Im(ge (x)) = e~ <050 /10 <x2 sin (49 - sin(ze)’lco> ~ 1.6sin (29 - sin(ze)’lco)) .

Proof. The set C is closed and convex being the intersection of closed half-planes. Because
a+(#)>0 and hence ay(0)/(2sin(20)) +0.8>0.8, it follows that C contains all € € C with
0 <Re(e) <0.8 and Im(e) <0.

Thus, it is sufficient to show that every resonance ¢y € C with Re(ep) > 0.8, Im(ep) < 0 belongs
to C. For every 6 € [0, 7/4], the point Ag :=2¢p — 1.6 lies in the sector —7/2 <argi <0 and is an
eigenvalue of the operator Hy := e =2 Hy given by

D(Hyp) =W3(R), Hoy=e"""(=y" + qoy).
Because the numerical range of a linear operator contains all eigenvalues, we obtain
. . . b4
ro € W(Hy) = ((FHoy,v):y € DEo), Iyl =1}, 0€[0, 7).
If we note that g4 (R) = g4([0, 00)) and, in addition to a4.(6), we define
a_(0):= inf Im(ge(r)), b_(6):= inf Re(go(x)),
xe[0,00) x€[0,00)
then it is easy to see that, for 6 € [0, 7/4),
W(Hy) C e 2{z e C:a_(h) <Im(z) < a4(8),b_(9) < Re(2)}.
In particular, every resonance A of L with —m/2 < arg <0 satisfies

e () (reC:Re(2)sin(20) + Im(h) cos(20) < ay(0)}. -
0€l0,7/4)

Figure 1 shows that the only available analytic information is much too coarse to judge
the validity or non-validity of resonance approximations. Therefore, it is necessary to employ
a method yielding both guaranteed and much more accurate enclosures and exclosures for
eigenvalues of non-self-adjoint eigenvalue problems.
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Im(e)

Figure 1. Resonance-free region in theorem 2.1 (grey-shaded), approximate resonance strings of Ritthy et al. (circles) and
Abramov et al. (squares and star). (Online version in colour.)

3. Eigenvalue enclosures for complex-valued potentials

The algorithm we use to establish guaranteed eigenvalue enclosures was developed and
described in detail in [16,25]. Briefly, it consists of the following two steps. For the sake of
simplicity, we consider the Dirichlet problem (2.4); the approach to the Neumann problem (2.5) is
completely analogous.

Step A. Solving a truncated problem with guaranteed error bounds. In order to truncate problem
(2.4), we restrict the potential g¢ to an interval [0, X] and set it equal to 0 on (X, c0). The unique
(up to scalar multiplication) solution of —y” =zy in Ly([X, 00)) is exp(—+/—zx) for Rey/—z > 0.
Hence, the problem on [0, X], we have to solve is

-y (%) + qo()y(x) =zy(x), x€[0,X]

3.1

and y(0)=0, ¥ (X)=—v—zy(X). S
The eigenvalues of this regular boundary value problem can be characterized as the zeros of an
analytic function A and may thus be counted and found by means of the argument principle.

The algorithms for the calculation of the analytic function A and for the contour integral over
a chosen starting box Ry C C are performed in interval arithmetic, i.e. with guaranteed error
bounds. Having achieved (1.2), we obtain a box that contains a certain number 7 of eigenvalues
of the truncated problem (3.1). Repeating this procedure by suitably subdividing the box Ro, we
may finally arrive at a box Rz of desired precision ez that contains exactly one eigenvalue zyunc.

Step B. Use Levinson asymptotics to enclose the eigenvalues of problem (2.4). If y»(-, z) is the unique
(suitably normalized) solution of the differential equation in (2.4) belonging to L,([0, 00)) for z €
C\ [0, 00), then zirye is an eigenvalue of (2.4) if and only if ¥2(0, zirue) = 0. Levinson’s theorem (see
e.g. [25, theorem 3.3]) shows that

a2 =exp(—V I+ 1), WIS - agi= [ Ipldy,  62)
— X0 X

for all X > 0 such that ax s < 1. Hence, if [E] C R is an interval with

o o
1o 1 = 2 | C[E],
].—OlX,@ 1_O‘X,9

GO s 053 i G Bupiantkpsioreds



and [y2(-,z)] is an interval-valued solution of the truncated problem on [0, X] satisfying the
interval-valued initial conditions

y(X,z) € [Elexp(—v/—2X), ¥ (X,2) € —[E]lv/—zexp(—+/—zX),

then 1(0, z) € [y2(0, z)]. By means of the interval arithmetic argument principle already used in
step A, we now obtain enclosures for the zeros of (0, z), and hence for the eigenvalues ziye of
(2.4) of desired precision.

For the above-described method, several parameters have to be provided; in particular, the
length X of the truncated interval has to be determined such that ax g < 1. To this end, we note
that

190 (x)| = |6219x2 —16le” cos(260)x2 /10 < e~ cos(26)x? /10 if cos(26) > g
X

and that [26, 7.1.13]
1

X+ /x5 +4/7

Integrating by parts and substituting t = Jax, we obtain, fora >0,

J e qy=ZXe X J et dt
X a ava ) Jax

o0 2 2
J eV dx<e™ x> 0.
X0

IA

1e_“X2 X+ !
a aX + /a?X? 4 da/m

1 2 1
<—e X (X4 -—).
_ae ( +2uX>

Hence, for all X € (0,00), 6 € [0, 77/4) with cos(20) > 0.8/x2, we can estimate
o0 10 2 5
< 2 —cos(20)x%/10 dx < —cos(20)X?/10 ( 5 —A 33
*X0 = JX e t= cos(20) € + cos(20)X X8 (33)

and we use the analytic expression Ay g to obtain a rigorous computable upper bound A(})( o for
Ax g and hence for ax g,

0
axp <Axp <Ayg-

To this end, we first expand cos(20) and use Taylor’s theorem with remainder in Lagrange form
to see that, for every m e N,

4m (_1)]' ,
oS0 2 " (20 = Txca ) (34
=
note that cos®”+1)(x) = — sin(x) < 0 for every x € [0,20] [0, 77/2]. If 6 is a decimal fraction whose

fractional part has three digits, the sum Tx () is rational and can be evaluated exactly. We choose
a rigorous computable lower bound T())(,e (m) of Txg(m) as the unique decimal number whose
fractional part has six digits and T ,(m) + 1076 > Tx 4(m) = T§ ,(m) (table 1). The function f(t) :=
(10/t) e~ 1X?/ 10(X +5/tX), t € (0, 1), is decreasing, hence, again by Taylor’s theorem with remainder
in Lagrange form, we obtain that, for all m, n € N,

Axp =f(cos(20)) < f(T ,(m))

10 2n+1 (_1)szk 0 k 5 .
= T?(,O(m) (Z 10kk! (TX[@(WZ)) (X + TW) =-AX,0(1’I1, n).

k=0

Now, we fix m,n € N and proceed in the same way as for Tx »(1n) to obtain a rigorous computable
upper bound Ag(g(m, n) for Ax g (m,n) with Agw(m, 1) — 1070 < Axp(m,n) < Agw(m, n) (table 1).
Because 0+ Axg(m,n), 0€[0,7/4), is increasing, the rigorous computable upper bound
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Table 1. Rigorous computable bounds for X = 50 and various 6 € [0, 7 /4).

A(?)(ﬂo (m,n) for 0p:=0.75 < /4 is also an upper bound of Ax ¢ (m,n) for 6 € (0,6p). Only in two
of our computations (for the resonances numbered 37~ and 44*), we needed parameter values 0
that are larger than 6y = 0.75; their upper bound A% x ¢(m, 1) is computed separately. We use X =50,
m=2,n=232 and obtain the rigorous computable lower bounds T(P)(,G (m) =: T?{,a and upper bounds

X 9(m n)= X o displayed in table 1; note that for X =50 the condition cos(20) > 0.8/x2 allows
for 6 <0.5 arccos(25 1079), e.g. 8 < 0.785238 very close to /4 ~ 0.7853981635.

4, Guaranteed resonance enclosures and exclosures

In [10, reply to comment], Rittby et al. listed a set of 44 approximate resonances e,:—L of (1.1) that
they computed numerically, along with a set of 40 approximate resonances claimed to be found
numerically by Korsch ef al. in [5, comment]; here, the superscript + occurs for even k, whereas —
occurs for odd k. The differences in modulus between these two approximate resonance strings
are smaller than 2 - 10~% up to €, and start to be larger than 1072 from €, on, getting as huge as
56.19 for 54+0 (figure 2).

We computed guaranteed enclosures for all 44 approximate resonances by Rittby et al. from
[4] as well as exclosures for the approximate resonances ei% up to €3 by Korsch et al. from [5,
comment]. In addition, we enclosed the two pairs of resonances discovered numerically in [14]
that are visible by the complex scaling method.

All computed enclosures for resonances, except for one of these pairs, were performed with
interval length X =50, varying scaling angle 6 as displayed in the tables, and corresponding
guaranteed upper bound A())(,e for ax e as in table 1 at the end of §3. The enclosure for one of
the additional resonance pairs in [14] turned out to be by far more challenging than all other
computations.

We employ the interval arithmetic-based software library VNODE developed by Nedialkov
et al. (see [15]) where all operations are performed with complex ‘intervals’, i.e. rectangles
[z] = [x] + [y]i, where [x], [y] C R are closed intervals or singletons (see [16, §2] for a more detailed
description). In the following, we use notation of the form

7.43975979243816010 .= [7.43975916958921987, 7.43975970244416010]

for intervals containing the real and imaginary part of resonances. Further, we use the
enumeration € ¢ to indicate the resonance number k and parity + in the list of approximate
resonances of Rittby et al. in [10, reply to comment, table IJ.

Note that the resonances coming from the boundary condition y(0) = 0 have parity ‘—’, because
the eigenfunctions of the corresponding eigenvalues of (2.4) are odd, whereas those coming from
the boundary condition y'(0) = 0 have parity ‘+’, because the eigenfunctions of the corresponding
eigenvalues of (2.5) are even (see §2).

(a) Guaranteed enclosures for resonance approximations by Rittby et al.

First, we present the computed enclosures for the 44 resonances A of problem (2.1) corresponding
to the resonances ek listed in [10, reply to comment, table IJ.

Table 2 contains the enclosures for resonances A =e 2z via enclosures for eigenvalues
z of (2.2) restricted to [0,00) with Dirichlet boundary condition y(0) =0, i.e. eigenvalues of
problem (2.4); table 3 contains the corresponding enclosures using eigenvalues z of (2.2) restricted
to [0, 00) with Neumann boundary condition yy'(0) =0, i.e. for eigenvalues of problem (2.5). Table 4
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Figure 2. Resonance approximations computed by Rittby et al. (circles), Korsch et al. (asterisks), Abramov et al. (squares and
star) and analytic bound from theorem 2.1. (Online version in colour.)

contains the enclosures for the 44 resonances eki = ()L,f +1.6)/2 of the original problem (1.1)
arising from the two sets of resonances )Lki of (2.2) displayed in tables 2 and 3.

The enclosing boxes for the resonances € of (1.1) are obtained from the enclosing boxes for
the eigenvalues z of (2.2) as follows. If [u1, u2] + [v1, v2]i is an enclosing box in the z-plane, then
the enclosing box [x1, x2] + [i1, y2]i for a resonance A = e 297 of (2.1) is the smallest axis-parallel
box that contains the rotated box e_m([ul, up] 4 [v1, v2]i). The corresponding enclosing box for a
resonance € = (A + 1.6)/2 of (1.1) is obtained from

. x1+1.6 x»+1.6 .
relr, 0]+ pli <= ee[l 27] [3/; yj]l.

272 272

The values of the 44 approximate resonances of (1.1) listed in [10, reply to comment, table IJ,
which were computed by Rittby ef al. in floating point arithmetic without error bounds, are
displayed in the right column in table 4; they agree with our enclosures at least up to order 1074

Thus, our guaranteed enclosures prove that all values computed by Rittby et al. do indeed lie near
true resonances.

(b) Guaranteed exclosures for resonance approximations by Korsch et al.

On the other hand, we applied our method to the numerical values of the resonance
approximations of Korsch et al. numbered 16%,17-,...,27~, 281 in [10, reply to comment,
table II]; note that the resonance approximations 297, ...,40" therein can not be seen by the
complex scaling method.

Using larger boxes around these numerical values, we found that in each case the interval-
valued argument principle yields an interval [c, c2] with [c1,c2] N Ng = {0}, which proves that
there are no eigenvalues in the considered box (see (1.2)). The box side lengths I; € [0.1,2] are
listed in table 5. For every resonance approximation eki, the corresponding approximate value in
the z-plane is denoted by z]f. The midpoint My € C of the box with side length I in the z-plane is
chosen such that

! !
IRe(My) — Re(z)] < 0.05 < Ek Im(My) — Im(z5)| < 0.05 < Ek

88Y04107 :0Lb ¥ 905§ 20ig BioBuysiigndiaaposieoreds:



Table 2. Resonances for (2.2) from (2.4) on [0, co) with y(0) = 0.

] 124194100005 —0.00011655 5002000 6 =05
M}_] ____________________________________ 356916529363192{)3;1—0347501§§15555327573§| __________________________________________ S
[m .................................... 4910972%220%%%22_222306312%%282%2956 _________________________________________ S
[M .................................... 6048653(;;3;3;‘},‘;72—4974892313@@1& .......................................... S
[)»9_] ____________________________________ 68999105%@3%1@3—836633953;1767%2;. _________________________________________ S
w] .................................... 74576133%%533}3—1230946155}333% ____________________________________________ S
[m .................................... 7723776%5%17%_1675"02@%' ............................................. S
[Ag] ____________________________________ 76882811,697;66;‘6853;‘3—2165252831333%3. ____________________________________________ S
w] .................................... 74397597%959131135520_26931640;‘23;339 ____________________________________________ S
- soEme _ameelEmni 6 =075
[m ____________________________________ 6966833@5}333—3321458333‘;323;2 ____________________________________________ S
[x;s] .................................... 691583021%%?2225_37987895%5;;% ___________________________________________ S
oy oS  _amgeess 6 =075
[AZ;] ____________________________________ 7263855%5%1%9;_460056382232% __________________________________________ S
[x;g] .................................... 71713970%%?882%_506406082%2?839I __________________________________________ S
o TaeEEIIE  sameREy o=03
M;}] ____________________________________ 7595038%;3})65193—60205207933,%3. ___________________________________________ S
[xg] .................................... 7354328%3?3;22_65021741%99?61“ ____________________________________________ S
oy saemEBEE  _gopemmen 6 =075
[)»3_9] .................................... 731756%3;‘2";‘;533&’—71126990?35‘33@9 ___________________________________________ S
[m .................................... 76551306{23{,?;‘;})—76322137}2?39§3$| ____________________________________________ S
%] .................................... 754176%2%%2_8161068%6%% ............................................ S

The corresponding box in the e-plane is scaled and rotated owing to the relation 612: = (e*mz,f +
1.6)/2. The box has side length I;,/2 and is rotated clockwise by the angle 26 around the midpoint
my := (e~2Y My + 1.6)/2. The minimal distance dj of e}f to the boundary of the rotated box satisfies
di > (Ix/4) — 0.025 > 0 (figure 3).

Hence, our guaranteed exclosures prove that none of the numerical values of Korsch et al.
numbered 167,177,...,277,287 lies near a true resonance of (1.1).

(c) Enclosures of resonance approximations by Abramov et al.

Finally, we considered the three pairs of additional resonances found in [14, p. 72], one pair near
each of the points

€1=0.69 —791i, ¢é=1.26—-851i, é3=2.08—11.61i;
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Table 3. Resonances for (2.2) from (2.5) on [0, co) with y’(0) = 0.

2] 2.65439478262, —0.030894557 3t 6 =035
. I] _____________________________________ 4248843%3%335 _______________________________________ s 9%%22' ________________________________________ e
o ssusREm Sasmomte 6055
. ;] _____________________________________ 6510869;‘379?32;% _______________________________________ Qiééfﬁéﬁ%‘ﬁ%‘éﬁ?i ________________________________________ S
wo} _____________________________________ o o?g;‘g%g? _____________________________________ - 272906§gg§%%| __________________________________________ S
o s _wasEEE 6=06
M] _____________________________________ 774690%2%77620 _____________________________________ o 1414732323;‘3& ___________________________________________ S
M] _____________________________________ o 2652%3;‘23335‘17 ______________________________________ o 598;‘13‘;333163. __________________________________________ S
o oopersmmn _wenTASS 6=07
[A;gl _____________________________________ o 822212%%% _____________________________________ _312990892222% _________________________________________ S
[xgl _____________________________________ - 9171%1 ;}33;?;; _______________________________________ _35739095%%65% __________________________________________ S
o o _omesems o=0n
w;] _____________________________________ 716418753;%%16 ______________________________________ o 459951%32' __________________________________________ S
[x;,;] _____________________________________ - 17834%%89796 ______________________________________ R 3%7985;%“ _________________________________________ R
[xj(,] ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - 64222)1;;%23337 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —5303794;‘333322@ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S
M] _____________________________________ . 32859§§§§33§;§ ______________________________________ o 13?372;}33@ __________________________________________ S
. ;] _____________________________________ . 30811%3%7 _____________________________________ _6259350%2%% __________________________________________ R
o s B A 6=075
[A;g] _____________________________________ 5860093?3%206(]55%8 _____________________________________ o 2%;%%%' ___________________________________________ S
. ;;] _____________________________________ o 452#5695953%29 _____________________________________ o 72882%%3322? __________________________________________ S
v o A momOEIE 6=075
[Aj;] _____________________________________ 74245703‘§222231§ _____________________________________ _841759343%% __________________________________________ S

the corresponding values A =2¢ — 1.6 are
A =-022-1582i, A, =092—17.02i, i3=2.46—23.22i.

These new resonances were conjectured to exist not by means of complex scaling, but by
exploiting the asymptotic properties of the solution of a differential equation with a rapidly
decaying potential; numerical methods were developed to locate these resonances (see [14, §6]).
In fact, the method of complex scaling does not allow one to see the first pair of resonances near
1 because it has negative real part, but it does allow one to see the second and third pair near
A2, A3

We computed guaranteed enclosures for the two pairs of resonances near i, i3; each of
these pairs originates in one eigenvalue z of (2.4) with boundary condition y(0) =0 with odd
eigenfunction (denoted by superscript ‘—’) and one eigenvalue z of (2.5) with boundary condition
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Table 4. Resonances for (1.1).

guaranteed enclosures numerical values by Rittby et al.
€ 142097095 50 —0.00005825 14190529 1420971 — 0.00005826663i
& oannomms B 20707 — 00T
63 _________________________ : 584sszggggg§g§§ _____________________________ o 750?3%35}3 ............................... eniegy g
64+ ________________________ o gggggggg;*g ____________________________ - 5647949323?3273;‘55 ______________________________ o g
& ey s 358 — 1M
€6+ ________________________ . 557215817261202162%35555 _____________________________ o 5506%%% ______________________________ L
67_ ________________________ . 82432923%%%3 ____________________________ e ;gg%égl _______________________________ o
6; ........................ o 54342;3%239‘;3{)5(, ............................ e §§§§§2797755| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
69_ ________________________ 42499550?879753;88@5 ___________________________ - 1831696%2338' ______________________________ oy
61? ________________________ o 777258%% ____________________________ o 453133}%3%@ ________________________________ L
eﬂ* ........................ s 288092}%})46’37229905 ____________________________ - 1547306}%881;§§;O| ............................... o
% ________________________ 4613093033;2;16355 ___________________________ o 376533%2% _______________________________ L
GB _______________________ 4661888;‘}3{;’;';1730323 ____________________________ o 11;‘955?5;‘@ ________________________________ L
61: ........................ 46734533@‘;1@3628820 ............................ o g%%ﬁgl ............................... e
eg ________________________ v 1405§;§§§§gg5— o 644§‘5’161739533955| _______________________________ L
6% ________________________ . 963283212;3;‘%355— 121429922%2%?;3I _________________________________ g
61; ........................ i 223555533—13465 8202}79%92%2& ________________________________ o
% ________________________ 426980@‘;;;;43:;330— 1480688@%%% ________________________________ g
61; _______________________ i ?;3?3;@9}3 __________________________ _154223-]5?36‘%798433?3' _______________________________ L
EZE ........................ o 849215;%;%_ 156495447629;271895;;& ________________________________ e
eg ________________________ 42834122%%%‘%%_ e 94%32;‘33& ________________________________ o
65 ______________________ . 45852%2;323% _________________________ e 4358%32 ______________________________ e
EB ........................ 425791539}33}3?;‘3— 189939478%59%% ............................... o
ezj ________________________ 4188331()2;;3938%??_ 199569140§2;‘82§§3| _______________________________ s
62; _______________________ 42582833,%2;327266105 _________________________ _20876463%2;%% ______________________________ e
e;g ........................ 43820937%3323335—218972996§§§§‘;653%| ............................... iy
627 ________________________ " 31927%212%2%%_ 23002819%%0' _______________________________ i e
eg _______________________ - 17%%%22 _________________________ o 26443%91%%' ______________________________ s
62; ........................ . 856985?&33?2%%%0_ - 041%%;%%%55%' ............................... s o
e3t ________________________ " 321103323;3235—26518 . 72;‘179639532% ________________________________ p

(Continued.)
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Table 4. (Continued.)

guaranteed enclosures numerical values by Rittby et al.
€ 4.508035 e —27.70869355 5 0o 4.508034 — 27.70869i
Eg ___________________________ 456642922}?2‘;?&% ___________________________ _289047568?;853;220' __________________________ p
eg ........................... 4597519;%%%8 ............................ s 93}?53;‘5& ........................... oo
€3+4 ___________________________ 458154022338%1@% ___________________________ e 754;22}3937532%' ____________________________ e
Eg ........................... 44771643}1‘;6579‘;,9992‘; ............................ o 7053;‘52;23; ........................... o
e; ........................... 40333393%@523;21550 ........................... e %%%%I ___________________________ o e
6; ___________________________ o 2233%231%3 ____________________________ e }237533;‘1323 _____________________________ s
e; ___________________________ 3730043?&35%725&2 ............................. e ogggggggg;g. ............................ e
eg ........................... i })%%%%%% ............................ —3556349505‘5‘(‘)‘1%& ........................... s e
e;; ___________________________ o 26%%%2 ____________________________ s 86441;318;399;‘;33 T — e
ej ___________________________ 46275653%%%% ___________________________ . 16106823;‘;?60;85 ........................... o
o soupsEes _wamensEE 46UT6 — 4TG0
eg ___________________________ s 327%2953%2935&50 ____________________________ e 34?221%1%65% ____________________________ Lo
e; ___________________________ 45122852]72339331273355 ............................. o 087967§gi3§;255| ............................ p

Table 5. Excluded resonances.

numerical values by Korsch et al. chosen box side length /; and angle 6

[e{é‘] 4589120 — 12.13151i he =0.1 0=07

y'(0) =0 with even eigenfunction (denoted by superscript ‘+’). The guaranteed enclosures we
obtained for the four resonances }:2_ , )A\; , 3»3_ , 3»; are shown in table 6.

The computation of the resonance pair ):3_ , 5\;' was performed in the same way as the
enclosures described in §4a. Choosing 6 = 0.735, our provably correct computations showed that
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Figure 3. Rotated box of side length / /2 excluding approximate resonance eki, k=16",...,287",fromKorsch et al. marked
by asterisk. (Online version in colour.)

Table 6. Enclosures of resonance pairs near ;\21 ;\3 computed by Abramov et al. [14].

~

BT ... A TR 0T
i) oz o
LT ... S i S et
i) 2560, B

for each of the two boundary conditions there is only one resonance ):; and i;, respectively,
in the disjoint boxes displayed in table 6. Moreover, they guarantee that in the larger A-box
e~29([23,24] + [0.05, 11i) containing these two boxes as well as the numerical value A3 of Abramov
et al. there is only one resonance for each of the two boundary conditions. Altogether, we
thus proved that there is precisely one pair of disjoint resonances ig #+ )1; near the resonance
approximation Az =2.46 — 23.22i of Abramov et al. and that this approximation has distance
approximately 1 - 107! to the true resonance pair ):gc.

The computation of the resonance pair ):2_ , 5»2' turned out to be much harder and
computationally more expensive than all other enclosures and exclosures. To make it work, we
had to use a slight modification of usual complex scaling, using stretching by some parameter
R >0 in addition to rotation of the variable by an angle 6 € [0, 7/4). The potential gy g and the
eigenvalue parameter z in the spectral problem for the corresponding operator Hy g (compare
(2.2), (2.3)) then become

o,r(x) := R? e (R? 293> — 1.6) e Re/10 v e R, z:=R2e?);
note that usual complex scaling corresponds to R =1.

In order to apply Levinson’s theorem, we needed to find suitable X >0, 6 € [0, 7/4) and R > 0
such that axgr = f;o I70,r(x)| dx satisfies axgr < 1. Proceeding as for usual complex scaling,
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Figure 4. Excluded approximate resonances of Korsch et al. (asterisks) surrounded by respective excluding boxes, together
with approximate resonances of Rittby et al. (circles), Abramov et al. (star and square) and analytic exclosure (grey-shaded)
in the A-plane. (a) Approximate resonances 0", . . ., 387 of Rittby et al, 0T, . .., 29~ of Korsch et al. and excluding boxes
for approximate resonances 16T, . . ., 28 by Korsch et al. (b) Zoom into region marked by dashed line in (a) showing the
approximate resonances 16", 17, 18" with respective excluding boxes. (Online version in colour.)

instead of (3.3), we used

10R? 1 5
axpRr < e—R2 cos(20)X2/10 <X ) =1 AxpR

cos(20) R2 cos(20)X

The main benefit of the additional stretching is that the upper bound Axgr decays
exponentially fast in R. As for usual complex scaling, we then applied Taylor’s theorem with
remainder in Lagrange form to obtain the rigorous computable upper bound A(})w,R =177-10717
for X=10,0 =0.76 and R =10.

With these parameters, we succeeded to enclose the resonances 5»2_ , 5{ for the boundary
condition y(0) =0 and y'(0) =0, respectively. The corresponding values in the z-plane are both
in the box 1702.39 + 5.3i, hence

oS4 -2 -2 59 4. 8411650805308 0249282468423 :
Ay, Ay €RT7e7V(1702.49 + 5.31) C 0.91736156176397 — 17-0011975181274671

Here, the first set is a box with midpoint R=2 e~ (1702.54 + 5.35i) ~0.918 — 17.001i and side
length R7210"1=1.1073, rotated clockwise by the angle 26 =1.52; the second set, which is
the one displayed in table 6, is the smallest axis-parallel box containing this rotated box. Note
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that these enclosures for ):;E differ in modulus by approximately 2 -10~2 from the value i =
0.92 — 17.02i calculated by Abramov et al. [14].

Hence, our guaranteed enclosures prove that not far from each of the two numerically
computed values iy and i3 of Abramov et al. there is indeed a pair of true resonances of (2.1);
the distance is approximately 2 - 10~2 for i, and approximately 1- 10~ for A3.

5. Conclusion

In this paper, we have presented a method which, for the first time, permits one to compute
resonances in atomic physics with absolute certainty. At the same time, it allows one to detect
with absolute certainty wrongly computed resonance approximations. The absolute reliability of
our approach is based on a combination of interval arithmetic and the argument principle. To
prove the efficiency of our method, we have established guaranteed enclosures for all numerical
resonance approximations of Rittby ef al. in [4,7] for problem (1.1) and guaranteed exclosures for
the numerically computed values of Korsch et al. in [5] that are visible to complex scaling, thus
definitely settling a dispute between these two groups of authors. The greatest challenge was to
provably enclose two additional pairs of approximate resonances computed by Abramov et al.
in [14] that were found neither by Rittby et al. nor by Korsch ef al. Thus, we have proved the
conjecture in [4,7] that the real parts of auto-ionizing resonances of certain atoms and molecules
exhibit an oscillatory behaviour beyond a threshold and we have added new information on this
threshold originating in the two new confirmed pairs of resonances.

Figure 4a displays all our results in the rectangle 0 <Re(1) <15, —70 <Im(x) <0: in the top
right corner of the A-plane, the analytic exclusion from theorem 2.1 (grey-shaded), the enclosed
approximate resonances 17,...,38" of Rittby et al. surrounded by circles, the additional ones
by Abramov et al. as star and square, and the claimed approximate resonances 17,...,29~ of
Korsch ef al. as asterisks; note that the resonances 07, 29~ and il to the left of the imaginary
axis cannot be seen by the complex scaling method because of their negative real part. Around
every disproved approximate resonances 167, ..., 28" of Korsch et al., our excluding box is shown
(grey-shaded). Figure 4b illustrates that for resonance 16" it was especially difficult to find a box
that simultaneously excludes the computed value of Korsch et al. and does not contain the value
computed by Rittby et al.
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