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Abstract Studies on intraplate ocean island basalts have demonstrated the control of lithosphere
thickness on the extent of melting and pressure of melt extraction (i.e., the lid effect). However, whether
lithosphere thickness also controls the composition of within‐continent basalts remains unclear. Here, we
test this hypothesis by studying the Cenozoic basalts contaitning clinopyroxene megacrysts from 10
localities throughout eastern continental China with a north‐south spatial coverage in excess of 2,500 km.
Indeed, the geochemical parameters (e.g., abundances and ratios of major and trace elements) correlate
well with the depth of the lithosphere‐asthenosphere boundary (LAB) calculated using the clinopyroxene
barometry, showing significant lithospheric thickness control on basalt compositions. These observations
offer further evidence for melt pooling (a melt rich layer) close beneath the LAB as a “stable magma
reservoir” for crystallizing compositionally uniform clinopyroxene megacrysts to be carried by subsequent
pulses of melt transport and eruption.

Plain Language Summary Magmas erupted on the surface of Earth have different compositions.
These compositional variations may result from mantle source compositional variations, varying extent
and pressure of melting as well as magma evolution during ascent. Studies have observed significant
control of oceanic lithospheric thickness on the compositional variation of oceanic basalts. Magmas
erupted on thick lithosphere have geochemical signatures of high pressure and low extent of melting,
whereas magmas erupted on thin lithosphere have signatures of low pressure and high extent of melting.
However, whether continental lithospheric thickness has similar compositional control on the
within‐continent basalts remains unclear, largely because the continental lithosphere thickness at the time
of volcanism is unknown. In this study, we test this hypothesis by studying the Cenozoic basalts
containing clinopyroxene megacrysts from 10 localities throughout eastern continental China with a
north‐south spatial coverage in excess of 2,500 km. These clinopyroxene megacrysts were explained as
high‐pressure cumulates from basaltic magmas at sites close to the base of the lithosphere, and their
equilibrium pressures (depths) calculated using the clinopyroxene geobarometer are thus ideal proxies for
the lithosphere thickness at the time of eruptions. This study demonstrated significant control of
continental lithospheric thickness on the compositional variation of within‐continent magmas.

1. Introduction

Intraplate basalts vary in composition as a result of mantle source heterogeneity, varying extent and pressure
of melting as well as magma evolution and assimilation during ascent at shallow levels. Studies on intraplate
ocean island basalts (OIB) have confirmed these mechanisms (e.g., Helz, 1987; Niu et al., 2011, 2012; White
& Hofmann, 1982; Zindler & Hart, 1986) and demonstrated that the effect of pressure and extent of melting
is largely controlled by lithosphere thickness at the time of volcanism (i.e., the lid effect; Haase, 1996;
Humphreys & Niu, 2009; Niu et al., 2011). OIB erupted on thick lithosphere have geochemical characteris-
tics of low extent (F) and high pressure (P) of melting with a strong garnet signature (e.g., low SiO2, Al2O3,
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and high FeO, MgO, TiO2, P2O5, and Sm/Yb), whereas those erupted on thin lithosphere exhibit the reverse,
that is, a high F and low P of melting with a weak garnet signature (e.g., high SiO2, Al2O3, and low FeO,
MgO, TiO2, P2O5 and Sm/Yb) (Niu et al., 2011).

In terms of understood mechanisms of mantle melting and melt extraction, it is expected that lithosphere
thickness variation should also control the composition of within‐continent basalts as previously hypothe-
sized based on a few studies (e.g., Davies et al., 2015; Guo et al., 2019; Sun et al., 2017). However, this hypoth-
esis has not been rigorously tested because unlike the oceanic lithosphere whose thickness (L) can be well
estimated from its age (t) by the half‐space cooling model (HSM) L ∝ t1/2 (e.g., Parsons & McKenzie, 1978;
Sclater & Francheteau, 1970), the continental lithosphere thickness at the time of volcanism is unknown.

Eastern continental China is ideal for testing this hypothesis because this vast region (1) experienced signif-
icant lithosphere thinning in the late Mesozoic, resulting in a variably thinned Cenozoic lithosphere
(~60–100 km) (e.g., Chen et al., 2008; Gao et al., 2004; Griffin et al., 1998; Menzies et al., 1993;

Figure 1. Distribution of the Cenozoic volcanism and 10 locations of our cpx megacryst‐bearing basalt samples dispersed
in the entire eastern continental China (modified from Sun et al., 2017).
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Niu, 2005; Niu et al., 2015), and (2) underwent volumetrically small, but widespread basaltic volcanism in
the Cenozoic (Figure 1; e.g., Basu et al., 1991; Chen, 2009; Chen et al., 2008; Fan & Hooper, 1991; Liu
et al., 1994; Guo et al., 2016; Song et al., 1990; Sun et al., 2017, 2018; Zou et al., 2000). Moreover, clinopyr-
oxene megacrysts which are commonly observed in the worldwide alkali basalts (Akinin et al., 2005;
Chapman, 1976; Chin, 2018; Dobosi & Jenner, 1999; Irving, 1974; Irving & Frey, 1984; Richter &
Carmichael, 1993; Shaw & Eyzaguirre, 2000; Woodland & Jugo, 2007) are abundant in the Cenozoic alkali
basalts of eastern China. Previous studies usually explained the clinopyroxene megacrysts as high‐pressure
cumulates cognate with their host basalts (e.g., Irving & Frey, 1984) or disaggregated mantle crystals
(i.e., xenocrysts; Richter & Carmichael, 1993; Chin, 2018). The clinopyroxene megacrysts in eastern
China have been explained as high‐pressure cumulates from basaltic magmas. However, these clinopyrox-
ene megacrysts are not in equilibrium with their host basalts but are xenocrysts captured by their host
basalts during ascent (Chen et al., 1997, 2009; Liu et al., 1992; Liu & Ying, 2019). In addition, calculations
using clinopyroxene thermobarometers have revealed the origin of these clinopyroxene megacrysts at sites
close to the base of the lithospheric mantle (Chen et al., 2009; Yu et al., 2019). If this is true, the equilibrium
pressures (depths) of clinopyroxene megacrysts would be ideal proxies for the lithosphere thickness at the
time of eruptions, which can thus be used jointly with the basalt compositions to test the lid effect in the
intracontinent setting. In this study, we test this hypothesis by studying the Cenozoic alkali basalts contain-
ing clinopyroxene megacrysts throughout eastern continental China (Figure 1). We show that the litho-
spheric thickness (calculated using the clinopyroxene barometry) has significant control on the
compositional variations of these basalts. On the other hand, basalts cannot record pressure information
deeper than the base of lithosphere, because of efficient melt‐solid equilibration on crystal grain‐size scales
during melt migration and aggregation in the asthenosphere (Niu, 2016; Niu et al., 2011). We also show that
melt pooling (a melt rich layer) close beneath the lithosphere‐asthenosphere boundary (LAB) as a “stable
magma reservoir” is required to crystallize compositionally uniform clinopyroxene megacrysts entrained
in these basalts. The latter offers a new insight into mantle melting and melt aggregation processes for con-
tinental basaltic magmatism.

2. Cenozoic Basaltic Volcanisms in Eastern China

Most of the Cenozoic basalts in eastern China are distributed along or adjacent to NNE‐oriented regional
faults (e.g., the Tanlu fault; Figure 1). These basalts are alkalic in composition (supporting information
Figure S1) and have high abundances of incompatible elements with trace element patterns similar to that
of present‐day average OIB (Figure S2), which is best interpreted as reflecting a highly enriched mantle
source (Basu et al., 1991; Fan & Hooper, 1991; Guo et al., 2016; Liu et al., 1994; Niu, 2005; Song et al., 1990;
Sun et al., 2017; Zou et al., 2000). The widespread occurrence of mantle xenoliths in these basalts indicates a
rapid ascend and limited crustal contamination (e.g., Zou et al., 2000). Clinopyroxene (cpx) megacrysts are
common in these basalts and are black in hand specimen and optically homogeneous (Figure S3). They are
usually anhedral and show vitreous appearance and conchoidal fracture with poor cleavage (Figure S3),
similar to the cpx megacrysts found in the alkali basalts in south Australia (Irving, 1974) and Scotland
(Chapman, 1976). In this study, cpx megacrysts‐borne Cenozoic basalts from 10 localities dispersed in entire
eastern continental China with a north‐south spatial coverage in excess of 2,500 km have been studied to
assess the possible influence of continental lithosphere thickness on the compositional variation of these
intraplate basalts. Detailed erupting ages of these basalts are compiled in Table S2. Basalts from northeast
China with rare cpx megacrysts (e.g., Chen et al., 2017; Zhang et al., 1995) and basalts from the Leizhou
Peninsula and Hainan Island (Figure 1) showing extreme mantle source heterogeneity possibly influenced
by the Hainan mantle plume (Flower et al., 1992; Sun et al., 2019; Tu et al., 1991; X. Wang, Li, et al., 2011)
are not included here.

3. Data and Methods

We analyzed major and trace elements on 65 basalt samples and 47 cpx megacrysts from eastern China
and also compiled data on cpx megacrysts and their host basalts in the literature. See supporting informa-
tion for detailed analytical methods and Table S1–S6 for our new data and the literature data.
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3.1. Correction for Fractionation Effect to Melt Mg# = 72

In order to explore the influence of lithospheric thickness on the compositions of these basalts, we need to
correct for the effect of shallow‐level fractionation on the major element compositions of these basalts to
Mg# = 72 because basaltic melts with Mg# ≥ 72 are in equilibrium with mantle olivine of Fo ≥ ~ 90
(Roeder & Emslie, 1970).

There are two methods for such correction. The first one is to move the major element compositions back-
tracked to Mg# = 72 along a set of LLDs (liquid lines of decent, which represents the chemical changes dur-
ing fractional crystallization of basaltic magmas) (e.g., Niu et al., 1999; Niu & O'Hara, 2008). The shape of
LLDs is determined by the order of appearance and proportions of liquidus phases (olivine, clinopyroxene,
plagioclase, etc.), which are further determined by the composition of primitive magmas and crystallization
conditions (e.g., pressure) (Green &Ringwood, 1967; O'Hara, 1965; Yoder, 1965). Using a set of LLDs derived
from a large data set of MORBs, Niu et al. (1999) first used this method and corrected themajor element com-
positions of MORB samples for the fractionation effect. However, compared with MORBs extracted at shal-
low depth with LLDs characterized by crystallization order of Ol→Ol + Pl→ Pl + Cpx +Ol, the continental
basalts extracted beneath the thickened lithosphere would have LLDs defined by crystallization order of
Ol→Ol + Cpx→ Cpx + Pl + Ol (Niu, 2005). In this case, we can follow Humphreys and Niu (2009) to effec-
tively use the LLDs from Kilauea Iki Lava Lake of Hawaii OIB (erupted from thickened lithosphere;
Helz, 1987) in our fractionation corrections. This is because (1) olivine and cpx are common liquidus phases
for both OIB and Cenozoic basalts in eastern China and (2) eastern China and Hawaii have comparable
lithospheric thickness of 60–100 km (e.g., An & Shi, 2006; Chen et al., 2006, 2008) and ~90 km
(Humphreys & Niu, 2009), respectively, which determines similar melt extraction pressures and primitive
melt compositions with comparable LLDs (Niu et al., 2011; Sun et al., 2017). Such correction may not be per-
fect because after all, the lithosphere thickness beneath the 10 sample localities are not the same, but the
similar LLD mineral sequence (e.g., Ol→ Ol + Cpx→ Cpx + Pl + Ol) ensures the correction to be adequate
approximation. The corrected data (with subscript 72‐LLD; “72‐LLD values”) are given in Table S3 with the
effectiveness of the correction shown by the total of 99.74 ± 0.26%.

To verify the validity of above correction results, another correction method is applied for comparison.
Olivine composition in equilibrium with the basalt sample is calculated, using a composition‐dependent

Fe‐Mg exchange partition coefficient (KD
Fe−Mg
Ol−Melt ) (Tamura et al., 2000), and added incrementally into the

basalt with the olivine composition re‐iterated at each increment (0.5%) until basalt Mg# = 72. The method
of adding olivine to evolved basaltic melts to infer their primitive magma compositions has been used in
many previous studies (e.g., Cottrell & Kelley, 2011; Courtier et al., 2007; Herzberg et al., 2007; Lee et al.,
2009; Putirka, 2005) but can only be applied to basalts that have undergone olivine fractionation only. In this
correction, basalt samples having MgO > 8.5 wt.% (Courtier et al., 2007; Lee et al., 2009) are chosen for cor-
rection with an assumed initial melt Fe3+/∑Fe of 0.15 (Cottrell & Kelley, 2011). The corrected data (with
subscript 72‐AddOl; “72‐AddOl values”) are given in Table S4.

Figure 2 compares the corrected “72‐LLD values” and “72‐AddOl values” for the Cenozoic basalts in eastern
China. There are very tight correlations between the two sets of correction results for all the major elements
(correlations for Na2O and CaO are not shown). In addition, the data points in these diagrams are generally
clustered around the 1:1 line, showing the consistency of the correction results using these two methods.
Because the second correction method can only be applied to samples assumed to have undergone olivine
fractionation only, we thus use the corrected “72‐LLD values” (simplified as “72,” i.e., [SiO2]72, [TiO2]72,
[Al2O3]72, [FeO]72, [MgO]72, and [P2O5]72) in the following analysis and discussion.

Despite the adequacy of the fractionation correction to basalt Mg# = 72, uncertainties are expected for the
individual sample data points, but we emphasize the first‐order correlated trends defined by the data
(Figure 3) in discussing the petrological significance of these basaltic melts (samples) when in equilibrium
with mantle mineralogy, for example, in terms of the extent of mantle melting and pressure of melt extrac-
tion (see below).

3.2. Geochemistry of Cpx Megacrysts and P–T Estimation

The cpx megacrysts in these basalts have varied compositions (Wo33–46, En35–54, and Fs9–19; Figure S4) with
Mg# = 65–85. We carried 5–16 analyses along a profile on each of the individual cpx megacrysts and found
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Figure 2. Comparison between the corrected “72‐LLD values” and “72‐AddOl values” for the Cenozoic basalts in eastern
continental China. “72‐LLD values” are the major element compositions (SiO2, TiO2, Al2O3, FeO, MgO, and P2O5)
backtracked to Mg# = 72 along a set of LLDs. “72‐AddOl values” are the major element compositions corrected to basalt
Mg# = 72 by adding olivine. The tight correlations and large consistencies between the major element compositions
corrected to Mg# = 72 using these two different methods prove the validity of the corrected values.
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that each megacryst is remarkably homogeneous in composition (Figure S5), indicating their crystallization
in a stable environment with maintained condition and melt composition. All the cpx megacrysts have
convex‐upward patterns in chondrite normalized REE (rare earth element) and primitive mantle
normalized trace element diagrams with relative enrichment of middle REEs (Figure S6).

There are generally two kinds of thermobarometers to calculate the equilibrium pressure (P) and tempera-
ture (T) of cpx crystallization. One is based on the P–T sensitive chemical equilibrium (i.e., T‐dependent
jadeite‐diopside/hedenbergite exchange equilibrium and P‐dependent jadeite‐melt equilibrium) between

Figure 3. Correlated variations of [MgO]72 with [SiO2]72, [TiO2]72, [Al2O3]72, and [P2O5]72 and correlated variations of
[FeO]72 with [SiO2]72 and [Al2O3]72. For comparison, the compositional trends of melts derived from less to more
fertile mantle compositions (the purple arrows) and from high to low pressures of melt extraction (the green arrows) are
shown, respectively. These significant correlations are best explained as reflecting varying pressures of melt extraction,
rather than the mantle source compositional variations.
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cpx and host melt (cpx‐melt thermobarometer; Putirka et al., 1996, 2003; Putirka, 2008). The other is based
only on the cpx components (single‐cpx thermobarometer; Nimis, 1995, 1999; Nimis & Taylor, 2000;
Putirka, 2008). As most of the cpx megacrysts in this study are not in chemical equilibrium with their
host basalts (see below), we choose to use single‐cpx thermobarometer to estimate the equilibrium P–T of
cpx megacryst crystallization. The cpx barometer and thermometer applied here are eq.32a and eq.32d of
Putirka (2008), which are recalibrated from Nimis (1995) and Nimis and Taylor (2000), respectively, but
are more precise than their original forms with systematic errors of ~±3.1 kbar and ±58 °C. The
calculated P–T results are given in Table S7 and shown in Figure 4. These cpx megacrysts show variably
high crystallization pressures of 16–29 kbar, corresponding to depth range of 54–94 km, using the
expression D (km) = 3.04 × P (kbar) + 5.35 created by approximating the densities of the representative
crustal and mantle layers beneath eastern China (Sun et al., 2018).

4. Discussion
4.1. Varying Pressures of Melt Extraction Reflected by Major Element Systematics

Peridotite melting experiments (e.g., Jaques & Green, 1980; Stolper, 1980; Walter, 1998) andmodeling efforts
(Niu, 1997; Niu & Batiza, 1991) showed significant control of mantle melting pressure on the major element
compositions of mantle melts. With decreasing melting pressure, melt SiO2 and Al2O3 increase, whereas
FeO and MgO decrease. However, because of efficient and inevitable low‐pressure melt‐solid equilibration
(Niu, 1997), the pressure signature preserved in the melt compositions largely reflects the final melting
pressure (i.e., pressure of melt extraction Pf), rather than the solidus pressure (P0) or average melting

Figure 4. Calculated equilibrium temperatures and pressures of cpx megacrysts in P–T space and histogram of the calculated crystallization depths of these cpx
megacrysts. The data include 47 cpx megacrysts of this study and 46 cpx megacrysts from the literature (Chen et al., 2009; Han et al., 1991; Kovács et al., 2016;
Liu et al., 1992; Su et al., 2014; Wang, 2011; Xia et al., 2004; Yu et al., 2019). The cpx barometer and thermometer used are eq.32a/32d in Putirka (2008). Standard
errors of P and T calculations using multiple analyses on single cpx crystals are also plotted. For comparison, the geotherm of eastern China (Menzies et al., 2007)
and the transition from garnet to spinel lherzolite (Klemme & O'Neill, 2000) are also plotted. These cpx megacrysts show varied crystallization pressures of
16–29 kbar. The crystallization depths (D = 54–94 km with a peak at 75–80 km) of these cpx megacrysts are calculated using an equation of D (km) = 3.04 × P
(kbar) + 5.35 created by approximating the densities of the representative crustal and mantle layers beneath eastern China (Sun et al., 2018). The location‐averaged
crystallization depths of cpx megacrysts from Jiucaidi (JC), Kuandian (KD), Changle (CL), Penglai (PL), Yangyuan (YY), Dayangke (DY), Damaping (DM), Nushan
(NS), Xiadai (XD), and Dalinor (DL) are also listed.
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pressure. In addition, for a polybaric decompression melting, the melt
extraction pressure (Pf) is determined by the depth of the base of overlying
lithosphere, which is termed “lid effect” (Humphreys & Niu, 2009; Niu
et al., 2011; Niu & Green, 2018). This is proved by studies of the intraplate
oceanic island basalts (OIB), which reflect a predominant control of litho-
sphere thickness, rather than mantle source composition, on the compo-
sitional variations of OIB. OIB extracted beneath a thick lithosphere
show high‐P signatures with low SiO2 and Al2O3 and high MgO and
FeO contents, whereas those extracted beneath a thin lithosphere show
low‐P signatures with high SiO2 and Al2O3 and low MgO and FeO con-
tents (Haase, 1996; Humphreys & Niu, 2009; Niu et al., 2011; Niu &
Green, 2018). Furthermore, the extent of melting (F) is proportional to
decompression intervals (P0 − Pf). Melts extracted beneath a thick litho-
sphere with a low decompression interval have geochemical characteris-
tics consistent with a low‐F melting, showing elevated abundances of
incompatible elements such as Ti and P with a strong garnet signature
(high Sm/Yb). In contrast, melts extracted beneath a thin lithosphere with
a longer decompression interval show high‐F signatures with diluted Ti
and P abundances and a weak garnet signature (low Sm/Yb)
(Haase, 1996; Niu et al., 2011; Niu & Green, 2018).

As illustrated in Figure 3, the primitive Cenozoic basalts in eastern conti-
nental China show large compositional variations, which can be
explained as reflecting varying pressures of melt extraction or varying
mantle source compositions. A more fertile mantle source with higher
basaltic components is characterized by high SiO2, Al2O3, FeO, TiO2,

and P2O5 contents and low MgO content (Griffin et al., 1999, 2008; Walter, 1998). The compositional trends
of melts derived from less to more fertile mantle compositions (purple arrows) and from high to low pres-
sures of melt extraction (green arrows) are shown in Figure 3, respectively. In [SiO2]72‐[MgO]72 and
[Al2O3]72‐[MgO]72 diagrams, the compositional trends of the Cenozoic basalts in eastern continental
China are consistent with both effects of mantle source fertility and melt extraction pressure. However, in
the rest of these diagrams ([TiO2]72‐[MgO]72, [P2O5]72‐[MgO]72, [SiO2]72‐[FeO]72, and [Al2O3]72‐[FeO]72),
the compositional trends are consistent with the effect of varying melt extraction pressures but orthogonal
to the trend of mantle source compositional variations. Therefore, the compositional variations and correla-
tions of primitive Cenozoic basalts in eastern China (Figure 3) can be best explained as resulting from vary-
ing pressures of melt extraction in the mantle. In terms of understood mechanisms of mantle melting and
melt extraction, such varying pressures of melt extraction recorded in these basalts are most likely controlled
by the varied lithosphere thickness in eastern China, specifically the depth of the lithosphere‐asthenosphere
boundary (LAB) as tested below.

4.2. Origin of Cpx Megacrysts in the Cenozoic Basalts of Eastern China

Cpx megacrysts in the Cenozoic basalts of eastern China have low SiO2 (46.81–51.64 wt.%), Cr2O3

(0.00–0.60 wt.%), and Mg# (65.2–84.3) and high Al2O3 (6.62–10.43 wt.%), which are different from
mantle‐derived Cr‐rich diopsides (high SiO2, Cr2O3 andMg#), but similar to Al‐rich augites crystallized from
basaltic magmas under high pressures (Irving & Frey, 1984; Wass, 1979; Wilshire & Shervais, 1975). They
show correlations of Mg# with major elements and their ratios (e.g., SiO2, TiO2, Al2O3, FeO, Na2O, and
CaO/Al2O3) (Figure S7), suggesting their derivation from melts that had experienced variable extent of frac-
tional crystallization. However, these cpx megacrysts are generally not in equilibrium with their host
basalts (Figure S8). Most of these cpx megacrysts were crystallized from more evolved melts than their
host basalts (Figure S8). Therefore, these cpx megacrysts were most likely entrained as xenocrysts by their
host basalts during eruption. Nevertheless, the calculated trace element compositions and patterns of melts
in equilibriumwith these cpxmegacrysts are essentially indistinguishable from those of the Cenozoic basalts
in eastern China (Figure S9). Therefore, we suggest that the parental and host melts of these cpx megacrysts
may share the similar primary melts or come from different batches of primary melts derived from similar

Figure 5. Comparison between the location‐averaged crystallization depths
of cpx megacrysts and the LAB depths beneath each sample location in
eastern continental China estimated from seismic studies (Chen, 2009, 2010;
Chen et al., 2008, 2009; Q. Li, Gao, et al., 2013; Y. Li, Wu, et al., 2013; Shan
et al., 2016; Zheng et al., 2011). The 2SD variation ranges of the
location‐averaged crystallization depths of cpx megacrysts (vertical error
lines) and the estimation uncertainties of the LAB depths beneath each
sample locality (~±10 km; horizontal error line) are plotted.
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Figure 6. (a–g) Correlations of location‐averaged basalt major element compositions SiO2, TiO2, Al2O3, FeO, MgO, and
P2O5 (corrected for fractionation effect to Mg# = 72, e.g., [SiO2]72) and [Sm/Yb]N (primitive mantle normalized Sm/Yb)
with location‐averaged crystallization pressures of cpx megacrysts in eastern China. The basalt compositions used for
correction and averaging are from 65 basalt samples analyzed in this study and 211 basalts from the literature (Basu
et al., 1991; Chen et al., 2007; Chu et al., 2017; Dostal et al., 1991; Fan &Hooper, 1991; Guo et al., 2016; Guo et al., 2019; Ho
et al., 2003; Huang et al., 2013; Lee et al., 2006; Liu et al., 1992, 1994; Li et al., 2016; Li et al., 2017; Liu et al., 2016; Ma &
Xu, 2004; Peng et al., 1986; Qi et al., 1994; Sakuyama et al., 2013; Sun et al., 2017; Y. Wang, Zhao, et al., 2011; Xu
et al., 2012; Yang et al., 2012; Zou et al., 2000). The crystallization pressures of cpx megacrysts used for averaging are
calculated from cpx compositions analyzed in this study and those compiled from the literature (Chen et al., 2009; Han
et al., 1991; Kovács et al., 2016; Liu et al., 1992; Su et al., 2014; Wang, 2011; Xia et al., 2004; Yu et al., 2019). Each data
point represents average cpx crystallization pressure (X axis) and average basalt composition (Y axis) from a given location;
the error bars represent one standard derivation from the mean. The variation of crystallization pressures of cpx mega-
crysts represents the variation of lithosphere thickness beneath each sample locality in eastern continental China
(Figure 1; see text for details). The averaged data points define trends that are consistent with decreasing pressure and
increasing extent of melting from beneath thick lithosphere (high [MgO]72, [FeO]72, [TiO2]72, [P2O5]72, and [Sm/Yb]N
and low [SiO2]72, and [Al2O3]72) to beneath thin lithosphere (low [MgO]72, [FeO]72, [TiO2]72, [P2O5]72, and [Sm/Yb]N
and high [SiO2]72 and [Al2O3]72), demonstrating significant control of lithosphere thickness on the compositional
variation of continental intraplate basalts. Data point of Dalinor in the [Sm/Yb]N versus P diagram is off the trend, which
may indicate the average calculated pressure higher than the LAB depth beneath this region. (h) Correlation between
location‐averaged basalt [Sm/Yb]N and Sc contents to show the “garnet” effect on the basalt trace element compositions.
As Sc is highly compatible in garnet, residence of garnet in the mantle source region beneath thick lithosphere can
result in both low Sc contents and high [Sm/Yb]N in the erupted melt. In contrast, melts derived from beneath thin
lithosphere have high Sc contents and low [Sm/Yb]N.
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sources and under similar conditions. This is also favored by the similarly depleted Sr‐Nd isotope
compositions between cpx megacrysts and their host basalts shown in previous studies (He et al., 2013;
Liu et al., 1992; Yu et al., 2019).

The characteristics of vitreous appearance and conchoidal fracture with poor cleavage of these cpx mega-
crysts are consistent with cpx megacrysts found in alkali basalts in south Australia and Scotland which were
suggested to have a high‐pressure origin (Chapman, 1976; Irving, 1974). Calculations using the pyroxene
geobarometer confirm the high‐pressure signature (16–29 kbar) of these cpx megacrysts in eastern China.
Similar cpx megacrysts with a high‐pressure origin have also been reported in the Cenozoic alkali basalts
from the Chukchi Peninsula in the far east Asia (Akinin et al., 2005). It should be noted that the crystalliza-
tion depth range (54–94 km) of the cpx megacrysts in eastern China is similar to the depth range of
present‐day lithosphere‐asthenosphere boundary (LAB) beneath eastern China (~60–100 km; e.g., An &
Shi, 2006; Chen et al., 2008; Chen, 2009), and the average crystallization depth of cpx megacrysts from a
given location (Figure 4) is close to the estimated seismic LAB depth beneath this region, despite of the large
uncertainties of these estimations (Figure 5). Therefore, we conclude that these cpx megacrysts were most
likely crystallized under conditions close to the LAB and then captured as xenocrysts by their
rapid‐ascending host basalts.

4.3. Lithospheric Thickness Control on the Compositional Variation of Continental
Intraplate Basalts

Although the LAB depth beneath a given location in eastern continental China can be estimated from seis-
mic studies (Figure 5), such estimation is rough because of the low resolutions (~10 km) of seismic models
and because LAB beneath this region is in fact a gradient zone 10–20 km wide rather than an ideal sharp

Figure 7. Schematic illustration of the lithospheric thickness control on the compositional variation of intraplate basalts beneath eastern continental China. The
adiabatically upwelling mantle reaches the solidus and begins to melt at P0. The base of the lithosphere constrains the final depth of the melting (Pf). The vertical
range of decompression (P0 – Pf) is proportional to the extent of melting (F). The melts erupted on thick lithosphere show signatures of high pressure and low
extent of melting (i.e., low Si and Al and high Fe, Mg, P, and Ti), whereas those erupted on thin lithosphere show the signatures of low melting pressure and high
extent of melting (i.e., high Si and Al and low Fe, Mg, P, and Ti). Furthermore, melting beneath thick lithosphere in the garnet facies can impart strong “garnet
signature” in the derived melt with high [Sm/Yb]N, whereas the intensity of “garnet signature” can be diluted by increasing extent of melting beneath thin
lithosphere, with the melt having low [Sm/Yb]N. The green layer beneath the LAB indicates the presence of a melt‐rich layer (supplied by the rising incipient melt
denoted by the green arrowed wavy lines). Localized melt layers embedded in the meltless asthenosphere close beneath the LAB can act as stable “magma reser-
voirs” with closed‐system crystallization to form evolved melts and cpx megacrysts without being in equilibrium with surrounding mantle.
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boundary (e.g., Chen, 2009; Chen et al., 2008). In addition, different seis-
mic studies tend to give varied LAB depths beneath a given location.
Hence, estimation of the LAB depth beneath a given location is to some
extent artificial. Therefore, unlike the oceanic lithosphere whose thick-
ness (L) can be well estimated from its age (t) by the half‐space cooling
model (HSM) L ∝ t1/2 (e.g., Parsons & McKenzie, 1978; Sclater &
Francheteau, 1970), it is difficult to constrain the continental lithosphere
thickness and evaluate its compositional control on the
within‐continental basalts. However, in the case of the Cenozoic basalts
in eastern continental China, if their pressure signatures revealed by the
compositional variations (Figure 3) are indeed controlled by the varying
lithosphere thickness, and if the cpx megacrysts included in these basalts
are indeed formed under conditions close to the LAB (see above), we
should expect correlated variations of basalt compositions with the calcu-
lated crystallization pressures of cpx megacrysts.

Indeed, Figure 6 confirms this prediction. Figures 6a–6f show correlated
variations of the location‐averaged basalt compositions with the
location‐averaged crystallization pressures of cpx megacrysts (see data in
Table S8). Basalts containing cpx megacrysts with high crystallization
pressures derived from beneath thick lithosphere have compositions of
low [SiO2]72 and [Al2O3]72 and high [FeO]72, [MgO]72, [TiO2]72, and

[P2O5]72 because of low extent (F) of melting and high pressure (deep)

melt extraction (Pf), whereas basalts containing cpx megacrysts with low
crystallization pressures derived from beneath thin lithosphere exhibit

the reverse, that is, high [SiO2]72 and [Al2O3]72 and low [FeO]72,

[MgO]72, [TiO2]72, and [P2O5]72 (Humphreys & Niu, 2009; Niu
et al., 2011) (Figure 7).

Furthermore, melting beneath thick lithosphere in the garnet peridotite
facies can impart the strong “garnet signature” in the resulting melt with
high [Sm/Yb]N (primitive mantle normalized Sm/Yb), whereas the inten-
sity of the “garnet signature” is diluted by the continued decompression
melting beneath thin lithosphere, with the resulting melt having low
[Sm/Yb]N (Figure 7; Humphreys & Niu, 2009; Niu et al., 2011). The posi-
tive correlation between the location‐averaged basalt [Sm/Yb]N and crys-
tallization pressures of cpx megacrysts confirms this reasoning and
understanding (Figure 6g).

Such “garnet” effect on the basalt trace element compositions can be
demonstrated and substantiated by the negative correlation between
basalt Sc content and [Sm/Yb]N (Figure 6h) because Sc is highly compati-
ble in garnet as are heavy REEs like Yb, hence the positive Sc‐Yb correla-
tion and negative Sc‐[Sm/Yb]N. Partial melting modeling in Figure 8
further confirms the above explanation that the Cenozoic basalts in east-
ern China were derived from partial melts from the garnet peridotite
facies which were then diluted by melts from the spinel peridotite facies
by variable extents. Melts derived from beneath a thick lithospheremainly
in the garnet peridotite facies experience less extent of dilution and show
high [Sm/Yb]N, [La/Yb]N, and La/Sc ratios, whereas melts derived from
beneath a thin lithosphere experience higher extent of partial melting in
the spinel peridotite facies and have low [Sm/Yb]N, [La/Yb]N, and La/Sc
ratios. Such modeling is only semiquantitative as the composition of the
enriched mantle source beneath eastern China is difficult to constrain.
However, modeling involved [La/Sm]N can place some convincing

Figure 8. (a) [Sm/Yb]N versus [La/Sm]N, (b) [Sm/Yb]N versus [La/Yb]N,
and (c) [Sm/Yb]N versus La/Sc for the Cenozoic basalts in eastern China.
The solid curves show non‐modal fractional melting models in the garnet
and spinel peridotite facies, respectively. The dashed curves show mixing
trends between a 0.5% melt from the garnet peridotite facies and a 2% melt
from the spinel peridotite facies and between a 2% melt from the garnet
peridotite facies and a 7%melt from the spinel peridotite facies, respectively.
The source and melt mineral modes in garnet and spinel peridotite
facies are from the compilation in Johnson (1998). Partition coefficients are
from the compilation in Niu et al. (1996). The source mantle of the Cenozoic
basalts in eastern China was suggested to have fertile major element com-
positions similar to the primitive mantle (PM) (e.g., Wu et al., 2006; Xu
et al., 2000) but is more enriched in progressively more incompatible ele-
ments, which is consistent with a low‐degree melt metasomatism in the low
velocity zone (LVZ) prior to the major melting event (e.g., Guo et al., 2016;
Niu, 2005; Sun et al., 2017). Therefore, the enriched source mantle of the
Cenozoic basalts in eastern China is estimated to be amixture of PMwith 5%
of a low‐degree (0.5%) melt from the PM. This source mantle composition
can well explain the high [La/Sm]N (an indicator of the source enrichment)
of these basalts. The PM composition is from McDonough and Sun (1995).
This partial melting modeling shows that these basalts represent mixing
between small melt fractions from the garnet peridotite facies with high
[Sm/Yb]N, [La/Yb]N, and La/Sc ratios and relatively larger melt fractions
from spinel peridotite facies with lower [Sm/Yb]N, [La/Yb]N, and La/Sc
ratios.
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constraints on the mantle source composition of these basalts because
[La/Sm]N is more sensitive to the source enrichment than mantle perido-
tite facies (garnet/spinel) (Figure 8a). In conclusion, the correlations in
Figure 6 demonstrate the significant control of lithosphere thickness on
both major and trace element compositions of continental intraplate
basalts and confirm a high‐pressure origin of cpx megacrysts at sites close
to the LAB.

The various P‐indicating petrological parameters ([SiO2]72, [Al2O3]72,
[MgO]72, and [FeO]72) in Figure 6 can be combined into a single
P‐parameter, expressed in terms of lithosphere thickness (shown by the
crystallization pressures of cpx megacrysts) using a polynomial regression
(R = 0.88) (Figure 9). It should be noted that such basalt‐based P values
represent the final melt extraction pressures, determined by the thickness
of the lithospheric lid, rather than any melting pressure (e.g., initial or
average melting pressures) deeper than the LAB, because of the extremely
efficient melt‐solid equilibration under sublithospheric mantle conditions
(Niu, 1997; Niu et al., 2011). Therefore, application of basalt‐based ther-
mobarometers to infer the initial pressure and temperature of mantle
melting is problematic and misleading (Niu, 2016; Niu et al., 2011)
because basalts do not record such information.

4.4. Implications on the Crystallization Sites of Cpx Megacrysts

The above discussions on the origin of cpx megacrysts have confirmed
their high crystallization pressures close to the depths of LAB.
However, one important but often overlooked problem is that why these

cpx megacrysts crystallized close to the LAB are so evolved instead of being in equilibrium with primitive
mantle melts with Mg# ≥ 72 (Figure S8). The highly evolved nature of these cpx megacrysts indicates the
presence of variably evolved parental melts close to the LAB. One possible site where these evolved melts
exist may be the magma chambers at the base of continental lithospheric mantle. However, it is not clear
how these magma chambers were formed under such high pressures in the refractory lithospheric mantle
resistant to melt erosion and why these magma chambers must necessarily exist close to the LAB. In
Irving's “flow crystallization”model, crystallization can take place along the walls of magma conduits from
a flowing melt (Irving, 1974, 1980). This is possible and likely but requires a conduit with sufficient width, a
slow magma flowing rate, continued magma supply from the deep mantle, and long‐term uniform parental
magma composition in order to generate large compositionally homogeneous cpx megacrysts. However, the
widespread appearance of mantle xenoliths in the Cenozoic basalts in eastern China implies a rapid magma
ascending rate, and it is difficult to keep long‐term uniform and evolved compositions for melts flowing in
the magma conduits. Therefore, magma chambers and magma conduits at the base of continental litho-
spheric mantle may not be reasonable sites for the growth of cpx megacrysts.

The upper mantle seismic structure beneath eastern China has been detected to resemble that of the oceanic
upper mantle with a seismic low velocity zone (LVZ) beneath the lithosphere (Ekström &
Dziewonski, 1998), which requires the presence of a melt rich layer close beneath the LAB (Figure 7; e.g.,
Kawakatsu et al., 2009; Naif et al., 2013; Niu, 2008; Niu & O'Hara, 2009; Niu et al., 2011; Niu &
Green, 2018; Schmerr, 2012; Tharimena et al., 2017). Such localized melt layers (or lenses) can act as stable
“magma reservoirs” with closed‐system crystallization (Figure 7) to form evolved melts parental to these
compositionally evolved and uniform cpx megacrysts without dynamic reaction with the surrounding man-
tle. Therefore, these cpx megacrysts were most likely crystallized in closed and stable melt layers close
beneath the LAB, and their crystallization depths (pressures) can thus be used as effective proxies for the
lithosphere thickness. Such a “stable and closed system magma reservoir” is expected to be destructed or
demolished by the next pulses of melt aggregation, transport, and eruption, with previously crystallized
cpx megacrysts captured as xenocrysts by the replenished and ascending melts. It is important to note that
cpx megacrysts transporting melt may undergo further crystallization during ascent because of
decompression‐induced volatile exsolution, which can raise the liquidus temperature, leading to the

Figure 9. A multivariate regression expresses the lithosphere thickness
(shown by the crystallization pressures of cpx megacrysts) in terms of sev-
eral pressure‐sensitive parameters in Figure 6 ([SiO2]72, [Al2O3]72,
[MgO]72, and [FeO]72), which emphasizes that basalts record faithfully only
the final depth of melting or melt equilibration, instead of initial nor mean
pressure of melting.
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variably evolved host melt composition (Sun et al., 2018). This understanding offers new insights into mantle
melting and melt aggregation processes for continental basaltic magmatism.

5. Conclusions

We test the hypothesis that lithospheric thickness controls the compositional variation of continental intra-
plate basalts by studying the Cenozoic alkali basalts and the contained clinopyroxene megacrysts from 10
localities throughout eastern continental China. These clinopyroxene megacrysts were formed at sites close
to the base of the lithospheric mantle, and their equilibrium pressures (depths) are thus ideal proxies for the
lithosphere thickness at the time of eruptions. Melts erupted on thick lithosphere have geochemical charac-
teristics of lower extent of melting (e.g., higher [TiO2]72, [P2O5]72, and [Sm/Yb]N) and higher pressure of
melt extraction (e.g., lower [SiO2]72, [Al2O3]72, and Sc; higher [MgO]72, [FeO]72, and [Sm/Yb]N), whereas
basalts erupted on thin lithosphere have the signatures of higher extent of melting (e.g., lower [TiO2]72,
[P2O5]72, and [Sm/Yb]N) and lower pressure of melt extraction (e.g., higher [SiO2]72, [Al2O3]72, and Sc; lower
[MgO]72, [FeO]72, and [Sm/Yb]N). Therefore, the basalt compositions reflect the final pressure of melting or
melt equilibrium, determined by the thickness of lithospheric lid, rather than pressure conditions deeper
than the LAB, because of efficient melt‐solid equilibration during the process of melt extraction.
Importantly, a melt rich layer close beneath the LAB required to explain the seafloor basalt petrogenesis also
exists beneath continents. Such a melt layer forms a “stable and closed‐system magma reservoir” to crystal-
lize compositionally uniform cpx megacrysts. Such a “magma reservoir”will be destructed or demolished by
the next pulses of melt aggregation, transport and eruption. Hence, both the cpx megacrysts and the host
basalts record different aspects of the same control, that is, the lid effect, on continental basaltic magmatism.
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