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Abstract. In this work, it is shown that a simply connected, ratio-
nally elliptic torus orbifold is equivariantly rationally homotopy equiv-
alent to the quotient of a product of spheres by an almost-free, linear
torus action, where this torus has rank equal to the number of odd-
dimensional spherical factors in the product. As an application, simply
connected, rationally elliptic manifolds admitting slice-maximal torus
actions are classified up to equivariant rational homotopy. The case
where the rational-ellipticity hypothesis is replaced by non-negative cur-
vature is also discussed, and the Bott Conjecture in the presence of a
slice-maximal torus action is proved.

1. Introduction

A torus manifold is a 2n-dimensional, closed, orientable, smooth manifold
equipped with a smooth, effective n-torus action which has non-empty fixed-
point set. Such spaces have been of long-standing interest, going back, on
the one hand, to Orlik and Raymond’s work on closed, smooth 4-manifolds
equipped with smooth, effective T 2 actions [31, 32] and, on the other hand,
to the study of toric varieties in algebraic geometry [10]. Many results
on manifolds with torus actions admit generalizations to orbifolds (see, for
example, [17] for smooth torus actions on orbifolds, [21, 26] for Hamiltonian
torus actions on symplectic orbifolds or [34] for quasitoric orbifolds).

Recently, it has been shown in [38] that, if M is simply connected and
either a rationally elliptic torus manifold with torsion-free integer cohomol-
ogy or a torus manifold with non-negative sectional curvature, then M is
homeomorphic to the quotient of a product of spheres by a free, linear torus
action. In this paper, torus orbifolds are investigated, and a similar result
to that in [38] is proven in this more general context.

Recall that a simply connected topological space X is called rationally
elliptic if it satisfies dimQH

∗(X;Q) <∞ and dimQ(π∗(X)⊗Q) <∞. Two
spaces X and Y are rationally homotopy equivalent if their corresponding
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minimal models are isomorphic. Given a torus T , a rational homotopy
equivalence between T -spaces X and Y is T -equivariant if the corresponding
Borel constructions XT and YT are also rationally homotopy equivalent and
there exists a commutative diagram

H∗(Y ;Q) // H∗(X;Q)

H∗T (Y ;Q)

OO

// H∗T (X;Q)

OO

where the horizontal arrows are isomorphisms induced by the respective
rational homotopy equivalences.

Theorem A. Let (O, T ) be a rationally elliptic, simply connected torus

orbifold. Then there is a product P̂ of spheres of dimension ≥ 3, a torus L̂
acting linearly and almost freely on P̂ , and an effective, linear action of T on
Ô = P̂ /L̂, such that there is a T -equivariant rational homotopy equivalence

O 'Q Ô.

Moreover, if O is a manifold, then L̂ acts freely on P̂ and thus Ô is a
manifold as well.

The final statement in Theorem A regarding manifolds is closely related
to Theorem 1.1 of [38], where a stronger assumption (torsion-free integral co-
homology) is required in order to obtain a correspondingly strong conclusion
(classification up to homeomorphism).

Torus orbifolds have been studied in [18, 19, 20] and arise naturally in the
study of smooth torus actions on manifolds, for example, when the action
is slice maximal.

Definition. Let M be a closed, orientable, smooth n-manifold on which a
torus T k acts smoothly and effectively, and let m be the minimal dimension
of an orbit. The action is slice maximal if 2k = n+m.

It is clear from the definition that torus manifolds are an extremal case
of slice-maximal actions. For a generic k-torus action on an n-dimensional
manifold, it follows from the slice representation at a minimal orbit that
2k ≤ n + m. Thus, if equality holds, the slice representation at a minimal
orbit is even dimensional and has maximal symmetry rank, justifying the
terminology “slice maximal”. Slice-maximal actions were considered in [22,
37], where they were called maximal.

Given an n-manifold M with a slice-maximal T k action, there exists a
subtorus Tm ⊆ T k acting almost freely on M and the quotient O = M/Tm

is a 2(k−m)-dimensional torus orbifold. Moreover, if M is rationally elliptic,
so too is the quotient O.

By applying Theorem A, it turns out that the existence of a slice-maximal
torus action has strong implications on the topology of a manifold.
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Theorem B. Let M be an n-dimensional, smooth, closed, simply connected,
rationally elliptic manifold with a slice-maximal T k action. Then there is a
product P̂ of spheres of dimension ≥ 3, a torus K̂ acting linearly and freely
on P̂ , and an effective, linear action of T k on M̂ = P̂ /K̂, such that there is

a T k-equivariant rational homotopy equivalence M 'Q M̂ .

It is worth pointing out that, in general, rational homotopy does not be-
have well with respect to group actions; for example, one cannot “pull back”
an action via a rational homotopy equivalence. The difficulties are even more
apparent in the case of actions which are not almost free. In particular, while
it is not too hard in Theorem B to find some space M̂ = P̂ /K̂ that is ratio-
nally homotopy equivalent to M , it is more difficult to prove that such space
is a manifold (i.e., that the K̂ action is free rather than almost free), and
even harder to show that the rational homotopy equivalence is T -equivariant
in the sense described above. To prove the latter, some novel approaches are
required. In this case, it is shown that the rational homotopy equivalence
M̂ 'Q M induces a rational homotopy equivalence between the equivariant

1-skeleta M̂ (1) 'Q M
(1) and, moreover, that this rational homotopy equiva-

lence is, in fact, induced by a T k-equivariant homeomorphism M̂ (1) →M (1).

As a first application, Theorem B has been used in [11] to obtain a classi-
fication of closed, simply connected, rationally elliptic manifolds admitting
effective torus actions of maximal rank up to equivariant rational homotopy
equivalence.

For another interesting consequence of Theorem B, recall that the largest
integer r for which a closed, simply connected space M admits an almost-free
T r-action is called the toral rank of M , and is denoted rk(M). The Toral
Rank Conjecture, formulated by S. Halperin, asserts that dimH∗(M ;Q) ≥
2rk(M).

Corollary C. Let M be a smooth, closed, simply connected, rationally el-
liptic, n-dimensional manifold with a slice-maximal torus action. Then M
satisfies the Toral Rank Conjecture.

Proof. Let T r act almost freely on M . Given H2(M ;Q) = Qb2(M), there is

a principal T b2(M)-bundle over M with (rationally) 2-connected total space

P . As any action by a torus T on M lifts to a T × T b2(M) action on P ,
the slice-maximal action (resp. the almost-free T r action) on M lifts to a

slice-maximal action (resp. an almost-free T r × T b2(M) action) on P . By
Theorem B and since H2(P ;Q) = 0, P must have the rational cohomology
of a product of spheres of dimension ≥ 3. By [9, Prop. 7.23], P satisfies the

Toral Rank Conjecture, i.e. H∗(P ;Q) ≥ 2r+b2(M). The result now follows

from dimH∗(P ;Q) ≤ dimH∗(T b2(M);Q) · dimH∗(M ;Q). �

Finally, recall that the Bott Conjecture asserts that a closed, simply con-
nected, non-negatively curved Riemannian manifold is rationally elliptic.
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In [35], W. Spindeler verified the conjecture for simply connected, non-
negatively curved torus manifolds. In fact, the conjecture also holds in
the slice-maximal setting.

Theorem D. Let M be a closed, simply connected, non-negatively curved
Riemannian manifold admitting an isometric, slice-maximal torus action.
Then M is rationally elliptic.

It is worth noting that non-negatively curved torus manifolds have al-
ready been classified up to equivariant diffeomorphism in [38], and a similar
classification from a different viewpoint can be found in [7]. If the non-
negative-curvature hypothesis in Theorem D were to be replaced by positive
curvature, then it would follow from the work of K. Grove and C. Searle
[14] that M is equivariantly diffeomorphic to a sphere or complex projective
space equipped with a linear action.

The paper is organized as follows: In Section 2, some basic definitions
and facts about orbifolds are collected, following the presentation in [24],
as well as some results on smooth actions on orbifolds. These results have
been included to provide a basic reference for compact Lie group actions
on orbifolds, since they seem to be scattered in the literature (see, for ex-
ample, [16, 17, 26, 39]). In Section 3, torus orbifolds are introduced and
their fundamental properties established. In Section 4, there is a brief re-
view of GKM-theory applied to torus orbifolds. The proof of Theorem A is
contained in Section 5. In Section 6, an example of a family of rationally
elliptic torus orbifolds which are not rationally homotopy equivalent to any
rationally elliptic manifold is provided, illustrating that almost-free (rather
than free) torus actions on products of spheres are necessary in the con-
clusion of the Theorem A. Section 7 is devoted to establishing Theorem B.
In Section 8, a version of Theorem A for non-negatively curved orbifolds
of dimension ≤ 6 is proven. The case of general dimensions remains open.
Section 8 concludes with the proof of Theorem D, which is independent of
the rest of the paper.

The reader is referred to [8] for the basic definitions and results of rational
homotopy theory. A brief summary can also be found in [11].

Acknowledgements. We would like to thank Matthias Franz for helpful
comments on a previous version of this article, and Wolfgang Spindeler for
discussions regarding his work in [35].

2. Review of orbifolds

As there are some conflicts in the literature regarding basic notions in
the study of orbifolds, it is important to clearly define the notation and
terminology which will be used throughout the article. Since the proofs of
most of the lemmas in this section use standard arguments, these will only
be sketched.
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Definition 2.1. A local model of dimension n is a pair (Ũ ,Γ), where Ũ is
an open, connected subset of a Euclidean space Rn, and Γ is a finite group
acting smoothly and effectively on Ũ .

A smooth map (Ũ1,Γ1)→ (Ũ2,Γ2) between local models (Ũi,Γi), i = 1, 2,
is a homomorphism ϕ

#
: Γ1 → Γ2 together with a ϕ

#
-equivariant smooth

map ϕ̃ : Ũ1 → Ũ2, i.e. ϕ̃(γ · ũ) = ϕ#(γ) · ϕ̃(ũ), for all γ ∈ Γ1, ũ ∈ Ũ1.

Given a local model (Ũ ,Γ), denote by U the quotient Ũ/Γ. Clearly, a

smooth map ϕ̃ : (Ũ1,Γ1) → (Ũ2,Γ2) induces a map ϕ : U1 → U2. The map
ϕ is called an embedding if ϕ̃ is an embedding. In this case, the effectiveness
of the actions in the local models implies that ϕ

#
is injective.

Definition 2.2. An n-dimensional local chart (Up, Ũp,Γp, πp) around a
point p in a topological space X consists of:

(a) A neighbourhood Up of p in X;

(b) A local model (Ũp,Γp) of dimension n;

(c) A Γp-equivariant projection πp : Ũp → Up, where Γp acts trivially on

Up, that induces a homeomorphism Ũp/Γp → Up.

If π−1
p (p) consists of a single point, p̃, then (Up, Ũp,Γp, πp) is called a good

local chart around p. In particular, p̃ is fixed by the action of Γp on Ũp.

Note that, given a good local chart (Up, Ũp,Γp, πp) around a point p in

a topological space X, the 4-tuple (Up, Ũp,Γp, πp) is also a local chart, not
necessarily good, around any other point q ∈ Up. By abusing notation, a

local chart (U, Ũ ,Γ, π) will from now on be denoted simply by U .

Definition 2.3. An n-dimensional (smooth) orbifold, denoted by On or
simply O, is a second-countable, Hausdorff topological space |O|, called the
underlying topological space of O, together with a maximal collection of
n-dimensional local charts A = {Uα}α such that:

(a) The neighbourhoods Uα ∈ A give an open covering of |O|, and
(b) For any p ∈ Uα ∩ Uβ, there is a local chart Uγ ∈ A with p ∈ Uγ ⊆

Uα ∩ Uβ and embeddings (Ũγ ,Γγ)→ (Ũα,Γα), (Ũγ ,Γγ)→ (Ũβ,Γβ).

An orbifold is orientable if every local model Ũα is orientable, and if every
Γα action and every embedding Ũγ → Ũα is orientation preserving. Given
an orientable orbifold O, it is not hard to see that the set of points p ∈ O
for which Γp is non-trivial has codimension at least 2 in O. An orbifold O is
connected (resp. closed) if its underlying topological space |O| is connected
(resp. compact and without boundary).

Given an orbifold O and any point p ∈ O, one can always find a good
local chart Up around p. Moreover, the corresponding group Γp does not
depend on the choice of good local chart around p, and is referred to as the
local group at p. From now on, only good local charts will be considered.
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Lemma 2.4. Let O be an orbifold and Up a good local chart around p ∈
O. Let q ∈ Up, q̃ ∈ π−1

p (q) ⊆ Up and (Γp)q̃ = {γ ∈ Γp | γ · q̃ = q̃}.
Then there exists a (Γp)q̃-invariant neighbourhood Ũq ⊆ Ũp of q̃ such that

(πp(Ũq), Ũq, (Γp)q̃, πp|Ũp
) is a good local chart around q.

Proof. Define Ũq to be a (Γp)q̃-invariant neighbourhood of q̃ such that, for

every γ ∈ Γp \ (Γp)q̃, one has Ũq ∩ γ̃ · Ũq = ∅. �

In particular, given a good local chart Up around p ∈ O, a point q ∈ Up
and q̃ ∈ π−1

p (q), one can identify the local group Γq at q with (Γp)q̃.

Definition 2.5. A smooth map ϕ : O1 → O2 between orbifolds is given by
a continuous map |ϕ| : |O1| → |O2| such that, if Up and Uϕ(p) are (good)
local charts around p ∈ O1 and ϕ(p) ∈ O2, respectively, such that ϕ (Up) ⊆
Uϕ(p), then there is a (possibly non-unique) smooth lift at p ∈ O1, ϕ̃p :

(Ũp,Γp)→ (Ũϕ(p),Γϕ(p)), so that ϕ ◦πp = πϕ(p) ◦ ϕ̃p and there is an induced
homomorphism (ϕ̃p)# : Γp → Γϕ(p).

A diffeomorphism ϕ : O1 → O2 between orbifolds is a smooth map with
a smooth inverse.

Definition 2.6. (a) An orbifold O1 is a suborbifold of an orbifold O2,
if there is a smooth map ϕ : O1 → O2 such that |ϕ| maps |O1|
homeomorphically onto its image in |O2| and, for every p ∈ O1, some

(and, hence, every) smooth lift ϕ̃p : Ũp → Ũϕ(p) is an immersion. In
this case, O1 will be identified with its image.

(b) A suborbifold O1 ⊆ O2 is a strong suborbifold if, for every p ∈ O1

and every good local chart Up, the image of a smooth lift ϕ̃p is
independent of the choice of lift.

The above definition of strong suborbifold is equivalent to Thurston’s
definition of suborbifold (cf. [36]). Given a strong suborbifold O1 ⊆ O2, let

Up be a good local chart (in O2) around p ∈ O1 and let T̃pUp be the tangent

space to Ũp at p̃ = π−1
p (p). Denote by T̃pO1 ⊆ T̃pUp the tangent space to

π−1
p (O1 ∩Up) at p̃. Then the space T̃pUp splits as T̃pO1⊕ ν̃pO1, where ν̃pO1

denotes the normal space to T̃pO1 ⊆ T̃pUp.
If O is an orbifold, then a smooth action of a Lie group G on O is an action

of G on O such that the map G×O → O, (g, p) 7→ g · p, is smooth. The set
G(p) = {g ·p | g ∈ G} is the orbit of G through p ∈ O. The ineffective kernel
of the action is the normal subgroup Ker = {g ∈ G | ϕ(g, ·) = idO}. If the
ineffective kernel is trivial, the action is effective. The group G/Ker will
always act effectively. The isotropy subgroup Gp at p ∈ O is the subgroup
consisting of those elements in G that fix p. Note that, whenever G is
compact, one can always find a Gp-invariant good local chart around p. If
Gp is trivial (resp. finite) for every p ∈ O, the action is free (resp. almost
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free). The orbit space of the action will be denoted by O/G and the fixed-
point set {p ∈ O | Gp = G} by OG. The identity component of G is denoted
by Go.

Lemma 2.7. Every G-orbit in O is a manifold, as well as a strong suborb-
ifold of O.

Proof. The fact that G(p), p ∈ O, is a manifold and a suborbifold follows as
in the manifold case. To see that it is a strong suborbifold, one can apply
the fact that, since G acts by diffeomorphisms, the local groups at all points
in the orbit are isomorphic. �

Proposition 2.8. Let O be an orbifold with a smooth, effective action by a
compact Lie group G. Let p ∈ O have isotropy subgroup Gp ⊆ G and let Up
be a Gp-invariant good local chart. Then there exists a Lie group G̃p such
that:

(a) G̃p acts on Ũp and Ũp/G̃p = Up/Gp;

(b) G̃p is an extension of Gp by Γp, i.e. there exists a short exact sequence

{ e } → Γp → G̃p
ρ→ Gp → { e }.

Proof. Let g ∈ Gp. The action of Gp on Up gives a smooth map

Lg : Up → Up

q 7→ g · q.

Then, by definition, there exists a smooth lift L̃g : Ũp → Ũp of Lg. Let

G̃p = {Fg : Ũp → Ũp | πp ◦ Fg = Lg ◦ πp, g ∈ Gp } be the collection of all
possible lifts. This is a group and, given that the Gp action is smooth, it

is not difficult to see that G̃p is a Lie group acting smoothly and effectively

on Ũp. Note that, since Γp = {Fe : Ũp → Ũp | πp ◦ Fe = e ◦ πp = πp}, Γp
is a normal subgroup of G̃p. Moreover, Γp acts on G̃p via Fg 7→ γ · Fg and

G̃p/Γp = Gp, i.e. the quotient by Γp fixes a choice of lift corresponding to

Lg. It then follows that Ũp/G̃p = Up/Gp. �

Corollary 2.9. Let O be an orbifold with a smooth, effective action by a
compact Lie group G. Let p ∈ O have isotropy subgroup Gp and let Up be a
Gp-invariant good local chart. Then the local group Γp commutes with every

connected subgroup of the lift G̃p.

Proof. Let H̃ be a connected subgroup of G̃p, g̃ ∈ H̃, and γ ∈ Γp. From
the short exact sequence in Proposition 2.8, the element g̃γg̃−1 belongs to
Γp. Since H̃ is connected and Γp is discrete, the map g̃ 7→ g̃γg̃−1 must be

constant and hence g̃γg̃−1 = γ for all g̃ ∈ H̃. �

Corollary 2.10. Let G be a compact, connected Lie group acting smoothly
and effectively on an orbifold O such that the fixed-point set OG is non-
empty. Then each connected component of OG is a strong suborbifold.
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Proof. Let p ∈ OG and let Up be a G-invariant good local chart around p.

The goal is to prove that π−1
p (OG ∩ Up) is a submanifold in Ũp.

Since G is connected, the map G̃o → G is a covering and therefore for
every g ∈ G there is a g̃ ∈ G̃o projecting to g. Let q ∈ OG ∩ Up and choose

q̃ ∈ π−1(q) ⊆ Ũp. As g · q = q, for every g ∈ G, it follows that for every

g̃ ∈ G̃o there is a γg̃ ∈ Γp such that g̃ · q̃ = γg̃ · q̃. But G̃o is connected, hence

γg̃ = e for every g̃ ∈ G̃o. Thus q̃ is fixed by G̃o and so π−1
p (OG ∩Up) ⊆ Ũ G̃

o

p .
The other inclusion trivially holds, and therefore

π−1
p (OG ∩ Up) = Ũ G̃

o

p .

By Corollary 2.9, Γp commutes with G̃o and, in particular, Γp preserves

the fixed-point set of G̃o. Then OG ∩ Up is a strong suborbifold and, since
p was arbitrary, it follows that OG is a strong suborbifold. �

Just as for manifolds, one has a notion of Riemannian metric for orbifolds.
An orbifold-Riemannian metric is given at each point p in the orbifold by
the metric on a good local chart Up around p induced by a Γp-invariant Rie-

mannian metric on Ũp. An orbifold equipped with an orbifold-Riemannian
metric will be referred to as a Riemannian orbifold. It is clear that Riemann-
ian notions such as geodesics and completeness carry over to Riemannian
orbifolds. Recall that any orbifold on which a compact Lie group G acts
smoothly and effectively admits a G-invariant orbifold-Riemannian metric.
Kleiner’s Isotropy Lemma (cf. [23]) also holds, with the same proof, in the
context of complete Riemannian orbifolds.

Lemma 2.11 (Isotropy Lemma). Let O be a complete Riemannian orbifold
and suppose that a compact Lie group G acts effectively and isometrically
on O. Let c : [0, d] → O be a minimal geodesic between the orbits G(c(0))
and G(c(d)). Then, for any t ∈ (0, d), Gc(t) = Gc does not depend on t and
is a subgroup of Gc(0) and of Gc(d).

It turns out that the good local charts given by Lemma 2.4 can be chosen
to be compatible with the action of a Lie group.

Lemma 2.12. Let a compact Lie group G act effectively and isometrically
on a complete Riemannian orbifold O and fix p ∈ O. Then there exists a
Gp-invariant good local chart Up around p such that, for every q ∈ Up and
every q̃ ∈ π−1

p (q), there is a Gq-invariant good local chart Uq ⊆ Up around q
and a commutative diagram

(2.1) {e} // Γq //

��

G̃q
ρq //

��

Gq //

��

{e}

{e} // Γp // G̃p
ρp // Gp // {e}
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of short exact sequences, where the vertical maps identify Γq, G̃q and Gq
with the subgroups (Γp)q̃, (G̃p)q̃ and (Gp)q respectively. Furthermore, there
is a commutative diagram

(2.2) Ũq //

πq

��

Ũp

πp

��
Uq // Up

where each map is equivariant with respect to the appropriate actions of the
groups G̃q, G̃p, Gq and Gp.

Proof. The proof requires simply checking that everything proceeds as ex-
pected and is left to the reader. �

Recall from Lemma 2.7 that orbits of Lie group actions are strong sub-
orbifolds. Using the notation developed in Section 2, there is a version of
the Slice Theorem for orbifolds (for a proof, see, for example, [39]).

Theorem 2.13 (Slice theorem). Suppose that a compact Lie group G acts on
an orientable orbifold O equipped with a G-invariant, orbifold-Riemannian
metric, and let G(p) be the orbit of G through p ∈ O. Then a G-invariant
neighbourhood of G(p) is equivariantly diffeomorphic to

G×Gp (ν̃pG(p)/Γp)

and, by Proposition 2.8, this is equivariantly diffeomorphic to

G×G̃p
ν̃pG(p).

3. Torus orbifolds

Definition 3.1. A pair (O2n, Tn), n ≥ 1, is a torus orbifold if O2n is a
2n-dimensional, closed, oriented orbifold on which the n-dimensional torus
Tn acts smoothly and effectively with non-empty fixed-point set.

To avoid confusion, henceforth the notation G = Tn will be used. The
identity component of a subgroup K ⊆ G will be denoted by Ko. If the
action is clear from the context, a torus orbifold (O, G) will be denoted
simply by O. It will always be assumed that O is equipped with an invariant
orbifold-Riemannian metric (cf. [3]).

Definition 3.2. Let O be a torus orbifold and let p ∈ O. The stratum
containing p, which will be denoted by Σp, is the connected component of
the set

{q ∈ O | Goq = Gop as subgroups of G}
which contains p. The projection Σp/G ⊆ O/G of the closure, Σp, of a
stratum Σp is called an (orbifold) face of O/G. A one-dimensional face of
O/G is called an edge.
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It follows from Definition 3.2 that the closure Σp of the stratum contain-

ing p is a connected component of the fixed-point set OGo
p and hence, by

Corollary 2.10, a strong suborbifold of O.
Note that the identity component Gop of an isotropy group Gp is a con-

nected, compact, abelian Lie group, hence a torus. In particular, G̃op acts

effectively on Ũp ∼= R2n. This fact implies the following lemma.

Lemma 3.3. The fixed-point set of a torus orbifold (O, G) consists of finitely
many isolated points. Hence Hodd(O;Q) = 0 if O is simply connected and
rationally elliptic.

Proof. Let p ∈ OG be aG-fixed point. As G̃o is an n-dimensional torus which
acts linearly and effectively on T̃pUp, it follows from dimension reasons that

this action is (up to automorphisms of G̃o) equivalent to the standard action

of G̃o on Cn. Hence it follows from the slice theorem that p is an isolated
fixed point.

It now follows from the Euler characteristic identity χ(OG) = χ(O) (cf.
[3, p. 163], [25]) that χ(O) > 0. Whenever O is also simply connected and
rationally elliptic, this is equivalent to Hodd(O;Q) = 0 [8, p. 444]. �

Lemma 3.4. Given a torus orbifold (O, G), suppose that p ∈ OG and Up is
a G-invariant good local chart around p. Then:

(a) The action of G on Up lifts to an action of G̃ on Ũp such that the

isotropy action G̃o × T̃pUp → T̃pUp is equivalent to the standard n-
torus action on Cn.

(b) Γp is a subgroup of G̃o. In particular, G̃ = G̃o, i.e. G̃ is connected,
hence a torus.

Proof. Part (a) was already proven in the proof of Lemma 3.3.

There is an G̃-invariant scalar product on T̃pO. Hence, G̃ is a closed

subgroup of SO(T̃pO)). By part (a), G̃o is a maximal torus of SO(T̃pO).

Hence, the centralizer of G̃o in SO(T̃pO) is G̃o itself. Now part (b) follows
from Corollary 2.9. �

Corollary 3.5. Let O2n be a 2n-dimensional torus orbifold. Fix p ∈ OG
and let Up be a G-invariant good local chart around p. Then Up/G = Ũp/G̃
is face-preserving diffeomorphic to Rn+ = {(x1, . . . , xn) ∈ Rn | xi ≥ 0, i =
1, . . . , n}.
Lemma 3.6 (cf. [30, Lemma 2.2]). Let O be a closed n-orbifold with a
smooth, effective action by a k-torus G, k ≤ n. Let H ⊆ G be a subtorus and
N ⊆ OH a connected component of its fixed-point set. If Hodd(O;Q) = 0,
then Hodd(N ;Q) = 0 and NG 6= ∅ (i.e. N ∩OG 6= ∅).

Proof. Since Hodd(O;Q) = 0, it follows from [1, Lemma 4.2.1] and [1,
Lemma 3.10.13] that Hodd(N ;Q) = 0. Because N is a G-invariant strong
suborbifold of O, it follows that χ(NG) = χ(N ) > 0 and, hence, that there
is a G-fixed point in N . �
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Proposition 3.7. Let O2n be a torus orbifold with Hodd(O;Q) = 0. Fix
p ∈ O2n and let Σp be the closure of the stratum Σp in O. Then:

(a) Σp is a codimension-(2 dimGp) torus orbifold with Hodd(Σp;Q) = 0.

(b) The linear, effective action of G̃op on T̃pUp = T̃pΣp ⊕ ν̃pΣp is trivial
on the first summand and equivalent to the standard (dimGp)-torus

action on CdimGp on the second.

Proof. By Lemma 3.6, Σp ⊆ OG
o
p contains some fixed point p0 of the G

action. Since Σp is a strong G-invariant suborbifold of O, it follows that

T̃p0Σp is an G̃-invariant subspace of T̃p0O. As G̃ acts in the standard way

on T̃p0O, it follows that Σp has codimension 2 dimGp and, hence, is a torus

orbifold with Hodd(Σp;Q) = 0.
The second claim follows from dimension reasons in a similar way as in

the proof of Lemma 3.4. �

Proposition 3.8. Let O2n be a torus orbifold with Hodd(O;Q) = 0. Then
every point p ∈ O2n lies in the closures of exactly dim(Gp) strata of codi-
mension 2. Equivalently, a point [p] ∈ O/G in the (relative) interior of a
face of codimension k, lies in exactly k faces of codimension 1 in O/G.

Proof. This follows from part (b) of Proposition 3.7 and the Slice Theorem.
�

Lemma 3.9. Let O be a torus orbifold with Hodd(O;Q) = 0. Then the
closure of each two-dimensional stratum of O is homeomorphic to a two-
sphere and each one-dimensional face (edge) in the quotient O/G contains
exactly two fixed points.

Proof. Recall that the closure Σ
2
i of each two-dimensional stratum Σ2

i in
a torus orbifold O projects down to a one-dimensional face of O/G. By

Proposition 3.7, each Σ
2
i contains a fixed point of the G action and is a two-

dimensional torus orbifold with Hodd(Σ
2
i ;Q) = 0. By [36, Chap. 13] the

Σ
2
i are closed, orientable, topological 2-manifolds with positive Euler char-

acteristic, hence each must be homeomorphic to a two-dimensional sphere.

Therefore each Σ
2
i has Euler characteristic 2 and contains exactly two fixed

points of the G action. �

4. Weights, GKM-graphs and the moment-angle complex

Let O be a 2n-dimensional torus orbifold with Hodd(O;Q) = 0. A facet
of the orbit space Q = O/G is a face of codimension one. Recall that, by
Proposition 3.8, this corresponds, in O, to the closure Σp of a stratum Σp

defined by a one-dimensional isotropy group Gp.

Given a facet F , let p ∈ O be a point with dim(Gp) = 1 such that Σp

is the pre-image of F , and let Up ⊂ O be a Gp-invariant good local chart
around p.
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Formally assign a circle S1
F to F and let the label

λF : S1
F → G

denote the composition (covering)

S1
F

∼=−→ G̃op
ρp−→ Gop ⊆ G,

where the map ρp : G̃p → Gp is that arising in Proposition 2.8. Set now
TQ =

∏
F S

1
F and define the label map

λ =
∏
F

λF : TQ −→ G.

Lemma 4.1. The label map λ : TQ → G is well defined.

Proof. In order to verify that the map λ is well defined, it need only be
demonstrated that the labels λF do not depend on the choice of the point in
the pre-image Σp of a facet F . By Definition 3.2, if q ∈ Σp is another point
with dim(Gq) = 1, then Gop = Goq as subgroups of G. It suffices to show

that there is an isomorphism α : G̃oq → G̃op such that the following diagram
commutes:

S1
F

∼= //

∼= ��

G̃op
ρp // Gop

G̃oq
ρq //

α

OO

Goq

=

OO

As each of Gop, G
o
q, G̃

o
p and G̃oq is a circle, if the kernels of ρp and ρq have

the same order, then it is possible to lift the identity Goq
=−→ Gop to such an

isomorphism α.
The kernels of ρp and ρq are given by Γp ∩ G̃op and Γq ∩ G̃oq respectively.

Since the stratum Σp is connected, it is enough to show that the order of

Γp ∩ G̃op is locally constant.
Let Up be a sufficiently small Gp-invariant good local chart around p such

that Ũp is a linear G̃p-representation. Then Ũp is of the form V ⊕W such

that G̃op acts non-trivially on V and trivially on W (see Proposition 3.7).
Moreover, since Σp has codimension two, it follows that V is two di-

mensional and πp(W ) = Σp ∩ Up. Therefore, the subgroup Γp ∩ G̃op of Γp
acts trivially on W . For any q ∈ Σp ∩ Up and q̃ ∈ π−1

p (q) ∩ W one has

Γp ∩ G̃op ⊆ (Γp)q̃. By Lemmas 2.4 and 2.12, Γq = (Γp)q̃ and G̃oq = G̃op, hence

Γp ∩ G̃op ⊆ Γq ∩ G̃oq. On the other hand, the same lemmas yield Γq ⊆ Γp and

G̃oq ⊆ G̃op, hence Γq∩G̃oq ⊆ Γp∩G̃op. Therefore, Γp∩G̃op is locally constant. �

The labels of the facets can be used to define weights on the edges of
the orbit space. By Proposition 3.8, any edge E is the intersection of n− 1
facets {F1, . . . Fn−1} and, by restricting the label map to TE =

∏n−1
i=1 S

1
Fi

,
one obtains a homomorphism λE : TE → G. Let pi be a generic point in
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the stratum corresponding to Fi. As S1
Fi
→ Gopi ⊆ G is a covering, for all

facets Fi, the map λE induces an injective map tE → g on Lie algebras,
hence a surjective map g∗ → tE on the corresponding dual spaces. Since
the dual l∗ of the Lie algebra of a Lie group L is canonically isomorphic to
H2(BL;R), one concludes that the induced map λ∗E : H2(BG;Z) = Zn →
H2(BTE ;Z) = Zn−1 has full rank. Define the weight µ(E) ∈ H2(BG;Z) of
E to be a generator of the kernel of λ∗E .

In this way, one obtains a system of weights on the vertex-edge graph
of the orbit space Q, i.e. on the union of edges and vertices. This is the
well-known GKM-graph associated to the torus orbifold O. In an analogous
manner to the manifold case (cf. [29]), this graph determines the rational
equivariant cohomology ring H∗G(O;Q) = H∗(OG;Q) of O, where OG =

O×GEG is the Borel construction, in the following way: SinceHodd(O;Q) =
0 by assumption, it follows that H∗G(O;Q) is a free H∗(BG;Q)-module,
which is easily seen from the spectral sequence of the homotopy fibration
O → OG → BG. In particular, the induced homomorphism H∗G(O;Q) →
H∗(O;Q) is surjective.

If O(1) ⊆ O is the union of all G-orbits of dimension at most one, i.e.
the pre-image of the vertex-edge graph of Q, the respective inclusion maps
induce a commutative diagram

H∗G(O(1);Q) // H∗G(OG;Q)

H∗G(O;Q)

OO 77

It follows from Lemma 2.3 and Proposition 2.4 of [6] that the homomor-

phisms H∗G(O;Q) → H∗G(OG;Q) and H∗G(O(1);Q) → H∗G(OG;Q) have the
same image, and the former homomorphism is injective. Furthermore, the
homomorphism H∗G(O;Q)→ H∗G(O(1);Q) must, therefore, also be injective.

By Lemma 3.9, O(1) is a union of two-dimensional spheres (intersecting
only in the fixed points of the G action). Therefore, the following theorem
follows as in the manifold case [12, Theorem 7.2]:

Theorem 4.2. Let O be a torus orbifold with fixed points {p1, . . . , pN} and
Hodd(O;Q) = 0. Then, via the natural restriction map

H∗G(O;Q)→ H∗G(OG;Q) =

N⊕
i=1

H∗(BG;Q),

the equivariant cohomology algebra H∗G(O;Q) is isomorphic to the set of
N -tuples (f1, . . . , fN ) ∈ H∗G(OG;Q), with the property that if the vertices
pi and pj in the associated GKM-graph are joined by an edge with weight
µij ∈ H2(BG;Q), then fi − fj lies in the ideal of H∗(BG;Q) generated by
µij.
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Remark 4.3. The process by which one obtains H∗G(O;Q) from the GKM-

graph is functorial in the following sense: Suppose that O (resp. Ô) is a
2n-dimensional torus orbifold with fixed points p1, . . . , pN (resp. p̂1, . . . , p̂N̂ )
and weights µ (resp. µ̂). Suppose, further, that there is a weight-preserving,

injective map ϕ between the GKM-graphs of O and Ô, i.e. µ̂(ϕ(E)) = µ(E),
for each edge E of O/G.

The map ϕ induces an injective homomorphism

ϕ# :
N⊕
i=1

H∗(BG;Q)→
N̂⊕
i=1

H∗(BG;Q),

where, for each i0 ∈ {1, . . . , N} and given ϕ(pi0) = p̂j0 , the restriction of

ϕ# to the i0-th summand of
⊕N

i=1H
∗(BG;Q) is given by the identity map

onto the j0-th summand of the target space
⊕N̂

i=1H
∗(BG;Q).

By Theorem 4.2, H∗G(O;Q) and H∗G(Ô;Q) embed into
⊕N

i=1H
∗(BG;Q)

and
⊕N̂

i=1H
∗(BG;Q), respectively. Since ϕ is weight-preserving, ϕ# maps

H∗G(O;Q) intoH∗G(Ô;Q). It then follows that there is an inducedH∗(BG;Q)-
module homomorphism

H∗G(O;Q)→ H∗G(Ô;Q),

which, by abuse of language, will be denoted also by ϕ#. Moreover, if

Hodd(O;Q) = Hodd(Ô;Q) = 0, then

H∗(O;Q) = H∗G(O;Q)/H>0(BG;Q) ·H∗G(O;Q)

and similarly for H∗(Ô;Q). Hence, there is an induced homomorphism

ϕ# : H∗(O;Q)→ H∗(Ô;Q)

such that the diagram

(4.1) H∗G(O;Q)

��

ϕ# // H∗G(Ô;Q)

��

H∗(O;Q)
ϕ#

// H∗(Ô;Q)

commutes.

Recall now that an n-dimensional manifold with corners Q, i.e. a manifold
locally modelled on Rn+, is called nice if each one of its codimension-k faces
is contained in exactly k facets, i.e. codimension-1 faces, of Q.

Formally assign a copy S1
F of the circle to each facet F of Q and let

TQ =
∏
F S

1
F be the torus given by their product.
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For any q ∈ Q, let T (q) =
∏
F3q S

1
F ⊆ TQ denote the subtorus generated

by the circles corresponding to the facet of Q which contain q. The moment-
angle complex is defined by ZQ = (Q × TQ)/∼, where (q1, t1) ∼ (q2, t2) if

q1 = q2 and t1t
−1
2 ∈ T (q1).

As Q is a nice manifold with corners, it follows that ZQ is a topological
manifold with a continuous TQ action, such that ZQ/TQ is homeomorphic
to Q.

Suppose that, in addition, Q has 0-dimensional faces. Consider a torus
G = Tn and a homomorphism

λ̂ : TQ → G

such that, for every q ∈ Q, the restriction λ̂|T (q) : T (q)→ G has finite kernel.

This condition ensures that the kernel K of λ̂ acts almost freely on ZQ. The
group G then acts on the quotient OQ = ZQ/K such that (OQ, G) is a 2n-
dimensional torus orbifold whose orbit spaceOQ/G has labels induced by the

assignment λ̂, and there is a face-preserving homeomorphism OQ/G→ Q.
The following three standard examples will be needed in the proof of

Theorem A.

Example 4.4. [5, Ex. 6.7] IfQ = ∆n is an n-dimensional simplex, then TQ is
an (n+1)- dimensional torus. Moreover, ZQ is equivariantly homeomorphic
to S2n+1 ⊆ Cn+1 with the standard linear torus action.

Example 4.5. [30, Ex. 4.3] If Q = Σn is the suspension of the simplex ∆n−1,
then TQ is n-dimensional. Moreover, ZQ is equivariantly homeomorphic to
S2n ⊆ Cn × R with the standard linear torus action.

Example 4.6. [5, Prop. 6.4] Let Q1 and Q2 be two nice manifolds with
corners. If Q = Q1 × Q2, then TQ = TQ1 × TQ2 and ZQ is equivariantly
homeomorphic to ZQ1 × ZQ2 .

5. Equivariant classification of torus orbifolds

In order to prove Theorem A, it is necessary to first understand the com-
binatorial properties of the face poset of the orbit space O/G.

Proposition 5.1. Let O be a simply connected, rationally elliptic torus
orbifold. Then the face poset of O/G satisfies:

(a) The vertex-edge graph of each face is connected.
(b) Each face of O/G contains at least one vertex.
(c) Each face of O/G of codimension k is contained in exactly k faces

of codimension 1.
(d) Each one-dimensional face of O/G contains exactly two fixed points

of the G action.
(e) Every two-dimensional face of O/G contains at most four vertices.
(f) For d ≥ 3, no d-dimensional face is combinatorially equivalent to the

face poset of [−1, 1]d/{±id}.
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Proof. Property (a) follows from [6, Prop. 2.5]. Indeed, Hodd(O;Q) = 0 and
Hodd(BG;Q) = 0 imply that the differentials in the spectral sequence of the
homotopy fibration O → OG → BG are trivial. Therefore H∗G(O;Q) =
H∗(OG;Q) = H∗(O;Q) ⊗H∗(BG;Q), thus fulfilling the hypotheses of the
aforementioned proposition. Properties (b), (c) and (d) have been verified
in Lemmas 3.6, 3.8 and 3.9, respectively.

To see that property (e) holds, one must modify the proof of Lemma 4.2 of
[38] for the case of torus orbifolds only slightly. The original proof invokes [1,
Corollary 3.3.11] which, although stated only for rationally elliptic G-CW-
complexes, also holds for compact spaces with finitely many orbit types,
e.g. torus orbifolds, as indicated on page 160 of [1].

Finally, suppose that there is a d-dimensional face F combinatorially
equivalent to the face poset of X := [−1, 1]d/{±id}. Notice first that the
standard linear, effective T d action on (S2)d commutes with the diagonal an-
tipodal map and, therefore, induces an effective T d action on N = (S2)d/Z2

with orbit space X. Thus, the quotient of the T d action on the pre-image of
F is combinatorially equivalent to the quotient of the T d action on N and, in
particular, the corresponding GKM-graphs are isomorphic. By the discus-
sion before Theorem 4.2, their rational cohomology rings are the same. How-
ever, the pre-image of F is rationally elliptic by [1, Cor. 3.3.11], while, on the

other hand, N is not: Indeed, by [3, Thm. 2.4], H∗ (N ;Q) = H∗
(
(S2)d;Q

)Z2

and therefore the Betti numbers of N satisfy b1(N) = b2(N) = b3(N) = 0,
b4(N) = d(d− 1)/2. In particular dimQ(π4(N)⊗Q) = b4(N) and, if N were
rationally elliptic, Theorem 32.6 in [8] would yield

2d(d− 1) = 4 dimQ(π4(N)⊗Q) ≤
∑
j

2j dimQ(π2j(N)⊗Q) ≤ 2d

which is not possible for d > 2. �

Proof of Theorem A. Following the arguments involved in proving [38, Prop.
4.5], the properties established in Proposition 5.1 are precisely those required
to prove that the face poset of O/G is combinatorially equivalent to the
face poset of Q =

∏
i ∆ni ×

∏
j Σnj as in Examples 4.4-4.6, i.e. there is an

isomorphism of face posets ϕ : P(O/G)→ P(Q). For each facet F ∈ P(Q),
fix an isomorphism ιF : S1

F → S1
ϕ−1(F ).

With Q as above, the moment-angle complex ZQ of Q, together with the
action of TQ as discussed in Section 4, is equivariantly homeomorphic to a
product of spheres

∏
Sni equipped with a linear action.

The isomorphism ϕ induces a label map ϕ∗λ : TQ → G, such that the

restriction to each factor S1
F is given by λϕ−1(F ) ◦ ιF . By setting λ̂ = ϕ∗λ,

one can construct, as before, a torus orbifold (OQ, G), where OQ is the
quotient of

∏
Sni by the linear and almost-free action of a subtorus of TQ

complementary to G.
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This is achieved as follows: The kernel L̂ of λ̂ acts almost freely on
∏

Sni ,

although it may not be connected. Therefore,
∏

Sni/L̂ is a torus orbifold.

Moreover, the identity component L̂o of L̂ is a subtorus of TQ.

Since the natural action of the finite group L̂/L̂o on
∏

Sni/L̂o extends to

an action of the connected group TQ/L̂
o, the induced action on cohomology

is trivial. Hence, by [3, Thm. 2.4],
∏

Sni/L̂ and
∏

Sni/L̂o have isomor-
phic rational cohomology rings. Moreover, by Proposition 32.16 of [8] and
Corollary 2.7.9 of [1], the minimal models of these spaces are formal and,

therefore, isomorphic. Hence, it may be assumed that L̂ is connected. In
this case, define OQ =

∏
Sni/L̂.

By construction, the torus orbifolds (O, G) and (OQ, G) have isomorphic
labelled face posets, hence isomorphic GKM-graphs. Therefore the rational
cohomology rings of O and OQ are isomorphic, as discussed after Theo-
rem 4.2. But once again, the minimal models of these spaces are formal by
Proposition 32.16 of [8] and Corollary 2.7.9 of [1]. Since their cohomology
rings are isomorphic, this implies that the spaces are rationally homotopy
equivalent.

Since H∗(OG;Q) = H∗(O;Q)⊗H∗(BG;Q) as modules over H∗(BG;Q),
BT , O and OQ are formal and O and OQ are rationally elliptic, it follows
from Proposition 3.2 of [27] that the minimal models of OG and (OQ)G are
formal. As H∗(OG;Q) is isomorphic to H∗((OQ)G;Q), this ensures that the
minimal models of the Borel constructions OG and (OQ)G are isomorphic,
hence OG 'Q (OQ)G.

Furthermore, from the face-poset isomorphism ϕ, one obtains a commuta-
tive diagram as in (4.1), where the horizontal arrows are clearly the isomor-
phisms induced by the rational homotopy equivalence O 'Q OQ. Therefore,
O is G-equivariantly rationally homotopy equivalent to OQ.

Finally, if O is a (torus) manifold, then all local groups are trivial and

one can identify Ũp with Up, G̃p with Gp, and so on. Given any p ∈ O
with dim(Gp) = l, Proposition 3.8 states that p belongs to the closures Σi,

i = 1, . . . , l, of l codimension-2 strata. By Proposition 3.8 again, each Σi

is fixed by a different factor S1
i of Gop = T l, and the Σi project to distinct

facets Fi of O/G.
By definition, λFi : S1

Fi
→ G sends S1

Fi
isomorphically into S1

i ⊆ Gop
and, therefore, the label map λ sends T ([p]) =

∏
i S

1
Fi

isomorphically into

Gop =
∏
i S

1
i , where [p] ∈ O/G is the image of p.

In particular, the restriction of λ to T ([p]) has trivial kernel. It then
follows that the kernel of λ has trivial intersection with each such torus
T ([p]). Since the label map ϕ∗λ has the same properties as λ, the kernel of
ϕ∗λ has trivial intersection with all isotropy subgroups of the TQ action on
ZQ and, therefore, acts freely on ZQ. Hence, OQ is also a manifold.

�
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6. A family of examples

(1, 0)

(0, 1)

(a, b)

(c, d)

Q

y = e∗2

x = e∗1

bx− ay

dx− cy

ΓQ
µ

Figure 1. (l) Labelled orbit space Q; (r) GKM-graph ΓQ

The family of examples in this section shows the necessity of including
almost-free actions in the conclusion of Theorem A, and also gives an explicit
demonstration of how to apply the GKM algorithm discussed in Section 4.

Consider a 2-torus G and a 2-dimensional nice manifold with corners, Q,
whose boundary consists of four segments labelled as in the square on the left
of Figure 1, where a, b, c, d ∈ Z. In this example the four edges and facets of
Q coincide. The labels of the facets of Q are the slopes ∈ Z2 corresponding to
circle subgroups (tori of codimension one) in G. By the discussion following
Example 4.6, in order to construct a 4-dimensional torus orbifold with orbit
space Q the corresponding labels must be linearly independent whenever
two facets intersect. Assume therefore that

a, d,det

(
a b
c d

)
6= 0.

SinceQ = [0, 1]2, it follows from Examples 4.4 and 4.6 that the moment angle
complex ZQ is equivariantly homeomorphic to S3 × S3 equipped with the
standard linear T 4 action. There is, moreover, a surjective homomorphism
T 4 → G whose kernel is a 2-torus K acting almost freely on ZQ ∼= S3 × S3.
The resulting orbifold OQ = ZQ/K ∼= (S3 × S3)/K is a simply connected,
rationally elliptic, 4-dimensional torus orbifold whose labelled orbit space Q
under the action of G is as on the left of Figure 1. Indeed, in this case the
action of K on S3 × S3 can be written explicitly as

K × (SU(2)× SU(2))→ SU(2)× SU(2)

((z, w), (A,B)) 7→
(

diag(z1−aw̄c, 1)Adiag(zawc, z̄)
diag(z̄bw1−d, 1)B diag(zbwd, w̄)

)
.

It remains to demonstrate that not all such labelled orbit spaces Q can
be realised by torus manifolds, hence that one cannot always find a torus
manifold which is rationally homotopy equivalent to a given torus orbifold.
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This will be achieved by computing the cohomology ring and intersection
form of the torus orbifold OQ.

As discussed in Section 4, each edge E of the labelled orbit space Q can
be assigned a weight µ(E) ∈ H2(BG;Z). The resulting GKM-graph ΓQ
is shown on the right of Figure 1. As there are four vertices (correspond-
ing to the fixed points of the G action on OQ), Theorem 4.2 implies that
H∗G(OQ;Q), the equivariant cohomology algebra of OQ, is isomorphic to the

set of all 4-tuples (f1, f2, f3, f4) ∈
⊕4

i=1H
∗(BG;Q) =

⊕4
i=1 Q[x, y] satisfy-

ing the relations

f1 − f2 = m1y,

f2 − f3 = m2x,

f3 − f4 = m3(bx− ay), and

f4 − f1 = m4(dx− cy),

wherem1,m2,m3,m4 ∈ Q[x, y], and the ring structure is given by coordinate-
wise multiplication. It is straightforward to check that the equivariant co-
homology of OQ is then generated as a Q[x, y]-module by 1 = (1, 1, 1, 1),
u = (0,−ay, bx− ay, 0), v = (0,−cy, dx− cy, dx− cy) and w = (0, xy, 0, 0),
of degree 0, 2, 2 and 4 (in H∗G(OQ;Q)) respectively. Clearly 1 is the unit
element.

As Hodd
G (OQ;Q) = 0 (Lemma 3.3) and, hence, H∗G(OQ;Q) is a free

H∗(BG;Q)-module, it follows that the rational cohomology of OQ is given
by

H∗(OQ;Q) = H∗G(OQ;Q)/(R+ ·H∗G(OQ;Q)),

where R+ = H>0(BG;Q) and R+ · H∗G(OQ;Q) is the set of all 4-tuples of
the form m11 + m2u + m3v + m4w, for polynomials m1, . . . ,m4 ∈ Q[x, y]
with zero constant term. Therefore, letting α, β and γ in H∗(OQ;Q) be the
classes represented by u, v and w respectively, H2(OQ;Q) is generated (over
Q) by α and β, H4(OQ;Q) by γ, and H i(OQ;Q) = 0, i 6= 0, 2, 4. Moreover,
the ring structure is given by the relations

α2 = abγ, β2 = cdγ, and αβ = adγ.

Indeed, this implies that α(dα− bβ) = 0 and β(aβ − cα) = 0.
Whenever either b = 0 or c = 0, it is easy to see that one can find

generators α̃, β̃ ∈ H2(OQ;Q) such that α̃2 = 0, β̃2 = 0 and γ = α̃β̃.
On the other hand, if bc 6= 0 (by assumption ad(ad − bc) 6= 0), then the

generators α̃ = 1
bα and β̃ = a

b (dα− bβ) satisfy

α̃β̃ = 0 and β̃2 + ad(ad− bc)α̃2 = 0.

Furthermore, α̃2 generates H4(OQ;Q) and the intersection form is given by
diag(1,−ad(ad− bc)).

However, S4, CP 2, CP 2#±CP 2 and S2 × S2 are the only closed, simply
connected, smooth, rationally elliptic 4-manifolds. Therefore, if OQ were
to be rationally homotopy equivalent to such a manifold, it would have
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intersection form either diag(1,±1) or ( 0 1
1 0 ), corresponding to CP 2#±CP 2

or S2 × S2. This is clearly not true for generic a, b, c, d ∈ Z.

7. Slice-maximal torus actions

The goal of this section is to prove Theorem B. To that end, let M be a
closed, smooth, simply connected, rationally elliptic, n-dimensional manifold
admitting a slice-maximal action by a torus TM of rank k. If s denotes the
maximal dimension of an isotropy subgroup, the action being slice maximal
is equivalent to the identity n = k + s.

Under these hypotheses, there is a torus KM ⊆ TM acting almost freely
on M , with dimKM = k − s. Since the action of KM on M is almost free,
the orbit space M/KM is an orbifold O. Moreover, O is rationally elliptic
and has an induced action of the torus TO = TM/KM of rank s = 1

2 dimO.
The images of the TM -orbits of (minimal) dimension k−s under the quotient
map M → O correspond to fixed points of the TO action. Hence, (O, TO) is
a simply connected, rationally elliptic torus orbifold.

By Theorem A, O is TO-equivariantly rationally homotopy equivalent to
a simply connected torus orbifold (Ô = P̂ /L̂, TO), where P̂ is a product

of spheres of dimension ≥ 3 and L̂ is a compact abelian Lie group acting
linearly and almost freely on P̂ . Recall from Section 5 that L̂ is defined as
the kernel of the label map λ : TQ → TO, where TQ =

∏
F S

1
F is the product

of a copy of S1 for each facet of the orbit space Q = O/TO = M/TM . Since

λ is onto, this yields an isomorphism TO = TQ/L̂.
Consider the map π : M → M/KM = O, p ∈ M and p∗ = π(p) ∈ O. A

(TO)p∗-invariant good local chart around p∗ is given by Ũp∗ = νp(KM (p))

with map Ũp∗ → O given by the composition νp(KM (p))
exp−→ M

π−→ O.
The local group at p∗ is given by Γp∗ = KM ∩ (TM )p. Thus, following the

notation of Proposition 2.8, one has (T̃O)p∗ ⊂ TM and

(T̃O)op∗ = (TM )op.

In particular, the slice representation of (TM )op on νp(TM (p)) coincides

with the slice representation of (T̃O)p∗ on ν̃p∗(TO(p∗)) as in the Slice Theorem
(Theorem 2.13). From Proposition 3.7(b), this action is a sum of a trivial
summand and a maximal-rank summand. Such actions belong to a class
called polar actions and, since every slice representation of TM is polar, the
TM action on M is infinitesimally polar (see [33, 15]). Here an isometric
action on a Riemannian manifold N is called polar if there is a submanifold
of N which intersects every orbit orthogonally. A group action is called
infinitesimally polar if all slice representations are polar.

By definition of the label map, each λF : S1
F → (TO)oq∗ ⊆ TO, with q∗ ∈ O

a point projecting to F , factors through (λM )F : S1
F → (T̃O)oq∗ = (TM )oq

and, therefore, the map λ : TQ → TO naturally admits a lift to a map
λM : TQ → TM .
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Lemma 7.1. Let λM : TQ → TM be the above-defined lift of the label map.
Then:

(a) λM is surjective.
(b) For every p ∈M projecting to q ∈ Q, the torus T (q) ⊆ TQ is mapped

isomorphically onto (TM )op.

Proof. Part (a). Let Mreg denote the collection of principal orbits, and
Qreg = Mreg/TM . Since the TM action on Mreg is free, there is a principal
bundle

TM →Mreg → Qreg.

SinceM is simply connected and the TM -action onM is infinitesimally polar,
by Theorem 1.8 of [28] there are no orbits with finite isotropy and, therefore,
the set Qreg consists precisely of the orbits of maximal dimension. On the
other hand, Qreg is the quotient Oreg/TO, where Oreg also consists of the
orbits of O of maximal dimension. Because O is a rationally elliptic torus
orbifold, Hodd(O;Q) = 0. Therefore, Corollary 1 of [4] can be applied to
conclude that Qreg is rationally acyclic. Since π1(Qreg, [p0]) = π1(Q, [p0]) =
0, by Hurewicz π2(Qreg, [p0]) ⊗ Q = H2(Qreg;Q) = 0 and, in particular,
π2(Qreg, [p0]) is torsion. From the long exact sequence in homotopy for
Mreg → Qreg, it follows that the kernel of π1(TM ) → π1(Mreg, p0) must be
torsion as well, but since π1(TM ) is free abelian, the kernel must be trivial.
Therefore, the map π1(TM )→ π1(Mreg, p0) is injective.

In order to prove that λM is surjective, it is enough to show that it induces
a surjective map (λM )∗ : π1(TQ) → π1(TM ). Letting Ω ⊆ π1(TM ) denote
the image of (λM )∗, from the discussion above it is enough to prove that Ω
has the same image as π1(TM ) in π1(Mreg, p0).

For any α ∈ π1(TM ), its image in π1(Mreg, p0) is represented by some loop
C in a principal TM -orbit in M and, since M is simply connected, hence
bounds a two-dimensional disk D in M . The pre-images of the facets of
Q are codimension-2 submanifolds of M . Hence, by performing a suitable
deformation, it may be assumed without loss of generality that D intersects
only finitely many of these codimension-2 submanifolds, in only finitely many
points x1, . . . , xN , and that these intersections are transversal. As D is
simply connected, C is homotopy equivalent (within D) to a concatenation
of lassos based at p0 ∈ C, each of which has a noose γi which is a circle
around a single intersection point xi, i ∈ {1, . . . , N}.

For each i ∈ {1, . . . , N}, in a sufficiently small neighbourhood of the
intersection point xi, the disk D can be assumed to coincide with the normal
slice to the TM -orbit through xi. By the Slice Theorem, a noose γi around
xi can be assumed to lie in an orbit of the slice action of the one-dimensional
isotropy subgroup (TM )xi , hence, to be some (positive or negative) iterate
of the circle (TM )oxi .

Together with the isomorphisms arising via change of base points, the
above discussion ensures that C is homotopic to the concatenation of the
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γi, each of which represents an element in π1(Mreg, p0) in the image of Ω.

Part (b). This follows closely the last part of the proof of Theorem A.
Given any p ∈ M with dim((TM )p) = l, Proposition 3.8 states that the

image p∗ ∈ O of p belongs to the closures Σi of codimension-2 strata Σi,
i = 1, . . . , l. By Proposition 3.8 again, each Σi projects to a different facet
Fi of Q, and it is fixed by a different factor S1

i of (TO)op∗ = T l, which lifts

to a factor S̃1
i of (T̃O)op∗ = (TM )op.

By definition, (λM )Fi : S1
Fi
→ TM sends S1

Fi
isomorphically into S̃1

i ⊆
(TM )op and, therefore, the label map λ sends T ([p]) =

∏
i S

1
Fi

isomorphically
into (TM )op, where [p] ∈ Q is the image of p. �

Let KP̂ ⊆ TQ denote the kernel of λM and let M̂ be the quotient P̂ /KP̂ .

The group KM̂ = L̂/KP̂ acts almost freely on M̂ , with quotient Ô = P̂ /L̂.
Recall, furthermore, that there is an isomorphism

ϕ : P(Q)→ P(Q̂),

of face posets of the quotients Q = O/TO = M/TM and Q̂ = Ô/TO = P̂ /TQ,
such that, for every face F of P(Q), F and ϕ(F ) have the same isotropy.

All of the above information is contained in the following diagram, where
the label on each arrow denotes the quotient by the given torus, the dashed
line indicates rational homotopy equivalence (not a map!), and the dotted

line indicates that there is an isomorphism of face posets ϕ : P(Q)→ P(Q̂).

P̂

L̂

��

KP̂

��

TQ

��

M

KM

��
TM

��

M̂

KM̂ ��

O 'Q

TO
��

Ô

TO
��

Q Q̂

It remains to show that the space M̂ is a manifold and that M is TM -
equivariantly rationally homotopy equivalent to M̂ equipped with the in-
duced action of the torus TM̂ = TQ/KP̂ .

Lemma 7.2. The group KP̂ acts freely on P̂ and, hence, the quotient M̂ =

P̂ /KP̂ is a (topological) manifold.

Proof. Recall that P̂ is defined by Q̂ × TQ/ ∼, where (q, t) ∼ (q′, t′) if and

only if q = q′ and tt′−1 ∈ T (q) =
∏
F3q S

1
F ⊆ TQ. The action of TQ on P̂

is given by left multiplication on the second factor. The action of KP̂ on P̂
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is simply the restriction of the TQ action to KP̂ and, therefore, the isotropy

subgroup of the KP̂ action at a point [(q, t)] ∈ P̂ is given by T (q) ∩KP̂ .

Let F̂q denote the face of Q̂ of minimal dimension containing q, and Fq =

ϕ−1(F̂q) the corresponding face in Q, given by the face-poset isomorphism

ϕ : P(Q) → P(Q̂). Since M is a manifold, T (q) maps injectively via λM
into the isotropy of TM at a point x ∈ M in the pre-image of Fq. Thus
T (q) ∩ ker(λM ) = T (q) ∩KP̂ is trivial, as desired. �

Lemma 7.3. The manifolds P̂ /KP̂ and P̂ /Ko
P̂

are rationally homotopy

equivalent. Therefore, in the following it may be assumed that KP̂ is con-

nected and M̂ is simply connected.

Proof. It will be shown that the orbit map of the Γ = KP̂ /K
o
P̂

-action on

P̂ /Ko
P̂

induces a rational homotopy equivalence P̂ /Ko
P̂
→ P̂ /KP̂ . The Γ ac-

tion commutes with the KM̂ -action on P̂ /Ko
P̂

and, therefore, induces a Γ ac-

tion on the orbifold Ô′ = (P̂ /Ko
P̂

)/KM̂ with orbit space Ô = (P̂ /KP̂ )/KM̂ .

Moreover, there is a commutative diagram

KM̂
//

��

KM̂/(Γ ∩KM̂ )

��

P̂ /Ko
P̂

//

��

P̂ /KP̂

��

Ô′ // Ô

Here the top and bottom maps are rational homotopy equivalences, since
the Γ-actions on KM̂ and Ô′ induce trivial actions on cohomology and the
spaces in the corners of the diagram are formal. Because a model for the
spaces in the middle is given by the tensor product of the models for the
corresponding top and bottom spaces, it follows that the map in the middle
is a rational homotopy equivalence. Hence, it may be assumed that KP̂ is
connected. �

Observe now that, since the torus KM̂ = L̂/KP̂ acts almost freely on

M̂ with M̂/KM̂ = P̂ /L̂ = Ô, the projection M̂ → Ô is, up to rational
homotopy, a principal KM̂ -bundle.

The label map λM : TQ → TM described above descends to an isomor-
phism λM : TM̂ → TM with inverse µM : TM → TM̂ . Since λ : TQ → TO
factors through λM , there is an induced map π̂ : TM̂ → TO with kernel KM̂ .
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Then the following diagram commutes

(7.1) TM
π //

µM

��

TO

=

��
TM̂

π̂ // TO

where the vertical maps are isomorphisms. Moreover, there is an induced
isomorphism µK : KM → KM̂ given by the restriction of µM to KM . There-

fore, M → O and M̂ → Ô can be thought of as rational homotopy principal
KM -bundles, and the goal is to show that M and M̂ are rationally homotopy
equivalent.

Theorem 7.4. Let X, Y be rationally homotopy equivalent spaces, and
let φ : H2(Y ;Q) → H2(X;Q) be the isomorphism induced by a rational
equivalence. Moreover, let T be a k-torus and let ξX : EX → X, ξY :
EY → Y be rational homotopy principal T -bundles with classifying maps
ρX : X → BT , ρY : Y → BT . Suppose, finally, that there is a map
β : H2(BT ;Q)→ H2(BT ;Q) such that the diagram

(7.2) H2(X;Q) H2(Y ;Q)
φoo

H2(BT ;Q)

ρ∗X

OO

H2(BT ;Q)

ρ∗Y

OO

βoo

commutes. Then EX is rationally homotopy equivalent to EY .

Proof. Let (∧VX , dX) and (∧VY , dY ) be the minimal models of X and Y
respectively. Let ϕ : (∧VY , dY ) → (∧VX , dX) be an isomorphism inducing
φ : H2(Y ;Q)→ H2(X;Q).

The minimal model of T is (∧(t1, . . . , tk), 0) with |ti| = 1. The minimal
model of BT is Q[t̄1, . . . , t̄k], where |t̄i| = 2. The ti are mapped to t̄i via the
isomorphism

δ : W = Hom(π1(T ),Q)→W = Hom(π2(BT ),Q)

induced by the long exact homotopy sequence of the fibration T → ET →
BT . It’s clear that H2(BT ;Q) can now be identified with the vector space
W = spanQ{t1, . . . , tk}. Using δ, the map β : W →W induces a map

β̌ = δ−1 ◦ β ◦ δ : W →W.

A model for EX is (∧VX ⊗ ∧(t1, . . . , tk), DX), where DX |∧VX = dX and
DX |W = ρ∗X ◦ δ. Similarly, a model for EY is (∧VY ⊗ ∧(t1, . . . , tk), DY ),
where DY |∧VY = dY and DY |W = ρ∗Y ◦ δ. Define now an isomorphism

ψ : (∧VY ⊗ ∧(t1, . . . , tk), DY ) −→ (∧VX ⊗ ∧(t1, . . . , tk), DX)

by letting ψ|∧VY = ϕ and ψ(1 ⊗ ti) = 1 ⊗ β̌(ti). It is clear that ψ pre-
serves the grading and (ψ ◦DY )|∧VY = (DX ◦ ψ))|∧VY . Moreover, using the
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commutativity of diagram (7.2) (and Hurewicz),

ψ ◦DY |W = ψ ◦ ρ∗Y ◦ δ
= ϕ ◦ ρ∗Y ◦ δ
= ρ∗X ◦ β ◦ δ
= ρ∗X ◦ δ ◦ β̌
= DX |W ◦ β̌
= DX ◦ ψ|W .

Then ψ is an isomorphism between the models of EX and EY . Consequently,
there is an isomorphism between the corresponding minimal models and
EX 'Q EY . �

It is now apparent that, in order to show that M and M̂ are rationally
homotopy equivalent, it suffices to show that the hypotheses of Theorem 7.4
are satisfied by the rational homotopy principal KM -bundles M → O and
M̂ → Ô.

Proposition 7.5. The diagram

(7.3) H2(O;Q) H2(Ô;Q)
foo

H2(BKM ;Q)

OO

H2(BKM̂ ;Q)

OO

(BµK)∗oo

is commutative, where the vertical arrows are induced by the bundles M → O
and M̂ → Ô, and f is the isomorphism given by O 'Q Ô.

As a first step towards proving Proposition 7.5, the following lemma is
necessary.

Lemma 7.6. Let M (1) ⊂M , M̂ (1) ⊂ M̂ be the pre-images of the vertex-edge
graphs of Q and Q̂, respectively. Then there is a TM -equivariant homeomor-
phism h̃ : M (1) → M̂ (1).

Moreover, h̃ induces a TO-equivariant homeomorphism h : O(1) → Ô(1)

whose induced map in cohomology completes the commutative diagram

H2(O;Q)

i∗

��

H2(Ô;Q)
foo

î∗
��

H2(O(1);Q) H2(Ô(1);Q)
h∗oo

where the vertical maps are induced by the respective inclusions.

Proof. M (1) and M̂ (1) are unions of cohomogeneity-one manifolds Nij and

N̂ij , respectively. Each of these cohomogeneity-one manifolds is the pre-

image of an edge in Q or Q̂, respectively. Moreover, the indices run over the
edges eij of the vertex-edge graph of Q.
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Since the isotropy subgroups of the TM -action on each Nij and N̂ij are

the same, there are equivariant homeomorphisms Nij → N̂ij . Since TM is
a compact, connected, abelian Lie group, these homeomorphisms can be
chosen in such a way that they extend to an equivariant homeomorphism
h̃ : M (1) → M̂ (1).

Because O(1) = M (1)/KM and Ô(1) = M̂ (1)/KM , it follows that there is

an TO-equivariant homeomorphism h : O(1) → Ô(1).
It remains to show that the induced map in cohomology completes a com-

mutative diagram as in the statement of the lemma. Consider the diagram
below, where the back (by equivariant rational homotopy equivalence), base
and sides are each commutative. The goal is to show that the dotted ar-
row in the diagram below makes the top of the cube into a commutative
diagram.

H2(O;Q)

i∗

++

H2(Ô;Q)
foo

î∗

++
H2(O(1);Q) H2(Ô(1);Q)

h∗
oo

H2
TO

(O;Q)

i∗ ++

OO

H2
TO

(Ô;Q)oo
î∗

++

OO

H2
TO

(O(1);Q)

OO

H2
TO

(Ô(1);Q)oo

OO

Here the bottom maps are induced by functoriality from the isomorphism
of face posets ϕ : P(Q)→ P(Q̂), see Remark 4.3.

By a diagram chase, one readily sees that it suffices to show both that
the vertical map H2

TO
(O;Q)→ H2(O;Q) is surjective and that the front of

the cube is commutative.
Since H1(O,Q) = 0 the natural map H2

TO
(O;Q) → H2(O;Q) is surjec-

tive.
By using an inductive Mayer-Vietoris sequence argument, one sees that

H2(O(1);Q) is generated by the duals αij of the fundamental classes [S2
ij ] ∈

H2(O(1);Q). Similarly, H2(Ô(1);Q) is generated by the duals α̂ij of the

classes [Ŝ2
ij ] ∈ H2(Ô(1);Q), and h∗(α̂ij) = αij .

On the other hand, by using the Mayer-Vietoris sequence on the Borel
construction (S2

ij)T (using the decomposition (S2
ij)T = U ∪ V , with U =

(S2
ij \ pi)T and V = (S2

ij \ pj)T )

H2
T (S2

ij ;Z) = {(gi, gj) ∈ H2
T (pi;Z)⊕H2

T (pj ;Z) | gi − gj ∈ Z · µ(eij)}

where µ(eij) is the weight of eij in the GKM-graph associated to O. From
the Serre spectral sequence of the fibration S2

ij → (S2
ij)T → BT , which
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degenerates in the E2-page, it follows that the map H2
T (S2

ij ;Z)→ H2(S2
ij ;Z)

is surjective, and sends (µ(eij), 0) to αij . The same discussion carries over

identically to the spheres Ŝ2
ij . The map h∗ : H2(Ô(1);Q)→ H2(O(1);Q) can

now be factored as

H2(Ô(1);Q) −→ H2
T (Ô(1);Q) −→ H2

T (O(1);Q) −→ H2(O(1);Q)

α̂ij 7−→ (µ̂(êij), 0) 7−→ (µ(eij), 0) 7−→ αij

and, therefore, there is a commutative diagram, as desired. �

Lemma 7.7. The inclusion map i : O(1) → O induces an injection i∗ :
H2(O;Q)→ H2(O(1);Q).

Proof. Recall that there is a map of fibrations

(7.4) O(1)

i

��

// O(1)
TO

//

i∗

��

BTO

O // OTO // BTO

which induces a map between the corresponding Serre spectral sequences
with rational coefficients. Both spectral sequences have the property that

E1,j
2 = E3,j

2 = 0 for all j ≥ 0. Therefore, for X = O(1) or X = O there are
exact sequences

0→ E2,0
∞ → H2(XTO ;Q)→ E0,2

∞ → 0,

The natural map H2(BTO;Q) → H2(XTO ;Q) is injective, since there are

TO-fixed points in X. It then follows that E2,0
∞ = H2(BTO;Q). Moreover,

E0,2
∞ ⊆ H2(X;Q), with equality holding if b1(X) = 0. This last condition

holds if X = O
The map i∗, in particular, induces a row-exact, commutative diagram

0 // H2(BTO;Q) // H2(O(1)
TO

;Q) // H2(O(1);Q)

0 // H2(BTO;Q) // H2(OTO ;Q) //
?�

(iTO )∗
O

H2(O;Q) //

i∗

OO

0

By [6, Proof of Prop. 2.4], (iTO)∗ is injective and, by diagram chasing it

follows that i∗ : H2(O;Q)→ H2(O(1);Q) is injective as well. �

Proof of Proposition 7.5. Diagram (7.3) is part of the larger diagram
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(7.5) H2(O(1);Q) H2(Ô(1);Q)
h∗oo

H2(O;Q)

i∗

OO

H2(Ô;Q)

î∗

OO

foo

H2(BKM ;Q)

OO

H2(BKM̂ ;Q)

OO

(BµK)∗oo

,

where, i : O(1) → O, î : Ô(1) → Ô denote the inclusions. The upper square
comes from Lemma 7.6 and hence commutes. By Lemma 7.7, the map i∗ is
injective. In order to prove the proposition it now suffices to show that the
outer square commutes.

By Lemma 7.6, the map h : O(1) → Ô(1) can be lifted to a µK-equivariant
map h̃ : M (1) → M̂ (1) such that the diagram

KM

��

µK // KM̂

��

M (1)

��

h̃ // M̂ (1)

��

O(1) h // Ô(1)

is a pull-back diagram between the (rational homotopy) principal torus bun-

dles M (1) → O(1) and M̂ (1) → Ô(1). This induces a (rational homotopy)
commutative diagram

O(1)

��

h // Ô(1)

��
BKM

BµK // BKM̂

from which the commutativity of the outer square in diagram (7.5) follows.
�

Theorem 7.8. The manifolds M and M̂ are TM -equivariantly rationally
homotopy equivalent.

Proof. Recall that M → O (resp. M̂ → Ô) is a rational principal KM -bundle
(resp. KM̂ -bundle), with an isomorphism µK : KM → KM̂ . With respect to
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the induced identification (BµK)∗ : H∗(BKM̂ ;Q) → H∗(BKM ;Q), Propo-
sition 7.5 yields a commutative diagram

H2(O;Q) H2(Ô;Q)
foo

H2(BKM ;Q)

OO

H2(BKM ;Q)

OO

where f is the isomorphism induced by the rational homotopy equivalence
O 'Q Ô and the vertical arrows are induced by the rational principal KM -

bundles. By Theorem 7.4, this implies that the total spaces M and M̂ are
rationally homotopy equivalent.

Consider now the diagram

H∗(M ;Q) H∗(M̂ ;Q)oo

H∗(O;Q)

OO

H∗(Ô;Q)

OO

foo

H∗TO(O;Q)

OO

H∗TO(Ô;Q)

OO

oo

where the uppermost map is the isomorphism induced by the rational ho-
motopy equivalence M 'Q M̂ constructed in Theorem 7.4. From that con-
struction, it is clear that the upper square commutes. On the other hand,
the lower square commutes because of the equivariance of the rational ho-
motopy equivalence O 'Q Ô. Since O/TO = M/TM and Ô/TO = M̂/TM̂ , it

follows from the commutativity of (7.1) that M and M̂ are TM -equivariantly
rationally homotopy equivalent.

Indeed, since KM acts almost freely on M with orbit space O, there is an
isomorphism

H∗TM (M ;Q) ∼= H∗TO(O;Q).

and similarly for M̂ and Ô. Therefore, since the above diagram commutes,
there is a commutative diagram

H∗(M ;Q) H∗(M̂ ;Q)oo

H∗TM (M ;Q)

OO

H∗TM (M̂ ;Q)

OO

oo

as desired. �
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8. Torus actions in non-negative curvature

To begin this section, a version of Theorem A for non-negatively curved
torus orbifolds of dimension at most six will be established.

Theorem 8.1. Let (O, G) be a non-negatively curved and simply connected
torus orbifold of dimension at most six such that Hodd(O;Q) = 0. Then

there is a product P̂ of spheres of dimension ≥ 3, a torus L̂ acting lin-
early and almost freely on P̂ , a linear action of G on Ô = P̂ /L̂ and a

G-equivariant rational homotopy equivalence O 'Q Ô.

To prove this theorem, it suffices to show that O/G satisfies all the prop-
erties listed in Proposition 5.1. All of these, except for Property (f), can be
proved as in the rationally elliptic case.

Note that, asO/G is being viewed as a face of itself of codimension zero, in
order to prove Theorem 8.1, Property (f) needs to be discussed in dimension
six. Since the rational cohomology of O is concentrated in even degrees, it
follows that all faces of O/G are acyclic over the rationals [4, Corollary 3].
Hence, the following lemma implies that Property (f) holds for O/G.

Lemma 8.2. There is no simply connected, six-dimensional torus orbifold
(O, G) such that each face of O/G is acyclic over the rationals, each facet of
O/G is combinatorially equivalent to a square, and the intersection of any
two facets has two components.

Proof. Assume that there is a torus orbifold whose orbit space contradicts
the conclusion of the lemma. First note that all two-dimensional orbifolds
are homeomorphic to two-dimensional topological manifolds. Therefore,
since the facets of O/G are acyclic over the rationals and orientable, they
are all homeomorphic to two-dimensional discs. Hence, with the same ar-
gument as in the proof of Lemma 4.4 of [38], one sees that the boundary
of O/G is homeomorphic to RP 2. However, O/G is an orientable orbifold
with boundary, while RP 2 is non-orientable, yielding a contradiction, as
desired. �

Proof of Theorem 8.1. Since Hodd(O;Q) = 0 and O admits an invariant
metric with non-negative sectional curvature, the conclusion of Proposi-
tion 5.1 holds for O/G as discussed above. Therefore the same arguments
as in the proof of Theorem A can be carried out to prove Theorem 8.1. �

To conclude the article, a proof of Theorem D is provided, that is, the
Bott Conjecture in the presence of an isometric, slice-maximal torus action
is verified. This is a generalisation of Theorem 1.2 of [35].

Proof of Theorem D. Let T denote the torus whose action on M is slice
maximal. It is sufficient to show that M is rationally Ω-elliptic, i.e. that the
pointed loop space ΩM of M satisfies

∑
r dim(πr(ΩM)⊗Q) <∞, since, M

being simply connected, this property implies that M is rationally elliptic.
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The proof will proceed by induction on the dimension d = dim(M/T ) and
no longer assumes that M is simply connected.

When d = 0, M consists of one orbit and is, therefore, a torus, hence
rationally Ω-elliptic. Suppose now that every non-negatively curved, closed
manifold admitting an isometric, slice-maximal torus action with quotient
of dimension d− 1 is rationally Ω-elliptic.

From the introduction, the action of T on M being slice maximal en-
sures that, at every point on a (fixed) minimal orbit, the normal slice is
even dimensional and the identity component G of the isotropy subgroup
acts on it with maximal rank, i.e. the action is equivalent to the standard
linear, effective action of G on Cdim(G). Hence, one can find a circle sub-
group S ⊆ G ⊆ T such that some component M ′ of its fixed-point set MS

is of codimension two and contains the minimal orbit. Consequently, the
induced action of T ′ = T/S on M ′ is slice-maximal. Moreover, since M ′ is
totally geodesic, hence non-negatively curved, and dim(M ′/T ′) = d− 1, the
induction hypothesis yields that M ′ is rationally Ω-elliptic.

As the action of S on M has a fixed-point component of codimension two,
meaning that it is fixed-point homogeneous, by Theorem 4.1 of [35] there
exists a submanifold N ⊆ M such that M is diffeomorphic to the union of
the normal disc bundles D(M ′) and D(N) of M ′ and N along their common
boundary E:

M = D(M ′) ∪E D(N).

The foot-point projection D(M ′) → M ′ induces an S1-bundle E → M ′.
Since M ′ is rationally Ω-elliptic, it follows from the homotopy long exact
sequence that E is also rationally Ω-elliptic. Moreover, by Theorem D of
[13], the homotopy fibre F of the inclusion ι : E ↪→M is rationally Ω-elliptic.
Therefore, from the homotopy long exact sequence for ι and the fact that E
is rationally Ω-elliptic, it follows that M is rationally Ω-elliptic as well, as
desired. �
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