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We develop a new real-time approach to vacuum decay based on a reduction to a finite number of
degrees of freedom. The dynamics is followed by solving a generalized Schrödinger equation. We first
apply this method to a real scalar field in Minkowski space and compare the decay rate with that obtained
by the instanton approach. The main difference is in the early time dynamics, where the decay is faster due
to the tail of the wave function. We then apply it to a cold atommodel recently proposed to simulate vacuum
decay experimentally. This approach will be extended to include gravity in a future work.
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I. INTRODUCTION

First-order phase transitions are ubiquitous in Nature,
from water vapor turning into clouds to possible QCD-
electroweak transitions in the early Universe [1]. Yet, the
absence of a critical point and dependence on the micro-
scopic degrees of freedom make their dynamics challeng-
ing to understand. These difficulties are particularly
prominent in the case of quantum first-order transitions,
triggered by quantum fluctuations and involving deeply
nonperturbative effects. They are also referred to as vacuum
decay, i.e., the decay from a “false,” metastable vacuum
(a local minimum of the relevant potential) to the “true”
vacuum, i.e., the ground state of the theory.
In relativistic theories, vacuum decay generally occurs

in two steps [2]. Starting from the false vacuum phase,
bubbles of true vacuum first nucleate through quantum
and/or statistical fluctuations. They then expand, at a speed
close to the speed of light, until they merge and fill the
whole available space with true vacuum. One important
quantity to understand the dynamics is thus the rate of
formation of such bubbles, which is also the decay rate of
the false vacuum phase. The standard approach to comput-
ing the decay rate was laid out in a series of articles by
Coleman and collaborators in the ’70s [2–4]. At its core is a
saddle-point approximation of the path integral, expected to
be valid provided the action of relevant solutions of the
field equations is large before the reduced Planck constant.
In Ref. [2], Coleman motivates that the Wentzel-Kramers-
Brillouin expansion used in nonrelativistic quantum
mechanics to compute the time a particle takes to tunnel
through a potential barrier can be extended to the quantum
theory of a relativistic scalar field in flat space-time. Like in
the nonrelativistic problem, the calculation involves finding
classical solutions in imaginary time, called instantons in

this context. These solutions are stationary points of the
Euclidean action, obtained from the standard action by
replacing the (real)time coordinate by an imaginary one. A
saddle-point approximation of the path integral for the
transition between the false and true vacua then gives the
decay rate Γ as a function of the difference ΔSE in
Euclidean action between the instanton and false vacuum,

Γ ¼ Ae−ΔSE=ℏ; ð1Þ

where A is a positive number with dimension inverse of
time such that, if t0 and l0 are typical time and length scales
for the problem1 and at finite volume V,

���� ln
�
At0ld0
V

����� ≪ ΔSE
ℏ

; ð2Þ

in the semiclassical limit ΔSE ≫ ℏ, where d is the number
of space dimensions. In Ref. [3], Coleman and Callan
compute the first quantum corrections, i.e., the coefficient
A to leading order in ℏ=ΔSE. This coefficient can be written
as a product of two factors: one coming from translation
invariance and equal to ðΔSE=ð2πℏÞÞn=2, where n is the
number of directions in which the model is invariant, and
one involving the determinants of the fluctuations operators
defined over the instanton2 and false vacuum. The analysis
of [2] was then extended by Coleman and De Luccia in [4]
to include gravitational effects.
This topic has gained prominence thanks to the calcu-

lation of the effective potential of the Higgs boson reported
in [5], which suggests that the current Higgs vacuum may
be only a metastable state, i.e., a false vacuum. The true
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1If V0 is a typical potential scale, one may choose
ct0 ∼ l0 ∼ ðV0=ðcℏÞÞ−1=ðdþ1Þ, where c is the celerity of light.

2After excluding the zero modes associated with translation
invariance, which are taken into account by the first factor.
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vacuum would lie at a larger value of the Higgs mass,
possibly close to the Planck mass, raising the question of
why, after billions of years of cosmic evolution, the
visible Universe has not yet decayed to the true vacuum.
Besides anthropic arguments or extensions of the stan-
dard model of particle physics, a natural answer until a
few years ago was that the decay rate, computed in
homogeneous space, is smaller than the inverse age of the
Universe due to the large potential barrier separating the
current Higgs vacuum from the region of lower potential.
However, it was shown [6–17] that inhomogeneities can
dramatically change this result. In particular, the presence
of a single sufficiently small black hole could, assuming
possible extensions of the standard model couple weakly
to the Higgs boson and that the instanton approach
remains valid in curved space-times, be enough to trigger
the transition to the true vacuum. These results (and the
fact that the Universe as we know it, by definition, still
exists) can be used to put strong bounds on the number
density of primordial black holes and possible extensions
of the standard model.
The use of the instanton approach, however, suffers

from some difficulties. First, to our knowledge, a derivation
exists only in flat space-times; the extension to curved ones
proceeds by analogies rather than first principles. A
possibly related issue is the number of negative modes:
while it was shown [18] that instantons in Minkowski space
generally have exactly one negative mode, which is crucial
in their interpretation [3], no such result exists in curved
space-times. In fact, some instanton solutions were shown
to sustain infinitely many negative modes (see, for instance,
[12,19]). The interpretation of these solutions in the context
of vacuum decay is still an open question. Another issue is
that theWick rotation from real to imaginary times relies on
a choice of time coordinate on which to perform the
rotation, which is ambiguous in nonstatic space-times
[20]. Finally, the instanton approach does not say anything
about the dynamics of the field during the nucleation
event [21,22].
Several methods have already been tried to solve these

issues. One promising suggestion is that the metric, rather
than the time coordinate, should be made complex [20,23].
More recently, attempts have been made at developing a
formalism using only real time coordinates in analogy with
what can be done in nonrelativistic quantum mechanics
[24,25] or with numerical techniques used in cold atom
like the truncated Wigner approximation [26,27]. It was
also proposed that instantons may be generalized using
Picard-Lefschetz thimbles [28–32] or other functional
techniques [33–36].
In this paper, we will follow a different approach, with

some overlap with the above ones but complementary in
other ways. In spirit, it is similar to the one developed for
non-Abelian gauge theories in [37] and could prove useful
to study the large-order behavior of perturbation theory,

following arguments given in [38].3 The main idea will be
to perform a systematic reduction to a finite set of degrees
of freedom, effectively reducing the field-theoretic problem
to finite-dimensional quantum mechanics. Once the initial
state is chosen, its evolution will be followed by solving a
Schrödinger equation and the decay rate extracted from its
solutions. From a more formal point of view, this amounts
to finding a path or set of paths in field configuration space
interpolating between the false and true vacua, which are
optimal according to some measure, before quantizing
parameters along it. We shall refer to this procedure as
the parametrized path approach to vacuum decay. In this
paper, we will present the idea of the procedure, show how
it works on the simplest case of a real scalar field in flat
space as well as in an “analog” cold atom model, and
compare its results with those of the instanton approach.
In both cases, we find two qualitatively distinct behaviors.

At late times, the decay rate tends toward a constant close
to the result from the instanton approach and apparently
independent of the initial state. At early times, however, the
decay rate takes much larger values due to the tail of the
initial wave function extending beyond the potential barrier.
This is related to the absence of exact stationary state
centered on the false vacuum. We conjecture this early
dependence on the tail of the initial quantum state persists in
a field-theoretic treatment of the problem.
Extensions to more realistic scenarios and to vacuum

decay in the presence of gravity will be dealt with in follow-
up publications. Unless stated otherwise, we work in
natural units where the speed of light in vacuum, reduced
Planck constant, and Boltzmann constant are equal to 1.

II. RELATIVISTIC SCALAR FIELD
IN FLAT SPACE

In this section, we develop the formalism for the para-
metrized path approach to tunneling in the simplest case of
a real scalar field in Minkowski space. For the sake of
generality, we work in any number d of space dimensions.
The metric signature is ðþ;−;−; � � � ;−Þ. In the following,
for any natural integer n, An denotes the area of the
Euclidean n sphere with unit radius. (For instance,A1 ¼ 2π
and A2 ¼ 4π.) We set A0 ¼ 2, so that all the expressions
below remain valid for d ¼ 1.

A. The model

We consider a real scalar field ϕ in (1þ d)-dimensional
Minkowski space with potential V. The action is

SðϕÞ ¼
Z �

1

2
ð∂μϕðxÞÞð∂μϕðxÞÞ − VðϕðxÞÞ

�
dxdþ1; ð3Þ

3I thank an anonymous referee for bringing these references to
my attention.
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where Einstein’s summation convention on repeated indi-
ces is used.
For simplicity, we concentrate on solutions with an

Oðd − 1Þ symmetry in one inertial frame.4 We choose an
inertial frame and a point O stationary in this frame, and
consider field configurations depending only of the time
coordinate t and distance r from O. The action becomes

SðϕÞ ¼ Ad−1

Z þ∞

t¼−∞

Z
∞

r¼0

�
1

2
ð∂tϕðt; rÞÞ2 −

1

2
ð∂rϕðt; rÞÞ2

− Vðϕðt; rÞÞ
�
rd−1drdt: ð4Þ

We assume the potential V has two minima: a global one
at a value ϕT of ϕ and a local one at a value ϕF.
Homogeneous configurations with ϕ ¼ ϕT or ϕ ¼ ϕF
are then saddle points of the action (3) and thus solutions
of the classical field equations. The first one is the true
vacuum (TV) and the second one is the false vacuum (FV).
We are interested in the phase transition from the later to
the former through nucleation of a spherical bubble of TV
in the FV phase. As mentioned in the introduction, this
process can be described by finding saddle points of the
action (4) in imaginary and real times, describing, respec-
tively, the quantum nucleation of the bubble and the
ensuing classical evolution. In particular, defining the
Euclidean time τ≡ it and Euclidean action,5

SEðϕÞ ¼ Ad−1

Z þ∞

τ¼−∞

Z
∞

r¼0

�
1

2
ð∂τϕðτ; rÞÞ2 þ

1

2
ð∂rϕðτ; rÞÞ2

þ Vðϕðτ; rÞÞ
�
rd−1drdτ; ð5Þ

the decay rate Γ of the false vacuum may be written as [2,3]

Γ ¼ A expðSEðϕFÞ − SEðϕBÞÞ; ð6Þ

where A is a positive number and ϕB is the instanton solution
of the field equation going to the FVas τ → �∞ or r → ∞,
also called the “bounce.”6 The prefactor A is proportional to
the volume of a hypersurface of constant t, rendering the

result formally infinite. Of course, the physically relevant
quantity is the decay rate per unit volume, which is finite. We
now describe a different way to approach this problem.

B. Parametrized path: generalities

We propose to estimate the decay rate of the false
vacuum in the following way. We shall first choose a path
in the space of field configurations interpolating between
the FV and TV phases. Ideally, this path should be close
to the one minimizing the action. A valley of the action
functional may be obtained numerically using techniques
close to those of [35,36], which would provide, in some
sense, an optimal path. However, here we shall instead use
an Ansatz with a simple analytical form. The reason for this
choice is twofold. First, having an analytical formula for the
Ansatz greatly simplifies the numerical calculations of
Sec. III. Second, it allows for comparison between results
obtained with different Ansätze (as done in Appendices A 1
and A 2), which can be used to test the robustness of the
results. It would be interesting, but beyond the scope of
the present work, to see more precisely the links and
differences between this approach and the functional
techniques of the above references.
Once the Ansatz is chosen, we shall quantize one or

several of its parameters. We will then write a Schrödinger
equation for this finite set of degrees of freedom. Finally,
we shall determine initial conditions and solve the
Schrödinger equation numerically. The numerical resolu-
tion will be described in Sec. III. For the initial conditions, a
natural choice at zero temperature will be the ground state
in a quadratic potential approximating the real one close to
the FV. When working at finite temperature, we shall solve
the Schrödinger equation several times starting with ground
or excited states of the quadratic potential, before averaging
observables over all simulations with a Boltzmann weight.
We now make these ideas more precise.
For simplicity, in this work, we will quantize only one

parameter R, whose absolute value is interpreted as the
radius of the bubble. The generalization to several
degrees of freedom will be done in a future study. The
parametrized path ðϕRÞR∈R is a set of functions ϕR from
Rþ to R labeled by a real parameter R satisfying the
following six properties7:
(1) The function ðR; rÞ ↦ ϕRðrÞ is twice differentiable.
(2) For each r ≥ 0, ϕ0ðrÞ ¼ ϕF.
(3) For each r ≥ 0, ϕRðrÞ → ϕT as R → �∞.
(4) The function ∂RϕR evaluated at R ¼ 0 is nonvanish-

ing in at least a finite interval.

4This assumption is justified by Ref. [39], where it is shown
that, under generic assumptions, the solution of the Euclidean
field equation minimizing the action in flat space is spherically
symmetric. Extension of the formalism to configurations which
are not spherically symmetric may be relevant in cases where the
assumptions of this reference are not satisfied, but is left for a
future work.

5To simplify the notations, we use the same letter ϕ for the
field before and after Wick rotation t → τ. The two cases are
distinguished by the time coordinate, which will always be called
t before and τ after the Wick rotation.

6In this expression, it is assumed that the integrals defining
SEðϕÞ and SEðϕFÞ are convergent. In practice, this is generally
the case if the zero of the potential V is set at ϕF.

7These properties ensure the quantities defined below are
finite, that the path interpolates between the FVand TVas R goes
from 0 to �∞, and that the functions K and U defined by
Equations (8) and (9) satisfy Uð0Þ ¼ 0, U0ð0Þ ¼ 0, U00ð0Þ > 0,
Kð0Þ ≠ 0, and K0ð0Þ ¼ 0. They can be relaxed, as will be done in
Sec. III, provided these properties are satisfied.
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(5) For each r ≥ 0, ∂2
RϕRðrÞ ¼ 0 for R ¼ 0.

(6) For each R, ϕRðrÞ goes to ϕF as r → ∞, its first
derivatives with respect to r and R as well as
∂r∂RϕRðrÞ go to 0, and the convergence is fast
enough for ð∂rϕRÞ2, ð∂RϕRÞ2, ð∂r∂RϕRðrÞÞ2, and
VðϕRÞ − VðϕFÞ to be integrable for the integration
measure rd−1dr.

We now see R as a dynamical variable depending on t,
i.e., we consider field configurations of the form

ϕðt; rÞ ¼ ϕRðtÞðrÞ ð7Þ

for some real-valued, twice differentiable function R. Let
us define the two functions

KðRÞ ¼ Ad−1

Z
∞

0

ð∂RϕRðrÞÞ2rd−1dr ð8Þ

and

UðRÞ ¼ Ad−1

Z
∞

0

�
1

2
ð∂rϕRðrÞÞ2 þ VðϕRðrÞÞ

− VðϕFÞ
�
rd−1dr: ð9Þ

The action (4) becomes, after subtracting the contribution
from the false vacuum,

SðϕÞ − SðϕFÞ ¼
Z þ∞

−∞

�
KðRðtÞÞ

2
ðR0ðtÞÞ2 −UðRðtÞÞ

�
dt:

ð10Þ

Differentiation with respect to R0 gives the momentum Π
conjugate to R,

Π ¼ KðRÞR0: ð11Þ

The classical Hamiltonian is thus

H ¼ Π2

2KðRÞ þ UðRÞ: ð12Þ

We quantize this system by promoting R and Π to
Hermitian operators R̂ and Π̂ satisfying the commutation
relation,

½R̂; Π̂� ¼ i: ð13Þ

There is, unfortunately, no unique way to extend the
classical Hamiltonian to a Hermitian operator. For instance,
one can choose any Hamiltonian of the form

Ĥ ¼ 1

2
Û†

1Π̂ðKðR̂ÞÞ−1Π̂Û1 þ Û†
2UðR̂ÞÛ2; ð14Þ

where Û1 and Û2 are two unitary operators. We refer to [40]
for a more in-depth discussion of operator ordering
ambiguities. The correct Hamiltonian to consider should
be derivable from the full quantum field theory by tracking
the relations between the radius R of the bubble and the
creation and annihilation operators of field excitations, but
this is beyond the scope of the present work which focuses
on generic quantum effects rather than a precise description
of a specific theory. Here, for simplicity, we choose the
Hamiltonian operator

Ĥ ¼ 1

2
Π̂ðKðR̂ÞÞ−1Π̂þ UðR̂Þ; ð15Þ

corresponding to setting Û1 ¼ Û2 ¼ 1 in Eq. (14).
Let ψ be the wave function. Identifying R̂ with multi-

plication by R and Π̂ with −i∂R gives the Schrödinger
equation,

i∂tψðt; RÞ ¼ −∂R

�∂Rψðt; RÞ
2KðRÞ

�
þ UðRÞψðt; RÞ: ð16Þ

We have thus reduced the problem to that of a non-
relativistic point particle with position R and R-dependent
mass K moving in the potential U. We may now pause and
reflect on the meaning of this reduction. Its validity will
depend on the precise choice of Ansatz: if the latter is too
far from the actual configuration maximizing the decay rate
(which should be close to the instanton in the regime where
the instanton approach is valid, see [2]), one can expect this
procedure to overestimate the potential barrier between the
FV and TV; if the Ansatz is sensibly chosen, however, we
may expect to obtain a good approximation of the full field-
theoretic problem. Ultimately, validation will come from
comparison of the decay rate with the one obtained by
finding an instanton, for potentials in which the latter is
expected to give an accurate estimate. The main merit of the
present approach, in our opinion, is to separate the
calculation into two distinct questions: the determination
of the optimal path in field configuration space and the
dynamical evolution. These can then be dealt with sepa-
rately. In this work, we mostly focus on the dynamical
aspects. The results reported in Sec. III can in principle be
improved by a more careful choice of Ansatz, as men-
tioned above.
Let us briefly discuss the behavior of the effective

potential U. From the above assumptions, we have Uð0Þ ¼
U0ð0Þ ¼ 0. Besides, since ϕF is a local minimum of V, a
small perturbation around the false vacuum will always
increase U; one can show that the variation does not vanish
to second order. So, U00ð0Þ > 0 and UðRÞ can be approxi-
mated by a harmonic potential for R ≈ 0. Besides, for
large values of jRj, ϕRðrÞ will typically be close to ϕF for
r ≫ jRj and to ϕT for r ≪ jRj. Assuming the width of the
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transition region and the derivative of the field do not grow
too fast,8 then

UðRÞ ∼
R→�∞

Ad−1

d
ðVT − VFÞjRjd: ð17Þ

So, UðRÞ has a local minimum at R ¼ 0, at least one
maximum, and goes to −∞ as jRj → ∞. (An example is
shown in the right panel of Fig. 3.) Besides, under similar
assumptions,9 KðRÞ is typically proportional to jRjd−1 as
jRj → �∞. Equating the magnitudes of the kinetic and
potential terms in the Schrödinger equation (16), thus gives
a wavelength scaling like jRjð1−2dÞ=2 for R → �∞. Smaller
wavelengths thus become prominent for large values of jRj,
and solutions require a finer and finer grid to be correctly
described numerically. We will come back to this issue
in Sec. III B.
Let us now turn to the initial conditions. As mentioned in

the paragraph above, Uð0Þ ¼ U0ð0Þ ¼ 0 while U00ð0Þ > 0.
When considering a wave function localized around R ¼ 0,
i.e., a state close to the false vacuum, we can thus
approximate U by a harmonic potential and write

UðRÞ ≈U00ð0Þ
2

R2: ð18Þ

Moreover, with the above assumptions, we have Kð0Þ > 0
and K0ð0Þ ¼ 0. We may thus replace the Schrödinger
equation (16) by

i∂tψðt; RÞ ≈ −
∂2
Rψðt; RÞ
2Kð0Þ þU00ð0Þ

2
R2ψðt; RÞ: ð19Þ

The eigenstates are those of a point particle with mass Kð0Þ
in a harmonic potential. For any natural integer n, the nth
excited state (n ¼ 0 corresponding to the ground state) is

ψnðRÞ ¼
1ffiffiffiffiffiffiffiffiffi
2nn!

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kð0ÞU00ð0Þp
π

�
1=4

× e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð0ÞU00ð0Þ

p
R2=2HnððKð0ÞU00ð0ÞÞ1=4RÞ; ð20Þ

where Hn denotes the nth Hermite polynomial. In the
following, we shall work at zero and at finite temperatures.
At zero temperature, we shall take ψ0 as initial wave
function. At finite temperature T > 0, we will consider a
mixed state where the probability Pn of being in the pure
state jψni with wave function ψn and energy μn is propor-
tional to e−μn=T . Imposing

P∞
n¼0 Pn ¼ 1 gives

Pn ¼ e−n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00ð0Þ=Kð0Þ

p
=T
�
1 − e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00ð0Þ=Kð0Þ

p
=T
	
: ð21Þ

The initial state has the density matrix

ρ̂ ¼
X∞
n¼0

Pnjψnihψnj: ð22Þ

In the numerical resolution, we truncate the sum to a
finite number of excited states. This choice of initial
conditions should be relevant provided the typical width
ðKð0ÞU00ð0ÞÞ−1=4 of the ground state is much smaller than
the first values of R for which UðRÞ differs significantly
from the harmonic approximation, as the wave functions ψn
then correspond to quasistationary states. It is at the
moment unclear to us how they should be generalized
when it is not the case.

C. Comparison with the instanton approach

We want to compare results for the decay rate to those
obtained using an instanton approach, i.e., by computing
the action of a Euclidean solution. There are two ways to
perform this calculation. The first one is to solve the field
equation from the action (5) in Euclidean time. We look for
Oðdþ 1Þ symmetric solutions. Up to a change of origin,
one can thus assume ϕ depends only of ρ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2 þ r2
p

,
where τ ¼ it is the imaginary time. The Euclidean action
SE is then

SEðϕÞ ¼ Ad

Z
∞

0

�
1

2
ðϕ0ðρÞÞ2 þ VðϕðρÞÞ

�
ρddρ ð23Þ

and the Euler-Lagrange equation is

ρ−d∂ρðρdϕ0ðρÞÞ ¼ V 0ðϕðρÞÞ; ð24Þ

with boundary conditions ϕðρÞ → ϕF as ρ → ∞ and
ϕ0ð0Þ ¼ 0.
Another possibility is to start from the action (10).

Differentiating with respect to R and replacing t by
τ ¼ it give the ordinary differential equation

d
dτ

ðKðRðτÞÞR0ðτÞÞ ¼ U0ðRðτÞÞ; ð25Þ

to be solved with the boundary condition RðτÞ → 0 as
τ → �∞. An estimate for the Euclidean action of the
instanton is then

SE ≈
Z þ∞

−∞

�
KðRðτÞÞ

2
ðR0ðτÞÞ2 þ UðRðτÞÞ

�
dτ: ð26Þ

Equations (24) and (25) can be solved using a shooting
method.

8For instance, we may assume the former grows slower than
linearly in R and that j∂rϕRj remains smaller than a positive
constant independent of R.

9For instance, one may assume ∂RϕRðrÞ is localized around
r ¼ R and its square integral becomes independent of R in the
large-R limit.
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We thus have three ways to estimate the decay rate: by
solving the Schrödinger equation (16), by computing the
instanton, or by solving the classical equation of motion
after having chosen an Ansatz. To obtain the numerical
results reported below, we first compared the latter two as a
check of the validity of the Ansatz. We then compared their
estimates with that obtained by solving the Schrödinger
equation.

III. NUMERICAL RESULTS

In this section, we show results obtained by solving
numerically Eq. (16) for a particular shape of the
potential V. We focus on the case of a real scalar field
in flat space, as discussed in Sec. II. Results for a cold atom
analog model will be shown in Sec. IV. To make the
comparison with the cold atom case easier, we work in two
space dimensions. The method can be easily extended to
different values of d. (The case d ¼ 3 is discussed in
Appendix A 3).

A. Choice of potential and Ansatz

We work with a potential of the form

V∶ ϕ ↦ η

�
−
ϕ2

2
− λ

ϕ3

3
þ ϕ4

4

�
− V0; ð27Þ

where η and λ are two positive numbers, and V0 is a real
number chosen to set the false vacuum energy to zero. This
potential is sketched in Fig. 1 for λ ¼ 0.5 and η ¼ 1.5. It
has three stationary points: a local maximum at ϕ ¼ 0 and
two local minima at ϕ ¼ ϕF and ϕ ¼ ϕT , where

ϕF ¼ λ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 4

p

2
; ϕT ¼ λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 4

p

2
: ð28Þ

Explicit calculation gives VðϕFÞ > VðϕTÞ. So, ϕF is the
false vacuum and ϕT is the true vacuum. Roughly speaking,
the parameter λ controls the separation between the two
minima, while η sets the height of the potential barrier and
depth of the minima.

We choose the following Ansatz for ϕR, illustrated in
Fig. 2:

ϕRðrÞ ¼ ϕF þ ϕT − ϕF

2

����tanh
�
rþ R
σ

�
− tanh

�
r − R
σ

�����;
ð29Þ

where σ > 0 sets the typical width of the transition region
between the two vacua. It satisfies all the above require-
ments, except that it is not twice differentiable in R at R ¼ 0

because of the absolute value. Since ð∂RϕRÞ2 is differ-
entiable in R with a vanishing derivative at R ¼ 0, one can
show that all the properties derived in Sec. II still hold.
Results for a twice differentiable potential are shown in
Appendix A 1, showing small difference with those pre-
sented below. The case of an R-dependent width of the
bubble wall is briefly discussed in Appendix A 2.
Let us now discuss the choice of σ. As mentioned in

Sec. II, the parameters of the Ansatz should be chosen to be
as close as possible to the path in field configuration space
between the false and true vacua minimizing the Euclidean
action. To achieve this, we define for each value of σ the
optimal Euclidean action SE;optðσÞ equal to the right-hand
side of Eq. (26) for the function R satisfying Eq. (25) with
boundary conditions RðτÞ → 0 as τ → �∞ and Rð0Þ ≠ 0.
The value of σ is then chosen by minimizing SE;optðσÞ. As a
check of the validity of the Ansatz, we verified that the
corresponding Euclidean action is close to the right-hand
side of Eq. (23).
Plots of the functions U and K are shown in Fig. 3. For

all the parameters we tried, KðRÞ has only one minimum at
R ¼ 0 and goes monotonically to ∞ as jRj is increased,
while UðRÞ has three stationary points: a local minimum
at R ¼ 0 and two degenerate maxima at equal and opposite
values of R. (Notice that the Ansatz in invariant under
R → −R and goes to −∞ when R → �∞ as discussed
in Sec. II).

FIG. 1. Sketch of the potential (27) for λ ¼ 0.5 and η ¼ 1.5.
The values ϕF and ϕT are the false and true vacua, given by
Eq. (28).

FIG. 2. Illustration of the Ansatz (29) for λ ¼ 1 and σ ¼ 1 for
equally spaced values of R from 0 (bluest curve) to 6 (greenest
curve). The two dashed horizontal lines materialize ϕ ¼ ϕF
(blue) and ϕ ¼ ϕT (green).
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B. Instantaneous decay rate

Equation (16) was solved numerically using a finite
difference method, implemented in Python 3.7 and C11.
(The code is available on request.) As was mentioned
in Sec. II, one difficulty is that the typical wavelength
decreases as jRj increases away from the point where UðRÞ
reaches its maximum value, requiring an ever finer grid to
be described accurately. In practice, this manifests itself as
unphysical reflection of the perturbations from the large-jRj
regions, where the wavelength becomes of the same order
as the grid step, toward R ¼ 0. To circumvent this problem,
we added a small dissipative term

−i
γ

2
∂4
Rψðt; RÞ ð30Þ

to the right-hand side of Eq. (16), where γ is a positive
number. Its value was chosen to satisfy the two conditions
as follows:

(i) Modes with wavelengths close to the grid spacing
should be damped within a few time steps.

(ii) Modes with wavelengths of the order of a typical
scale R0 close to the width of the initial condition
should suffer negligible damping during the whole
evolution.

Denoting the space step by δx, the time step by δt, and the
total duration of a simulation by T, these two conditions are
equivalent to

γ

2

16π4

δx4
δt ≈ 1 and

γ

2

16π4

R4
0

T ≪ 1: ð31Þ

The parameters are thus chosen so that

δx4

8π4δt
≈ γ ≪

R4
0

8π4T
: ð32Þ

Our main objective is to determine the instantaneous
decay rate and its evolution in time. To this end, we first
define RUmax

as the positive value of R at which UðRÞ

reaches its maximum value. At a time t, the probability
PFðtÞ that R lies between the two maxima of U is

PFðtÞ ¼
Z þRUmax

−RUmax

jψðt; RÞj2dR: ð33Þ

Intuitively, PFðtÞ may be seen as an estimate of the
probability that the field remains close to the false vacuum
at time t. There is some arbitrariness in choosing the
boundaries of the integral; however, it should not affect
the late-time behavior of PF nor its qualitative profile. We
define the instantaneous decay rate Γ as the opposite rate of
change of PF,

ΓðtÞ ¼ −
1

PFðtÞ
dPFðtÞ
dt

: ð34Þ

Figure 4 shows results from a typical simulation, done
with λ ¼ 1, η ¼ 16, and γ ¼ 10−6. We work at zero
temperature, with the initial condition set to ψ0 of
Eq. (20). At early times, the instantaneous decay rate
oscillates wildly, taking relatively large positive and even
negative values. This seems to be due to the relatively wide
initial wave function extending beyond the maxima of U.
For t > 5, the initial time dependence subsides and the
instantaneous decay rate becomes constant within numeri-
cal errors, with a value close to 10−2.
Figure 5 shows the late-time value of the decay rate for a

range of values of η and λ. In the left panel, we show the
value of − lnΓ, which goes from a minimum value close to
0 for large λ to above 8 for the smallest values of λ and η.
In the right panel, we adimensionalize Γ by the maximum
value Umax of the effective potential U and subtract the
Euclidean action SE of the instanton as well as the
contribution from one zero mode (see [3]).10 We notice
that the range of variation is strongly reduced, with a

FIG. 3. Plots of K of Eq. (8) (left panel) and U of Eq. (9) (right panel) as functions of R for the potential (27) with λ ¼ 1, η ¼ 16, and
σ ¼ 0.5.

10The motivation for including only one zero mode is that the
Ansatz fixes the position in space of the center of the bubble,
leaving only one translation invariance in the time direction.
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minimum value close to −2.8 and a maximum one close
to −2.0. It is also significantly smaller than that of the
Euclidean action SE, which varies between 2.0 and 13.2 for
these values of the parameters. This indicates that our
approach is consistent with the instanton one, as it gives a
decay rate with similar order of magnitude and the same
dependence in the two parameters. A more precise com-
parison would require to compute the full prefactor of the
exponential in Eq. (6), which we do not undertake here. To
our knowledge, a precise evaluation of this prefactor is at
present unavailable.
To end this section, we show in Fig. 6 results obtained at

different finite temperatures T. For T ≤ 1, the effect of the
temperature on the decay seems to be very small. For T > 1,
thermal effects increase the decay rate at early times, thus
making the transition faster, but do not seem to affect its late-
time limit. This is an important difference with the instanton
approach, where instantons at finite temperature are expected
to be periodic in Euclidean times (see, for instance, [41–44]),
giving a decay rate dependent on T. One possible resolution
of this apparent contradiction is that the decay rate of the

instanton approach should not be identified with the late-
time limit of the instantaneous one, but rather as a weighted
average over time, which can significantly differ from the
t → ∞ limit at high temperatures.

FIG. 5. Plots of − lnΓ (left panel) and difference with the instanton action plus the contribution of the zero mode (right panel), where Γ
is evaluated at the latest time in each simulation, for λ varying between 1 and 2.3, and η varying between 7 and 16. The coefficient of the
dissipative term is fixed at γ ¼ 5 × 10−8.

FIG. 4. Results for the probability PF of remaining close to the false vacuum (left panel) and instantaneous decay rate (right panel) at
zero temperature for λ ¼ 1, η ¼ 16, and γ ¼ 10−6.

FIG. 6. Instantaneous decay rate obtained for λ ¼ 1, η ¼ 16,
and γ ¼ 10−6 for a temperature ranging from 0.1 to 10.
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IV. TWO-COMPONENT ATOMIC CONDENSATE

It was proposed in [45] that relativistic vacuum decay
can be probed experimentally in a two-component Bose-
Einstein condensate of cold atoms coupled through a time-
dependent electromagnetic field. Under the assumption
that density fluctuations are small, and after averaging
over the time dependence, the problem reduces to a single
real field (the phase difference between the two compo-
nents) with an emergent Lorentz symmetry at low wave
vectors. Moreover, the effective potential for this field
has two minima, interpreted as a true and a false vacua.
A possible experimental setup was discussed in [45,46].
It was further studied in [26,27], where it was shown to
exhibit a parametric instability in a region of param-
eter space.
In this section, we show how the parametrized path

approach described above can be extended to this model.
For simplicity, we assume the parameters are such that the
instability discussed in [26,27] does not occur or has a
smaller growth rate than the decay rate Γ of the false
vacuum.

A. The model

One of the difficulties faced when studying vacuum
decay is the lack of clear alternatives to the instanton
approach, making a test of its results or determination of its
domain of validity challenging. Ideally, one would have
alternative options to determine the decay rate which could
be compared with the value obtained from the Euclidean
instanton, allowing to quantify its accuracy. The approach
described above may offer such an alternative. Another
possibility was proposed in Refs. [45,46]. As mentioned
above, the idea is to simulate relativistic vacuum decay
using a two-component Bose-Einstein condensate of cold
atoms. The two atomic states are coupled by a radio-
frequency field generating an effective interaction potential.
For well-chosen parameters, this model exhibits the follow-
ing two crucial properties:

(i) Density fluctuations are small and integrating
over them yields a theory on a single real field
φ with an emergent Lorentz invariance at low
frequencies.

(ii) The effective potential for φ has two nondegenerate
minima, interpreted as a false and true vacua.

We refer to Refs. [26,45,46] for a more detailed description
of the model and a discussion of its physical relevance. It
was shown in [26,27] to have an instability due to para-
metric resonance between the radio-frequency field and
phonic perturbations. These references also report an
extensive numerical study of the problem using a numerical
procedure akin to the truncated Wigner approach com-
monly used in the cold atoms’ community [47], showing
the interplay between vacuum decay and the parametric
resonance.

In Ref. [48], the calculation of the decay rate is
performed in the presence of a vortex. It is shown that
the Euclidean action of the instanton is systematically
smaller than the one obtained without vortex. This can be
qualitatively understood by noting that the drop in density
near the vortex core lowers locally the barrier between the
false and true vacua. The defect thus catalyzes the phase
transition, significantly reducing the typical time it takes to
occur. This is expected to be important for experiments,
both because the reduced timescale helps circumventing
stability issues such as the one highlighted in [26] and
because a real experimental system will always have some
inhomogeneities, which can act in a qualitatively similar
way. Reference [48] used a simplified model of two-
component Bose-Einstein condensate where the effect of
the radio-frequency field is averaged and included in an
effective potential, and where s-wave interactions between
different atomic states are set to zero. In this section, we
will work with the same model.
The two components are described by complex fields

ψþ1 and ψ−1, sometimes called the condensate wave
functions. Like wave functions in quantum mechanics,
they are not observable quantities. However, they can be
used to define four observables: the atomic densities ρ�1 ¼
jψ�1j2 and local velocities v�1 ¼ ℏ∇ argðψ�1Þ=m of each
component. Conversely, these four quantities can be used
to define ψ�1 up to two global phases.11 The classical
Hamiltonian for the system is

H ¼
Z � X

ϵ∈f−1;þ1g

ℏ2

2m
j∇ψϵj2 þ Vðψþ1;ψ−1Þ

�
ddx; ð35Þ

where V is an effective potential including the self-
interactions between atoms and averaged radio-
frequency field.
Reducing the problem to a quantum-mechanical one is

technically more involved than the procedure outlined in
Sec. II for a relativistic scalar field because of the need to
include density fluctuations. Here we only sketch the
reduction and refer the interested reader to Appendix B
for technical details. The first step is to write down an
action for the system [the Hamiltonian (35) gives the action
of Eq. (B2)]. We then define the phase difference φ
between the two condensates, choose an Ansatz for φ
depending on one dynamical parameter R, and perform an
expansion in R0 to compute the densities given φ. The
action can then be rewritten in the form (10), with functions
K and U given respectively by Eqs. (B10) and (B11). One
can then follow the procedure outlined in Sec. II to solve
numerically the quantum evolution of R, once the potential
V and Ansatz φR are chosen.

11In the presence of interactions between the two states,
argðψ�

þ1ψ−1Þ may also be observable. There is then only one
global U(1) symmetry.
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Following Ref. [48], we choose a potential of the form

Vðψþ1;ψ−1Þ ¼
g0
2
½ðjψþ1j2 − ρmÞ2 þ ðjψ−1j2 − ρmÞ2�

− λ

�
ψ�
þ1ψ−1 þ ψ�

−1ψþ1

þ η

2
ðψþ1ψ

�
−1 − ψ�

−1ψþ1Þ2
�
; ð36Þ

where g0, ρm, λ, and η are positive parameters. The first
term is the interaction potential for two noninteracting
condensates with the same equilibrium density ρm. The
second term encodes the effect of the radio-frequency field,
with an amplitude proportional to λ. This potential has a
true vacuumwhere the two fields have the same phase and a
false vacuum where their phases differ by π provided λ <
2g0ρm and η > g0=ð2ðg0ρm − λÞÞ. The corresponding den-
sities are ρm � λ=g0, where the þ sign corresponds to the
true vacuum and the − sign corresponds to the false
vacuum. In the following, for simplicity, we work in units
where the reduced Planck constant ℏ, the atomic mass, and
the density ρm are equal to 1. Wework with an Ansatz of the
form12

φRðrÞ ¼ π

�
1 −

1

2
tanh

�
r − R
σ

�
þ 1

2
tanh

�
rþ R
σ

��
; ð37Þ

where, as in Sec. II, R is the dynamical parameter whose
evolution is to be determined while σ is a static parameter,
whose value can be tuned to minimize the Euclidean action.
For R ¼ 0, or more generally in the limit jr=Rj → ∞, the
phase difference is equal to π. Solving for the densities as
explained in Appendix B then gives the false vacuum.
Conversely, in the limit R → �∞ at fixed r, φR goes to

0 mod 2π, and solving for the densities gives the true
vacuum.
To test the validity of the Ansatz, we compared the

Euclidean action of the instanton thus obtained to that of
the field-theoretical instanton computed in Ref. [48]. Our
results are in agreement within an accuracy of 10% for
the range of parameters shown in Fig. 3 of that reference.
Given the exploratory nature of the present analysis and the
simplicity of the Ansatz, this level of agreement seems
satisfactory.

B. Numerical results

The Schrödinger equation for R can be solved as
described in Sec. III, with the functions K and U replaced
by their expressions given in Eqs. (B10) and (B11). As
explained in Appendix B, the main technical difference is
that two ordinary differential equations must be solved for
each value of R to obtain these functions, inducing some
overhead in setting up the initial conditions. However, since
this calculation needs to be performed only at t ¼ 0, we
find this overhead to be typically small before the total
duration of a simulation.
Results for two runs are shown in Figs. 7 and 8. They are

made with the same parameters except for the winding
number, equal to 0 in the first figure (corresponding to a
homogeneous false vacuum phase at t ¼ 0) and 1 in the
second figure (corresponding to a false vacuum with a
single vortex; a higher value generally makes the vortex
itself unstable). In both cases, the temperature is equal to 0.
Both figures clearly show the dual behavior already noted
in the relativistic case: at relatively early times (here, for
t < 100), the instantaneous decay rate has large oscilla-
tions, while it goes to a constant value, of the same order as
that predicted by the instanton approach, at late times. The
decay rate is significantly larger in the presence of the
vortex, confirming the main result of [48]. We also note that
the vortex seems to tame the early time oscillations. A more

FIG. 7. Left panel: probability that R remains between the two values where the maximum of U is reached as a function of time in a
two-component Bose-Einstein condensate with Hamiltonian (35) and interaction potential (36). The parameters are g0 ¼ 1, λ ¼ 0.25,
and η ¼ 0.6=ð1 − λÞ in units where ℏ ¼ m ¼ ρm ¼ 1. The numerical dissipation parameter γ is set to 5 × 10−7. Right panel:
instantaneous decay rate for the same simulation.

12Notice that the potential (36) is invariant under φ → 2π − φ
and thus under R → −R.
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systematic study is required to determine if this property is
generic or simply due to the higher saturating value.

V. DISCUSSION

In this article, we have developed a simple method to
determine the quantum evolution of a scalar field from
a false vacuum phase to a true vacuum phase. We showed
that choosing an Ansatz with suitable regularity and
integrability properties allows to reduce the field-theory
problem to a finite-dimensional quantum-mechanical one,
thus greatly simplifying the numerical resolution, and that
the obtained decay rate is consistent with the instanton
approach. We also showed that this procedure can be
straightforwardly extended to a cold atommodel previously
proposed to study vacuum decay experimentally. The main
drawback, both in the relativistic and cold atom cases, is its
dependence on the shape of the Ansatz: a poor choice is
expected to yield smaller decay rates than the real one. We
argued that this difficulty can be mitigated by making the
Ansatz dependent on one or several static parameters and
optimizing their values.
Our numerical results indicate that the evolution typically

proceeds in two steps. At early times, the instantaneous
decay rate typically shows large-amplitude oscillations, with
an averaged value which, in most cases, is larger than the one
predicted by the instanton approach. It also strongly depends
on the initial state, notably the temperature when working at
thermal equilibrium. At later times, the instantaneous decay
rate tends to a constant value which, in the simulations we
performed at zero temperature, seems to be in agreement
with the prediction of the instanton approach. The compat-
ibility between the two approaches is less straightforward at
finite temperature T. However, we observed that at high T
the decay is significantly faster at early times. This is at least
in qualitative agreement with instanton calculations.
We believe this procedure, which we outlined in two

simple models, can be extended to address more challeng-
ing questions. A first natural extension is to improve the
choice of Ansatz. This can be done in three ways: adding
more static parameters to be tuned before running the

simulation, more dynamical parameters to be quantized [for
instance, one might quantize the parameter σ as well as R
in the Ansatz (29)], or finding an optimal shape through
functional calculus techniques. In a similar vein, one may
consider an Ansatz with two or more bubbles of true
vacuum to study their interactions.
A second important extension would be to include

gravity. Reducing the number of gravitational degrees of
freedom to get insight on the quantum evolution was
previously proposed in [49–53], using for instance a
Wheeler-DeWitt equation. Including gravitational degrees
of freedom into the formalism outlined in Sec. II would
provide a generalization of these ideas. It may, for instance,
be used to study bubble nucleation around a black hole,
complementing the results of Refs. [7–16] by showing the
real-time evolution of the quantum state during the bubble
nucleation process.

ACKNOWLEDGMENTS

I am grateful to Ian Moss, Ruth Gregory, and Renaud
Parentani for enlightening discussions and for comments
on a preliminary version of this paper. This research was
supported by the Leverhulme Trust via the Grant No. RPG-
2016-233. I thank the Perimeter Institute, where part of this
work was done, for its hospitality. Research at Perimeter
Institute is supported by the Government of Canada
through the Department of Innovation, Science and
Economic Development and by the Province of Ontario
through the Ministry of Research and Innovation.

APPENDIX A: MORE NUMERICAL RESULTS

1. Results for an asymmetric Ansatz

In the main text, we worked with the symmetric Ansatz
(29) so that ϕR goes to the true vacuum in the limits
R → �∞. To estimate how the precise shape of the Ansatz
affects the decay rate, in this appendix, we show numerical
results obtained with the asymmetric Ansatz,

FIG. 8. Same plots as in Fig. 7 in the presence of a vortex.
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ϕRðrÞ ¼ ϕF þ ϕT − ϕF

2

�
tanh

�
rþ R
σ

�
− tanh

�
r − R
σ

��
:

ðA1Þ
It satisfies the conditions of Sec. II B except the third one,
going to the true vacuum as R → þ∞ only.

The effective potential U and prefactor K of the kinetic
term are shown in Fig. 9. For R > 0, these plots are
identical to those in Fig. 3. However, for R < 0, U is now a
monotonically decreasing function. The function U has
only one local maximum, reached at a positive value RUmax

of R. We thus change the definition of PF in Eq. (33) to

PFðtÞ ¼
Z

RUmax

−∞
jψðt; RÞj2dR; ðA2Þ

giving the probability that R is smaller than RUmax
at time t.

The instantaneous decay rate is still defined by Eq. (34).
The probability for R to remain below RUmax

and the
instantaneous decay rate are shown in Fig. 10. They both
show a relatively good agreement with Fig. 4, which
indicates that the change of Ansatz has little effect on
the instantaneous decay rate.
As done in Fig. 5 for the symmetric Ansatz, we show in

Fig. 11 the logarithm of the decay rate evaluated at late
times, adimensionalized by Umax, minus the Euclidean
action of the field-theoretic instanton and contribution from
one zero mode. While the result shows more variability
than when using the symmetric Ansatz, its range of

FIG. 9. Effective potential U (left panel) and effective mass K (right panel) for the asymmetric Ansatz (A1) for λ ¼ 1, η ¼ 16, and
σ ¼ 0.5.

FIG. 10. Integral of jψ j2 up to the point whereU reaches its local maximum (left panel) and instantaneous decay rate Γ (right panel) for
the asymmetric Ansatz (A1) and the same values of λ and η as in Fig. 4. Rmin denotes the lower bound of the numerical grid.

FIG. 11. Same plot as in the right panel of Fig. 5 for the
asymmetric Ansatz (A1).
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variation remains well below that of the Euclidean action
SE, which varies between 2.0 and 13.2.

2. Results with a radius-dependent width

The Ansatz used in Sec. III has a constant width σ. Since
relativistic true vacuum bubbles in flat space-time have a
width inversely proportional to their radius (this is a
consequence of their depending only on the Lorentz-invari-
ant distance from the origin), in this appendix we verify that
our numerical results do not significantly change when
including such a dependence. We work with the Ansatz,

ϕRðrÞ ¼ ϕF þ ϕT − ϕF

2

�
tanh

�ðjRj þ σÞðrþ jRjÞ
σ2

�

− tanh

�ðjRj þ σÞðr − jRjÞ
σ2

��
: ðA3Þ

Like the Ansatz (29), it satisfies all the properties of
Sec. II B except twice differentiability at R ¼ 0.
Moreover, the typical width of the bubble wall for R ≫ σ
is σ2=R, showing the same behavior as that of relativistic
bubbles. It is shown in the left panel of Fig. 12.
The numerical calculation of the decay rate proceeds as

described in Sec. III. Results are shown in the right panel of
Fig. 12. They are in relatively good agreement with those
of Fig. 5.

3. Results in four dimensions

We here show numerical results extending those of
Sec. III B to d ¼ 3, i.e., to a four-dimensional space-time.
The numerical procedure is the same as that used in the
main text for d ¼ 2. In practice, the main two differences
are that UðRÞ goes to −∞ faster in the limit jRj → ∞, in

FIG. 12. Left panel: Ansatz (A3) for σ ¼ 0.7 and different values of R. Right panel: same plot as in Fig. 5 for the Ansatz (A3).

FIG. 13. Left panel: plot of the instantaneous decay rate obtained for d ¼ 3, λ ¼ 1.5, and η ¼ 16 at zero temperature. Right panel: plot
of − lnðΓ=UmaxÞ − SE plus the contribution from one zero mode, where Γ is evaluated at the latest time in each simulation, for λ varying
between 1.4 and 2.4, and η varying between 12 and 24.
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accordance with Eq. (17), and that decay rates tend to be
smaller for given values of η and λ. This makes it
challenging to obtain reliable results for small values of
these parameters, although in principle possible provided
the time and space steps are sufficiently low.
The instantaneous decay rate at zero temperature for

λ ¼ 1.5 and η ¼ 16 is shown in the left panel of Fig. 13.
Its behavior is qualitatively similar to that of the two-
dimensional case (see Fig. 4), oscillating wildly at early
times before reaching a constant value. A similar behavior
was observed for the other parameter values we tried.
The right panel of the figure compares the opposite
logarithm of the asymptotic value of the decay rate,
adimensionalized by the maximum of the effective poten-
tial U, with the quantity

SE −
1

2
ln

�
SE
2π

�
;

where SE is the Euclidean action of the O(4)-symmetric
instanton. (See the discussion of Fig. 5.) Also, similarly
to the case d ¼ 2, the difference remains close to −2,
indicating a good agreement with the instanton approach.

APPENDIX B: PARAMETRIZED PATH IN THE
TWO-COMPONENT CONDENSATE

In this appendix, we determine the functions K and U in
the two-component model of Ref. [48]. To shorten the
expressions, we will drop the dependence of the fields in r
and t in intermediate expressions. The model is described by
two complex fields ψϵ, ϵ ¼ �1, with a Lagrangian density

L ¼
X

ϵ∈f−1;þ1g

�
iℏ
2
ðψ�

ϵ∂tψϵ − ψϵ∂tψ
�
ϵÞ −

ℏ2

2m
j∇ψϵj2

�

− Vðjψþ1j2; jψ−1j2; argðψþ1Þ − argðψ−1ÞÞ; ðB1Þ

where ℏ is the reduced Planck constant, m is the atomic
mass, and V is an interaction potential, including the
interactions between atoms and the averaged effect of the
electromagnetic field. We define the densities of the two
fields ρϵ ¼ jψϵj2 for ϵ ∈ f−1;þ1g. Following [48], we
assume the arguments of ψ�1 are equal and opposite up to
the contribution of the vortex: there exists a real function φ
such that argðψ�1Þ ¼ �φ=2þ nθ, where n is an integer
(equal to 0 in the absence of vortex) and θ is an angle
coordinate around the vortex core. Working in two space
dimensions, the action becomes

S¼−2π
Z þ∞

t¼−∞

Z
∞

r¼0

�
ℏ
2
ðρþ1−ρ−1Þ∂tφ

þ ℏ2

2m

�
ð∂r

ffiffiffiffiffiffiffi
ρþ1

p Þ2þð∂r
ffiffiffiffiffiffiffi
ρ−1

p Þ2þðρþ1þρ−1Þ
ð∂rφÞ2

4

�

þVðρþ1;ρ−1;φÞ
�
rdrdt: ðB2Þ

Let us now assume we have chosen a series φR of
functions from Rþ to R, indexed by the real variable R. We
consider field configurations where φ has the form

φðt; rÞ ¼ φRðtÞðrÞ: ðB3Þ

An additional difficulty compared with the case of Sec. II is
that we have two additional functions ρ�1 to determine.
One could choose an Ansatz for these functions too, but this
would introduce more arbitrariness. Instead, we propose to
fix them by extremizing the action at fixed φ. In general,
this is complicated by the fact that the Euler-Lagrange
equations on ρ�1 involve the derivative of R, which is not
known a priori. However, as we now show, an expansion
in this derivative allows to compute the two densities to
leading order using only the value of R at a given time.
Let c0 be a velocity of the order of the sound speed in the

false vacuum phase. We expand ρ� in powers of R0=c0 in
the following way:

ρ�1 ¼ ρð�1Þ
R þ γð�1Þ

R R0 þ χð�1Þ
R R02 þ ρð�1Þ

R O

��
R0

c0

�
2
�
;

ðB4Þ

where, for each value of R, ρð�1Þ
R are twice differentiable

functions from Rþ to Rþ and γð�1Þ
R , χð�1Þ

R are twice
differentiable functions from Rþ to R. To zeroth order
in R0=c0, the action is

Sð0Þ ¼ −2π
Z þ∞

t¼−∞

Z
∞

r¼0

�
ℏ2

2m

��
∂r

ffiffiffiffiffiffiffiffiffiffi
ρðþ1Þ
R

q �
2

þ
�
∂r

ffiffiffiffiffiffiffiffiffiffi
ρð−1ÞR

q �
2
�
þ
�
ρðþ1Þ
R þ ρð−1ÞR

	 ð∂rΘRÞ2
4

þ Vðρðþ1Þ
R ; ρð−1ÞR ;φRÞ

�
rdrdt: ðB5Þ

Let us look for field configurations where ρðþ1Þ
R ¼ ρð−1ÞR .

We call this function ρR. We also assume ρþ1 − ρR ¼
ρR − ρ−1 and define γR ¼ γðþ1Þ

R . Then, the first order in
R0=c0 cancels and the zeroth order becomes

Sð0Þ ¼ −2π
Z þ∞

t¼−∞

Z
∞

r¼0

�
ℏ2

2m

�
ð∂r

ffiffiffiffiffi
ρR

p Þ2 þ ρR
4
ð∂rφRÞ2

þ n2

r2
ρR

�
þ VðρR; ρR;φRÞ

�
rdrdt: ðB6Þ

The corresponding Euler-Lagrange equation is
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ℏ2

mr
ffiffiffiffiffiffiffiffiffiffiffi
ρRðrÞ

p ∂rðr∂r

ffiffiffiffiffiffiffiffiffiffiffi
ρRðrÞ

p
Þ ¼ ℏ2

4m
ðφR

0ðrÞÞ2 þ ℏ2n2

mr2

þ ∂ρRVðρRðrÞ; ρRðrÞ;φRðrÞÞ
ðB7Þ

to be solved with the boundary conditions ρ0Rð0Þ ¼ 0 and
ρRðrÞ → ρF as r → ∞, where ρF is the density in the false
vacuum phase.
The second-order contribution to the action is

Sð2Þ ¼ −2π
Z þ∞

t¼−∞

Z
∞

r¼0

�
ℏγR∂RφR þ ℏ2

4m

��
∂r

�
γRffiffiffiffiffi
ρR

p
��

2

− ð∂r
ffiffiffiffiffi
ρR

p Þ
�
∂r

�
γ2R
ρ3=2R

���
þ ð∂2

ρþ1
VðρR; ρR;φRÞ

− ∂ρ−1∂ρþ1
VðρR; ρR;φRÞÞγ2R

�
ðR0Þ2rdrdt: ðB8Þ

The corresponding Euler-Lagrange equation is

ℏ2

4mr
ffiffiffiffiffiffiffiffiffiffiffi
ρRðrÞ

p ∂r

�
r∂r

�
γRðrÞffiffiffiffiffiffiffiffiffiffiffi
ρRðrÞ

p
��

¼ ℏ
2
∂RφRðrÞ þ

�
ℏ2∂rðr∂r

ffiffiffiffiffiffiffiffiffiffiffi
ρRðrÞ

p Þ
4mrρRðrÞ3=2

þ ∂2
ρþ1

VðρRðrÞ; ρRðrÞ;φRðrÞÞ

− ∂ρ−1∂ρþ1
VðρRðrÞ; ρRðrÞ;φRðrÞÞ

�
γRðrÞ ðB9Þ

to be solved with the boundary conditions γ0Rð0Þ ¼ 0 and
γRðrÞ → 0 as r → ∞.
Solving Eqs. (B7) and (B9) with the relevant boundary

conditions yields the two functions ρR and γR for each value
of R. We can then define the two functions from R to R,

KðRÞ ¼ −2π
Z

∞

0

ℏγRðrÞð∂RφRðrÞÞrdr ðB10Þ

and

UðRÞ ¼ 2π

Z
∞

0

�
ℏ2

2m

�
ð∂r

ffiffiffiffiffiffiffiffiffiffiffi
ρRðrÞ

p
Þ2 þ ρRðrÞ

4
ð∂rφRðrÞÞ2

�

þ VðρRðrÞ; ρRðrÞ;φRðrÞÞ − VðρF; ρF; πÞ
�
rdr:

ðB11Þ

The difference between the action and that of the homo-
geneous false vacuum may then be written as

ΔS ≈
Z þ∞

−∞

�
KðRðtÞÞ

2
R0ðtÞ2 − UðRðtÞÞ

�
dt; ðB12Þ

where terms of order 3 or more in R0=c0 are discarded. This
expression is similar to Eq. (10), and we can proceed from
here as in Sec. II. The main difference is that we now need
to solve two ordinary differential equations for each value
of R to obtain ρR and γR.
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