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Abstract

Supraglacial lakes (SGLs) are now known to be widespread in Antarctica, where they represent an important
component of ice sheet mass balance. This paper reviews how recent progress in satellite remote sensing has
substantially advanced our understanding of SGLs in Antarctica, including their characteristics, geographic dis-
tribution and impacts on ice sheet dynamics. Important advances include: (a) the capability to resolve lakes at sub-
metre resolution at weekly timescales; (b) the measurement of lake depth and volume changes at seasonal
timescales, including sporadic observations of lake drainage events and (c) the integration of multiple optical
satellite datasets to obtain continent-wide observations of lake distributions. Despite recent progress, however,
there remain important gaps in our understanding, most notably: (a) the relationship between seasonal variability
in SGL development and near-surface climate; (b) the prevalence and impact of SGL drainage events on both
grounded and floating ice and (c) the sensitivity of individual ice shelves to lake-induced hydrofracture. Given that
surface melting and SGL development is predicted to play an increasingly important role in the surface mass
balance of Antarctica, bridging these gaps will help constrain predictions of future rapid ice loss from Antarctica.
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I Introduction

Supraglacial lakes (SGLs) form when meltwater
accumulates in topographic depressions on top of
laci . h pog I:l . ph 1 . p'l Corresponding author:
g a?lers’ 1ce § e.ets and 1ce shelves, primartly Jennifer F Arthur, Department of Geography, Durham
during the ablation season (Echelmeyer et al., University, South Road, Durham, DHI 3LE, UK.
1991). They are an important component of ice  Email: jennifer.arthur@durham.ac.uk
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sheet hydrology because they can influence ice
sheet dynamics in one of three ways (Bell et al.,
2018; Das et al., 2008). Firstly, their albedo-
lowering effect can intensify surface melt and
induce a warming effect on the adjacent ice col-
umn (Liithje et al., 2006; Tedesco et al., 2012;
Hubbard et al., 2016). Secondly, their rapid drai-
nage via hydrofracturing can deliver meltwater
pulses to the ice sheet bed. It is well-known that
SGL drainage causes transient accelerations in
grounded ice velocity on the Greenland Ice Sheet
(Bartholomew et al., 2010; Das et al., 2008;
Schoof, 2010; Tedesco et al., 2013; Zwally
et al., 2002), and recent work has shown similar
effects on the Antarctic Peninsula (Tuckett et al.,
2019). Thirdly, SGLs may be an important pre-
cursor for ice shelf collapse (Banwell et al., 2013;
Glasser and Scambos, 2008; Scambos et al.,
2003). On the Antarctic Peninsula, for example,
the filling and drainage of SGLs induces ice shelf
flexure and triggers widespread fracturing and
disintegration (Banwell et al., 2013, 2014,
2019; van den Broeke, 2005; Glasser and Scam-
bos, 2008; Rott et al., 1996; Scambos et al.,
2009). Ice shelf disintegration plays a major role
in ice sheet dynamics because the resulting loss
in buttressing accelerates inland ice flow,
increasing the ice discharge (Fiirst et al., 2016;
Glasser et al., 2011; Scambos et al., 2004).
Despite an abundance of SGL research focus-
ing on the Greenland Ice Sheet (GrIS) (Chu,
2014), much less is known about the role of
SGLs in Antarctica. However, advances in sat-
ellite remote sensing capabilities since the
1970s have revealed that SGLs are present not
only on Antarctic Peninsula ice shelves (Ban-
well et al., 2014; Hubbard et al., 2016; Luckman
et al., 2014; Scambos et al., 2000, 2003, 2009),
but are also far more widespread than previ-
ously thought around the margins of Antarctica,
including the periphery of the East Antarctic Ice
Sheet (EAIS) (Figure 1) (Kingslake et al., 2017;
Langley et al., 2016; Lenaerts et al., 2017;
Moussavi et al., 2020; Stokes et al., 2019).

We review how satellite remote sensing
developments have transformed our under-
standing of the distribution and characteristics
of SGLs in Antarctica, including their potential
impact on ice sheet mass balance. Following a
brief overview of SGL formation in Section II,
Section III highlights how satellite remote sen-
sing has advanced our understanding of Antarc-
tic SGLs, specifically the progress in detecting
and quantifying SGL distributions, volumes and
their evolution through the melt season. Section
IV provides an Antarctic-wide synthesis of SGL
characteristics and their potential impact on
ice dynamics. In Section V we identify some
important gaps in understanding and suggest
possible directions for future research.

Il Controls on supraglacial lake
formation in Antarctica

SGLs form seasonally in Antarctica when an
energy surplus at the ice surface causes ice to
melt (Fitzpatrick et al., 2013; Trusel et al.,
2012). The spectral albedo of liquid meltwater
(~0.4-0.6) is approximately half of snow-
covered ice (Figure 2) (Box and Ski, 2007;
Tedesco, 2014), which leads to a positive feed-
back, whereby the lower albedo of the SGLs
enhances melting and can lead to further increase
in lake area and depth (Banwell et al., 2015;
Morriss et al., 2013; Tedesco et al., 2012). For
meltwater to pond in SGLs in areas of firn cover,
percolation into the near-surface firn layer must
be impeded by firn over-saturation or refrozen
englacial meltwater (Alley et al., 2018; Harper
et al., 2012; Hubbard et al., 2016; Lenaerts et al.,
2017; Reynolds and Smith, 1981).

The location of surface depressions on the ice
sheet is an important influence on where SGLs
form (Echelmeyer et al., 1991). On grounded
ice, topographic undulations in subglacial bed-
rock are translated into ice surface depressions,
which lakes tend to re-occupy in the same loca-
tion annually (Echelmeyer et al., 1991; Ignéczi
et al., 2016, 2018; Langley et al., 2016). On
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Figure |. Locationsaround Antarctica where supraglacial lakes have been observed, together with examples: (a)
Larsen Clce Shelf, (b) George VIl Ice Shelf, (c) Riiser-Larsen Ice Shelf, (d) Langhovde Glacier, (€) Ross Archipelago,
(f) McMurdo Ice Shelf, (g) Sersdal Glacier, (h) Mawson Glacier. Green shaded regionsin the central map represent
the number of published studies reporting supraglacial lakes in that location. Note that the number of studies
reporting lakes in a given location does necessarily correspond to the number of lakes forming, or how long lakes
have been present in this location. Lakes mapped in January 2017 in a recent East Antarctic assessment by Stokes
etal. (2019) are shown in purple. Images reproduced from: Martin Truffer, University of Alaska Fairbanks (a),
Frithjof C. Kiipper, University of Aberdeen (b), Matti Lepparanta, University of Helsinki (c), Takehiro Fukuda,
Hokkaido University (d), NASA Operation IceBridge (e), Chris Larsen, NASA Operation IceBridge (f), Sarah
Thompson University of Tasmania (g), and Richard Stanaway, Australian National University (h).

slower-moving ice that is grounded, SGLs often MacDonald et al., 2018; Sergienko, 2013). This
grow larger and deeper than those on floating isbecause lakes tend to re-occupy surface depres-
ice further downstream (Banwell et al., 2014; sions for longer, allowing them to expand and
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Figure 2. (a) Spectral albedos for a sequence of snow-covered ice to mature supraglacial lake through a melt
season. Modified from Tedesco (2014). (b) Summer albedo derived from MODIS imagery on the Roi

Baudouin Ice Shelf. Grounding line is represented as the thick black line. Modified from Lenaerts etal. (2017).
For interpretation of the references to colours in this figure legend, refer to the online version of this article.

deepen by lake bottom ablation, and are often fed
by surface channels that increase lake catchment
areas (Das et al., 2008; Leeson et al., 2012;
Tedesco et al., 2012). The surface of slower-
moving, thicker ice also supports larger,
smoother undulations compared to thinner,
faster-flowing ice (Gudmundsson, 2003) and is
less likely to be subject to crevassing. In contrast,
lakes on floating ice form in surface depressions
that migrate with ice flow (MacDonald et al.,
2018). These surface depressions are produced
in response to spatial and seasonal variations in
ice flow, ice thickness and ice flexure (Banwell
et al., 2019). Surface depressions are also con-
trolled by the location of basal channels that are
incised by sub-surface melting (Dow et al., 2018)
and basal crevasses (McGrath et al., 2012)
because thinner ice in these regions that has
reached hydrostatic equilibrium will sit lower in
the water. Surface depressions can also be asso-
ciated with flow stripes, shear-margins and suture
zones (Banwell et al., 2014; Bell et al., 2017; Ely
et al., 2017; Glasser and Gudmundsson, 2012;
Luckman et al., 2014; Reynolds and Smith,

1981). Reduced firn air content and ice surface
topography are therefore first-order controls on
SGL locations.

In Antarctica, it has been noted that glacio-
logical and climatic conditions around ice shelf
grounding lines (i.e. where the ice begins to
float) are conducive to SGL formation (King-
slake et al., 2017; Lenaerts et al., 2017; Stokes
et al., 2019). The majority of SGLs form on ice
shelves close to and just downstream of the
grounding line because the lower elevations and
large decrease in ice surface slope are condu-
cive to meltwater ponding (Stokes et al., 2019).
SGL distributions across Antarctica have been
shown to reflect the complex interplay between
local and regional wind patterns, ice surface
topography and albedo (Kingslake et al., 2017;
Lenaerts et al., 2017; Stokes et al., 2019). Fig-
ure 3 plots SGL locations and surface melt flux
together with blue ice areas, rock outcrops, wind
scour zones and near-surface wind speeds,
which shows that the highest densities of SGLs
do not necessarily coincide with regions of
highest surface melt (Datta et al., 2019;
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Figure 3. Distribution of near-surface wind speed, wind scour zones, exposed rock, blue ice, surface melt flux,
ice shelf vulnerability to surface-melt-induced collapse, and supraglacial lakes (from January 2017). Surface melt
fluxes are derived from QuickScat scatterometer (2000-2009 average, Trusel et al., 2013) and include melt-
water that could refreeze in the snow/firn. Ice shelf vulnerability is derived from QuikSCAT data and represents
the relative concentration of refrozen meltwater in the firn (Alley et al.,, 2018). The grounding line and coastline
are represented by dotted and solid black lines respectively. Arrows represent near-surface wind speed vectors
(Lenaerts etal., 201 7; Luckman et al., 2014). Supraglacial lake datasets are reproduced from Stokes et al. (2019).
On Larsen C Ice shelf (A), supraglacial lake formation is restricted to inlets (blue stars), driven by féhn-enhanced
melting. On Roi Baudouin Ice Shelf (B), lakes clustered at the grounding zone are associated with katabatic
wind-enhanced melting. The co-occurrence of lakes with rock outcrops and wind-scoured blue ice is promi-
nent on other East Antarctic ice shelves, such as Shackleton (C) and Amery (D).
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Kingslake et al., 2017; Lenaerts et al., 2017;
Trusel et al., 2013). On the Antarctic Peninsula,
for example, the strength and frequency of wes-
terly fohn winds dictate SGL distribution, result-
ing in intense melting (>400 mm w.e. yr ') and
localised ponding on ice shelves, even in
Antarctic winter (Figure 3a) (Datta et al., 2019;
Lenaerts et al., 2017; Luckman et al., 2014; Kui-
pers Munneke et al., 2018; Trusel et al., 2013;
Wiesenekker et al., 2018). Likewise, in coastal
East Antarctica, SGLs are often clustered near
ice shelf grounding zones, whereas they are
often absent further downstream despite higher
surface melt fluxes (Figure 3b, 3¢, 3d). Higher
accumulation and firn air content in near coastal
regions likely explain this absence, because sur-
face meltwater can percolate into the firn before
it can pond on the surface (Lenaerts et al., 2017).
Warm air delivery to grounding zones from per-
sistent katabatic winds exposes lower-albedo
blue ice through wind scouring, which intensi-
fies melting and ponding (Lenaerts et al., 2017)

In summary, SGLs are widespread around
the periphery of Antarctica and form predomi-
nantly on floating ice shelves, clustered a few
kilometres down-ice from the grounding line.
The occurrence of SGLs is controlled by firn air
content, as well as by short-lived fohn wind
events or persistent katabatic winds that inten-
sify surface melting.

I11 Satellite remote sensing
of supraglacial lakes

The revolution in satellite remote sensing cap-
abilities since the 1970s has significantly
improved our overall understanding of SGLs
in Antarctica. This is reflected in the growing
number of SGL studies in the last decade
(Figure 4; Table 1), with the vast majority tak-
ing advantage of increasingly plentiful, openly
available optical satellite imagery (Figure 5).
Table 1 highlights the progression in remote
sensing-based assessments of SGLs in Antarc-
tica, from the visual identification of lakes in

earlier coarser optical and radar satellite ima-
gery, to manual delineation of lake extents from
medium resolution imagery, to semi-automated
classification of lakes and extraction of lake
characteristics such as areas, depths and
volumes from high-resolution optical imagery.
A trade-off exists between resolution, return
period and swath width when selecting satellite
imagery for investigating SGLs (Table 2) (Lee-
son et al., 2013). The integration of imagery
from multiple sensors can, therefore, exploit
their respective benefits for assessments of SGL
evolution during and between melt seasons.

3.1 Coarse (>250 m) spatial resolution
sensors

The comparatively coarse spatial resolution
(0.25-1.09km) and wide swath (2330-
2990km) MODerate-resolution Imaging Spectro-
radiometer (MODIS) and Advanced Very High
Resolution Radiometer (AVHRR) sensors have
been used to map SGL distributions at the
regional scale, e.g. including large ice shelves
(Hubbard et al., 2016; Lenaerts et al., 2017; Mac-
Donald et al., 2019). For example, on the Antarc-
tic Peninsula, MODIS has been used to highlight
the presence of ice dolines (drained lake basins)
on Larsen B Ice Shelf before its collapse
(Bindschadler et al., 2002), and to show that
SGLs persist over decadal timescales on parts
of Larsen C Ice Shelf (Hubbard et al., 2016). In
East Antarctica, MODIS has also been used to
confirm the presence of SGLs during summer in
the grounding zone of the Roi Baudouin Ice Shelf
(Lenaerts et al., 2016). The sub-daily repeat cov-
erage of AVHRR has lent itself to documenting
the presence of SGLs on Antarctic ice shelves
before their break-up, including Wilkins and
George VI ice shelves (Scambos et al., 2000).
That said, frequent cloud coverage was found to
reduce its temporal coverage to twice a month,
preventing detailed analysis of lake extents or
drainage (Scambos et al., 2000). The wide swath
coverage of these two sensors comes at the
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Figure 4. The number of Antarctic-focused published studies containing the keywords ‘Antarctic’ and
‘supraglacial lake’ or ‘melt pond’ or ‘melt lake’ from a combined search of the ISI Web of Science catalogue (n
= 49, search date: |5th January 2020, glaciological studies only). Coloured bars represent operational
periods of common multispectral and radar satellites that have been employed in SGL studies. Earlier studies
reported field and remote sensing observations of supraglacial lakes on several Antarctic ice shelves (Amery,
George VI, Justulstraumen/Fimbul) and, more recently, were motivated by the rapid disintegration of Ant-
arctic Peninsula ice shelves. The first notable peak in 2009 coincides with the disintegration of the Wilkins Ice
Shelf. The second most productive year in 2013 coincides with the first study to propose an explanatory
mechanism for the synchronicity of lake drainages on Larsen B Ice Shelf prior to its collapse. The increase in
publications since this date also coincides with the launch of higher resolution multispectral and radar
satellites, notably Landsat 8 and the Sentinel constellations (see Figure 5).

expense of a coarser spatial resolution, resulting
in the inability to accurately resolve SGLs below
the pixel resolution (<0.0625km? for MODIS,
<1.18km? for AVHRR). Given the tendency of
Antarctic SGLs to be shallower and narrower
than those on the GrIS (Banwell et al., 2014), this
lower spatial resolution may bias the detection of
rapid drainage events by missing smaller or rap-
idly draining lakes (Cooley and Christoffersen,
2017). In summary, the wide swath and rapid

revisit period of coarse resolution sensors make
them well-suited to continent- or region-wide
studies, as well as those requiring high temporal
frequency.

3.2 Medium (15-250m) spatial resolution
sensors

Over 20 Antarctic SGL studies have exploited
the Landsat suite of satellites (Figure 5; Table 2).
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Landsat 7
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Landsat 4
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ERS-1/-2
MODIS

ASTER

Landsat 1
Trimetrogon Aerial Photography
RADARSAT
ALOS (PALSAR)
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Landsat 3
Waerldview-1
Worldview-2
Sentinel 1
Envisat ASAR
IKONOS
AVHRR

Sentinel 2

Field-based observations

Sensor type
= Optical
ESAR

Aerial photography

= Field-based observations.

Figure 5. Most commonly applied remote sensing imagery sources for measuring and monitoring supra-
glacial lakes in Antarctica, along with field-based studies. SAR: synthetic aperture radar

In early studies, lakes were identified in Multi-
spectral Scanner (MSS) imagery (60m resolu-
tion) on Justulstraumen (upstream of Fimbul Ice
Shelf; Figure 1), but their area could not be
accurately resolved (Orheim and Lucchitta,
1987; Winther et al., 1996). The improved
30m spatial resolution and two additional infra-
red bands of Thematic Mapper (TM) enabled
subsequent studies to better resolve individual
lakes, but features such as thin lake ice cover-
ings were still unresolvable (Orheim and Luc-
chitta, 1987).

More recently, studies have exploited the
15m resolution panchromatic band of
Landsat-7 Enhanced Thematic Mapper Plus
(ETM+) to pinpoint the timing of SGL over-
flow and/or refreezing (Kingslake et al., 2015)
and to extract lake characteristics such as
extents, areas and volumes (Banwell et al.,
2014). Landsat-7 ETM+ has also been used
to produce time-series of lake frequencies,

areas and volumes over 13 austral summers,
with a maximum temporal resolution of 13
days (Langley et al., 2016). The Landsat-7
ETM+ record has also been utilised to map
SGL distributions at a continental scale (King-
slake et al., 2017: Section 4.3).

The Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) provides a
more favourable revisit period (1-2 days) than
Landsat 7 and was employed to conduct
detailed mapping of filled and drained lakes
on Larsen B Ice Shelf pre-, during and post-
collapse (Glasser and Scambos, 2008). This
rapid revisit period has also enabled individual
lake disappearances and drainage mechanisms
to be distinguished for the first time in East
Antarctica (Langley et al., 2016).

Most recently, the Landsat-8 Operational
Land Imager (OLI) has offered improved preci-
sion for mapping SGLs and extracting their
characteristics, owing to its enhanced spatial
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(15m) and radiometric resolution (12-bit, mean-
ing greater dynamic range), high signal-to-noise
ratio and high temporal resolution (~725
scenes per day, compared to ~475 scenes per
day from Landsat-7). This has enabled SGLs to
be mapped in detail at the outlet glacier, ice
shelf and pan-ice sheet scale (Bell et al., 2017;
Kingslake et al., 2017; Stokes et al., 2019).

3.3 High (< 10m) spatial resolution sensors

High-resolution multispectral imagery provided
by satellites launched within the last decade
such as Sentinel-2 (10m resolution, five day
revisit period), Worldview-2 (1.84m resolution,
1.1 day revisit period) and IKONOS (3.28m,
three day revisit period) have enabled very
small or narrow lakes to be resolved (Bell
et al., 2017; Jawak and Luis, 2014; Kingslake
et al., 2017; Labarbera and MacAyeal, 2011;
Moussavi et al., 2020; Stokes et al., 2019). In
Figure 6 we compare SGLs on a tributary gla-
cier of Amery Ice Shelf to demonstrate the vast
improvement in the ability to resolve individual
SGLs. Where individual lakes were unresolva-
ble in coarser resolution imagery (AVHRR and
MODIS), the bathymetry of individual lakes
and partial lake ice coverage are now detectable
in more detail. High-resolution sensors also pro-
vide the capability to map narrower supraglacial
channels occurring in association with SGLs,
thus potentially enabling a better understanding
of lake drainage mechanisms.

Despite the improvement in spatial resolu-
tion, the five-day revisit period under cloud-
free conditions provided by the Sentinel-2A/B
constellation precludes the identification of the
precise onset of SGL formation and the tracking
of SGL behaviour (and possible rapid drainage)
on daily to sub-daily timescales (Quincey and
Luckman, 2009; Stokes et al., 2019; Williamson
et al., 2018). Recent pan-ice sheet assessments
and studies tracking and quantifying meltwater
depth and volume in individual lakes have max-
imised the combined potential of Landsat-8 and

Sentinel-2 by increasing the number of avail-
able cloud-free scenes from which to map SGLs
(Kingslake et al., 2017; Leeson et al., 2015;
Miles et al., 2017; Moussavi et al., 2020; Stokes
etal.,2019). Daily commercial satellite imagery
provides a highly valuable addition, though its
restrictive cost and limited swath width
(<20km) have tended to limit its use to smaller
areas. However, up to 10,000km? imagery per
month is freely available for research purposes
from the recently launched PlanetScope satellite
constellation (Planet Team, 2020). The substan-
tially higher spatial (0.8—5m) resolution and
daily revisit period of this imagery offers excel-
lent potential for more accurately characterising
SGL onset, growth and drainage mechanisms,
although Planet imagery has yet to be used in
Antarctica for this purpose.

3.4 Synthetic aperture radar (SAR) imagery

The most important limitations to optical sat-
ellite sensors, however, remain cloud cover
and their inability to image during polar
night (Quincey and Luckman, 2009). SAR
removes the need for clear-sky imagery, day-
light and the high solar zenith (Luckman
et al., 2014) because it is an active sensor
that transmits electromagnetic radiation,
meaning data can be collected in winter
(Miles et al., 2017; Kuipers Munneke et al.,
2018). ERS-1-2, Radarsat and Envisat SAR
imagery have successfully detected refrozen
lakes and melt streams on the Amery Ice
Shelf in August, and on the Wilkins and
northern Larsen ice shelves in July (Fricker
et al., 2002; Lucchitta and Rosanova, 1998,
Phillips, 1998; Rott et al., 1996). Wintertime
surface ponding was linked to fohn wind
events on the Larsen C Ice Shelf using
recently launched Sentinel-1A C-band SAR
(Kuipers Munneke et al., 2018). Sentinel-1
provides a promising means of tracking SGL
growth and drainage through melt seasons
into the winter (Miles et al., 2017) and this
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Lndsat 7 ETM+

Y

WorldView-3

Figure 6. Examples of the evolution of satellite image sensor resolution and detection of supraglacial lakes
on Beaver Lake, an epishelf lake adjacent to Amery Ice Shelf, East Antarctica. Panels moving from top left to
bottom right represent satellite sensors in order of increasing spatial resolution. Smaller insets adjacent to six
of the panels show the same supraglacial lake to demonstrate the improvement in detail. The ability to resolve
supraglacial lake extent, including very small and narrow ponds, has vastly improved since coarser sensors
like AVHRR and MODIS, which were unable to distinguish these features. Most recently, high (>10m)

resolution sensors such as Sentinel 2 MSI and Worldview-3 can resolve lake bathymetry and surface features
such as partial lake ice coverage. Imagery: Scambos et al. (1996); United States Geological Survey; Google,

Maxar Technologies.

is an important area for future SGL research
in Antarctica. However, undulating topogra-
phy can be problematic for SAR, because this
creates radiometric distortion that fails to detect
small, narrow SGLs (Johansson and Brown,

2012). Backscatter associated with high surface
roughness (e.g. in areas of complex terrain with
wet snow and firn) also poses difficulties for
lake detection under certain polarisation (hori-
zontal transmit and horizontal receive, HH)
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(Miles et al., 2017). In summary, SAR provides
excellent potential in Antarctica for obtaining
SGL observations in austral winter and for
detecting sub-surface meltwater bodies associ-
ated with SGLs.

3.5 Supraglacial lake detection and
mapping methods

Manual delineation of SGLs from satellite ima-
gery in a Geographic Information System (GIS)
offers a reliable method for identifying individ-
ual SGLs (Leeson et al., 2013) and for conduct-
ing detailed mapping of SGL networks on
individual ice tongues and shelves (Glasser and
Scambos, 2008; Langley et al., 2016). However,
manual digitisation is less suitable for larger-
scale assessments because it is time-intensive
and can be subject to user bias (Jawak and Luis,
2014; Williamson et al., 2017). In contrast, semi
and fully automated lake detection methods can
be rapidly applied to hundreds of satellite scenes
(Stokes et al., 2019).

The well-established Normalised Difference
Water Index adapted for ice (NDWI ;) classi-
fies water-covered pixels based on exceedance
of an empirically selected red/blue reflectance
threshold (typically >0.2-0.5) (Fitzpatrick et al.,
2013) and has been successfully applied in East
Antarctica to delineate SGLs (Bell et al., 2017;
Jawak and Luis, 2014; Stokes et al., 2019). This
is a pixel-based method because classification is
based on spectral information of individual pix-
els. Additional thresholds have successfully
been applied to distinguish between shallow
water/slush and medium-deep water (0.12—
0.14 and 0.14-0.25) (Bell et al., 2017). Lakes
have also been detected on the GrIS using
dynamic band thresholding, which classifies
pixels as water if their red band reflectance is
less than a selected threshold of the mean reflec-
tance in a surrounding moving window (Everett
etal., 2016; Selmes et al., 2011, 2013; William-
son et al., 2017). Misclassification of partially
ice-covered lakes as bare ice can be problematic

(Banwell et al., 2014; Sundal et al., 2009), but
modified versions with elevated thresholds can
eliminate false positives, such as slush zones
with spectrally similar signatures to SGLs
(Jawak and Luis, 2014; Moussavi et al., 2020;
Yang and Smith, 2013). This can, however,
exclude very shallow lakes (Miles et al.,
2017). NDWI is, therefore, a rapid semi-
automated method for retrieving pixel-based
SGL extents, which can then be polygonised for
analysis in a GIS, though the presence of slush
can confound SGL classification. A new
threshold-based lake classification method has
been successfully applied to five East Antarctic
ice shelves, combining the NDWI ;.. with the
Normalised Difference Snow Index (NDSI)
(Hall et al., 1995) to help isolate clouds and
rocks (Moussavi et al., 2020). This new method
was found to produce fewer misclassification
errors and was able to detect shallow lakes
missed using the NDWI ;.. alone (Moussavi
et al., 2020).

Object-based classification is useful for
exploiting SGL features distinguishable in very
high-resolution optical imagery. Rather than
classifying individual pixels, object-orientated
classification focuses on differences between
groups of pixels (or ‘objects’) with similar tex-
ture, tone, pattern or shape (Johansson and
Brown, 2013). For example, spectral matching
and target detection applied to WorldView-2
images extracted the boundaries of a small
(36) sample of SGLs in the Larsemann Hills,
Princess Elizabeth Land more accurately than
with the NDWI (Jawak and Luis, 2014). Though
non-pixel-based methods can better distinguish
between lakes and slush, lakes that are small,
shallow or elongated are at risk of being missed
(Johansson and Brown, 2013).

3.6 Extracting supraglacial lake depths
and volumes

Studies using coarser resolution Landsat-1-5
imagery were restricted to visual assessments
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of lake depth (e.g. Orheim and Lucchitta, 1987),
but recent studies have exploited the enhanced
spectral and spatial resolution of Landsat-7,
Landsat-8 and Sentinel-2 to quantify estimates
of SGL depths in Antarctica using a radiative
transfer model (Banwell et al., 2014, 2019; Bell
et al., 2017; Moussavi et al., 2020; Sneed and
Hamilton, 2007). The model calculates lake
water depth using the rate of light attenuation
in water, lake-bottom albedo and optically deep
water reflectance (Philpot, 1989):

z= [ln(Ad - ROO) - ln(Rz - Roc)]/g

where: z = lake depth; 4d = lake bed reflec-
tance (approximated as pixel reflectance from
lake edge); R..= reflectance of optically deep
water (approximated as pixel reflectance from
open ocean water); R, = reflectance value, and g
= attenuation co-efficient rate.

This radiative transfer model was used to
extract lake depths prior to the collapse of the
Larsen B Ice Shelf and provided estimates of the
likelihood of lake drainage by hydrofracture
(Banwell et al., 2014). The same method has
been used to demonstrate the coevolution of
lake area with depth over multiple melt seasons
on Langhovde glacier in Dronning Maud Land
(Langley et al., 2016). The transfer model
makes several assumptions about SGLs: that
they have negligible suspended or dissolved
in-/organic particulate matter, that there is min-
imal wind-induced lake surface roughness, and
that the lake-bottom albedo is homogenous
(Moussavi et al., 2016; Sneed and Hamilton,
2011). While the last of these assumptions holds
true for SGLs in Greenland (Sneed and Hamil-
ton, 2011), it may be problematic in certain
areas, such as on fine debris-rich ice (Banwell
et al., 2019; Pope et al., 2016), and calibration
with in-situ field-based measurements is much
needed (Bell et al., 2018).

A fully automated method for extracting
SGL volumes has been developed for the Paa-
kitosq and Store Glacier regions of west Green-
land (Williamson et al., 2017). This derived an

area-to-volume scaling relationship across a
much larger sample (» = 1114) than in previ-
ous empirically based area-depth scaling stud-
ies (Box and Ski, 2007; Liang et al., 2012).
Williamson et al. (2018) applied the algorithm
to detect rapid SGL drainage events during
summer 2014, using a combined Sentinel-2
and Landsat-8 dataset. Recent efforts have
begun deriving lake depth and volume time-
series over some Antarctic ice shelves using a
combined Sentinel-2 and Landsat-8 dataset
(Moussavi et al., 2020). This has been used to
detect individual lake drainages and to quan-
tify seasonal lake volume changes over one
ice shelf. Such an approach applied across
Antarctica to produce a continental dataset
of SGL volumes would provide valuable
insight into seasonal SGL evolution, although
partial lake ice coverage and a lack of cloud-
free lake observations may present difficulties
in detecting lake boundaries and in classify-
ing rapid drainages. Initial work to quantify
SGL dimensions across Antarctica has also
suggested SGLs are smaller and shallower
than those in Greenland (Moussavi et al.,
2020; Stokes et al., 2019), highlighting the
need for an ice-sheet-wide assessment of lake
depths to quantify meltwater storage in SGLs
across Antarctica and to constrain in which
regions of the ice sheet hydrofracture drai-
nage may occur.

IV Antarctic supraglacial lake
distribution and impact on ice
dynamics

We now synthesise published observations of
SGLs in each major region of Antarctica. In
Table 3 we provide a regional comparison of
SGL characteristics that have been observed in
Antarctica, including spatial distributions,
depths, elevation, onset/freeze-up periods, asso-
ciation with supraglacial features (such as chan-
nels, dolines or moulins) and drainage
behaviours.
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Figure 7. Examples of supraglacial lake observations on Antarctic Peninsula ice shelves prior to their
disintegration or major calving. Prince Gustav Ice Shelf (A), which disintegrated in 1995; Larsen B ice Shelf (B
and C), which disintegrated in 2002; Larsen C Ice Shelf (D); George VI Ice Shelf (E); and Wilkins Ice Shelf (F),
which underwent major calving in 1998 and 2008. Imagery credits: (A) Rott et al. (1996), (B) Glasser and
Scambos (2008), (C) National Snow and Ice Data Center, (D) Luckman et al. (2014), (E) Labarbara and

MacAyeal (201 1), (F) Scambos et al. (2009).

4.| Antarctic Peninsula

Lakes have been commonly observed on most
Antarctic Peninsula ice shelves, and are known
to be capable of fracturing and weakening them
(Figure 7) (Scambos et al., 2003; Glasser and
Scambos, 2008; Glasser et al., 2011). The most
notable of these events was the near-
synchronous drainage of over 2750 SGLs, up
to 6.8 m deep, on Larsen B Ice Shelf in the days
prior to its collapse in February 2002 (Figure 8)
(Banwell et al., 2014; Glasser and Scambos,
2008). Given their near-synchronous drainage
in the days prior to disintegration, and their
association with dolines (several hundred km?
in area and up to 19m deep) and cross-cutting
rifts, these lakes are thought to have drained via

hydrofracturing (Bindschadler et al., 2002;
Glasser and Scambos, 2008; Scambos et al.,
2000, 2003, 2009).

Indeed, a plausible mechanism for the frag-
mentation of Larsen B Ice Shelf has been mod-
elled numerically, involving the drainage of a
single ‘catalyst’ lake, which triggers a propagat-
ing fracture network able to cause progressively
distal lakes to drain (Banwell et al., 2013; Robel
and Banwell, 2019). This ‘chain reaction’
mechanism is based on the flexural response
of ice to an applied load (i.e. meltwater in a
lake) (Figure 9) (Labarbera and MacAyeal,
2011; Sergienko, 2013) and is successfully able
to replicate the near-synchronous lake drainage
and widespread fracture network that
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Figure 8. (a) Larsen B Ice Shelf surface structures in February 2002 (reproduced from Glasser and Scambos,
2008), including an extensive network of supraglacial lakes and streams that extend to the ice shelf calving
front, alongside ice dolines indicating possible drained lakes. Inset shows lakes visible on the ice shelf surface
from 31st January 2002. MODIS image (credit: NASA Earth Observatory). (b) Pre-collapse lake depths
derived from 2Ist February 2000 Landsat reflectance (Reproduced from Banwell et al., 2014).

fragmented Larsen B Ice Shelf into unstable
blocks capable of capsizing (Banwell et al.,
2013). More recently, Leeson et al. (2020)
showed that SGLs spread southwards on the ice
shelf'in the two decades preceding its collapse at
a rate commensurate with meltwater saturation
of its surface. However, lake deepening across
the ice shelf over this period suggests this could
be the result of enhanced lake bed ablation
rather than the result of successive lake filling
and draining (Leeson et al., 2020).
Immediately south of the former Larsen B,
Larsen C Ice Shelf experiences less extensive
but localised ponding, where surface melt dura-
tion has increased by up to two days per year
(Bevan et al., 2018; Luckman et al., 2014).
SGLs tens of metres in width and tens of

kilometres in length (Luckman et al., 2014) are
largely confined to western inlets fed by tribu-
tary glaciers, such as Cabinet Inlet on the Foyn
Coast (Holland et al., 2011; Kuipers Munneke
et al., 2018). Short-lived (<48 hr) fohn wind
events (driven by episodic interaction of wes-
terly winds with topography) intensify melt
rates in these inlets and support repeated, loca-
lised ponding (Kuipers Munneke et al., 2018;
Wiesenekker et al., 2018). The modelled onset
of SGL growth (November) and their depths
(average 1.3—1.5m) near the Larsen C ground-
ing line correspond well with those derived
from Landsat-8 imagery (Pope, 2016) when a
fohn effect is added. This highlights the impor-
tance of localised climatic conditions for SGL
distributions on this ice shelf (Buzzard et al.,
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Figure 9. A schematic representation of the stress regime, flexural response and fracturing associated with
ice shelf loading (supraglacial lake formation) and unloading (lake drainage) (reproduced from Banwell et al.,

2013).

2018b). The disappearance of hundreds of lakes
in Cabinet Inlet on Larsen C over 10 days in
2003 and three weeks in 2007 is also suggestive
of hydrofracture drainage (Luckman et al.,
2014), as observed on Larsen B (Scambos
et al., 2003, 2009). The possibility of
meltwater-driven hydrofracture on Larsen C has
been highlighted by 1D ice shelf model simula-
tions of future lake distributions (Buzzard et al.,
2018b). In particular, larger lakes that migrate
towards the front of the Larsen C Ice Shelf under
warmer atmospheric conditions may deepen
sufficiently to remain unfrozen between melt

seasons, thereby pre-disposing them for hydro-
fracture (Buzzard et al., 2018b). The depleted
firn air thickness of Larsen C (0.3m in western
inlets) also increases the likelihood of extensive
SGL ponding and future instability, driven by
sustained fohn-enhanced melting (Alley et al.,
2018; Holland et al., 2011). The presence of a
massive, dense ice lens in Cabinet Inlet con-
firms an ice-saturated firn layer conducive to
SGL ponding (Hubbard et al., 2016). Thus,
although not currently at imminent risk of
hydrofracture-induced collapse, Larsen C may
be at risk of future instability if lakes become
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more extensive across the ice shelf under con-
secutive seasons of excessive summer melting
(Alley et al., 2018; Rintoul et al., 2018).

Towards the southerly extent of the Antarctic
Peninsula, abundant SGLs occupy parts of the
Wilkins Ice Shelf and George VI Ice Shelf dur-
ing the austral summer (Figure 1) (Braun and
Humbert, 2009; Labarbera and MacAyeal,
2011; Lucchitta and Rosanova, 1998; Vaughan
et al., 1993). Lakes are largely concentrated on
the central part of George VI and their location
is controlled by the location of crevasses (Ham-
brey et al., 2015), and the down-ice migration of
surface depressions following the propagation
of compressive stresses (Labarbera and
MacAyeal, 2011). On Wilkins Ice Shelf, SGLs
have been largely confined to localised regions
(Lucchitta and Rosanova, 1998; Vaughan et al.,
1993), similar to Larsen C. Lakes were visible in
MODIS imagery of the northern portion of
Wilkins Ice Shelf prior to a major calving event
(77km?) in March 2008, immediately following
the end of the melt season (Scambos et al.,
2009). Crevasse hydrofracture has been sug-
gested as an important mechanism for this
break-up, supported by the presence of over
100 dolines, which suggest meltwater delivery
through englacial lake drainage (Braun et al.,
2009; Scambos et al., 2009). However, no lakes
were observed during a later calving event in
May 2008, making lake drainage an unlikely
trigger (Scambos et al., 2009). Instead, chang-
ing stress distributions causing increased rifting
may have driven this calving event (Braun and
Humbert, 2009; Scambos et al., 2009). SGLs
have continued to form seasonally on Wilkins
Ice Shelf since 2008 without causing further
major calving events. For example, melt pond
scars are visible on recently fractured fragments
in March 2013 WorldView-2 imagery (NASA
Earth Observatory, 2013). Therefore, lake drai-
nage events are not always a precursor for ice
shelf disintegration in Antarctica.

Most recently, it has been shown for the first
time that rapid, short-lived (< 6 days)

accelerations (up to 100% greater than the
annual mean ice velocity) of five outlet glaciers
on the Antarctic Peninsula have been recorded,
four of which formerly drained into Larsen B
Ice Shelf (Tuckett et al., 2019). Lake disappear-
ances and water-filled crevasses are suggestive
of surface meltwater reaching the bed (Tuckett
et al., 2019). These are the first observations of
direct coupling between atmospheric warming
and ice dynamics, triggered by surface melt-
water ponding.

4.2 West Antarctica

Observations of SGLs in West Antarctica are
generally lacking, and little is known about their
distribution or seasonal evolution. Isolated
SGLs have been observed forming on Pine
Island Ice Shelf during the 2013-2014 melt sea-
son, the largest approximately 8km in length, as
well as in the Ford Ranges adjacent to Sulzber-
ger Ice Shelf (Kingslake et al., 2017). The
absence of published studies is, perhaps, sur-
prising, given the obvious presence of SGLs in
Google Earth imagery in several regions of the
ice sheet (e.g. Sulzberger Ice Shelf, Nickerson
Ice Shelf and Dotson Ice Shelf; Figure 10).
Lakes here are often associated with bedrock
nunataks at glacier margins and in ice shelf
grounding zones. They are also visible on float-
ing outlet glacier tongues connected to supra-
glacial channels (Figure 10) and merit further
investigation.

The first remote sensing assessment to draw
attention to the widespread occurrence of SGLs
in East Antarctica documented surface melt-
water systems (lakes and channels) persistently
forming on ice shelves around its periphery over
multiple decades (Kingslake et al., 2017). This
study found half of these drainage systems ori-
ginate within 3.6km of blue ice and within 8km
of exposed rock (Kingslake et al., 2017). This
association could explain why SGLs typically
extend further inland (up to 500km) at higher
elevations (> 1000m) than those on Antarctic
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Figure 10. Examples of supraglacial lakes on the West Antarctic Ice Sheet visible in Digital Globe (Google
Earth) imagery. (a) Hull Glacier (20th January 2015), (b) Sulzberger Ice Shelf (18th January 2013), (c) Sulz-
berger Ice Shelf (18th January 201 3), (d) 45km east of Pine Island Glacier (13th February 2012), where lakes
are likely to be refrozen at the surface. Scale bar applies to all four panels. Map data: Google, Maxar

Technologies.

Peninsula ice shelves (Table 3). Indeed, SGLs
have been recorded within 600km of the South
Pole, on Shackleton Glacier, adjacent to
exposed rock and moraine at the glacier margins
(Kingslake et al., 2017). A more recent and
comprehensive assessment recorded over
65,000 SGLs during January 2017, around the
peak of the melt season (Stokes et al., 2019).
This assessment recorded high lake densities
(>0.08km? SGL area per 1km?) in Wilkes Land,
Queen Mary Land, Mac. Roberston Land,
Enderby Land and Dronning Maud Land, as
well as in previously undocumented regions
such as Kemp Land, Terre Adélie and George
V Land. Lakes were found to preferentially

form near grounding lines on floating, low-
elevation and slow-moving (<120m a™') ice,
supporting previous analysis (Section II; King-
slake et al., 2017).

The locations of lakes around the East Ant-
arctic margin are strongly controlled by
regional-scale wind patterns and locally
enhanced ablation (Kingslake et al., 2017;
Lenaerts et al., 2017). Katabatic winds, more
persistent than sporadic féhn events on Larsen
B, induce vertical mixing, which locally
increases near-surface air temperatures. Surface
melt is enhanced by these winds scouring snow/
firn and exposing albedo-lowering blue ice,
leading to meltwater ponding (Lenaerts et al.,
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2017a). Consequently, SGLs are often clustered
around and immediately downstream of ice
shelf grounding zones on the EAIS, proximal
to these low-albedo areas and where surface
slopes decrease (Kingslake et al., 2017;
Lenaerts et al., 2017; Stokes et al., 2019;
Winther et al., 1996).

It has also been shown that SGLs are per-
sistent features of East Antarctic ice shelves
across decadal timescales (Bell et al., 2017;
Kingslake et al., 2017). The Amery Ice Shelf
is a prominent example, where SGLs have
regularly formed in longitudinal foliations
and crevasses since at least 1974 across
low-lying coastal regions, the largest reach-
ing ~80km in length (Hambrey and Dowdes-
well, 1994; Kingslake et al., 2017; Mellor
and McKinnon, 1960; Moussavi et al.,
2020; Phillips, 1998; Stokes et al., 2019;
Swithinbank, 1988). Ice dolines on some of
these ice shelves (Amery and Roi Baudouin)
are larger and deeper than those reported on
Larsen B Ice Shelf, which suggests englacial
drainage of SGLs (Bindschadler et al., 2002;
Fricker et al., 2002; Lenaerts et al., 2017,
Mellor and McKinnon, 1960) (Table 3).
Observations of in-situ lake disappearance
on Langhovde Glacier floating tongue in
Dronning Maud Land in as little as five days
also suggests that SGLs are likely to be
draining englacially (Figure 11) (Langley
et al., 2016). Given that lake volumes on
several ice shelves (e.g. Amery, Riiser-
Larsen, Shackleton and Moscow University)
are estimated to exceed the average lake vol-
ume on Larsen B prior to its collapse (Glas-
ser and Scambos, 2008; Stokes et al., 2019),
lakes could be draining rapidly on some East
Antarctic ice shelves and making them wvul-
nerable to collapse. Whether ice shelf hydro-
fracturing occurs, however, is governed not
only by meltwater distribution and volume
stored in SGLs but also by stress conditions
within the ice shelf (Alley et al., 2018; Chris-
toffersen et al., 2018; Fiirst et al., 2016). For

example, the likelihood of some ice shelves
(e.g. Amery) undergoing lake hydrofracture-
driven collapse is low, owing to their thickness
and large-scale geometry, which controls the
stress regime and confines them to a narrow
embayment with multiple topographic pinning
points (Alley et al., 2018; Fiirst et al., 2016;
Stokes et al., 2019).

The vulnerability of East Antarctic ice
shelves to future melt-induced hydrofracture
could be modulated by the export of surface
meltwater across ice shelf surfaces (Bell
et al., 2017). Meltwater ponds tens of kilo-
metres in area and several metres deep on the
Nansen Ice Shelf are drained by an intercon-
nected network of streams and shear-margin
rivers, terminating in a 130 m-wide waterfall,
which evolves as melt increases during war-
mer melt seasons (Bell et al., 2017). The
likelihood of meltwater-induced fracturing
can also be limited if flexure is not suffi-
ciently widespread to affect other lakes (Ban-
well et al., 2019). This is the case on
McMurdo Ice Shelf (MIS), which flexes by
up to 1 m over weekly timescales at the cen-
tre of lakes that have filled to ~2m depth
and which are then drained by slow overflow
(Banwell et al., 2019; MacAyeal et al., 2020).

4.3 Summary

The spatial distribution of SGLs in Antarctica
reflects the complex interplay between loca-
lised and regional melt-enhancing processes,
including katabatic wind-induced mixing and
snow scouring, low-albedo nunataks and blue
ice, together with firn air content (Datta
et al., 2019; Kingslake et al., 2017; Lenaerts
et al., 2017; Stokes et al., 2019). Our review
indicates that on the Antarctic Peninsula,
lakes were present on several ice shelves
prior to their disintegration, and currently
form on several of the largest remaining ice
shelves. In East Antarctica, SGLs are persis-
tent features of ice shelf grounding zones,
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Figure 1 1. (2) and (b): SGL shrinking on the floating tongue of Langhovde Glacier, Dronning Maud Land,
during January 2007. (c) and (d): SGL disappearance in five days on the floating tongue. (e) and (f): SGL
refreezing in February 2013 at the end of the austral summer melt season as surface air temperatures decline

(reproduced from Langley et al., 2016).

driven by katabatic winds and locally
enhanced ablation. Elsewhere around the
margin of Antarctica there remain regions
where SGLs have not yet been reported in
the scientific literature, notably most of West
Antarctica. SGLs are likely to become more
numerous on firn-depleted ice shelves, and
perhaps the lower reaches of other outlet gla-
ciers that experience prolonged and excessive
melting (Lenaerts et al., 2016; Rintoul et al.,

2018) and more frequent fohn winds (Datta
et al., 2019; Wiesenekker et al., 2018).

V Future challenges and
opportunities

Based on our review, and in comparison to obser-
vations from the GrIS, it is clear that there remains
much to be done in terms of understanding the
controls on SGL distribution and evolution in
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Antarctica (cf. Bell et al., 2018). This includes the
controls on lake occurrence in Antarctica, the evo-
lution of SGLs through melt seasons and the vul-
nerability of ice shelves to SGL-induced collapse.
These issues are now discussed as a series of key
questions, several of which touch on some key
priorities identified in the Scientific Committee
on Antarctic Research (SCAR) Horizon Scan,
such as the impact of changes in surface melt evo-
lution over ice shelves and the Antarctic ice sheet
(Kennicutt et al., 2014).

5.1 What are the controls on lake
occurrence in Antarctica?

Although recent pan-ice sheet assessments have
improved our understanding of the broad-scale
climatic and ice surface controls on SGL forma-
tion (Kingslake et al., 2017; Lenaerts et al.,
2016; Stokes et al., 2019), there remains a
need to understand more precisely the links
between near-surface climatic conditions and
lake development. It is known that surface
melt is poorly simulated by regional climate
models in regions where SGLs tend to form,
for example near grounding zones (Kingslake
et al., 2019; Van Wessem et al., 2018). The
complex interaction between ice surface
characteristics and local-scale climatic con-
trols, such as firn density, fohn or katabatic
winds, ice surface albedo and topography,
make it difficult to predict where SGLs may
form based only on modelled surface melt
(Stokes et al., 2019). The difficulty in resol-
ving localised albedo-melt feedbacks is par-
ticularly acute with lower-resolution (27km)
regional climate models, which tend to
underestimate surface melt in areas of more
complex topography. Lenaerts et al. (2018)
found that a higher resolution (5.5km grid)
version of the regional climate model
RACMO2 was able to better resolve small-
scale variability in climate, surface melt and
surface mass balance caused by topography
and thus reproduced surface melt more

accurately over such areas. In this regard, it
would be useful to generate runoff estimates
from higher resolution regional climate
model simulations and test the likelihood of
different regions supporting SGLs under spe-
cific climatic thresholds and their effect on
lake distributions and densities. Similarly, it
would also be useful to explore the relative
importance of climatic and glaciological con-
trols in governing SGL formation in regions
of Antarctica experiencing high surface melt
and persistently occupied by SGLs, such as
towards ice shelf calving fronts. This would
be greatly aided, for example, by targeted
field measurements of local variations in
near-surface air temperature, snowfall and
firn air content.

5.2 How do supraglacial lakes evolve
through melt seasons in Antarctica?

SGL evolution during melt seasons remains
poorly understood in Antarctica, particularly
area, depth and volumetric changes on
grounded and floating ice over weekly time-
scales. Understanding seasonal variability in
SGLs and its relationship with surface climate
conditions is important for constraining the
magnitudes of surface meltwater storage poten-
tially available to enter the englacial hydrologi-
cal system through crevasses and moulins.
Existing assessments of seasonal SGL evolution
are sparse and focus on individual Antarctic out-
let glaciers or ice shelves (Banwell et al., 2019;
Bell etal., 2017; Langley et al., 2016; Moussavi
et al., 2020), limited by the spatial resolution
and return period of satellite imagery. Quantita-
tive estimates of regional SGL change remain
unknown. For example, what is the variability
of total SGL surface area from year to year?
How much do lakes expand and deepen through
the course of a melt season, and how does this
vary between floating and grounded ice?

A valuable next step would be to use auto-
mated methods at the catchment and regional
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scales to track individual lake locations, arcas
and volumes. This would enable quantification
of lake changes and the number of lakes that
drain rapidly, drain slowly or simply freeze
over. Identifying which lakes may be at risk of
rapidly draining will require analysis of lake
drainage distributions alongside climatic
(near-surface air temperature), glaciological
(ice surface elevation, slope, strain rate, ice-
sheet thickness) and surface mass balance (melt,
runoff) datasets to identify the conditions that
may promote rapid drainage (Williamson et al.,
2018). Time-series of lake depths and volumes
are also needed to constrain volume-dependent
lake drainage thresholds in numerical models of
lake behaviour (e.g. Banwell et al., 2015;
Krawczynski et al., 2009). Recent efforts have
begun to derive lake depth and volume time-
series over some Antarctic ice shelves, which
have clear potential to generate continent-wide
maps of lake occurrence and evolution (Mous-
savi et al., 2020). Comparisons between SGL
characteristics (geometry, depth, volume) and
SGL changes (including timings of lake initia-
tion and drainage onset, and peaks in total stored
SGL meltwater) in different regions of Antarc-
tica and Greenland are much needed. This
would be valuable for identifying lakes that are
likely to drain englacially, potentially over rapid
timescales (Banwell et al., 2014; Kingslake
et al., 2019; Stokes et al., 2019). SAR imagery
has so far been under-used in Antarctica to mon-
itor SGLs, and could usefully be applied with
optical imagery such as Sentinel-2 and/or
Landsat-8 to more accurately detect lake
refreezing into the snow/firn pack and over-
come cloud cover obscuration (e.g. Miles
et al., 2017).

Future pan-ice sheet inventories of SGLs in
Antarctica should cover multiple melt seasons,
which will enable us to see whether SGLs are
appearing at higher elevations in regions experi-
encing atmospheric warming, as has been
observed on Greenland (Howat et al., 2013).
An inland expansion of SGLs has important

implications for ice dynamics because these
lakes could deliver meltwater to the ice sheet
bed where the subglacial hydrological system
is inefficient. This could lubricate the ice-bed
interface and accelerate ice flow (Bell et al.,
2018; Leeson et al., 2015).

It is known that SGL drainage on the Antarc-
tic Peninsula can accelerate grounded ice flow,
both indirectly (Scambos et al., 2004) and
directly (Tuckett et al., 2019). Whether SGL
drainage impacts the behaviour of grounded ice
by draining to the bed and influencing dynamics
at the ice—bed interface in West and East Ant-
arctica remains unknown. In order to capture the
behaviour and processes preceding, during and
following individual SGL drainage events, low-
cost autonomous sensors could be deployed
with GPS, water pressure transducers, seism-
ometers and thermistors to obtain in-situ mea-
surements of ice surface flexure, water depth,
seismicity and surface melt. This would capture
whether peaks in meltwater discharge, ice dis-
placement and uplift can be directly linked to
lake drainage events and transient ice accelera-
tion (Das et al., 2008; Doyle et al., 2013), and
will enable us to make connections between
local and regional changes in the supraglacial
and subglacial hydrological systems.

5.3 Which ice shelves are vulnerable to
supraglacial lake-induced collapse?

Another future priority is to better constrain the
sensitivity of specific Antarctic ice shelves to
lake-induced hydrofracturing. Is there, for
example, a threshold density or volume of
SGLs needed to induce widespread fracturing
and disintegration for any given stress condi-
tion? How does this threshold vary between ice
shelves and what processes preclude ice shelf
collapse? This is especially important for ice
shelves that may already be preconditioned for
hydrofracture. In particular, this includes ice
shelves with high annual surface melt rates,
depleted firn air content and extensional stress
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Table 4. A comparison of some of the features of existing models specifically modelling supraglacial lakes,
either in an idealised setting or with reference to Antarctica. Modified after Buzzard et al. (2018a).

Kingslake Banwell Buzzard et al. Robel and
etal. etal. (2018aand  Banwell
(2015) Banwell etal. (2013) (2015) 2018b) (2019)
Used observed lake
centres and areas on
Idealised lake(s) or forced by Larsen B (Glasser and
observational data Idealised Scambos, 2008) Idealised  ldealised Idealised
Melting within the lake after v x 4 v x
formation (lake-bottom ablation)
Meltwater retention in firn x x X 4 x
Effect of lakes on surface energy x x x 4 x
balance
Lake filling/draining over multiple x 4 4 v x
melt seasons/cycles
Lateral transport v x x 4 x
Interaction with supraglacial channel/ 4 x x x x
channel network
Multiple lake drainage/freeze-over v x x v x
mechanisms

regimes, and that lack topographic confine-
ment and ‘passive’ ice, such as the Shackleton,
West and Roi Baudouin ice shelves (Alley
et al., 2018; Fiirst et al., 2016; Kingslake
etal., 2019). In contrast, it is important to iden-
tify the stress conditions or ice thickness of
some ice shelves that means that they can sup-
port a large surface area of meltwater ponding
without being vulnerable to hydrofracture-
driven collapse.

At present, challenges remain in being able to
accurately represent hydrological and ice
dynamic processes in models of SGL behaviour,
such as hydrofracture and ice shelf flexure
(Kingslake et al., 2019). Regional- and
continental-scale ice-sheet models do not cur-
rently incorporate processes of ice shelf flexure
and lake filling/draining, which may fracture ice
shelves sufficiently to cause partial or complete
disintegration. This limits how well SGL—ice
shelf interactions can be modelled, including
how lakes may promote future ice shelf

instability (Banwell et al., 2013; Buzzard
etal., 2018b; Robel and Banwell, 2019). Table 4
compares the features of existing SGL models
and highlights that some processes are better
represented in some models than others. For
example, models can simulate lake evolution
over multiple melt seasons (Banwell et al.,
2013, 2015; Buzzard et al., 2018a, 2018b).
However, these have tended to consider lakes
as closed basins, when in fact observations
have shown them to interact as part of an active
hydrological network (Bell et al., 2017; King-
slake et al., 2017; Langley et al., 2016). More
observations of lake evolution and interactions
between lakes will benefit the development of
future ice shelf models with regard to model-
ling the future impacts of SGL formation on ice
shelf calving and stability.

In conjunction with ice shelves, the vulner-
ability of floating outlet glacier tongues to these
processes warrants further investigation.
Assessments should focus on whether lake
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growth and drainage on outlet glaciers may be
linked to fracturing or calving of their floating
tongues, perhaps associated with sea-ice pond-
ing and break-out events. For example, in
Wilkes Land, East Antarctica, SGLs may have
contributed to landfast sea-ice weakening prior
to its break-up, which was followed by simulta-
neous outlet glacier disintegration (Miles et al.,
2017).

VI Conclusions

In this paper, we have reviewed how advances
in optical and radar satellite remote sensing
have rapidly improved our knowledge of Ant-
arctic SGLs in the last few decades. Recent
increases in satellite sensor spatial resolution
and revisit times have revealed that SGLs are
forming around most marginal areas of the ice
masses in Antarctica. From our review, it is
clear that we now have a detailed knowledge
of the broad-scale ice surface and climatic con-
ditions associated with lake formation. Ice sur-
face depressions dictate where SGLs form on
the ice sheet surface, with lake formation depen-
dent on near-surface firn air content and con-
trolled by localised and regional wind patterns
and locally enhanced ablation. These factors
combine to produce the highest densities of
lakes in the upper reaches of ice shelves and
clustered down-ice of grounding zones. We are
now able to exploit the major advances in the
spatial and temporal resolution of several satel-
lite sensors to map SGL extent, depth and vol-
ume using semi-automated methods over the
whole continent. This has resulted in new
knowledge of lake distributions and drainage
mechanisms in some regions, perhaps with the
exception of the West Antarctic Ice Sheet
(WAIS).

In relation to ice dynamics, observations
show that SGLs occupy most Antarctic Penin-
sula ice shelves and can be important precursors
to crevasse hydrofracturing and ice shelf col-
lapse. In East Antarctica, lakes persistently

occupy ice shelves and may be draining through
the ice, but ice shelf vulnerability to hydrofrac-
ture could be lower owing to geometric controls
on stress conditions and meltwater export from
ice shelf surfaces. However, our knowledge of
SGL evolution within and between melt seasons
remains limited, together with the influence of
near-surface climate on SGL occurrence and the
sensitivities of remaining Antarctic ice shelves
to lake-induced collapse. Future research should
quantify changes in lake distributions, volumes
and drainage patterns at regional and ice sheet-
scales to better understand the links between
patterns of SGL behaviour and glacier and ice
shelf stability, in particular by adopting a multi-
sensor approach that exploits the increasing
wealth of high-resolution satellite imagery. Fur-
ther work could constrain critical ponding
thresholds on remaining Antarctic ice shelves
before critical meltwater-induced disintegration
is triggered. This is urgently required to better
predict the role of SGLs in future Antarctic ice
mass loss.
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