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Abstract  

Supraglacial lakes (SGLs) are now known to be widespread in Antarctica, where they represent an 

important component of ice sheet mass balance. This paper reviews how recent progress in satellite 

remote sensing has substantially advanced our understanding of SGLs in Antarctica, including their 

characteristics, geographic distribution and their impacts on ice sheet dynamics. Important advances 

include: (i) the capability to resolve lakes at sub-metre resolution at weekly timescales, (ii) the 

measurement of lake depth and volume changes at seasonal time-scales, including sporadic 

observations of lake drainage events, and (iii) the integration of multiple optical satellite datasets to 

obtain continent-wide observations of lake distributions. Despite recent progress, however, there 

remain important gaps in our understanding, most notably: (1) the relationship between seasonal 

variability in SGL development and near-surface climate; (2) the prevalence and impact of SGL 

drainage events on both grounded and floating ice, and (3) the sensitivity of individual ice shelves to 

lake-induced hydrofracture. Given that surface melting and SGL development is predicted to play an 

increasingly important role in the surface mass balance of Antarctica, bridging these gaps will help 

constrain predictions of future rapid ice loss from Antarctica. 
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1. Introduction 

Supraglacial lakes (SGLs) form when meltwater accumulates in topographic depressions on top of 

glaciers, ice sheets and ice shelves, primarily during the ablation season (Echelmeyer et al., 1991). 

They are an important component of ice sheet hydrology because they can influence ice sheet 

dynamics in one of three ways (Das et al., 2008; Bell et al., 2018). Firstly, their albedo-lowering effect 

can intensify surface melt and induce a warming effect on the adjacent ice column (Lüthje et al., 

2006; Tedesco et al., 2012; Hubbard et al., 2016). Secondly, their rapid drainage via hydrofracturing 

can deliver meltwater pulses to the ice sheet bed. It is well-known that SGL drainage causes transient 

accelerations in grounded ice velocity on the Greenland Ice Sheet (Zwally et al., 2002; Das et al., 

2008; Bartholomew et al., 2010; Schoof, 2010; Tedesco et al., 2013), and recent work has shown 

similar effects on the Antarctic Peninsula (Tuckett et al., 2019). Thirdly, SGLs may be an important 

precursor for ice shelf collapse (Scambos et al., 2003; Glasser and Scambos, 2008; Banwell et al., 

2013). On the Antarctic Peninsula, for example, the filling and drainage of SGLs induces ice shelf 

flexure and trigger widespread fracturing and disintegration (Rott et al., 1996; van den Broeke, 2005; 

Glasser and Scambos, 2008; Scambos et al., 2009; Banwell et al., 2013, 2014, 2019). Ice shelf 

disintegration plays a major role in ice sheet dynamics because the resulting loss in buttressing 

accelerates inland ice flow, increasing the ice discharge (Scambos et al., 2004; Glasser et al., 2011; 

Fürst et al., 2016).  

Despite an abundance of SGL research focusing on the GrIS (Chu, 2014), much less is known about 

the role of SGLs in Antarctica. However, advances in satellite remote sensing capabilities since the 

1970s have revealed that SGLs are present not only on Antarctic Peninsula ice shelves (Scambos 

et al., 2000, 2003, 2009; Banwell et al., 2014; Luckman et al., 2014; Hubbard et al., 2016), but are 

also far more widespread than previously thought around the margins of Antarctica, including the 

periphery of the East Antarctic Ice Sheet (EAIS) (Figure 1, Langley et al., 2016; Kingslake et al., 

2017; Lenaerts et al., 2017; Stokes et al., 2019; Moussavi et al., 2020).  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Locations around Antarctica where supraglacial lakes have been observed, together with 

examples: (a) Larsen C Ice Shelf, (b) George VI Ice Shelf, (c) Riiser-Larsen Ice Shelf, (d) Langhovde 

Glacier, (e) Ross Archipelago, (f) McMurdo Ice Shelf, (g) Sørsdal Glacier, (h) Mawson Glacier. Green 

shaded regions in the central map represent the number of published studies reporting supraglacial 

lakes in that location. Note that the number of studies reporting lakes in a given location does 

necessarily correspond to the number of lakes forming, or how long lakes have been present in this 

location. Lakes mapped in January 2017 in a recent East Antarctic assessment by Stokes et al. 

(2019) are shown in purple. Images reproduced from: Martin Truffer (a), Frithjof Kuepper (b), Matti 

Lepparanta (c), Takehiro Fukuda (d), NASA Operation IceBridge (e), Chris Larsen (f), Sarah 

Thompson (g), and Richard Stanaway (h). 



In this paper we review how satellite remote sensing developments have transformed our 

understanding of the distribution and characteristics of SGLs in Antarctica, including their potential 

impact on ice sheet mass balance. Following a brief overview of SGL formation in Section 2, Section 

3 highlights how satellite remote sensing has advanced our understanding of Antarctic SGLs, 

specifically the progress in detecting and quantifying SGL distributions, volumes and their evolution 

through the melt season. Section 4 provides an Antarctic-wide synthesis of SGL characteristics and 

their potential impact on ice dynamics. In Section 5 we identify some important gaps in understanding 

and suggest possible directions for future research. 

 

2. Controls on supraglacial lake formation in Antarctica  

SGLs form seasonally in Antarctica when an energy surplus at the ice surface causes ice to melt 

(Trusel et al., 2012; Fitzpatrick et al., 2013). The spectral albedo  of liquid meltwater (~0.4 – 0.6) is 

approximately half of snow-covered ice (Figure 2; Box and Ski, 2007; Tedesco, 2014), which leads 

to a positive feedback, whereby the lower albedo of the SGLs enhances melting and can lead to 

further increase in lake area and depth (Tedesco et al., 2012; Morriss et al., 2013; Banwell et al., 

2015). For meltwater to pond in SGLs in areas of firn cover, percolation into the near-surface firn 

layer must be impeded by firn over-saturation or refrozen englacial meltwater (Reynolds and Smith, 

1981; Harper et al., 2012; Hubbard et al., 2016; Lenaerts et al., 2017; Alley et al., 2018).  

The location of surface depressions on the ice sheet is an important influence on where SGLs form 

(Echelmeyer et al., 1991). On grounded ice, topographic undulations in subglacial bedrock are 

translated into ice surface depressions, which lakes tend to re-occupy in the same location annually 

(Echelmeyer et al., 1991; Ignéczi et al., 2016, 2018; Langley et al., 2016). On slower-moving ice that 

is grounded, SGLs often grow larger and deeper than those on floating ice further downstream 

(Sergienko, 2013; Banwell et al., 2014; MacDonald et al., 2018). This is because lakes tend to re-

occupy surface depressions for longer, allowing them to expand and deepen by lake bottom ablation, 

and are often fed by surface channels which increase lake catchment areas (Das et al., 2008; Leeson 

et al., 2012; Tedesco et al., 2012). The surface of slower-moving, thicker ice also supports larger, 



 

 

 

 

 

 

 

 

Figure 2. (a) Spectral albedos for a sequence of snow-covered ice to mature supraglacial lake 

through a melt season. Modified from Tedesco (2014). (b) Summer albedo derived from MODIS 

imagery on the Roi Baudouin Ice Shelf. Grounding line is represented as the thick black line. Modified 

from Lenaerts et al. (2017). 

 

smoother undulations compared to thinner, faster-flowing ice (Gudmundsson, 2003) and is less likely 

to be subject to crevassing. In contrast, lakes on floating ice form in surface depressions that migrate 

with ice flow (MacDonald et al., 2018). These surface depressions are produced in response to 

spatial and seasonal variations in ice flow, ice thickness and ice flexure (Banwell et al., 2019). 

Surface depressions are also controlled by the location of basal channels that are incised by sub-

surface melting (Dow et al., 2018) and basal crevasses (McGrath et al., 2012), because thinner ice 

in these regions that has reached hydrostatic equilibrium will sit lower in the water. Surface 

depressions can also be associated with flow stripes, shear-margins and suture zones (Reynolds 

and Smith, 1981; Glasser and Gudmundsson, 2012; Banwell et al., 2014; Luckman et al., 2014; Bell 

et al., 2017; Ely et al., 2017). Reduced firn air content and ice surface topography are therefore first 

order controls on SGL locations.  



In Antarctica, it has been noted that glaciological and climatic conditions around ice shelf grounding 

lines (i.e. where the ice begins to float) are conducive to SGL formation (Kingslake et al., 2017; 

Lenaerts et al., 2017; Stokes et al., 2019). The majority of SGLs form on ice shelves close to and 

just downstream of the grounding line because the lower elevations and large decrease in ice surface 

slope are conducive to meltwater ponding (Stokes et al., 2019). SGL distributions across Antarctica 

have been shown to reflect the complex interplay between local and regional wind patterns, ice 

surface topography and albedo (Kingslake et al., 2017; Lenaerts et al., 2017; Stokes et al., 2019). 

Figure 3 plots SGL locations and surface melt flux together with blue ice areas, rock outcrops, wind 

scour zones and near-surface wind speeds, which shows that the highest densities of SGLs do not 

necessarily coincide with regions of highest surface melt (Figure 3; Trusel et al., 2013; Kingslake et 

al., 2017; Lenaerts et al., 2017; Datta et al., 2019). On the Antarctic Peninsula, for example, the 

strength and frequency of westerly föhn winds dictate SGL distribution, resulting in intense melting 

(>400 mm w.e. yr -1) and localised ponding on ice shelves, even in Antarctic winter (Figure 3a; 

Munneke et al., 2012; Trusel et al., 2013; Luckman et al., 2014; Lenaerts et al., 2017; Munneke et 

al., 2018; Wiesenekker et al., 2018; Datta et al., 2019). Likewise, in coastal East Antarctica, SGLs 

are often clustered near ice shelf grounding zones, whereas they are often absent further 

downstream despite higher surface melt fluxes (Figure 3b, 3c, 3d). Higher accumulation and firn air 

content in near coastal regions likely explain this absence, because surface meltwater can percolate 

into the firn before it can pond on the surface (Lenaerts et al., 2017). Warm air delivery to grounding 

zones from persistent katabatic winds exposes lower-albedo blue ice through wind scouring, which 

intensifies melting and ponding (Lenaerts et al., 2017).  

In summary, SGLs are widespread around the periphery of Antarctica and form predominantly on 

floating ice shelves, clustered a few kilometres down-ice from the grounding line. The occurrence of 

SGLs is controlled by firn air content, as well as by short-lived föhn wind events or persistent 

katabatic winds which intensify surface melting. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3. Distribution of near-surface wind speed, wind scour zones, exposed rock, blue ice, surface 

melt flux, ice shelf vulnerability to surface-melt-induced collapse, and supraglacial lakes (from 

January 2017). Surface melt fluxes are derived from QuickScat scatterometer (2000 - 2009 average, 

Trusel et al., 2013) and include meltwater that could refreeze in the snow/firn. Ice shelf vulnerability 

is derived from QuikSCAT data and represents that relative concentration of refrozen meltwater in 

the firn (Alley et al., 2018). The grounding line and coastline are represented by dotted and solid 

black lines respectively. Arrows represent near-surface wind speed vectors (Luckman et al., 2014; 

Lenaerts et al., 2017). Supraglacial lake dataset are reproduced from Stokes et al., (2019). On 

Larsen C Ice shelf (A) supraglacial lakes formation is restricted to inlets (blue stars), driven by föhn-

enhanced melting. On Roi Baudouin Ice Shelf (B), lakes clustered at the grounding zone are 

associated with katabatic wind-enhanced melting. The co-occurrence of lakes with rock outcrops 

and wind-scoured blue ice is prominent on other East Antarctic ice shelves, such as Shackleton (C) 

and Amery (D). 

 

 

3. Satellite remote sensing of supraglacial lakes 

The revolution in satellite remote sensing capabilities since the 1970s has significantly improved our 

overall understanding of SGLs in Antarctica. This is reflected in the growing number of SGL studies 

in the last decade (Figure 4; Table 1), with the vast majority taking advantage of increasingly plentiful 

openly-available optical satellite imagery (Figure 5). Table 1 highlights the progression in remote 

sensing based assessments of SGLs in Antarctica, from the visual identification of lakes in earlier 

coarser optical and radar satellite imagery, to manual delineation of lake extents from medium 

resolution imagery, to semi-automated classification of lakes and extraction of lake characteristics 

such as areas, depths and volumes from high resolution optical imagery. A trade-off exists between 

resolution, return period, and swath width when selecting satellite imagery for investigating SGLs 

(Table 2; Leeson et al., 2013). The integration of imagery from multiple sensors can therefore exploit 

their respective benefits for assessments of SGL evolution during and between melt seasons.  

 



 

Figure 4. The number of Antarctic-focused published studies containing the keywords ‘Antarctic’ 

and ‘supraglacial lake’ or ‘melt pond’ or ‘melt lake’ from the ISI Web of Science catalogue (n = 41, 

search date: 25th September 2019, glaciological studies only). Studies in 2019 are from a 

corresponding Google Scholar search. Coloured bars represent operational periods of common 

multispectral and radar satellites that have been employed in SGL studies. Earlier studies reported 

field and remote sensing observations of supraglacial lakes on several Antarctic ice shelves (Amery, 

George VI, Justulstraumen/Fimbul) and, more recently, were motivated by the rapid disintegration 

of Antarctic Peninsula ice shelves. The first notable peak in 2009 coincides with the disintegration of 



the Wilkins Ice Shelf. The most productive year in 2013 coincides with the first study to propose an 

explanatory mechanism for the synchronicity of lake drainages on Larsen B Ice Shelf prior to its 

collapse. The increase in publications since this date also coincides with the launch of higher 

resolution multispectral and radar satellites, notably Landsat 8 and the Sentinel constellations (see 

Fig. 5).  

 

 

 

Figure 5. Most commonly applied remote sensing imagery sources for measuring and monitoring 

supraglacial lakes in Antarctica, along with field-based studies.  

 



3.1 Coarse (>250 m) spatial resolution sensors  

The comparatively coarse spatial resolution (0.25 – 1.09 km) and wide swath (2330 – 2990 km) 

MODerate-resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution 

Radiometer (AVHRR) sensors have been used to map SGL distributions at the regional scale, e.g. 

including large ice shelves (Hubbard et al., 2016; Lenaerts et al., 2017; MacDonald et al., 2019). For 

example, on the Antarctic Peninsula, MODIS has been used to highlight the presence of ice dolines 

(drained lake basins) on Larsen B Ice Shelf before its collapse (Bindschadler et al., 2002), and to 

show that SGLs persist over decadal timescales on parts of Larsen C Ice Shelf (Hubbard et al., 

2016). In East Antarctica, MODIS has also been used to confirm the presence of SGLs during 

summer in the grounding zone of Roi Baudouin Ice Shelf (Lenaerts et al., 2016). The sub-daily repeat 

coverage of AVHRR has lent itself to documenting the presence of SGLs on Antarctic ice shelves 

before their break-up, including Wilkins and George VI ice shelves (Scambos et al., 2000). That said, 

frequent cloud coverage was found to reduce its temporal coverage to twice a month, preventing 

detailed analysis of lake extents or drainage (Scambos et al., 2000). The wide swath coverage of 

these two sensors comes at the expense of a coarser spatial resolution, resulting in the inability to 

accurately resolve SGLs below the pixel resolution (<0.0625 km2 for MODIS, <1.18 km2 for AVHRR). 

Given the tendency of Antarctic SGLs to be shallower and narrower than those on the GrIS (Banwell 

et al., 2014), this lower spatial resolution may bias the detection of rapid drainage events by missing 

smaller or rapidly draining lakes (Cooley and Christoffersen, 2017). In summary, the wide swath and 

rapid revisit period of coarse resolution sensors make them well-suited to continent- or region-wide 

studies, as well as those requiring high temporal frequency. 

 

[Table 1] 

 

3.2 Medium (15 – 250 m) spatial resolution sensors  

Over 20 Antarctic SGL studies have exploited the Landsat suite of satellites (Figure 5; Table 2). In 

early studies, lakes were identified in Multispectral Scanner (MSS) imagery (60 m resolution) on 



Justulstraumen (upstream of Fimbul Ice Shelf; Figure 1), but their area could not be accurately 

resolved (Orheim and Lucchitta, 1987; Winther et al., 1996). The improved 30 m spatial resolution 

and two additional infrared bands of Thematic Mapper (TM) enabled subsequent studies to better 

resolve individual lakes, but features such as thin lake ice coverings were still unresolvable (Orheim 

and Lucchitta, 1987).  

More recently, studies have exploited the 15 m resolution panchromatic band of Landsat-7 Enhanced 

Thematic Mapper Plus (ETM+) to pinpoint the timing of SGL overflow and/or refreezing (Kingslake 

et al., 2015) and to extract lake characteristics such as extents, areas, and volumes (Banwell et al., 

2014). Landsat-7 ETM+ has also been used to produce time-series of lake frequencies, areas and 

volumes over 13 austral summers, with a maximum temporal resolution of 13 days (Langley et al., 

2016). The Landsat-7 ETM+ record has also been utilised to map SGL distributions at a continental 

scale (Kingslake et al., 2017; Section 4.3).  

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) provides a more 

favourable revisit period (1-2 days) than Landsat 7, and was employed to conduct detailed mapping 

of filled and drained lakes on Larsen B Ice Shelf pre-, during, and post-collapse (Glasser and 

Scambos, 2008). This rapid revisit period has also enabled individual lake disappearances and 

drainage mechanisms to be distinguished for the first time in East Antarctica (Langley et al., 2016). 

Most recently, the Landsat-8 Operational Land Imager (OLI) has offered improved precision for 

mapping SGLs and extracting their characteristics, owing to its enhanced spatial (15 m) and 

radiometric resolution (12-bit, meaning greater dynamic range), high signal-to-noise ratio, and high 

temporal resolution (~725 scenes per day, compared to ~475 scenes per day from Landsat-7). This 

has enabled SGLs to be mapped in detail at the outlet glacier, ice shelf and pan-ice sheet scale (Bell 

et al., 2017; Kingslake et al., 2017; Stokes et al., 2019). 

 

[Table 2] 

 



Furthermore, lake depths derived from Landsat-8 imagery have been used to test model predictions 

of SGL depths (Buzzard et al., 2018b). However, Landsat-8’s revisit frequency of 16 days precludes 

lake tracking over shorter timescales, meaning that rapid SGL drainages (typically of the order of 

hours) cannot be captured. In summary, medium resolution sensors offer suitable precision for 

seasonal assessments of areal and volumetric SGL changes, both at continental and smaller scales. 

 

3.3 High (≤ 10 m) spatial resolution sensors  

High resolution multispectral imagery provided by satellites launched within the last decade such as 

Sentinel-2 (10 m resolution, 5 day revisit period), Worldview-2 (1.84 m resolution, 1.1 day revisit 

period) and IKONOS (3.28 m, 3 day revisit period) have enabled very small or narrow lakes to be 

resolved (Labarbera and MacAyeal, 2011; Jawak and Luis, 2014; Bell et al., 2017; Kingslake et al., 

2017; Stokes et al., 2019; Moussavi et al., 2020). In Figure 6 we compare SGLs on a tributary glacier 

of Amery Ice Shelf to demonstrate the vast improvement in the ability to resolve individual SGLs. It 

is clear that where individual lakes were unresolvable in coarser resolution imagery (AVHRR and 

MODIS), the bathymetry of individual lakes and partial lake ice coverage are now detectable in more 

detail. High resolution sensors also provide the capability to map narrower supraglacial channels 

occurring in association with SGLs, thus potentially enabling a better understanding of lake drainage 

mechanisms. 

Despite the improvement in spatial resolution, the 5-day revisit period under cloud-free conditions 

provided by the Sentinel-2A/B constellation precludes the identification of the precise onset of SGL 

formation and the tracking of SGL behaviour (and possible rapid drainage) on daily to sub-daily 

timescales (Quincey and Luckman, 2009; Williamson et al., 2018; Stokes et al., 2019). Recent pan-

ice sheet assessments and studies tracking and quantifying meltwater depth and volume in individual 

lakes have maximised the combined potential of Landsat-8 and Sentinel-2 by increasing the number 

of available cloud-free scenes from which to map SGLs (Leeson et al., 2015; Kingslake et al., 2017; 

Miles et al., 2017; Stokes et al., 2019; Moussavi et al., 2020). Daily commercial satellite imagery 

provide a highly valuable addition, though its restrictive cost and limited swath width (<20 km) has 

 



 

Figure 6. Examples of the evolution of satellite image sensor resolution and detection of supraglacial 

lakes for a tributary glacier of Amery Ice Shelf. Panels moving from top left to bottom right represent 

satellite sensors in order of increasing spatial resolution. Smaller insets below six of the panels show 

the same supraglacial lake to demonstrate the improvement in detail. The ability to resolve 

supraglacial lake extent, including very small and narrow ponds, has vastly improved since coarser 

sensors like AVHRR and MODIS which were unable to distinguish these features. Most recently, 

high (>10 m) resolution sensors such as Sentinel 2 MSI and Worldview-3 can resolve lake 

bathymetry and surface features such as partial lake ice coverage. 



tended to limit its use to smaller areas. However, up to 10,000 km2 imagery per month is freely 

available for research purposes from the recently launched PlanetScope satellite constellation 

(Planet Team, 2017). The substantially higher spatial (0.8 - 5 m) resolution and daily revisit period 

of this imagery offers excellent potential for more accurately characterising SGL onset, growth and 

drainage mechanisms, although Planet imagery has yet to be used in Antarctica for this purpose.  

 

3.4 Synthetic Aperture Radar (SAR) imagery  

The most important limitations to optical satellite sensors, however, remain cloud cover and their 

inability to image during polar night (Quincey and Luckman, 2009). Synthetic Aperture Radar (SAR) 

removes the need for clear-sky imagery, daylight and the high solar zenith (Luckman et al., 2014) 

because it is an active sensor which transmits its own electromagnetic radiation, meaning data can 

be collected in winter (Miles et al., 2017; Munneke et al., 2018). ERS-1-2, Radarsat and Envisat SAR 

imagery have successfully detected refrozen lakes and melt streams on the Amery Ice Shelf in 

August, and on the Wilkins and northern Larsen ice shelves in July (Rott et al., 1996; Lucchitta and 

Rosanova, 1998, Phillips, 1998; Fricker, 2002). Wintertime surface ponding was linked to föhn-wind 

events on the Larsen C Ice Shelf using recently launched Sentinel-1A C-band SAR (Munneke et al., 

2018). Sentinel-1 provides a promising means of tracking SGL growth and drainage through melt 

seasons into the winter (Miles et al., 2017) and this is an important area for future SGL research in 

Antarctica. However, undulating topography can be problematic for SAR, because this creates 

radiometric distortion which results in a failure to detect small, narrow SGLs (Johansson and Brown, 

2012). Backscatter associated with high surface roughness (e.g. in areas of complex terrain with wet 

snow and firn), also pose difficulties for lake detection under certain polarization (horizontal transmit 

and horizontal receive, HH) (Miles et al., 2017). In summary, SAR provides excellent potential in 

Antarctica for obtaining SGL observations in austral winter and for detecting sub-surface meltwater 

bodies associated with SGLs.  

 

 



3.5 Supraglacial lake detection and mapping methods 

Manual delineation of SGLs from satellite imagery in a Geographic Information System (GIS) offers 

a reliable method for identifying individual SGLs (Leeson et al., 2013) and for conducting detailed 

mapping of SGL networks on individual ice tongues and shelves (Glasser and Scambos, 2008; 

Langley et al., 2016). However, manual digitisation is less suitable for larger-scale assessments 

because it is time intensive and can be subject to user bias (Jawak and Luis, 2014, Williamson et 

al., 2017). In contrast, semi- and fully-automated lake detection methods can be rapidly applied to 

hundreds of satellite scenes (Stokes et al., 2019).  

The well-established Normalised Difference Water Index adapted for ice (NDWI ice) classifies water-

covered pixels based on exceedance of an empirically-selected red/blue reflectance threshold 

(typically >0.2 - 0.5; Fitzpatrick et al., 2013) and has been successfully applied in East Antarctica to 

delineate SGLs (Jawak & Luis, 2014; Bell et al., 2017; Stokes et al., 2019). This is a pixel-based 

method because classification is based on spectral information of individual pixels. Additional 

thresholds have successfully been applied to distinguish between shallow water/slush and medium-

deep water (0.12-0.14 and 0.14-0.25; Bell et al., 2017). Lakes have also been detected on the GrIS 

using dynamic band thresholding, which classifies pixels as water if their red band reflectance is less 

than a selected threshold of the mean reflectance in a surrounding moving window (Selmes et al., 

2011, 2013; Everett et al., 2016; Williamson et al., 2017). Mis-classification of partially ice-covered 

lakes as bare ice can be problematic (Sundal et al., 2009; Banwell et al., 2014), but modified versions 

with elevated thresholds can eliminate false positives, such as slush zones with spectrally-similar 

signatures to SGLs (Yang & Smith, 2013; Jawak and Luis, 2014; Moussavi et al., 2020). This can, 

however, exclude very shallow lakes (Miles et al., 2017). NDWI is therefore a rapid semi-automated 

method for retrieving pixel-based SGL extents, which can then be polygonised for analysis in a 

Geographic Information System (GIS), though the presence of slush can confound SGL 

classification. A new threshold-based lake classification method has been successfully applied to 

five East Antarctic ice shelves, combining the NDWI ice with the Normalised Difference Snow Index 

(Hall et al., 1995) to help isolate clouds and rocks (Moussavi et al., 2020). This new method was 



found to produce fewer misclassification errors and was able to detect shallow lakes missed using 

the NDWI ice alone (Moussavi et al., 2020). 

Object-based classification is useful for exploiting SGL features distinguishable in very high-

resolution optical imagery. Rather than classifying individual pixels, object-orientated classification 

focuses on differences between groups of pixels (or ‘objects’) with similar texture, tone, pattern, 

shape (Johansson and Brown, 2013). For example, spectral matching and target detection applied 

to WorldView-2 images extracted the boundaries of a small (36) sample of SGLs in the Larsemann 

Hills, Princess Elizabeth Land more accurately than with the NDWI (Jawak and Luis, 2014). Though 

non-pixel-based methods can better distinguish between lakes and slush, lakes that are small, 

shallow or elongated are at risk of being missed (Johansson and Brown, 2013). 

 

3.6 Extracting supraglacial lake depths and volumes 

Studies using coarser resolution Landsat-1-5 imagery were restricted to visual assessments of lake 

depth (e.g. Orheim and Lucchitta, 1987), but recent studies have exploited the enhanced spectral 

and spatial resolution of Landsat-7, Landsat-8 and Sentinel-2 to quantify estimates of SGL depths 

in Antarctica using a radiative transfer model (Sneed and Hamilton, 2007; Banwell et al., 2014; Bell 

et al., 2017; Banwell et al., 2019; Moussavi et al., 2020). The model calculates lake water depth 

using the rate of light attenuation in water, lake-bottom albedo, and optically-deep water reflectance 

(Philpot, 1989): 

z = [ln(Ad−R∞)−ln(Rz−R∞)]/g 

where: z = lake depth; Ad = lake bed reflectance (approximated as pixel reflectance from lake edge); 

R∞= reflectance of optically deep water (approximated as pixel reflectance from open ocean water); 

Rz = reflectance value, and g = attenuation co-efficient rate. 

This radiative transfer model was used to extract lake depths prior to the collapse of the Larsen B 

Ice Shelf, and provided estimates of the likelihood of lake drainage by hydrofracture (Banwell et al., 

2014). The same method has been used to demonstrate the coevolution of lake area with depth over 

multiple melt seasons on Langhovde glacier in Dronning Maud Land (Langley et al., 2016). The 



transfer model makes several assumptions about SGLs: that they have negligible suspended or 

dissolved in-/organic particulate matter, that there is minimal wind-induced lake surface roughness, 

and that the lake-bottom albedo is homogenous (Sneed and Hamilton, 2011; Moussavi et al., 2016). 

While the last of these assumptions holds true for SGLs in Greenland (Sneed and Hamilton, 2011), 

it may be problematic in certain areas, such as on fine debris-rich ice (Pope et al., 2016; Banwell et 

al., 2019), and calibration with in-situ field-based measurements is much needed (Bell et al., 2018). 

A fully automated method for extracting SGL volumes has been developed for the Paakitosq and 

Store Glacier regions of west Greenland (Williamson et al., 2017). This derived an area-to-volume 

scaling relationship across a much larger sample (n = 1,114) than in previous empirically-based 

area-depth scaling studies (Box and Ski, 2007; Liang et al., 2012). Williamson et al. (2018) applied 

the algorithm to detect rapid SGL drainage events during summer 2014, using a combined Sentinel-

2 and Landsat-8 dataset. Recent efforts have begun deriving lake depth and volume time series over 

some Antarctic ice shelves using a combined Sentinel-2 and Landsat-8 dataset (Moussavi et al., 

2020). This has been used to detect individual lake drainages and to quantify seasonal lake volume 

changes over one ice shelf. Such an approach applied across Antarctica to produce a continental 

dataset of SGL volumes would provide valuable insight into seasonal SGL evolution, although partial 

lake ice coverage and a lack of cloud-free lake observations may present difficulties in detecting lake 

boundaries and in classifying rapid drainages. Initial work to quantify SGL dimensions across 

Antarctica have also suggested SGLs are smaller and shallower than those in Greenland (Stokes et 

al., 2019; Moussavi et al., 2020), highlighting the need for an ice-sheet-wide assessment of lake 

depths in order to quantify meltwater storage in SGLs across Antarctica and to constrain in which 

regions of the ice sheet hydrofracture drainage may occur.  

 

 

4. Antarctic supraglacial lake distribution and impact on ice dynamics 

We now synthesise published observations of SGLs in each major region of Antarctica. In Table 3, 

we provide a regional comparison of SGL characteristics that have been observed in Antarctica, 



including spatial distributions, depths, elevation, onset/freeze-up periods, association with 

supraglacial features (such as channels, dolines or moulins) and drainage behaviours.  

 

[Table 3] 

 

4.1 Antarctic Peninsula 

Lakes have been commonly observed on most Antarctic Peninsula ice shelves, and are known to 

be capable of fracturing and weakening them (Figure 7; Scambos et al., 2003; Glasser and 

Scambos, 2008; Glasser et al., 2011). The most notable of these events was the near-synchronous 

drainage of over 2,750 SGLs, up to 6.8 metres deep, on Larsen B Ice Shelf in the days prior to its 

collapse in February 2002 (Figure 8; Glasser and Scambos, 2008; Banwell et al., 2014). Given their 

near-synchronous drainage in the days prior to disintegration, and their association with dolines 

(several hundred km2 in area and up to 19 m deep) and cross-cutting rifts, these lakes are thought 

to have drained via hydrofracturing (Bindschadler et al., 2002; Scambos et al., 2000; 2003; 2009; 

Glasser and Scambos, 2008).  

 



Figure 7. Examples of supraglacial lake observations on Antarctic Peninsula ice shelves prior to 

their disintegration or major calving: Prince Gustav Ice Shelf (A), which disintegrated in 1995; Larsen 

B ice Shelf (B and C), which disintegrated in 2002; Larsen C Ice Shelf (D); George VI Ice Shelf (E); 

and Wilkins Ice Shelf (F), which underwent major calving in 1998 and 2008. Imagery credits: Rott et 

al. (1996), Glasser and Scambos (2008), Scambos et al. (2009); Labarbara and MacAyeal (2011), 

Luckman et al. (2014), NSIDC. 

 

Figure 8. (a) Larsen B Ice Shelf surface structures in February 2002 (reproduced from Glasser and 

Scambos, 2008). Including an extensive network of supraglacial lakes and streams which extend to 

the ice shelf calving front, alongside ice dolines indicating possible drained lakes. Inset shows lakes 

visible on the ice shelf surface from a January 31st 2002 MODIS image (credit: NASA Earth 

Observatory). (b) Pre-collapse lake depths derived from 21st February 2000 Landsat reflectance 

(Reproduced from Banwell et al., 2014). 



Indeed, a plausible mechanism for the fragmentation of Larsen B Ice Shelf has been modelled 

numerically, involving the drainage of a single ‘catalyst’ lake which triggers a propagating fracture 

network able to cause progressively distal lakes to drain (Banwell et al., 2013; Robel and Banwell, 

2019). This ‘chain reaction’ mechanism is based on the flexural response of ice to an applied load 

(i.e. meltwater in a lake; Figure 9; Labarbera and MacAyeal, 2011; Sergienko, 2013) and is 

successfully able to replicate the near-synchronous lake drainage and widespread fracture network 

that fragmented Larsen B Ice Shelf into unstable blocks capable of capsizing (Banwell et al., 2013). 

More recently, Leeson et al. (2020) showed that SGLs spread southwards on the ice shelf in the two 

decades preceding its collapse at a rate commensurate with meltwater saturation of its surface. 

However, lake deepening across the ice shelf over this period suggests this could be the result of 

enhanced lake bed ablation rather than the result of sucessive lake filling and draining (Leeson et 

al., 2020). 

Immediately south of the former Larsen B, Larsen C Ice Shelf experiences less extensive but 

localised ponding, where surface melt duration has increased by up to 2 days per year (Luckman et 

al., 2014; Bevan et al., 2018). SGLs tens of metres in width and tens of kilometres in length (Luckman 

et al., 2014) are largely confined to western inlets fed by tributary glaciers, such as Cabinet Inlet on 

the Foyn Coast (Holland et al., 2011; Munneke et al., 2018). Short-lived (<48 hr) föhn wind events 

(driven by episodic interaction of westerly winds with topography) intensify melt rates in these inlets 

and support repeated, localised ponding (Munneke et al., 2018; Wiesenekker et al., 2018). The 

modelled onset of SGL growth (November) and their depths (average 1.3 – 1.5 m) near the Larsen 

C grounding line correspond well with those derived from Landsat-8 imagery (Pope, 2016) when a 

föhn effect is added. This highlights the importance of localised climatic conditions for SGL 

distributions on this ice shelf (Buzzard et al., 2018b). The disappearance of hundreds of lakes in 

Cabinet Inlet on Larsen C over a period of 10 days in 2003, and 3 weeks in 2007, is also suggestive 

of hydrofracture drainage (Luckman et al., 2014), as observed on Larsen B (Scambos et al., 2003; 

2009). The possibility of meltwater-driven hydrofracture on Larsen C has been highlighted by 1D ice 

shelf model simulations of future lake distributions (Buzzard et al., 2018b). In particular, larger lakes 

that migrate towards the front of the Larsen C Ice Shelf under warmer atmospheric conditions may  



 

 

Figure 9. A schematic representation of the stress regime, flexural response and fracturing 

associated with ice shelf loading (supraglacial lake formation) and unloading (lake drainage) 

(reproduced from Banwell et al., 2013). 

 



deepen sufficiently to remain unfrozen between melt seasons, thereby pre-disposing them for 

hydrofracture (Buzzard et al., 2018b). The depleted firn air thickness of Larsen C (0.3 m in western 

inlets) also increases the likelihood of extensive SGL ponding and future instability, driven by 

sustained föhn-enhanced melting (Holland et al., 2011; Alley et al., 2018). The presence of a 

massive, dense ice lens in Cabinet Inlet confirms an ice-saturated firn layer conducive to SGL 

ponding (Hubbard et al., 2016). Thus, although not currently at imminent risk of hydrofracture-

induced collapse, Larsen C may be at risk of future instability if lakes become more extensive across 

the ice shelf under consecutive seasons of excessive summer melting (Alley et al., 2018; Rintoul et 

al., 2018). 

Towards the southerly extent of the Antarctic Peninsula, abundant SGLs occupy parts of the Wilkins 

Ice Shelf and George VI Ice Shelf during the austral summer (Figure 1; Vaughan et al., 1993; 

Lucchitta and Rosanova, 1998; Braun and Humbert, 2009; Labarbera and MacAyeal, 2011). Lakes 

are largely concentrated on the central part of George VI and their location is controlled by the 

location of crevasses (Hambrey et al., 2015), and the down-ice migration of surface depressions 

following the propagation of compressive stresses (Labarbera and MacAyeal, 2011). On Wilkins Ice 

Shelf, SGLs have been largely confined to localised regions (Vaughan et al., 1993; Lucchitta and 

Rosanova, 1998), similar to Larsen C. Lakes were visible in MODIS imagery of the northern portion 

of Wilkins Ice Shelf prior to a major calving event (77 km2) in March 2008, immediately following the 

end of the melt season (Scambos et al., 2009). Crevasse hydrofracture has been suggested as an 

important mechanism for this break-up, supported by the presence of over 100 dolines which 

suggest meltwater delivery through englacial lake drainage (Scambos et al., 2009; Braun et al., 

2009). However, no lakes were observed during a later calving event in May 2008, making lake 

drainage an unlikely trigger (Scambos et al., 2009). Instead, changing stress distributions causing 

increased rifting may have driven this calving event (Braun and Humbert, 2009; Scambos et al., 

2009). SGLs have continued to form seasonally on Wilkins Ice Shelf since 2008 without causing 

further major calving events. For example, melt pond scars are visible on recently fractured 

fragments in March 2013 WorldView-2 imagery (NASA Earth Observatory, 2013). Therefore, lake 

drainage events are not always a precursor for ice shelf disintegration in Antarctica. 



Most recently, it has been shown for the first time that rapid, short-lived (< 6 days) accelerations (up 

to 100% greater than the annual mean ice velocity) of five outlet glaciers on the Antarctic Peninsula 

has been recorded, four of which formerly drained into Larsen B Ice Shelf (Tuckett et al., 2019). Lake 

disappearances and water-filled crevasses are suggestive of surface meltwater reaching the bed 

(Tuckett et al., 2019). These are the first observations of direct coupling between atmospheric 

warming and ice dynamics, triggered by surface meltwater ponding. 

 

4.2 West Antarctica 

Observations of SGLs in West Antarctica are generally lacking and little is known about their 

distribution or seasonal evolution. Isolated SGLs have been observed forming on Pine Island Ice 

Shelf during the 2013-14 melt season, the largest approximately 8 km in length, as well as in the 

Ford Ranges adjacent to Sulzberger Ice Shelf (Kingslake et al., 2017). The absence of published 

studies is, perhaps, surprising, given the obvious presence of SGLs in Google Earth imagery in 

several regions of the ice sheet (e.g. Sulzberger Ice Shelf, Nickerson Ice Shelf and Dotson Ice Shelf; 

Figure 10). Lakes here are often associated with bedrock nunataks at glacier margins and in ice 

shelf grounding zones. They are also visible on floating outlet glacier tongues connected to 

supraglacial channels (Figure 10) and merit further investigation. 

 



 

 

Figure 10. Examples of supraglacial lakes on the West Antarctic Ice Sheet visible in Digital Globe 

(Google Earth) imagery. (a) Hull Glacier (20/01/2015), (b) Sulzberger Ice Shelf (18/01/2013), (c) 

Sulzberger Ice Shelf (18/01/2013), (d) 45 km east of Pine Island Glacier (13/02/2012), where lakes 

are likely to be refrozen at the surface. Scale bar applies to all four panels.
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4.3 East Antarctica 

The first remote sensing assessment to draw attention to the widespread occurrence of SGLs in 

East Antarctica documented surface meltwater systems (lakes and channels) persistently forming 

on ice shelves around its periphery over multiple decades (Kingslake et al., 2017). This study found 

half of these drainage systems originate within 3.6 km of blue ice and within 8 km of exposed rock 

(Kingslake et al., 2017). This association could explain why SGLs typically extend further inland (up 

to 500 km) at higher elevations (> 1000 m) than those on Antarctic Peninsula ice shelves (Table 3). 

Indeed, SGLs have been recorded within 600 km of the South Pole, on Shackleton Glacier, adjacent 

to exposed rock and moraine at the glacier margins (Kingslake et al., 2017). A more recent and 

comprehensive assessment recorded over 65,000 SGLs during January 2017, around the peak of 

the melt season (Stokes et al., 2019). This assessment recorded high lake densities (>0.08 km2 SGL 

area per 1 km2) in Wilkes Land, Queen Mary Land, Mac. Roberston Land, Enderby Land and 

Dronning Maud Land, as well as in previously undocumented regions such as Kemp Land, Terre 

Adélie and George V Land. Lakes were found to preferentially form near grounding lines on floating, 

low-elevation and slow moving (<120 m a-1) ice, supporting previous analysis (Section 2; Kingslake 

et al., 2017).  

The location of lakes around the East Antarctic margin are strongly controlled by regional scale wind 

patterns and locally-enhanced ablation (Lenaerts et al., 2017; Kingslake et al., 2017). Katabatic 

winds, more persistent than sporadic föhn events on Larsen B, induce vertical mixing which locally 

increases near-surface air temperatures. Surface melt is enhanced by these winds scouring 

snow/firn and exposing albedo-lowering blue ice, leading to meltwater ponding (Lenaerts et al., 

2017a). Consequently, SGLs are often clustered around and immediately downstream of ice shelf 

grounding zones on the EAIS, proximal to these low-albedo areas and where surface slopes 

decrease (Winther et al., 1996; Lenaerts et al., 2017; Kingslake et al., 2017; Stokes et al., 2019).  

It has also been shown that SGLs are persistent features of East Antarctic ice shelves across 

decadal timescales (Bell et al., 2017; Kingslake et al., 2017). The Amery Ice Shelf is a prominent 

example, where SGLs have regularly formed in longitudinal foliations and crevasses since at least 

1974 across low-lying coastal regions, the largest reaching ~80 km in length (Mellor and McKinnon, 
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1960; Swithinbank, 1988; Hambrey and Dowdeswell, 1994; Phillips, 1998; Kingslake et al., 2017; 

Stokes et al., 2019; Moussavi et al., 2020). Ice dolines on some of these ice shelves (Amery and Roi 

Baudouin) are larger and deeper than those reported on Larsen B Ice Shelf, which suggests 

englacial drainage of SGLs (Mellor and McKinnon, 1960; Fricker et al., 2002; Bindschadler et al., 

2002; Lenaerts et al., 2017; Table 3). Observations of in situ lake disappearance on Langhovde 

Glacier floating tongue in Dronning Maud Land in as little as five days also suggests that SGLs are 

likely to be draining englacially (Figure 11; Langley et al., 2016). Given that lake volumes on several 

ice shelves (e.g. Amery, Riiser-Larsen, Shackleton and Moscow University) are estimated to exceed 

the average lake volume on Larsen B prior to its collapse (Glasser and Scambos, 2008; Stokes et 

al., 2019), lakes could be draining rapidly on some East Antarctic ice shelves and making them 

vulnerable to collapse. Whether ice shelf hydrofracturing occurs, however, is governed not only by 

meltwater distribution and volume stored in SGLs, but also by stress conditions within the ice shelf 

(Fürst et al., 2016; Alley et al., 2018; Christoffersen et al., 2018). For example, the likelihood of some 

ice shelves (e.g. Amery) undergoing lake hydrofracture-driven collapse is low, owing to their 

thickness and large-scale geometry which controls the stress regime and confines them to a narrow 

embayment with multiple topographic pinning points (Fürst et al., 2016, Alley et al., 2018; Stokes et 

al., 2019).  

The vulnerability of East Antarctic ice shelves to future melt-induced hydrofracture could be 

modulated by the export of surface meltwater across ice shelf surfaces (Bell et al., 2017). Meltwater 

ponds tens of kilometres in area and several metres deep on the Nansen Ice Shelf are drained by 

an interconnected network of streams and shear-margin rivers, terminating in a 130-metre wide 

waterfall, which evolves as melt increases during warmer melt seasons (Bell et al., 2017). The 

likelihood of meltwater-induced fracturing can also be limited if flexure is not sufficiently widespread 

to affect other lakes (Banwell et al., 2019). This is the case on McMurdo Ice Shelf (MIS), which flexes 

by up to 1 metre over weekly timescales at the centre of lakes that have filled to ~2 m depth and 

which are then drained by slow overflow (Banwell et al., 2019; Macayeal et al., 2020). 
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Figure 11 (a) and (b) SGL shrinking on the floating tongue of Langhovde Glacier, Dronning Maud 

Land, during January 2007. (c) and (d) SGL disappearance in 5 days on the floating tongue. (e) and 

(f) SGL refreezing in February 2013 at the end of the austral summer melt season as surface air 

temperatures decline (reproduced from Langley et al., 2016). 
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4.4. Summary 

The spatial distribution of SGLs in Antarctica reflects the complex interplay between localised and 

regional melt-enhancing processes, including katabatic wind-induced mixing and snow scouring, 

low-albedo nunataks and blue ice, together with firn air content (Kingslake et al., 2017; Lenaerts et 

al., 2017; Datta et al., 2019; Stokes et al., 2019). Our review indicates that on the Antarctic Peninsula, 

lakes were present on several ice shelves prior to their disintegration, and currently form on several 

of the largest remaining ice shelves. In East Antarctica, SGLs are persistent features of ice shelf 

grounding zones, driven by katabatic winds and locally-enhanced ablation. Elsewhere around the 

margin of Antarctica, there remain regions where SGLs have not yet been reported in the scientific 

literature, notably most of West Antarctica. SGLs are likely to become more numerous on firn-

depleted ice shelves, and perhaps the lower reaches of other outlet glaciers that experience 

prolonged and excessive melting (Lenaerts et al., 2016; Rintoul et al., 2018) and more frequent föhn 

winds (Wiesenekker et al., 2018; Datta et al., 2019).  

 

5. Future challenges and opportunities 

Based on our review, and in comparison to observations from the GrIS, it is clear that there remains 

much to be done in terms of understanding the controls on SGL distribution and evolution in 

Antarctica (cf. Bell et al., 2018). This includes the controls on lake occurrence in Antarctica, the 

evolution of SGLs through melt seasons and the vulnerability of ice shelves to SGL-induced collapse. 

These issues are now discussed as a series of key questions, several of which touch on some key 

priorities identified in the Scientific Committee on Antarctic Research (SCAR) Horizon Scan, such 

as the impact of changes in surface melt evolution over ice shelves and the Antarctic ice sheet 

(Kennicutt et al., 2014). 

 

5.1 What are the controls on lake occurrence in Antarctica? 

Although recent pan-ice sheet assessments have improved our understanding of the broad-scale 

climatic and ice surface controls on SGL formation (Lenaerts et al., 2016; Kingslake et al., 2017; 
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Stokes et al., 2019), there remains a need to understand more precisely the links between near-

surface climatic conditions and lake development. It is known that surface melt is poorly simulated 

by regional climate models in regions where SGLs tend to form, for example, near grounding zones 

(Van Wessem et al., 2018; Kingslake et al., 2019). The complex interaction between ice surface 

characteristics and local-scale climatic controls, such as firn density, föhn or katabatic winds, ice 

surface albedo and topography, make it difficult to predict where SGLs may form based only on 

modelled surface melt (Stokes et al., 2019). The difficulty in resolving localised albedo-melt 

feedbacks is particularly acute with lower-resolution (27 km) regional climate models, which tend to 

underestimate surface melt in areas of more complex topography. Lenaerts et al. (2018) found that 

a higher-resolution (5.5 km grid) version of the regional climate model RACMO2 was able to better 

resolve small-scale variability in climate, surface melt and surface mass balance caused by 

topography and thus reproduced surface melt more accurately over such areas. In this regard, it 

would be useful to generate runoff estimates from higher resolution regional climate model 

simulations and test the likelihood of different regions supporting SGLs under specific climatic 

thresholds and the resulting effect on lake distributions and densities. Similarly, it would also be 

useful to explore the relative importance of climatic and glaciological controls in governing SGL 

formation in regions of Antarctica experiencing high surface melt and persistently occupied by SGLs, 

such as towards ice shelf calving fronts. This would be greatly aided, for example, by targeted field 

measurements of local variations in near-surface air temperature, snowfall and firn air content.  

 

5.2 How do supraglacial lakes evolve through melt seasons in Antarctica? 

SGL evolution during melt seasons remains poorly understood in Antarctica, particularly area, depth, 

and volumetric changes on grounded and floating ice over weekly timescales. Understanding 

seasonal variability in SGLs and its relationship with surface climate conditions is important for 

constraining the magnitudes of surface meltwater storage potentially available to enter the englacial 

hydrological system through crevasses and moulins. Existing assessments of seasonal SGL 

evolution are sparse and focus on individual Antarctic outlet glaciers or ice shelves (Langley et al., 

2016; Bell et al., 2017; Banwell et al., 2019; Moussavi et al., 2020), limited by the spatial resolution 
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and return period of satellite imagery. Quantitative estimates of regional SGL change remain 

unknown. For example, what is the variability of total SGL surface area from year-to-year? How 

much do lakes expand and deepen through the course of a melt season, and how does this vary 

between floating and grounded ice?  

A valuable next step would be to use automated methods at the catchment and regional scales to 

track individual lake locations, areas and volumes. This would enable quantification of lake changes 

and the number of lakes that drain rapidly, slowly, or which simply freeze over. Identifying which 

lakes may be at risk of rapidly draining will require analysis of lake drainage distributions alongside 

climatic (near-surface air temperature), glaciological (ice-surface elevation, slope, strain rate, ice-

sheet thickness) and surface mass balance (melt, runoff) datasets to identify the conditions that may 

promote rapid drainage (Williamson et al., 2018). Time-series of lake depths and volumes are also 

needed to constrain volume-dependent lake drainage thresholds in numerical models of lake 

behaviour (e.g. Krawczynski et al., 2009; Banwell et al., 2015). Recent efforts have begun to derive 

lake depth and volume time series over some Antarctic ice shelves, which have clear potential to 

generate continent-wide maps of lake occurrence and evolution (Moussavi et al., 2020). 

Comparisons between SGL characteristics (geometry, depth, volume) and SGL changes (including 

timings of lake initiation and drainage onset, and peaks in total stored SGL meltwater) in different 

regions of Antarctica and in Greenland are much needed. This would be valuable for identifying lakes 

that are likely to drain englacially, potentially over rapid timescales (Banwell et al., 2014; Stokes et 

al., 2019; Kingslake et al., 2019). SAR imagery has so far been under-used in Antarctica to monitor 

SGLs, and could usefully be applied with optical imagery such as Sentinel-2 and/or Landsat-8 to 

more accurately detect lake refreezing into the snow/firn pack and overcome cloud cover obscuration 

(e.g. Miles et al., 2017).  

Future pan-ice sheet inventories of SGLs in Antarctica should cover multiple melt seasons, which 

will enable us to see whether SGLs are appearing at higher elevations in regions experiencing 

atmospheric warming, as has been observed on Greenland (Howat et al., 2013). An inland 

expansion of SGLs has important implications for ice dynamics, because these lakes could deliver 
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meltwater to the ice sheet bed where the subglacial hydrological system is inefficient. This could 

lubricate the ice-bed interface and accelerate ice flow (Leeson et al., 2015; Bell et al., 2018).  

It is known that SGL drainage on the Antarctic Peninsula can accelerate grounded ice flow, both 

indirectly (Scambos et al., 2004) and directly (Tuckett et al., 2019). Whether SGL drainage impacts 

the behaviour of grounded ice by draining to the bed and influencing dynamics at the ice-bed 

interface in West and East Antarctica remains unknown. In order to capture the behaviour and 

processes preceding, during and following individual SGL drainage events, low-cost autonomous 

sensors could be deployed with GPS, water pressure transducers, seismometers and thermistors to 

obtain in-situ measurements of ice surface flexure, water depth, seismicity and surface melt. This 

would capture whether peaks in meltwater discharge, ice displacement and uplift can be directly 

linked to lake drainage events and transient ice acceleration (Das et al., 2008; Doyle et al., 2013), 

and will enable us to make connections between local and regional changes in the supraglacial and 

subglacial hydrological systems. 

 

5.3 Which ice shelves are vulnerable to supraglacial lake-induced collapse? 

Another future priority is to better constrain the sensitivity of specific Antarctic ice shelves to lake-

induced hydrofracturing. Is there, for example, a threshold density or volume of SGLs needed to 

induce widespread fracturing and disintegration for any given stress condition? How does this 

threshold vary between ice shelves and what processes preclude ice shelf collapse? This is 

especially important for ice shelves which may already be preconditioned for hydrofracture. In 

particular, this includes ice shelves with high annual surface melt rates, depleted firn air content, 

extensional stress regimes and which lack topographic confinement and ‘passive’ ice, such as the 

Shackleton, West and Roi Baudouin ice shelves (Fürst et al., 2016; Alley et al., 2018; Kingslake et 

al., 2019). In contrast, it is important to identify the stress conditions or ice thickness of some ice 

shelves which means that they can support a large surface area of meltwater ponding without being 

vulnerable to hydrofracture-driven collapse.  
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At present, challenges remain in being able to accurately represent hydrological and ice dynamic 

processes in models of SGL behaviour, such as hydrofracture and ice shelf flexure (Kingslake et al., 

2019). Regional- and continental-scale ice-sheet models do not currently incorporate processes of 

ice-shelf flexure and lake filling/draining, which may fracture ice shelves sufficiently to cause partial 

or complete disintegration. This limits how well SGL-ice shelf interactions can be modelled, including 

how lakes may promote future ice shelf instability (Banwell et al., 2013; Buzzard et al., 2018b, Robel 

and Banwell, 2019). Table 4 compares the features of existing SGL models and highlights that some 

processes are better represented in some models than others. For example, models have the ability 

to simulate lake evolution over multiple melt seasons (Banwell et al., 2013, 2015; Buzzard et al., 

2018a, 2018b). However, these have tended to consider lakes as closed basins, when in fact 

observations have shown them to interact as part of an active hydrological network (Langley et al., 

2016; Bell et al., 2017; Kingslake et al., 2017). More observations of lake evolution and interactions 

between lakes will benefit the development of future ice shelf models with regards to modelling the 

future impacts of SGL formation on ice shelf calving and stability. 

In conjunction with ice shelves, the vulnerability of floating outlet glacier tongues to these processes 

warrants further investigation. Assessments should focus on whether lake growth and drainage on 

outlet glaciers may be linked to fracturing or calving of their floating tongues, perhaps associated 

with sea-ice ponding and break-out events. For example, in Wilkes Land, East Antarctica, SGLs may 

have contributed to landfast sea-ice weakening prior to its break-up, which was followed by 

simultaneous outlet glacier disintegration (Miles et al., 2017).  

 

[Table 4] 
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6. Conclusions 

 

In this paper, we have reviewed how advances in optical and radar satellite remote sensing have 

rapidly improved our knowledge of Antarctic SGLs in the last few decades. Recent increases in 

satellite sensor spatial resolution and revisit times have revealed that SGLs are forming around most 

marginal areas of the ice masses in Antarctica. From our review, it is clear that we now have a 

detailed knowledge of the broad-scale ice surface and climatic conditions associated with lake 

formation. Ice surface depressions dictate where SGLs form on the ice sheet surface, with lake 

formation dependent on near-surface firn air content and controlled by localised and regional wind 

patterns and locally-enhanced ablation. These factors combine to produce the highest densities of 

lakes in the upper reaches of ice shelves and clustered down-ice of grounding zones. We are now 

able to exploit the major advances in the spatial and temporal resolution of several satellite sensors 

to map SGL extent, depth and volume using semi-automated methods over the whole continent. 

This has resulted in new knowledge of lake distributions and drainage mechanisms in some regions, 

perhaps with the exception of the WAIS.  

In relation to ice dynamics, observations show that SGLs occupy most Antarctic Peninsula ice 

shelves and can be important precursors to crevasse hydrofracturing and ice shelf collapse. In East 

Antarctica, lakes persistently occupy ice shelves and may be draining through the ice, but ice shelf 

vulnerability to hydrofracture could be lower owing to geometric controls on stress conditions and 

meltwater export from ice shelf surfaces. However, our knowledge of SGL evolution within and 

between melt seasons remains limited, together with the influence of near-surface climate on SGL 

occurrence and the sensitivities of remaining Antarctic ice shelves to lake-induced collapse. Future 

research should quantify changes in lake distributions, volumes and drainage patterns at regional 

and ice sheet-scales to better understand the links between patterns of SGL behaviour and glacier 

and ice shelf stability, in particular by adopting a multi-sensor approach that exploits the increasing 

wealth of high resolution satellite imagery. Further work could constrain critical ponding thresholds 

on remaining Antarctic ice shelves before critical meltwater-induced disintegration is triggered. This 

is urgently required to better predict the role of SGLs in future Antarctic ice mass loss. 
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Table 1. Published remote sensing-based assessments of supraglacial lakes and other supraglacial features on Antarctica (in chronological order of 

publication date). 

Source 
Assessment 

Period 
Region Sub-region 

SGLs/surface 

meltwater 

features 

detected 

Lake metric(s) 

measured 

Satellite 

Platform/Sensor 

Measurement 

Method 

Mellor and 

McKinnon (1960) 
1955-1958 

East 

Antarctica 
Amery Ice Shelf 

Not specifically 

listed 

Presence of lakes 

confirmed 

Trimetrogon Aerial 

Photography 

(ANARE) 

Visual identification 

Reynolds (1981) 1980 
Antarctic 

Peninsula 
George VI ice shelf 

Not specifically 

listed 
Extent Landsat Schematic drawing 

Orheim and 

Lucchitta (1987) 
1975-76 

East 

Antarctica 

Dronning Maud 

Land 

Not specifically 

listed 

Presence of lakes 

confirmed 
Landsat TM Visual identification 

Swithinbank 

(1988) 
1972-1974 

East 

Antarctica 
Amery Ice Shelf 

Not specifically 

listed 

Presence of lakes 

confirmed 
Landsat 1 Visual identification 

Vaughan et al. 

(1993) 
1986, 1990 

Antarctic 

Peninsula 
Wilkins Ice Shelf 

Not specifically 

listed 
Locations Landsat TM Manual delineation 

Hambrey and 

Dowdeswell 

(1994) 

1974 
East 

Antarctica 

Lambert Glacier, 

Amery Ice Shelf 

Not specifically 

listed 

Presence of 

meltwater features 

confirmed 

Landsat MSS Manual delineation 

Winther et al. 

(1996) 
1990 

East 

Antarctica 

Dronning Maud 

Land 

Not specifically 

listed 

Presence of lakes 

confirmed 
Landsat TM Visual identification 

Rott et al. (1996) 1993 
Antarctic 

Peninsula 

Northern Larsen ice 

shelf 

Not specifically 

listed 

Presence of lakes 

confirmed 
ERS-1 SAR Visual identification 

Lucchitta and 

Rosanova (1998) 
1995 

Antarctic 

Peninsula 
Wilkins ice shelf 

Not specifically 

listed 

Presence of lakes 

confirmed 
ERS-1 Visual identification 
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Winther et al. 

(2001) 
1980 - 1987 

East 

Antarctica 

Jutulstraumen, 

Dronning Maud 

Land 

Not specifically 

listed 

Presence of lakes 

confirmed 
Landsat TM Visual interpretation 

Scambos et al. 

(2000) 
1986 - 2000 

Antarctic 

Peninsula 
Larsen B ice shelf 

Not specifically 

listed 

Presence of lakes 

confirmed 

Advanced Very High 

Resolution 

Radiometer 

(AVHRR), Landsat 

Visual identification 

Fricker et al. 

(2002) 
1997 

East 

Antarctica 
Amery Ice Shelf 

Not specifically 

listed 

Presence of lakes 

confirmed 

Landsat TM, 

RADARSAT 
Visual identification 

Bindschadler et 

al. (2002) 
2000 

Antarctic 

Peninsula 
Larsen C ice shelf 

Not specifically 

listed 

Presence of lakes 

confirmed 
Landsat 7, IKONOS Visual identification 

Glasser and 

Scambos (2008) 
2000 - 2002 

Antarctic 

Peninsula 
Larsen B ice shelf 2696 Extent Landsat 7, ASTER Manual delineation 

Glasser et al. 

(2011) 
1988, 1990 

Antarctic 

Peninsula 

Prince Gustav ice 

shelf 

Not specifically 

listed 
Extent Landsat 4/5 TM Manual delineation 

LaBarbera and 

MacAyeal (2011) 
2001 - 2010 

Antarctic 

Peninsula 
George VI ice shelf 

Not specifically 

listed 
Extent Landsat 7 ETM+ Manual delineation 

Banwell et al. 

(2014) 
2000, 2001 

Greenland, 

Antarctica 

Paakitsoq, Larsen 

B ice shelf 
3227 

Extent, Area, 

depth, orientation, 

eccentricity 

Landsat 7 ETM+ 

Extent: following Box 

and Ski (2007); Depth: 

following Sneed and 

Hamilton (2007) 

Jawak and Luis 

(2014) 
2010 

East 

Antarctica 
Larsemann Hills 36 

Extent, Area, 

Depth 
WorldView-2 

Manual delineation, 

NDWI, spectral 

processing and target 

detection 

Luckman et al. 

(2014) 
2006 - 2012 

Antarctic 

Peninsula 
Larsen C ice shelf 

Not specifically 

listed 
Extent, duration Envisat ASAR 

Semi-automated pixel-

based classification 
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Hambrey et al. 

(2015) 
2003 

Antarctic 

Peninsula 
George VI ice shelf 

Not specifically 

listed 
Extent Landsat 7 ETM+ Manual delineation 

Kingslake et al. 

(2015) 
2002 - 2009 

East 

Antarctica 

Nivlisen Ice Shelf, 

Dronning Maud 

Land 

(modelling study) 
Presence of lakes 

confirmed 
MODIS, Landsat Not mapped 

Langley et al. 

(2016) 
2000 - 2013 

East 

Antarctica 

Langhovde Glacier, 

Dronning Maud 

Land 

7990 lakes, 855 

surface channels 
Extent, Area 

ASTER, Landsat 

ETM+ 
Manual delineation 

Hubbard et al. 

(2016) 
2001 - 2014 

Antarctic 

Peninsula 
Larsen C ice shelf 

Not specifically 

listed 

Presence/absence 

of lakes noted 
MODIS Visual identification 

Lenaerts et al. 

(2017) 
2010 - 2011 

East 

Antarctica 

Roi Baudouin Ice 

Shelf, Dronning 

Maud Land 

55 

Spatial distribution 

of meltwater 

features  

MODIS, Landsat, 

PALSAR (ALOS) 
Manual delineation 

Bell et al. (2017) 1974-2014 
East 

Antarctica 
Nansen Ice Shelf 

Not specifically 

listed 

Extent, Area, 

volume 

Trimetrogon Aerial 

Photography (TMA), 

Landsat 8 OLI 

NDWI, depth-retrieval 

algorithm 

Kingslake et al. 

(2017) 
1947 - 2015 Antarctica 

Continent-wide 

(predominantly ice 

shelves) 

696 lakes and 

surface streams 
Extent 

Landsat 1, 3, 4, 5, 7, 

8 (LIMA); WorldView 

1, ASTER 

Manual delineation 

Buzzard et al. 

(2018) 
2010 - 2011 

Antarctic 

Peninsula 
Larsen C ice shelf 

Not specifically 

listed 

Extent, average 

and maximum 

depth 

Landsat 8 
Following Pope et al. 

(2016) 

Munneke et al. 

(2018) 
2016 

Antarctic 

Peninsula 
Larsen C ice shelf 

Not specifically 

listed 

Presence of lakes 

confirmed  

Sentinel 1A C-band 

SAR 
Visual identification 

Banwell et al. 

(2019) 
2016-2017 

East 

Antarctica 
McMurdo Ice Shelf 4 

Extent, Area, 

volume 
Landsat 8 

NDWI, depth-retrieval 

algorithm 
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McDonald et al. 

(2019) 
1999 - 2018 

East 

Antarctica 
McMurdo Ice Shelf 

Not specifically 

listed 

Presence of lakes 

confirmed 
Landsat 7/8, MODIS Visual identification 

Tuckett et al., 

(2019) 
2016 - 2018 

Antarctic 

Peninsula 

5 northern outlet 

glaciers 

Not specifically 

listed 

Presence of lakes 

confirmed 

Sentinel 2, Landsat 

7, 8 
Visual identification  

Liang et al. 

(2019) 
2005 - 2015 

East 

Antarctica 

Polar Record 

Glacier (east of 

Amery Ice Shelf) 

Not specifically 

listed 
Extent, area Landsat 7, 8, ASTER 

Blue/red band 

thresholding 

Zheng and Zhou 

(2019) 
2015 

East 

Antarctica 

Shackleton Ice 

Shelf 

Not specifically 

listed 

Presence of lakes 

confirmed 
Landsat 8 NDWI 

Stokes et al. 

(2019) 
2017 

East 

Antarctica 
Continent-wide 65,459 lakes 

Extent, area, 

volume 
Landsat 8, Sentinel 2 

NDWI, Area-volume 

scaling 

Moussavi et al. 

(2020) 
2013 - 2019 

East 

Antarctica 

Amery, Roi 

Baudouin, Nivlisen, 

Riiser-Larsen ice 

shelves 

Not specifically 

listed 

Extent, area, 

volume 
Landsat 8, Sentinel 2 

NDWI, depth-retrieval 

algorithm 

Leeson et al. 

(2020) 
1979 - 2000 

Antarctic 

Peninsula 

Larsen B Ice Shelf 

(pre-collapse) 
Up to 1170 

Extent, area, 

volume 

ERS01, ERS-2, 

Landsat 1, 4, 5, 7 

NDWI and manual 

delineation, depth-

retrieval algorithm 
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Table 2. A comparison of different optical and radar satellite remote sensing approaches for detecting, measuring and monitoring supraglacial lakes in 

Antarctica. Note only satellites still in operation are included.  

 

 

 

 

 

 Optical sensors Radar sensors 

Commercial Non-commercial Commercial 

Planet 

Scope 

Worldview 

1/2 

IKONOS MODIS ASTER Landsat 

7 ETM+ 

Landsat 

8 OLI 

Sentinel 

2 A/B 

MSI 

Sentinel 

1 A/B 

RADARSAT 

2 

Detection during polar night  ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ 

Unaffected by cloud cover ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ 

Detection of lake evolution on 

≤5 day timescales 

✔ ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ 

Wide (> 100 km) image swath 

for regional lake assessments 

✘ ✘ ✘ ✔ ✘ ✔ ✔ ✔ ✔ ✔ (ScanSAR 

modes) 

Spatially resolves small  

(≤ 225 m2) supraglacial lakes 

✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✘ ✔ (single- 

beam modes) 

Spatially resolves very small  (≤ 

9 m2) supraglacial lakes 

✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✔ (Spotlight 

mode) 
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Table 3. A regional comparison of supraglacial lake characteristics that have been observed in Antarctica. Grouped according to regions: Peninsula, 

Dronning Maud Land, Mac Robertson Land, Queen Mary Land, Wilkes Land, Oates Land, Victoria Land, and West Antarctica. Note: where individual 

lake area is unknown or has not been reported, the total lake area coverage is included. 

 

 Individual 
lake area 
(km2) 

Individu
al lake 
depth 
(m) 

Elevation 
(m a.s.l) 

Distribution        

(GZ = grounding 
zone, FT = floating 
tongue, CF = 
calving front) 

Blue 
ice 

Expos
ed 
rock 

Wind-
induced 
melting 

Onset/ 
freeze-up 
period 

Drainage 
behaviour 

Association 
with channel 
network/  
drainage-fed 

Association with 
other features 
(dolines, 
moulins) 

Antarctic 
Peninsula 

~0.2 – 0.6 ~1-4 
(deepest 
6.8) 

Sea-level Widespread across 
FT, not constricted 
to GZ 

Not 
present 

✘ ✓ Present until 
Feb, when 
floating ice 
cover 
common 

Rapid in-situ 
drainage 

✓  ✓ dolines (~100 

m wide, up to 19m 
deep), cross-
cutting 
rifts/crevasses 

Larsen B 
Ice Shelf 
(collapsed) 

Larsen C 
Ice Shelf 

Tens km2 0.1 – 1.3 Sea-level Confined to western 
inlets 

✓ ✓ ✓ (Föhn) Onset Dec, 
present in 
May during 
föhn wind 
events 

In-situ 
drainage/ 
freeze-over 

Not observed 
to date 

Not observed to 
date 

George VI 
Ice Shelf 

Several 
km2 

A few 
metres 

Sea-level Widespread across 
FT, particularly 
central part of the 
shelf, generally 
absent at CF 

✓ ✓ ✓ Onset mid-
Nov 

Drainage 
through 
crevasses 

✓ ✓ dolines, moulins 

Wilkins Ice 
Shelf 

~400 (ice 
shelf 
region 
containing 
lakes) 

unknown Sea-level Confined to north-
eastern corner near 
CF, and eastern 
inlets around 
tributary glaciers 

Not 
present 

✓ Not 
reported 

Present in 
Jan and in 
March.  

Possible in-
situ drainage 

✓ ✓ dolines, 

crevasses, rifts 

Prince 
Gustav Ice 
Shelf 
(collapsed) 

~0.1 – 1 unknown Sea-level Widespread prior to 
2001, then mainly 
confined to GZ, and 
extensive on 
tributary glaciers 

✓ ✓ ✓ Present on 
tributary 
glaciers Nov 
– Feb 

Crevasse 
drainage 
(inferred 
from 
sediment 
cores) 

✓ ✓ crevasses/ rifts, 

dolines 

Dronning 
Maud 
Land 

Up to ~50 ~1 200 – 600  Clustered around 
GZ 

✓ ✓ ✓ 

(Katabatic) 

Onset Dec, 
freeze-up 

Suspected 
freeze-up 

Not observed 
to date 

Not observed to 
date 
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Riiser-
Larsen Ice 
Shelf 

inferred late 
Feb 

Fimbul Ice 
Shelf  

Up to ~3 ≤0.5 100 – 200, 
up to 1583  

Above GL in shear 
zone adjacent to 
Justulstraumen 
margin & 
Fimbulheimen  

✓ ✘ (Only 

inland 
from 
the 
shelf) 

✓ 

(Katabatic) 

Present Dec-
Feb, some 
ice-covered 

Supraglacial 
drainage/ 
freeze-up 

Not observed 
to date 

✓ rifts, crevasses 

Nivlisen 
Ice Shelf 

~ 1 – 40 unknown 0 – 200  Clustered around 
GZ 

✓ ✓ ✓ 

(Katabatic) 

Present in 
December 

Rapid 
(weeks) 
supraglacial 
drainage 

✓ Not observed to 
date 

Roi 
Baudouin 
Ice Shelf 

Tens of 
km2 

Up to ~4  Up to ~200  Clustered around 
GZ, absent towards 
CF 

✓ Not 
present 

✓ 

(Katabatic) 

Present Jan-
Feb 

Refreezing/ 
englacial 
drainage 

✓ ✓ doline, moulin, 

river 

Langhovde 
Glacier  

Up to 
0.0045 

0 – 3 Up to 670 
(most 
below 100 
) 

Most extensive on 
FT up to the CF, but 
also above GL 

✓ ✓ ✓ 

(Katabatic) 

Present late 
Nov – late 
Feb 

Refreezing/o
verland 
drainage/infe
rred in-situ 
drainage 

✓ ✓ dolines, rivers 

 

Mac 
Robertson 
Land 
 

Amery Ice 
Shelf 

Up to ~71 Up to ~5 ~60 – 200  Extensive network 
across upper half of 
shelf, absent 
towards CF 

✓ ✓ ✓ 

(Katabatic) 

Re-freeze 
late Feb 

Refreezing/o
verland 
drainage 

✓ ✓ dolines (tens 

km2 area, ~ 80 - 
170 m deep), 
crevasses/rifts 

Queen 
Mary Land 
 

Shackleton 
Ice Shelf 

Up to 4.5 Up to ~5 0 – 530  Clustered around 
GZ, absent towards 
CF 

✓ ✓ ✓ Present Dec-
Feb 

Supraglacial 
drainage, 
freeze-up 

✓ ✓ rifts, crevasses 

Wilkes 
Land 

(Vincennes 
Bay) 

Up to 0.6 Up to 2.5 0 – 390  Concentrated on 
FT, absent on 
largest outlets 

✓ Not 
present 
(except 
around 
Casey 
Station) 

✓ 

(Katabatic) 

Present Jan-
Feb 

Re-freeze? Not observed 
to date 

✓ rifts, crevasses 

Victoria 
Land  

Tens of 
km2 

0 – 3 ≤ 40 Widespread across 
FT up to CF 

✓ ✓ ✓ 

(Katabatic) 

Present Jan-
Feb 

Drainage 
into 
streams/river
s 

✓ ✓ rivers, waterfall  

Nansen Ice 
Shelf 

McMurdo 
Ice Shelf 

Up to ~ 2 ≤ ~1 ≤ 10 Concentrated in 
debris-covered 
ablation zone and 
tributary glaciers 

✓ ✓ ✓ 

(Katabatic) 

Present Dec-
Feb 

Freeze-over ✓ Not observed to 
date 
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Table 4. A comparison of some of the features of existing models specifically modelling supraglacial lakes, either in an idealized setting or with 

reference to Antarctica. Modified after Buzzard et al. (2018a). 

 

 

 Kingslake et al. 

(2015) 

Banwell et al. (2013) Banwell et al. 

(2015) 

Buzzard et al. 

(2018a and 2018b) 

Robel and Banwell 

(2019) 

Idealized lake or forced by 

observational data 

Idealized Used observed lake 

centres and areas on 

Larsen B (Glasser 

and Scambos, 2008) 

Idealized Idealized Idealized 

Melting within the lake after formation 

(lake-bottom ablation) 

✔ ✘ ✔ ✔ ✘ 

Meltwater retention in firn ✘ ✘ ✘ ✔ ✘ 

Effect of lakes on surface energy 

balance 

✘ ✘ ✘ ✔ ✘ 

Lake filling / draining over multiple melt 

seasons/cycles 

✘ ✔ ✔ ✔ ✘ 

Lateral transport ✔ ✘ ✘ ✔ ✘ 

Interaction with supraglacial 

channel/channel network 

✔ ✘ ✘ ✘ ✘ 

Multiple lake drainage/freeze-over 

mechanisms 

✔ ✘ ✘ ✔ ✘ 


