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Abstract. Within the finite element community, discon-
tinuous Galerkin (DG) and mixed finite element methods
have become increasingly popular in simulating geophysi-
cal flows. However, robust and efficient solvers for the re-
sulting saddle point and elliptic systems arising from these
discretizations continue to be an ongoing challenge. One
possible approach for addressing this issue is to employ a
method known as hybridization, where the discrete equations
are transformed such that classic static condensation and lo-
cal post-processing methods can be employed. However, it is
challenging to implement hybridization as performant paral-
lel code within complex models whilst maintaining a sepa-
ration of concerns between applications scientists and soft-
ware experts. In this paper, we introduce a domain-specific
abstraction within the Firedrake finite element library that
permits the rapid execution of these hybridization techniques
within a code-generating framework. The resulting frame-
work composes naturally with Firedrake’s solver environ-
ment, allowing for the implementation of hybridization and
static condensation as runtime-configurable preconditioners
via the Python interface to the Portable, Extensible Toolkit
for Scientific Computation (PETSc), petsc4py. We provide
examples derived from second-order elliptic problems and
geophysical fluid dynamics. In addition, we demonstrate that
hybridization shows great promise for improving the perfor-
mance of solvers for mixed finite element discretizations of
equations related to large-scale geophysical flows.

1 Introduction

The development of simulation software is an increasingly
important aspect of modern scientific computing, in the
geosciences in particular. Such software requires a vast
range of knowledge spanning several disciplines, ranging
from applications expertise to mathematical analysis to high-
performance computing and low-level code optimization.
Software projects developing automatic code generation sys-
tems have become quite popular in recent years, as such
systems help create a separation of concerns which focuses
on a particular complexity independent from the rest. This
allows for agile collaboration between computer scientists
with hardware and software expertise, computational scien-
tists with numerical algorithm expertise, and domain scien-
tists such as meteorologists, oceanographers and climate sci-
entists. Examples of such projects in the domain of finite ele-
ment methods include FreeFEM++ (Hecht, 2012), Sundance
(Long et al., 2010), the FEniCS Project (Logg et al., 2012a),
Feel++ (Prud’Homme et al., 2012), and Firedrake (Rathge-
ber et al., 2016).

The finite element method (FEM) is a mathematically ro-
bust framework for computing numerical solutions of partial
differential equations (PDEs) that has become increasingly
popular in fluids and solids models across the geosciences,
with a formulation that is highly amenable to code gener-
ation techniques. A description of the weak formulation of
the PDEs, together with appropriate discrete function spaces,
is enough to characterize the finite element problem. Both
the FEniCS and Firedrake projects employ the Unified Form
Language (UFL) (Alnæs et al., 2014) to specify the finite ele-
ment integral forms and discrete spaces necessary to properly
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define the finite element problem. UFL is a highly expressive
domain-specific language (DSL) embedded in Python, which
provides the necessary abstractions for code generation sys-
tems.

There are classes of finite element discretizations result-
ing in discrete systems that can be solved more efficiently by
directly manipulating local tensors. For example, the static
condensation technique for the reduction of global finite el-
ement systems (Guyan, 1965; Irons, 1965) produces smaller
globally coupled linear systems by eliminating interior un-
knowns to arrive at an equation for the degrees of freedom
defined on cell interfaces only. This procedure is analogous
to the point-wise elimination of variables used in staggered
finite difference codes, such as the ENDGame dynamical
core (Melvin et al., 2010; Wood et al., 2014) of the UK
Meteorological Office (Met Office) but requires the local
inversion of finite element systems. For finite element dis-
cretizations of coupled PDEs, the hybridization technique
provides a mechanism for enabling the static condensation of
more complex linear systems. First introduced by Fraeijs de
Veubeke (1965) and analyzed further by Brezzi and Fortin
(1991), Cockburn et al. (2009a), and Boffi et al. (2013), the
hybridization method introduces Lagrange multipliers en-
forcing certain continuity constraints. Local static condensa-
tion can then be applied to the augmented system to produce
a reduced equation for the multipliers. Methods of this type
are often accompanied by local post-processing techniques,
which exploit the approximation properties of the Lagrange
multipliers. This enables the manufacturing of fields exhibit-
ing superconvergent phenomena or enhanced conservation
properties (Arnold and Brezzi, 1985; Brezzi et al., 1985;
Bramble and Xu, 1989; Stenberg, 1991; Cockburn et al.,
2009b, 2010b). These procedures require invasive manual in-
tervention during the equation assembly process in intricate
numerical code.

In this paper, we provide a simple yet effective high-
level abstraction for localized dense linear algebra on sys-
tems derived from finite element problems. Using embed-
ded DSL technology, we provide a means to enable the rapid
development of hybridization and static condensation tech-
niques within an automatic code generation framework. In
other words, the main contribution of this paper is in solv-
ing the problem of automatically translating from the math-
ematics of static condensation and hybridization to com-
piled code. This automated translation facilitates the sepa-
ration of concerns between applications scientists and com-
putational/computer scientists and facilitates the automated
optimization of compiled code. This framework provides an
environment for the development and testing of numerics rel-
evant to the Gung-Ho Project, an initiative by the UK Met
Office in designing the next-generation atmospheric dynam-
ical core using mixed finite element methods (Melvin et al.,
2019). Our work is implemented in the Firedrake finite ele-
ment library and the PETSc solver library (Balay et al., 1997,

2019), accessed via the Python interface petsc4py (Dalcin
et al., 2011).

The rest of the paper is organized as follows. We introduce
common notation used throughout the paper in Sect. 1.1.
The embedded DSL, called “Slate”, is introduced in Sect. 2,
which allows concise expression of localized linear alge-
bra operations on finite element tensors. We provide some
contextual examples for static condensation and hybridiza-
tion in Sect. 3, including a discussion on post-processing.
We then outline in Sect. 4 how, by interpreting static con-
densation techniques as a preconditioner, we can go fur-
ther and automate many of the symbolic manipulations nec-
essary for hybridization and static condensation. We first
demonstrate our implementation on a manufactured prob-
lem derived from a second-order elliptic equation, starting
in Sect. 5. The first example compares a hybridizable discon-
tinuous Galerkin (HDG) method with an optimized continu-
ous Galerkin method. Section 5.2 illustrates the composabil-
ity and relative performance of hybridization for compatible
mixed methods applied to a semi-implicit discretization of
the nonlinear rotating shallow water equations. Our final ex-
ample in Sect. 5.3 demonstrates time-step robustness of a hy-
bridizable solver for a compatible finite element discretiza-
tion of a rotating linear Boussinesq model. Conclusions fol-
low in Sect. 6.

1.1 Notation

We begin by establishing notation used throughout this paper.
Let Th denote a tessellation of �⊂ Rn, the computational
domain, consisting of polygonal elements K associated with
a mesh size parameter h, and ∂Th = {e ∈ ∂K :K ∈ Th} the
set of facets of Th. The set of facets interior to the domain �
is denoted by E◦h := ∂Thr ∂�. Similarly, we denote the set
of exterior facets as E∂h := ∂Th ∩ ∂�. For brevity, we denote
the finite element integral forms over Th and any facet set
0 ⊂ ∂Th by

(u,v)K =

∫
K

u · v dx, 〈u,v〉e =

∫
e

u · v ds, (1)

(u,v)Th =
∑
K∈Th

(u,v)K , 〈u,v〉0 =
∑
e∈0

〈u,v〉e, (2)

where dx and ds denote appropriate integration measures.
The operation · should be interpreted as standard multiplica-
tion for scalar functions or a dot product for vector functions.

For any double-valued vector field w on a facet e ∈ ∂Th,
we define the jump of its normal component across e by

[[w]]e =

{
w|e+ ·ne+ +w|e− ·ne− , e ∈ E◦h
w|e ·ne, e ∈ E∂h

, (3)

where + and − denote arbitrarily but globally defined sides
of the facet. Here, ne+ and ne− are the unit normal vectors
with respect to the positive and negative sides of the facet e.
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Whenever the facet domain is clear by the context, we omit
the subscripts for brevity and simply write [[·]].

2 A system for localized algebra on finite element
tensors

We present an expressive language for dense linear algebra
on the elemental matrix systems arising from finite element
problems. The language, which we call Slate, provides typi-
cal mathematical operations performed on matrices and vec-
tors; hence the input syntax is comparable to high-level linear
algebra software such as MATLAB. The Slate language pro-
vides basic abstract building blocks which can be used by a
specialized compiler for linear algebra to generate low-level
code implementations.

Slate is heavily influenced by the Unified Form Language
(UFL) (Alnæs et al., 2014; Logg et al., 2012a), a DSL em-
bedded in Python which provides symbolic representations
of finite element forms. The expressions can be compiled by
a form compiler, which translates UFL into low-level code
for the local assembly of a form over the cells and facets of
a mesh. In a similar manner, Slate expressions are compiled
to low-level code that performs the requested linear algebra
element-wise on a mesh.

2.1 An overview of Slate

To clarify conventions and the scope of Slate, we start by
establishing our notation for a general finite element form
following the convention of Alnæs et al. (2014). We define
a real-valued multi-linear form as an operator which maps a
list of arguments v= (v0, · · ·,vα−1) ∈ V0×·· ·×Vα−1 into R:

a : V0× ·· ·×Vα−1→ R, a 7−→ a(v0, · · ·,vα−1)= a(v), (4)

where a is linear in each argument vk . The arity of a form is
α, an integer denoting the total number of form arguments.
In traditional finite element nomenclature (for α ≤ 2), V0 is
referred to as the space of test functions and V1 as the space of
trial functions. Each Vk are referred to as argument spaces.
Forms with arity α = 0,1, or 2 are best interpreted as the
more familiar mathematical objects: scalars (0-forms), linear
forms or functionals (1-forms), and bilinear forms (2-forms),
respectively.

If a given form a is parameterized by one or more coef-
ficients, say c= (c0, · · ·,cq) ∈ C0× ·· ·×Cq , where {Ck}

q

k=0
are coefficient spaces, then we write

a : C0× ·· ·×Cq ×V0× ·· ·×Vα−1→ R,
a 7−→ a(c0, · · ·,cq;v0, · · ·,vα−1)= a(c;v). (5)

From here on, we shall work exclusively with forms that are
linear in v and possibly nonlinear in the coefficients c. This
is reasonable since nonlinear methods based on Newton iter-
ations produce linear problems via Gâteaux differentiation of

a nonlinear form corresponding to a PDE (also known as the
form Jacobian). We refer the interested reader to Alnæs et al.
(2014, Sect. 2.1.2) for more details. For clarity, we present
examples of multi-linear forms of arity α = 0,1, and 2 that
frequently appear in finite element discretizations:

a(κ;v,u) := (∇v,κ∇u)Th ≡
∑
K∈Th

∫
K

∇v · (κ∇u) dx,

κ ∈ C0,u ∈ V1,v ∈ V0,α = 2,q = 1, (6)

a(f ;v) := (v,f )Th ≡
∑
K∈Th

∫
K

v f dx,

f ∈ C0,v ∈ V0,α = 1,q = 1, (7)

a(f,g;) := (f − g,f − g)Th ≡
∑
K∈Th

∫
K

|f − g|2 dx,

g ∈ C1,f ∈ C0,α = 0,q = 2, (8)

a(γ,σ ) := 〈γ, [[σ ]]〉∂Th ≡
∑
e∈E◦h

∫
e

γ [[σ ]]ds

+

∑
e∈E∂h

∫
e

γ σ ·nds,σ ∈ V1,γ ∈ V0,α = 2,q = 0. (9)

In general, a finite element form will consist of integrals
over various geometric domains: integration over cells Th,
interior facets Eh◦, and exterior facets E∂h . Therefore, we ex-
press a general multi-linear form in terms of integrals over
each set of geometric entities:

a(c;v)=
∑
K∈Th

∫
K

ITK (c;v)dx+
∑
e∈E◦h

∫
e

IE,
◦

e (c;v)ds

+

∑
e∈E∂h

∫
e

IE,∂e (c;v)ds, (10)

where ITK denotes a cell integrand on K ∈ Th, IE,
◦

e is an
integrand on the interior facet e ∈ Eh◦, and IE,∂e is an inte-
grand defined on the exterior facet e ∈ E∂h . The form a(c;v)
describes a finite element form globally over the entire prob-
lem domain.

Here, we will consider the case where the interior facet in-
tegrands IE,

◦

e (c;v) can be decomposed into two independent
parts on each interior facet e: one for the positive restriction
(+) and the negative restriction (−). That is, for each e ∈ Eh◦,
we may write IE,

◦

e (c;v)= IE,
◦

e+
(c;v)+ IE,

◦

e−
(c;v). This al-

lows us to express the integral over an interior facet e con-
necting two adjacent elements, say K+ and K−, as the sum
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of integrals:∫
e⊂∂K+∪∂K−

IE,
◦

e (c;v)ds =
∫

e⊂∂K+

IE,
◦

e+
(c;v)ds

+

∫
e⊂∂K−

IE,
◦

e−
(c;v)ds. (11)

The local contribution of Eq. (10) in each cell K , along with
its associated facets e ⊂ ∂K , is then

aK(c;v)=
∫
K

ITK (c;v)dx+
∑

e⊂∂K ∂�

∫
e

IE,
◦

e (c;v)ds

+

∑
e⊂∂K∩∂�

∫
e

IE,∂e (c;v)ds. (12)

We call Eq. (12) the cell-local contribution of a(c;v), with

a(c;v)=
∑
K∈Th

aK(c;v). (13)

To make matters concrete, let us suppose a(c;v) is a bi-
linear form with arguments v= (v0,v1) ∈ V0×V1. Now let
{8i}

N
i=1 and {9i}Mi=1 denote bases for V0 and V1, respec-

tively. Then the global N ×M matrix A corresponding to
a(c;v0,v1) has its entries defined via

Aij = a
(
c;8i,9j

)
=

∑
K∈Th

AK,ij ,AK,ij

= aK
(
c;8i,9j

)
. (14)

By construction, AK,ij 6= 0 if and only if 8i and 9j take
non-zero values in K . Now we introduce the cell-node map
i = e(K, î) as the mapping from the local node number î in
K to the global node number i. Suppose there are n and m
nodes defining the degrees of freedom for V0 and V1, respec-
tively, in K . Then all non-zero entries of AK,ij arise from
integrals involving basis functions with local indices corre-
sponding to the global indices i,j :

AK
îĵ
:= aK

(
c;8

e(K,î)
,9

e(K,ĵ )

)
, î ∈ [1, · · ·,n] ,

ĵ ∈ [1, · · ·,m] . (15)

These local contributions are collected in the n×m dense
matrix AK , which we call the element tensor. The global ma-
trix A is assembled from the collection of element tensors:
A← {AK}K∈Th . For details on the general evaluation of fi-
nite element basis functions and multi-linear forms, we refer
the reader to Kirby (2004), Kirby and Logg (2006), Logg
et al. (2012b), and Homolya et al. (2018). Further details on
the global assembly of finite element operators, with a par-
ticular focus on code generation, are summarized in the work
of Logg and Wells (2010) and Markall et al. (2013).

In standard finite element software packages, the element
tensor is mapped entry-wise into a global sparse array using

the cell-node map e(K, ·). Within Firedrake, this operation is
handled by PyOP2 (Rathgeber et al., 2012) and serves as the
main user-facing abstraction for global finite element assem-
bly. For many applications, one may want to produce a new
global operator by algebraically manipulating different ele-
ment tensors. This is relatively invasive in numerical code,
as it requires bypassing direct operator assembly to produce
the new tensor. This is precisely the scope of Slate.

Like UFL, Slate relies on the grammar of the host-
language: Python. The entire Slate language is implemented
as a Python module which defines its types (classes) and op-
erations on said types. Together, this forms a high-level lan-
guage for expressing dense linear algebra on element tensors.
The Slate language consists of two primary abstractions for
linear algebra:

1. terminal element tensors corresponding to multi-linear
integral forms (matrices, vectors, and scalars) or assem-
bled data (for example, coefficient vectors of a finite el-
ement function) and

2. expressions consisting of algebraic operations on termi-
nal tensors.

The composition of binary and unary operations on terminal
tensors produces a Slate expression. Such expressions can
be composed with other Slate objects in arbitrary ways, re-
sulting in concise representations of complex algebraic op-
erations on locally assembled arrays. We summarize all cur-
rently supported Slate abstractions here.

2.1.1 Terminal tensors

In Slate, one associates a tensor with data on a cell either by
using a multi-linear form, or assembled coefficient data:

– Tensor(a(c;v))
associates a form, expressed in UFL, with its local ele-
ment tensor

AK ← aK(c;v), for allK ∈ Th. (16)

The form arity α of aK(c;v) determines the rank of the
corresponding Tensor; i.e., scalars, vectors, and ma-
trices are produced from scalars, linear forms, and bilin-
ear forms, respectively.1 The shape of the element ten-
sor is determined by both the number of arguments and
total number of degrees of freedom local to the cell.

– AssembledVector(f ),
where f is some finite element function. The function
f ∈ V is expressed in terms of the finite element basis

1Similarly to UFL, Slate is capable of abstractly representing
arbitrary rank tensors. However, only rank ≤ 2 tensors are typically
used in most finite element applications, and therefore we currently
only generate code for those ranks.
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of V : f (x)=
∑N
i=1fi8i(x). The result is the local co-

efficient vector of f on K:

FK ←
{
f
e(K,î)

}n
î=1
, (17)

where e(K, î) is the local node numbering and n is the
number of nodes local to the cell K .

2.1.2 Symbolic linear algebra

Slate supports typical binary and unary operations in linear
algebra, with a high-level syntax close to mathematics. At
the time of this paper, these include the following.

– A + B, the addition of two equal shaped tensors: AK+
BK .

– A ∗B, a contraction over the last index of A and the first
index of B. This is the usual multiplicative operation on
matrices, vectors, and scalars: AKBK .

– -A, the additive inverse (negation) of a tensor: −AK .

– A.T, the transpose of a tensor:
(
AK

)T .

– A.inv, the inverse of a square tensor:
(
AK

)−1.

– A.solve(B, decomposition=‘‘...”), the re-
sult, XK , of solving a local linear system AKXK = BK ,
optionally specifying a factorization strategy.

– A.blocks[indices], where A is a tensor from a
mixed finite element space. This allows for the extrac-
tion of sub-blocks, which are indexed by field (slices are
allowed). For example, if a matrix A corresponds to the
bilinear form a : V ×W → R, where V = V0×·· ·×Vn
andW =W0×·· ·×Wm are product spaces consisting of
finite element spaces {Vi}ni=0, {Wi}

m
i=0, then the element

tensors have the form

AK =


AK00 AK01 · · · AK0m
AK10 AK11 · · · AK1m
...

...
. . .

...

AKn0 AKn1 · · · AKnm

 . (18)

The associated submatrix of Eq. (18) with indices i=
(p,q), p= {p1, · · ·,pr}, q= {q1, · · ·,qc}, is

AKpq =

 AKp1q1
· · · AKp1qc

...
. . .

...

AKprq1
· · · AKprqc

= AK.blocks[p,q],

(19)

where p⊆ {0, · · ·,n}, q⊆ {0, · · ·,m}.

Each Tensor object knows all the information about the un-
derlying UFL form that defines it, such as form arguments,
coefficients, and the underlying finite element space(s) it op-
erates on. This information is propagated through as unary or
binary transformations are applied. The unary and binary op-
erations shown here provide the necessary algebraic frame-
work for a large class of problems, some of which we present
in this paper.

In Firedrake, Slate expressions are transformed into low-
level code by a linear algebra compiler. The compiler inter-
prets Slate expressions as a syntax tree, where the tree is vis-
ited to identify what local arrays need to be assembled and
the sequence of array operations. At the time of this work,
our compiler generates C++ code, using the templated library
Eigen (Guennebaud et al., 2015) for dense linear algebra. The
translation from Slate to C++ is fairly straightforward, as all
operations supported by Slate have a representation in Eigen.

The compiler pass will generate a single “macro” kernel,
which performs the dense linear algebra operations repre-
sented in Slate. The resulting code will also include (often
multiple) function calls to local assembly kernels generated
by TSFC (Two Stage Form Compiler) (Homolya et al., 2018)
to assemble all necessary sub-blocks of an element tensor.
All code generated by the linear algebra compiler conforms
to the application programming interface (API) of the PyOP2
framework, as detailed by Rathgeber et al. (2012, Sect. 3).
Figure 1 provides an illustration of the complete tool chain.

Most optimization of the resulting dense linear algebra
code is handled directly by Eigen. In the case of unary and
binary operations such as A.inv and A.solve(B), sta-
ble default behaviors are applied by the linear algebra com-
piler. For example, A.solve(B) without a specified fac-
torization strategy will default to using an in-place LU fac-
torization with partial pivoting. For local matrices smaller
than 5× 5, the inverse is translated directly into Eigen’s
A.inverse(), which employs stable analytic formulas.
For larger matrices, the linear algebra replaces A.inv with
an LU factorization.2 Currently, we only support direct ma-
trix factorizations for solving local linear systems. However,
it would not be difficult to extend Slate to support more gen-
eral solution techniques like iterative methods.

3 Examples

We now present examples and discuss solution methods
which require element-wise manipulations of finite element
systems and their specification in Slate. We stress here that
Slate is not limited to these model problems; rather these ex-
amples are chosen for clarity and to demonstrate key fea-
tures of the Slate language. For our discussion, we use a
model elliptic equation defined in a computational domain

2For more details on solving linear equations in Eigen, see https:
//eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html (last
access: 3 January 2020).
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Figure 1. The Slate language wraps UFL objects describing the
finite element system. The resulting Slate expressions are passed
to a specialized linear algebra compiler, which produces a single
macro kernel assembling the local contributions and executes the
dense linear algebra represented in Slate. The kernels are passed to
the Firedrake’s PyOP2 interface, which wraps the Slate kernel in
a mesh-iteration kernel. Parallel scheduling, code generation, and
compilation occurs after the PyOP2 layer.

�. Consider the second-order PDE with both Dirichlet and
Neumann boundary conditions:

−∇ · (κ∇p)+ cp = f, in �, (20)
p = p0, on ∂�D, (21)
−κ∇p ·n= g, on ∂�N , (22)

where ∂�D ∪ ∂�N = ∂� and κ , c :�→ R+ are positive-
valued coefficients. To obtain a mixed formulation of
Eqs. (20)–(22), we introduce the auxiliary velocity variable
u=−κ∇p. We then obtain the first-order system of PDEs:

µu+∇p = 0, in �, (23)
∇ ·u+ cp = f, in �, (24)
p = p0, on ∂�D, (25)
u ·n= g, on ∂�N , (26)

where µ= κ−1.

3.1 Hybridization of mixed methods

To motivate our discussion in this section, we start by recall-
ing the mixed method for Eqs. (23)–(26). Methods of this
type seek approximations (uh,ph) in finite-dimensional sub-

spaces Uh×Vh ⊂H(div;�)×L2(�), defined by

Uh = {w ∈H(div;�) : w|K ∈ U(K), ∀K ∈ Th,
w ·n= g on ∂�N } , (27)

Vh =
{
φ ∈ L2(�) : φ|K ∈ V (K), ∀K ∈ Th

}
. (28)

The space Uh consists of H(div)-conforming piecewise
vector polynomials, where choices of U(K) typically in-
clude the Raviart–Thomas (RT), Brezzi–Douglas–Marini
(BDM), or Brezzi–Douglas–Fortin–Marini (BDFM) ele-
ments (Raviart and Thomas, 1977; Nédélec, 1980; Brezzi
et al., 1985, 1987). The space Vh is the Lagrange family of
discontinuous polynomials. These spaces are of particular in-
terest when simulating geophysical flows, since choosing the
right pairing results in stable discretizations with desirable
conservation properties and avoids spurious computational
modes. We refer the reader to Cotter and Shipton (2012),
Cotter and Thuburn (2014), Natale et al. (2016), and Ship-
ton et al. (2018) for a discussion of mixed methods relevant
for geophysical fluid dynamics. Two examples of such dis-
cretizations are presented in Sect. 5.2.

The mixed formulation of Eqs. (23)–(26) is arrived at by
multiplying Eqs. (23)–(24) by test functions and integrating
by parts. The resulting finite element problem reads as fol-
lows: find (uh,ph) ∈ Uh×Vh satisfying

(w,µuh)Th − (∇ ·w,ph)Th =−〈w ·n,p0〉∂�D ,

∀w ∈ Uh,0, (29)

(φ,∇ ·uh)Th + (φ,cph)Th = (φ,f )Th ,∀φ ∈ Vh, (30)

where Uh,0 is the subspace of Uh with functions whose nor-
mal components vanish on ∂�N . The discrete system is ob-
tained by first expanding the solutions in terms of the finite
element bases:

uh =
Nu∑
i=1

Ui9i,ph =

Np∑
i=1

Piξi, (31)

where {9i}
Nu
i=1 and {ξi}

Np
i=1 are bases for Uh and Vh, respec-

tively. Here, Ui and Pi are the coefficients to be determined.
As per standard Galerkin-based finite element methods, tak-
ing w=9j , j ∈ {1, · · ·,Nu} and φ = ξj , j ∈ {1, · · ·,Np} in
Eqs. (29)–(30) produces the following discrete saddle point
system:[

A −BT
B D

]{
U
P

}
=

{
F0
F1

}
. (32)
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where U= {Ui}Nu
i=1, P= {Pi}

Np
i=1 are the coefficient vectors,

and

Aij =
(
9i,µ9j

)
Th , (33)

Bij =
(
ξi,∇ ·9j

)
Th , (34)

Dij =
(
ξi,cξj

)
Th , (35)

F0,j =−
〈
9j ·n,p0

〉
∂�D

, (36)

F1,j =
(
ξj ,f

)
Th . (37)

Methods to efficiently invert such systems includeH(div)-
multigrid (Arnold et al., 2000) (requiring complex overlap-
ping Schwarz smoothers), global Schur complement factor-
izations (which require an approximation to the inverse of
the dense3 elliptic Schur complement D+BA−1BT ), or aux-
iliary space multigrid (Hiptmair and Xu, 2007). Here, we fo-
cus on a solution approach using a hybridized mixed method
(Arnold and Brezzi, 1985; Brezzi and Fortin, 1991; Boffi
et al., 2013).

The hybridization technique replaces the original system
with a discontinuous variant, decoupling the velocity degrees
of freedom between cells. This is done by replacing the dis-
crete solution space for uh with the “broken” space Udh , de-
fined as

Udh =
{

w ∈
[
L2(�)

]n
: w|K ∈ U(K), ∀K ∈ Th

}
. (38)

The vector finite element spaceUdh is a subspace of
[
L2(�)

]n
consisting of localH(div) functions, but normal components
are no longer required to be continuous on ∂Th. The approx-
imation space for ph remains unchanged.

Next, Lagrange multipliers are introduced as an auxiliary
variable in the space Mh, defined only on cell interfaces:

Mh = {γ ∈ L
2(∂Th) : γ |e ∈M(e), ∀e ∈ ∂Th}, (39)

where M(e) denotes a polynomial space defined on each
facet. We callMh the space of approximate traces. Functions
in Mh are discontinuous across vertices in two dimensions
and vertices or edges in three dimensions.

Deriving the hybridizable mixed system is accomplished
through integration by parts over each element K . Testing
with w ∈ Udh (K) and integrating Eq. (23) over the cell K
produces(

w,µudh
)
K
− (∇ ·w,ph)K +〈w ·n,λh〉∂K

=−〈w ·n,p0〉∂K∩∂�D . (40)

The trace function λh is introduced in the surface integral as
an approximation to p|∂K . An additional constraint equation,

3The Schur complement, while elliptic, is globally dense due to
the fact that A has a dense inverse. This is a result of velocities in
Uh having continuous normal components across cell interfaces.

called the transmission condition, is added to close the sys-
tem. The resulting hybridizable formulation reads as follows:
find (udh,ph,λh) ∈ U

d
h ×Vh×Mh such that(

w,µudh
)
Th
− (∇ ·w,ph)Th +〈[[w]] ,λh〉∂Thr∂�D

=−〈w ·n,p0〉∂�D ,∀w ∈ U
d
h , (41)

(
φ,∇ ·udh

)
Th
+ (φ,cph)Th = (φ,f )Th ,∀φ ∈ Vh, (42)

〈
γ,
[[

udh
]]〉

∂Thr∂�D
= 〈γ,g〉∂�N ,∀γ ∈Mh,0, (43)

where Mh,0 denotes the space of traces vanishing on ∂�D .
The transmission condition Eq. (43) enforces both the con-
tinuity of udh ·n across element boundaries as well as the
boundary condition udh ·n= g on ∂�N . If the space of La-
grange multipliers Mh is chosen appropriately, then the bro-
ken velocity udh, albeit sought a priori in a discontinuous
space, will coincide with itsH(div)-conforming counterpart.
Specifically, the formulations in Eqs. (41)–(42) and (29)–
(30) are solving equivalent problems if the normal compo-
nents of w ∈ Uh lie in the same polynomial space as the trace
functions (Arnold and Brezzi, 1985).

The discrete matrix system arising from Eqs. (41)–(43) has
the general form A00 A01 A02

A10 A11 A12
A20 A21 A22

 Ud
P
3

=
 F0

F1
F2

 , (44)

where the discrete system is produced by expanding func-
tions in terms of the finite element bases for Udh , Vh, and Mh

like before. Upon initial inspection, it may not appear to be
advantageous to replace our original formulation with this
augmented equation set; the hybridizable system has sub-
stantially more total degrees of freedom. However, Eq. (44)
has a considerable advantage over Eq. (32) in the following
ways.

1. Since both Udh and Vh are discontinuous spaces, Ud and
P are coupled only within the cell. This allows us to
simultaneously eliminate both unknowns via local static
condensation to produce a significantly smaller global
(hybridized) problem for the trace unknowns, 3:

S3= E, (45)

where S← {SK}K∈Th and E← {EK}K∈Th are assem-
bled via the local element tensors:

SK = AK22−
[

AK20 AK21

][ AK00 AK01
AK10 AK11

]−1[
AK02
AK12

]
, (46)
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EK = FK2 −
[

AK20 AK21

][ AK00 AK01
AK10 AK11

]−1{
FK0
FK1

}
. (47)

Note that the inverse of the block matrix in Eqs. (46) and
(47) is never evaluated globally; the elimination can be
performed locally by performing a sequence of Schur
complement reductions within each cell.

2. The matrix S is sparse, symmetric, positive-definite, and
spectrally equivalent to the dense Schur complement
D+BA−1BT from Eq. (32) of the original mixed formu-
lation (Gopalakrishnan, 2003; Cockburn et al., 2009a).

3. Once 3 is computed, both Ud and P can be recovered
locally in each element. This can be accomplished in a
number of ways. One way is to compute PK by solving(

AK11−AK10

(
AK00

)−1
AK01

)
PK = FK1 −AK10(

AK00

)−1
FK0 −

(
AK12−AK10

(
AK00

)−1
AK02

)
3K , (48)

followed by solving for
(
Ud
)K :

AK00

(
Ud
)K
= FK0 −AK01PK −AK023

K . (49)

Similarly, one could rearrange the order in which each
variable is reconstructed.

4. If desired, the solutions can be improved further through
local post-processing. We highlight two such proce-
dures for Ud and P, respectively, in Sect. 3.3.

Figure 2 displays the corresponding Slate code for assem-
bling the trace system, solving Eq. (45), and recovering the
eliminated unknowns. For a complete reference on how to
formulate the hybridized mixed system Eqs. (41)–(43) in
UFL, we refer the reader to Alnæs et al. (2014). Complete
Firedrake code using Slate to solve a hybridizable mixed sys-
tem is also publicly available in Zenodo/Tabula-Rasa (2019,
“Code verification”). We remark that, in the case of this
hybridizable system, Eq. (44) contains zero-valued blocks
which can simplify the resulting expressions in Eqs. (46)–
(47) and (48)–(49). This is not true in general and therefore
the expanded form using all sub-blocks of Eq. (44) is pre-
sented for completeness.

3.2 Hybridization of discontinuous Galerkin methods

The HDG method is a natural extension of discontinuous
Galerkin (DG) discretizations. Here, we consider a specific
HDG discretization, namely the LDG-H method (Cockburn
et al., 2010b). Other forms of HDG that involve local lifting
operators can also be implemented in this software frame-
work by the introduction of additional local (i.e., discontinu-
ous) variables into the definition of the local solver.

Deriving the LDG-H formulation follows exactly from
standard DG methods. All prognostic variables are sought
in the discontinuous spaces Uh×Vh ⊂

[
L2(�)

]n
×L2(�).

Within a cell K , integration by parts yields

(w,µuh)K − (∇ ·w,ph)K +〈w ·n, p̂〉∂K = 0,

∀w ∈ U(K), (50)

− (∇φ,uh)K +〈φ, û ·n〉∂K + (φ,cph)K = (φ,f )K ,
∀φ ∈ V (K), (51)

where U(K) and V (K) are vector and scalar polynomial
spaces, respectively. Now, we define the numerical fluxes p̂
and û to be functions of the trial unknowns and a new inde-
pendent unknown in the trace space Mh:

û(uh,ph,λh;τ)= uh+ τ (ph− p̂)n, (52)
p̂(λh)= λh, (53)

where λh ∈Mh is a function approximating p on ∂Th and
τ is a positive stabilization function that may vary on each
facet e ∈ ∂Th. We further require that λh satisfies the Dirich-
let condition for p on ∂�D in an L2-projection sense. The
full LDG-H formulation reads as follows. Find (uh,ph,λh) ∈
Uh×Vh×Mh such that

(w,µuh)Th − (∇ ·w,ph)Th +〈[[w]] ,λh〉∂Th = 0,

∀w ∈ Uh, (54)

− (∇φ,uh)Th +
〈
φ,
[[

uh+ τ (ph− λh)n
]]〉
∂Th

+ (φ,cph)Th = (φ,f )Th ,∀φ ∈ Vh, (55)

〈
γ,
[[

uh+ τ (ph− λh)n
]]〉
∂Thr∂�D = 〈γ,g〉∂�N ,

∀γ ∈Mh, (56)

〈γ,λh〉∂�D = 〈γ,p0〉∂�D ,∀γ ∈Mh. (57)

Equation (56) is the transmission condition, which enforces
the continuity of û ·n on ∂Th and q. Equation (57) ensures λh
satisfies the Dirichlet condition. This ensures that the numer-
ical flux is single-valued on the facets. Hence, the LDG-H
method defines a conservative DG method (Cockburn et al.,
2010b). Note that the choice of τ has a significant influence
on the expected convergence rates of the computed solutions.

The LDG-H method retains the advantages of standard DG
methods while also enabling the assembly of reduced linear
systems through static condensation. The matrix system aris-
ing from Eqs. (54)–(57) has the same general form as the hy-
bridized mixed method in Eq. (44), except all sub-blocks are
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Figure 2. Firedrake code for solving Eq. (44) via static condensation and local recovery, given UFL expressions a, L for Eqs. (41)–(43).
Arguments of the mixed space Ud

h
×Vh×Mh are indexed by 0, 1, and 2, respectively. Lines 8 and 9 are symbolic expressions for Eqs. (46)

and (47), respectively. Any vanishing conditions on the trace variables should be provided as boundary conditions during operator assembly
(line 10). Lines 26 and 28 are expressions for Eqs. (48) and (49) (using LU). Code generation occurs in lines 10, 11, 30, and 31. A global
linear solver for the reduced system is created and used in line 15. Configuring the linear solver is done by providing an appropriate Python
dictionary of solver options for the PETSc library.

now populated with non-zero entries due to the coupling of
trace functions with both ph and uh. However, all previous
properties of the discrete matrix system from Sect. 3.1 still
apply. The Slate expressions for the local elimination and re-
construction operations will be identical to those illustrated
in Fig. 2. For the interested reader, a unified analysis of hy-
bridization methods (both mixed and DG) for second-order
elliptic equations is presented in Cockburn et al. (2009a) and
Cockburn (2016).

3.3 Local post-processing

For both mixed (Arnold and Brezzi, 1985; Brezzi et al., 1985;
Bramble and Xu, 1989; Stenberg, 1991) and discontinuous
Galerkin methods (Cockburn et al., 2010b, 2009b), it is pos-
sible to locally post-process solutions to obtain superconver-
gent approximations (gaining 1 order of accuracy over the
unprocessed solution). These methods can be expressed as
local solves on each element and are straightforward to im-
plement using Slate. In this section, we present two post-
processing techniques: one for scalar fields and another for
the vector unknown. The Slate code follows naturally from

previous discussions in Sect. 3.1 and 3.2, using the standard
set of operations on element tensors summarized in Sect. 2.1.

3.3.1 Post-processing of the scalar solution

Our first example is a modified version of the procedure pre-
sented by Stenberg (1991) for enhancing the accuracy of the
scalar solution. This was also highlighted within the context
of hybridizing eigenproblems by Cockburn et al. (2010a).
This post-processing technique can be used for both the hy-
bridizable mixed and LDG-H methods. We proceed by pos-
ing the finite element systems cell-wise.

Let Pk(K) denote a polynomial space of degree ≤ k on
a cell K ∈ Th. Then for a given pair of computed solu-
tions uh,ph of the hybridized methods, we define the post-
processed scalar p?h ∈ Pk+1(K) as the unique solution of the
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local problem:

(
∇w,∇p?h

)
K
=−

(
∇w,κ−1uh

)
K
,∀w ∈ P⊥,lk+1(K), (58)(

v,p?h
)
K
= (v,ph)K ,∀v ∈ Pl(K), (59)

where 0≤ l ≤ k. Here, the space P⊥,lk+1(K) denotes the
L2-orthogonal complement of Pl(K). This post-processing
method directly uses the definition of the flux uh, the approx-
imation of −κ∇p. In practice, the space P⊥,lk+1(K) may be
constructed using an orthogonal hierarchical basis, and solv-
ing Eqs. (58)–(59) amounts to inverting a symmetric positive
definite system in each cell of the mesh.

At the time of this work, Firedrake does not support the
construction of such a finite element basis. However, we can
introduce Lagrange multipliers to enforce the orthogonality
constraint. The resulting local problem then becomes the fol-
lowing mixed system: find (p?h,ψ) ∈ Pk+1(K)×Pl(K) such
that

(
∇w,∇p?h

)
K
+ (w,ψ)K =−

(
∇w,κ−1uh

)
K
,

∀w ∈ Pk+1(K), (60)

(
φ,p?h

)
K
= (φ,ph)K ,∀φ ∈ Pl(K), (61)

where 0≤ l ≤ k. The local problems Eqs. (60)–(61) and
Eqs. (58)–(59) are equivalent, with the Lagrange multiplier
ψ enforcing orthogonality of test functions in Pk+1(K) with
functions in Pl(K).

This post-processing method produces a new approxima-
tion which superconverges at a rate of k+ 2 for hybridized
mixed methods (Stenberg, 1991; Cockburn et al., 2010a).
For the LDG-H method, k+ 2 superconvergence is achieved
when τ =O(1) and τ =O(h), but only k+1 convergence is
achieved when τ =O(1/h) (Cockburn et al., 2009b, 2010b).
We demonstrate the increased accuracy in computed solu-
tions in Sect. 5.1. An abridged example using Firedrake and
Slate to solve the local linear systems is provided in Fig. 3.

3.3.2 Post-processing of the flux

Our second example illustrates a procedure that uses the nu-
merical flux of an HDG discretization for Eqs. (23)–(26).
Within the context of the LDG-H method, we can use the
numerical trace in Eq. (52) to produce a vector field that is
H(div)-conforming. The technique we outline here follows
that of Cockburn et al. (2009b).

Let Th be a mesh consisting of simplices. On each cell
K ∈ Th, we define a new function u?h to be the unique ele-
ment of the local Raviart–Thomas space [Pk(K)]n+xPk(K)

satisfying(
r,u?h

)
K
= (r,uh)K ,∀r ∈

[
Pk−1(K)

]n
, (62)〈

µ,u?h ·n
〉
e
= 〈µ, û ·n〉e,∀µ ∈ Pk(e) (63)

for all facets e on ∂K , where û is the numerical flux defined
in Eq. (52). This local problem produces a new velocity u?h
with the following properties.

1. u?h converges at the same rate as uh for all choices of τ
producing a solvable system for Eqs. (54)–(57). How-
ever,

2. u?h ∈H(div;�). That is,
[[

u?h
]]
e
= 0, ∀e ∈ Eh◦.

3. Additionally, the divergence of u?h convergences at a
rate of k+ 1.

The Firedrake implementation using Slate is similar to the
scalar post-processing example (see Fig. 3); the cell-wise lin-
ear systems Eqs. (62)–(63) can be expressed in UFL, and
therefore the necessary Slate expressions to invert the lo-
cal systems follows naturally from the set of operations pre-
sented in Sect. 2.1. We use the very sensitive parameter de-
pendency in the post-processing methods to validate our soft-
ware implementation in Zenodo/Tabula-Rasa (2019, “Code-
verification”).

4 Static condensation as a preconditioner

Slate enables static condensation approaches to be expressed
very concisely. Nonetheless, the application of a particular
approach to different variational problems using Slate still
requires a certain amount of code repetition. By formulating
each form of static condensation as a preconditioner, code
can be written once and then applied to any mathematically
suitable problem. Rather than writing the static condensation
by hand, in many cases, it is sufficient to just select the ap-
propriate, Slate-based, preconditioner.

For context, it is helpful to frame the problem in the par-
ticular context of the solver library: PETSc. Firedrake uses
PETSc as its main solver abstraction framework and can pro-
vide operator-based preconditioners for solving linear sys-
tems as PC objects expressed in Python via petsc4py (Dalcin
et al., 2011). For a comprehensive overview on solving linear
systems using PETSc, we refer the interested reader to Balay
et al. (2019, Sect. 4).

Suppose we wish to solve a linear system: Ax= b. We can
think of (left) preconditioning the system in residual form:

r= r(A,b)≡ b−Ax= 0 (64)

by an operator P (which may not necessarily be linear) as a
transformation into an equivalent system of the form

Pr= Pb−PAx= 0. (65)
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Figure 3. Example of local post-processing using Firedrake and Slate. Here, we locally solve the mixed system defined in Eqs. (58)–(59).
The corresponding symbolic local tensors are defined in lines 9 and 11. The Slate expression for directly inverting the local system is written
in line 12. In line 16, a Slate-generated kernel is produced which solves the resulting linear system in each cell. Since we are not interested
in the multiplier, we only return the block corresponding to the new pressure field.

Given a current iterate xi the residual at the ith iteration is
simply ri ≡ b−Axi , and P acts on the residual to produce an
approximation to the error εi ≡ x− xi . If P is an application
of an exact inverse, the residual is converted into an exact (up
to numerical roundoff) error.

We will denote the application of a particular Krylov
subspace method (KSP) for the linear system Eq. (64) as
Kx(r(A,b)). Upon preconditioning the system via P as in
Eq. (65), we write

Kx(Pr(A,b)). (66)

If Eq. (66) is solved directly via P = A−1, then Pr(A,b)=
A−1b− x. So Eq. (66) then becomes Kx(r(I,A−1b)), pro-
ducing the exact solution of Eq. (64) in a single iteration of
K. Having established notation, we now present our imple-
mentation of static condensation via Slate by defining the ap-
propriate operator, P .

4.1 Interfacing with PETSc via custom preconditioners

The implementation of preconditioners for the systems con-
sidered in this paper requires the manipulation not of assem-
bled matrices but rather their symbolic representation. To do
this, we use the preconditioning infrastructure developed by
Kirby and Mitchell (2018), which gives preconditioners writ-
ten in Python access to the symbolic problem description. In
Firedrake, this means all derived preconditioners have direct
access to the UFL representation of the PDE system. From
this mathematical specification, we manipulate this appropri-
ately via Slate and provide operators assembled from Slate
expressions to PETSc for further algebraic preconditioning.
Using this approach, we have developed a static condensa-
tion interface for the hybridization of H(div)×L2 mixed
problems and a generic interface for statically condensing
finite element systems. The advantage of writing even the

latter as a preconditioner is the ability to switch out the solu-
tion scheme for the system, even when nested inside a larger
set of coupled equations or nonlinear solver (Newton-based
methods) at runtime.

4.1.1 A static condensation interface for hybridization

As discussed in Sect. 3.1 and 3.2, one of the main advantages
of using a hybridizable variant of a DG or mixed method
is that such systems permit the use of cell-wise static con-
densation. To facilitate this, we provide a PETSc PC static
condensation interface: firedrake.SCPC. This precondi-
tioner takes the discretized system as in Eq. (44) and per-
forms the local elimination and recovery procedures. Slate
expressions are generated from the underlying UFL problem
description.

More precisely, the incoming system has the form[
Ae,e Ae,c
Ac,e Ac,c

]{
Xe
Xc

}
=

{
Re
Rc

}
, (67)

where Xe is the vector of unknowns to be eliminated, Xc
is the vector of unknowns for the condensed field, and
Re and Rc are the incoming right-hand sides. The par-
titioning in Eq. (67) is determined by the solver option:
pc_sc_eliminate_fields. Field indices are provided
in the same way one configures solver options to PETSc.
These indices determine which field(s) to statically condense
into. For example, on a three-field problem (with indices 0, 1,
and 2), setting -pc_sc_eliminate_fields 0,1 will
configure firedrake.SCPC to cell-wise eliminate fields
0 and 1; the resulting condensed system is associated with
field 2.

The firedrake.SCPC preconditioner can be inter-
preted as a Schur complement method for Eq. (67) of the
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form

P =
[

I −A−1
e,eAe,c

0 I

][
A−1
e,e 0

0 S−1

][
I 0
−Ac,eA−1

e,e I

]
, (68)

where S= Ac,c−Ac,eA−1
e,eAe,c is the Schur complement op-

erator for the Xc system. The distinction here from block
preconditioners via the PETSc fieldsplit option (Brown
et al., 2012), for example, is that P does not require global
actions; by design A−1

e,e can be inverted locally and S is
sparse. As a result, S can be assembled or applied exactly,
up to numerical roundoff, via Slate-generated kernels.

In practice, the only globally coupled system requiring it-
erative inversion is S:

KXc (P1r (S,Rs)) , (69)

where Rs = Rc−Ac,eA−1
e,eRe is the condensed right-hand

side and P1 is a preconditioner for S. Once Xc is com-
puted, Xe is reconstructed by inverting the system Xe =
A−1
e,e

(
Rc−Ae,cXc

)
cell-wise.

By construction, this preconditioner is suitable for both
hybridized mixed and HDG discretizations. It can also be
used within other contexts, such as the static condensa-
tion of continuous Galerkin discretizations (Guyan, 1965;
Irons, 1965) or primal-hybrid methods (Devloo et al., 2018).
As with any PETSc preconditioner, solver options can be
specified for inverting S via the appropriate options prefix
(condensed_field). The resulting KSP for Eq. (69) is
compatible with existing solvers and external packages pro-
vided through the PETSc library. This allows users to ex-
periment with a direct method and then switch to a more
parallel-efficient iterative solver without changing the core
application code.

4.1.2 Preconditioning mixed methods via hybridization

The preconditioner firedrake.HybridizationPC
expands on the previous one, this time taking anH(div)×L2

system and automatically forming the hybridizable problem.
This is accomplished through manipulating the UFL objects
representing the discretized PDE. This includes replacing ar-
gument spaces with their discontinuous counterparts, intro-
ducing test functions on an appropriate trace space, and pro-
viding operators assembled from Slate expressions in a sim-
ilar manner as described in Sect. 4.1.1.

More precisely, let AX= R be the incoming mixed saddle
point problem, where R= RU RP T , X= U PT , and
U and P are the velocity and scalar unknowns, respectively.
Then this preconditioner replaces AX= R with the extended
problem:[

Â CT
C 0

]{
X̂
3

}
=

{
R̂
Rg

}
(70)

where 3 are the Lagrange multipliers, R̂= R̂U RP T , R̂U
and RP are the right-hand sides for the flux and scalar equa-
tions, respectively, and ·̂ indicates modified matrices and co-
vectors with discontinuous functions. Here, X̂= Ud PT

are the hybridizable (discontinuous) unknowns to be deter-
mined and CX̂= Rg is the matrix representation of the trans-
mission condition for the hybridizable mixed method (see
Eq. 43).

The application of firedrake.HybridizationPC
can be interpreted as the Schur complement reduction of
Eq. (70):

P̂ =
[

I −Â−1CT
0 I

][
Â−1 0
0 S−1

][
I 0
−CÂ−1 I

]
, (71)

where S is the Schur complement matrix S=−CÂ−1CT .
As before, a single global system for 3 can be assem-
bled cell-wise using Slate-generated kernels. Configuring the
solver for inverting S is done via the PETSc options prefix:
-hybridization. The recovery of Ud and P happens in
the same manner as firedrake.SCPC.

Since the hybridizable flux solution is constructed in the
broken H(div) space Udh , we must project the computed so-
lution into Uh ⊂H(div). This can be done cheaply via local
facet averaging. The resulting solution is then updated via
U←5divUd , where 5div : U

d
h → Uh is a projection opera-

tor. This ensures that the residual for the original mixed prob-
lem is properly evaluated to test for solver convergence. With
P̂ as in Eq. (71), the preconditioning operator for the original
system AX= R then has the form

P =5P̂5T , 5=

[
5div 0 0
0 I 0

]
. (72)

We note here that assembly of the right-hand side for the
3 system requires special attention. Firstly, when Neumann
conditions are present, then Rg is not necessarily 0. Since the
hybridization preconditioner has access to the entire Python
context (which includes a list of boundary conditions and the
spaces in which they are applied), surface integrals on the
exterior boundary are added where appropriate and incorpo-
rated into the generated Slate expressions. A more subtle is-
sue that requires extra care is the incoming right-hand side
tested in the H(div) space Uh.

The situation we are given is that we have RU = RU (w)
for w ∈ Uh but require R̂U (wd) for wd ∈ Udh . For consis-
tency, we also require for any w ∈ Uh that

R̂U (w)= RU (w). (73)

We can construct such an R̂U satisfying Eq. (73) in the fol-
lowing way. By construction, we have for each basis function
9i ∈ Uh

9i =



9di 9iassociated with an exterior,
facet node

9
d,+
i +9

d,−
i 9iassociated with an interior,

facet node
9di 9iassociated with a cell,

interior node
,
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(74)

where 9di ,9
d,±
i ∈ Udh , and 9d,±i are basis functions corre-

sponding to the positive and negative restrictions associated
with the ith facet node.4 We then define our broken right-
hand side via the local definition:

R̂U (9di )=
RU (9i)
Ni

, (75)

where Ni is the number of cells that the degree of freedom
corresponding to 9i ∈ Uh is topologically associated with.
Using Eq. (74), Eq. (75), and the fact that RU is linear in its
argument, we can verify that our construction of R̂U satis-
fies Eq. (73).

5 Numerical studies

We now present results utilizing the Slate DSL and our static
condensation preconditioners for a set of test problems. Since
we are using the interfaces outlined in Sect. 4, Slate is ac-
cessed indirectly and requires no manually written solver
code for hybridization or static condensation or local recov-
ery. All parallel results were obtained on a single fully loaded
compute node of dual-socket Intel E5-2630v4 (Xeon) pro-
cessors with 2× 10 cores (2 threads per core) running at
2.2GHz. In order to avoid potential memory effects due to
the operating system migrating processes between sockets,
we pin MPI processes to cores.

The verification of the generated code is performed us-
ing parameter-sensitive convergence tests. The study consists
of running a variety of discretizations spanning the methods
outlined in Sect. 3. Details and numerical results are made
public and can be viewed in Zenodo/Tabula-Rasa (2019) (see
“Code and data availability”). All results are in full agree-
ment with the theory.

5.1 HDG method for a three-dimensional elliptic
equation

In this section, we take a closer look at the LDG-H method
for the model elliptic equation (sign-definite Helmholtz):

−∇ ·∇p+p = f, in �= [0,1]3, (76)
p = g, on ∂�, (77)

where f and g are chosen such that the analytic solu-
tion is p = exp{sin(πx)sin(πy)sin(πz)}. We use a regu-
lar mesh consisting of 6 ·N3 tetrahedral elements (N ∈
{4,8,16,32,64}). First, we reformulate Eqs. (76)–(77) as the

4These are the two broken parts of 9i on a particular facet con-
necting two elements. That is, for two adjacent cells, a basis func-
tion in Uh for a particular facet node can be decomposed into two
basis functions in Ud

h
defined on their respective sides of the facet.

mixed problem:

u+∇p = 0, (78)
∇ ·u+p = f, (79)
p = g, on ∂�. (80)

We start with linear polynomial approximations, up to cu-
bic, for the LDG-H discretization of Eqs. (78)–(80). Addi-
tionally, we compute a post-processed scalar approximation
p?h of the HDG solution. This raises the approximation order
of the computed solution by an additional degree. In all nu-
merical studies here, we set the HDG parameter τ = 1. All
results were computed in parallel, utilizing a single compute
node (described previously).

A continuous Galerkin (CG) discretization of the primal
problem Eqs. (76)–(77) serves as a reference for this experi-
ment. Due to the superconvergence in the post-processed so-
lution for the HDG method, we use CG discretizations of
polynomial orders 2, 3, and 4. This takes into account the en-
hanced accuracy of the HDG solution, despite being initially
computed as a lower-order approximation. We therefore ex-
pect both methods to produce equally accurate solutions to
the model problem.

Our aim here is not to compare the performance of HDG
and CG, which has been investigated elsewhere (for exam-
ple, see Kirby et al., 2012; Yakovlev et al., 2016). Instead,
we provide a reference that the reader might be more famil-
iar with in order to evaluate whether our software framework
produces a sufficiently performant HDG implementation rel-
ative to what might be expected.

To invert the CG system, we use a conjugate gradient
solver with Hypre’s BoomerAMG implementation of alge-
braic multigrid (AMG) as a preconditioner (Falgout et al.,
2006). For the HDG method, we use the preconditioner de-
scribed in Sect. 4.1.1 and the same solver setup as the CG
method for the trace system. While the trace operator is in-
deed symmetric and positive-definite, one should keep in
mind that conclusions regarding the performance of off-the-
shelf AMG packages on the HDG trace system are still rel-
atively unclear. As a result, efforts on developing more ef-
ficient multigrid strategies are a topic of ongoing interest
(Cockburn et al., 2014; Kronbichler and Wall, 2018).

To avoid over-solving, we iterate to a relative tolerance
such that the discretization error is minimal for a given mesh.
In other words, the solvers are configured to terminate when
there is no further reduction in the L2 error of the computed
solution compared with the analytic solution. This means we
are not iterating to a fixed solver tolerance across all mesh
resolutions. Therefore, we can expect the total number of
Krylov iterations (for both the CG and HDG methods) to in-
crease as the mesh resolution becomes finer. The rationale
behind this approach is to directly compare the execution
time to solve for the best possible approximation to the solu-
tion given a fixed resolution.
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5.1.1 Error versus execution time

The total execution time is recorded for the CG and HDG
solvers, which includes the setup time for the AMG pre-
conditioner, matrix assembly, and the time to solution for
the Krylov method. In the HDG case, we include all setup
costs, the time spent building the Schur complement for the
traces, local recovery of the scalar and flux approximations,
and post-processing. The L2 error against execution time and
Krylov iterations to reach discretization error for each mesh
are summarized in Fig. 4.

The HDG method of order k− 1 (HDGk−1) with post-
processing, as expected, produces a solution which is as ac-
curate as the CG method of order k (CGk). While the full
HDG system is never explicitly assembled, the larger exe-
cution time is a result of several factors. The primary fac-
tor is that the total number of trace unknowns for the HDG1,
HDG2, and HDG3 discretizations is roughly 4, 3, and 2 times
larger, respectively, than the corresponding number of CG
unknowns. Therefore, each iteration is more expensive. We
also observe that the trace system requires more Krylov it-
erations to reach discretization error, which appears to im-
prove relative to the CG method as the approximation or-
der increases. Further analysis on a multigrid methods for
HDG systems is required to draw further conclusions. The
main computational bottleneck in HDG methods is the global
linear solver. We therefore expect our implementation to be
dominated by the cost associated with inverting the trace
operator. If one considers just the time-to-solution, the CG
method is clearly ahead of the HDG method. However, the
superior scaling, local conservation, and stabilization prop-
erties of the HDG method make it a particularly appealing
choice for fluid dynamics applications (Yakovlev et al., 2016;
Kronbichler and Wall, 2018). Therefore, the development of
good preconditioning strategies for the HDG method is criti-
cal for its competitive use.

5.1.2 Breakdown of solver time

The HDG method requires many more degrees of freedom
than CG or primal DG methods. This is largely due to the
fact that the HDG method simultaneously approximates the
primal solution and its velocity. The global matrix for the
traces is significantly larger than the one for the CG system
at low polynomial order. The execution time for HDG is then
compounded by a more expensive global solve.

Figure 5 displays a breakdown of total execution times on
a simplicial mesh consisting of 1.5 million elements. The ex-
ecution times have been normalized by the CG total time,
showing that the HDG method is roughly 3 times more ex-
pensive than the CG method. This is expected given the
larger degree-of-freedom count and expensive global solve.
The raw numerical breakdown of the HDG and CG solvers
are shown in Table 1. We isolate each component of the HDG
method contributing to the total execution time. Local op-

erations include static condensation (trace operator assem-
bly), forward elimination (right-hand-side assembly for the
trace system), backwards substitution to recover the scalar
and velocity unknowns, and local post-processing of the
scalar solution. For all k, our HDG implementation is solver-
dominated as expected.

Both trace operator and right-hand-side assembly are dom-
inated by the costs of inverting a local square mixed matrix
coupling the scalar and velocity unknowns, which is per-
formed directly via an LU factorization. This is also the case
for backwards substitution. They should all therefore be of
the same magnitude in time spent. We observe that this is the
case across all degrees, with times ranging between approx-
imately 6 % and 11 % of total execution time for assembling
the condensed system. Back-substitution takes roughly the
same time as the static condensation and forward elimination
stages (approximately 12 % of execution time on average).
Finally, the additional cost of post-processing accrues negli-
gible time (roughly 2 % of execution time across all degrees).
This is a small cost for an increase in order of accuracy.

We note that the caching of local tensors does not oc-
cur. Each pass to perform the local eliminations and back-
wards reconstructions rebuilds the local element tensors. It is
not clear at this time whether the performance gained from
avoiding rebuilding the local operators will offset the mem-
ory costs of storing the local matrices. Moreover, in time-
dependent problems where the operators may contain state-
dependent variables, rebuilding local matrices will be neces-
sary in each time step regardless.

5.2 Hybridizable mixed methods for the shallow water
equations

A primary motivator for our interest in hybridizable methods
revolves around developing efficient solvers for problems in
geophysical flows. In this section, we present some results
integrating the nonlinear, rotating shallow water equations
on the sphere using test case 5 (flow past an isolated moun-
tain) from Williamson et al. (1992). For our discretization ap-
proach, we use the framework of compatible finite elements
(Cotter and Shipton, 2012; Cotter and Thuburn, 2014).

The model equations we consider are the vector-invariant
rotating nonlinear shallow water system defined on a two-
dimensional spherical surface � embedded in R3:

∂u
∂t
+

(
∇
⊥
·u+ f

)
u⊥+∇

(
g (D+ b)+

1
2
|u|2

)
= 0, (81)

∂D

∂t
+∇ · (uD)= 0, (82)

where u is the fluid velocity, D is the depth field, f is the
Coriolis parameter, g is the acceleration due to gravity, b is
the bottom topography, and (·)⊥ ≡ ẑ×·, with ẑ being the unit
normal to the surface �. After discretizing in time and space
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Figure 4. Comparison of continuous Galerkin and LDG-H solvers for the model three-dimensional positive-definite Helmholtz equation.
Panel (a): a log–log plot showing the error against execution time for the CG and HDG with post-processing (τ = 1) methods. Panel (b): a
log–linear plot showing Krylov iterations of the AMG-preconditioned conjugate gradient algorithm (to reach discretization error) against
number of cells.

Table 1. Breakdown of the raw timings for the HDGk−1 (τ = 1) and CGk methods; k = 2, 3, and 4. Each method corresponds to a mesh size
N = 64 on a fully loaded compute node.

Stage
HDG1 HDG2 HDG3

tstage (s) % ttotal tstage (s) % ttotal tstage (s) % ttotal

Matrix assembly (static cond.) 1.05 7.49 % 6.95 10.40 % 31.66 10.27 %
Forward elimination 0.86 6.13 % 6.32 9.45 % 31.98 10.37 %
Trace solve 10.66 76.24 % 43.89 65.66 % 192.31 62.36 %
Back-substitution 1.16 8.28 % 8.71 13.03 % 45.81 14.85 %
Post-processing 0.26 1.86 % 0.98 1.46 % 6.62 2.15 %

HDG total 13.98 66.85 308.37

CG2 CG3 CG4

tstage (s) % ttotal tstage (s) % ttotal tstage (s) % ttotal

Matrix assembly (monolithic) 0.50 12.01 % 2.91 11.39 % 26.37 24.11 %
Solve 3.63 87.99 % 22.67 88.61 % 82.99 75.89 %

CG total 4.12 25.59 109.36

using a semi-implicit scheme and Picard linearization, fol-
lowing Natale et al. (2016), we must solve a sequence of the
saddle point system at each time step of the form[

A −g1t2 BT

H 1t
2 B M

]{
1U
1D

}
=

{
Ru
RD

}
. (83)

See Appendix A for a complete description of the entire dis-
cretization strategy. The system Eq. (83) is the matrix equa-
tion corresponding to the linearized equations in Eqs. (A3)–
(A4).

The Picard updates1U and1D are sought in the mixed fi-
nite element spaces Uh ⊂H(div) and Vh ⊂ L2, respectively.
Stable mixed finite element pairings correspond to the well-
known RT and BDM mixed methods, such as RTk ×DGk−1

or BDMk ×DGk−1. These also fall within the set of com-
patible mixed spaces ideal for geophysical fluid dynamics
(Cotter and Shipton, 2012; Natale et al., 2016; Melvin et al.,
2019). In particular, the lowest-order RT method (RT1×

DG0) on a structured quadrilateral grid (such as the latitude–
longitude grid used by many operational dynamical cores) is
analogous to the Arakawa C-grid finite difference discretiza-
tion.

In staggered finite difference models, the standard ap-
proach for solving Eq. (83) is to neglect the Coriolis term
and eliminate the velocity unknown 1U to obtain a dis-
crete elliptic equation for1D, where smoothers like Richard-
son iterations or relaxation methods are convergent. This is
more problematic in the compatible finite element frame-
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Figure 5. Breakdown of the CGk and HDGk−1 execution times on
a 6 · 643 simplicial mesh.

work, since A has a dense inverse. Instead, we use the pre-
conditioner described in Sect. 4.1.2 to form the equivalent
hybridizable formulation, where both 1U and 1D are elim-
inated locally to produce a sparse elliptic equation for the
Lagrange multipliers.

5.2.1 Atmospheric flow over a mountain

As a test problem, we solve test case 5 of Williamson et al.
(1992), on the surface of a sphere with radius R = 6371km.
We refer the reader to Cotter and Shipton (2012) and Ship-
ton et al. (2018) for a more comprehensive study on mixed
finite elements for shallow water systems of this type. We
use the mixed finite element pairs (RT1,DG0) (lowest-order
RT method) and (BDM2,DG1) (next-to-lowest-order BDM
method) for the velocity and depth spaces. A mesh of the
sphere is generated from seven refinements of an icosahe-
dron, resulting in a triangulation Th consisting of 327 680 el-
ements in total. The grid information for both mixed methods
is summarized in Table 2.

We run for a total of 25 time steps, with a fixed number of
four Picard iterations in each time step. We compare the over-
all simulation time using two different solver configurations
for the implicit linear system. First, we use a flexible vari-
ant of the generalized minimal residual method (GMRES)
5 acting on the system Eq. (83) with an approximate Schur
complement preconditioner:

PSC =

[
I g1t2 A−1BT
0 I

][
A−1 0
0 S̃−1

]
(84)

5We use a flexible version of GMRES on the outer system since
we use an additional Krylov solver to iteratively invert the Schur
complement.

[
I 0
−H 1t

2 BA−1 I

]
,

where S̃=M+ gH 1t2

4 Bdiag(A)−1BT and diag(A) is a di-
agonal approximation to the velocity mass matrix (plus the
addition of a Coriolis matrix). The Schur complement sys-
tem is inverted via GMRES due to the asymmetry from
the Coriolis term, with the inverse of S̃ as the precondi-
tioning operator. The sparse approximation S̃ is inverted us-
ing PETSc’s smoothed aggregation multigrid (GAMG). The
Krylov method is set to terminate once the preconditioned
residual norm is reduced by a factor of 108. A−1 is computed
approximately using a single application of incomplete LU
(ILU) with zero fill-in.

Next, we use only the application of our hybridization pre-
conditioner (no outer Krylov method), which replaces the
original linearized mixed system with its hybridizable equiv-
alent. After hybridization, we have the following extended
problem for the Picard updates: find (1udh,1Dh,λh) ∈ U

d
h×

Vh×Mh satisfying(
w,1udh

)
Th
+
1t

2

(
w,f

(
1udh

)⊥)
Th

−
1t

2
(∇ ·w,g1Dh)Th +〈[[w]] ,λh〉∂Th

= R̂u,∀w ∈ Udh , (85)

(φ,1Dh)Th +
1t

2

(
φ,H∇ ·1udh

)
Th
= RD, ∀φ ∈ Vh, (86)

〈
γ,
[[
1udh

]]〉
∂Th
= 0, ∀γ ∈Mh. (87)

Note that the space Mh is chosen such that the trace func-
tions, when restricted to a facet e ∈ ∂Th, are in the same poly-
nomial space as1uh ·n|e. Moreover, it can be shown that the
Lagrange multiplier λh is an approximation to the depth un-
known 1tg1D/2 restricted to ∂Th.

The resulting three-field problem in Eqs. (85)–(87) pro-
duces the following matrix equation:[

Â CT
C 0

]{
1X
3

}
=

{
R̂1X
0

}
, (88)

where Â is the discontinuous operator coupling 1X=
1Ud 1DT and R1X = R̂u RDT are the problem

residuals. An exact Schur complement factorization is per-
formed on Eq. (88), using Slate to generate the local elimi-
nation kernels. We use the same set of solver options for the
inversion of S̃ in Eq. (84) to invert the Lagrange multiplier
system. The increments 1Ud and 1D are recovered locally,
using Slate-generated kernels. Once recovery is complete,
1Ud is projected back into the conformingH(div) finite ele-
ment space via 1U←5div1Ud . Based on the discussion in
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Table 2. The number of unknowns to be determined are summarized for each compatible finite element method. Resolution is the same for
both methods.

Discretization properties

Mixed method No. of cells 1x
Velocity Depth

Total (millions)
unknowns unknowns

RT1×DG0 327 680 ≈ 43 km
491 520 327 680 0.8 M

BDM2×DG1 2 457 600 983 040 3.4 M

Sect. 4.1.2, we apply

Phybrid =5

([
I −Â−1CT
0 I

][
Â−1 0
0 S−1

]
(89)

[
I 0
−CÂ−1 I

])
5T .

Table 3 displays a summary of our findings. The advan-
tages of a hybridizable method versus a mixed method are
more clearly realized in this experiment. When using hy-
bridization, we observe a significant reduction in time spent
in the implicit solver compared to the approximate Schur
complement approach. This is primarily because we have re-
duced the number of “outer” iterations to zero; the hybridiza-
tion preconditioner is performing an exact factorization of
the global hybridizable system. This is empirically supported
when considering per-application solve times. The values re-
ported in Table 4 show the average cost of a single outer
GMRES iteration (which includes the application of PSC)
and a single application of Phybrid. Hybridization and the ap-
proximate Schur complement preconditioner are comparable
in terms of average execution time, with hybridization be-
ing slightly faster. This further demonstrates that the primary
cause for the longer execution time of the latter is directly
related to the additional outer iterations induced from using
an approximate factorization. In terms of over all time-to-
solution, the hybridizable methods are clearly ahead of the
original mixed methods.

We also measure the relative reductions in the problem
residual of the linear system Eq. (83). Our hybridization pre-
conditioner reduces the residual by a factor of 108 on aver-
age, which coincides with the specified relative tolerance for
the Krylov method on the trace system. In other words, the
reduction in the residual for the trace system translates into
an overall reduction in the residual for the mixed system by
the same factor.

The test case was run up to day 15 on a coarser resolution
(20 480 simplicial cells with 1x ≈ 210km) and a time-step
size 1t = 500 s. Snapshots of the entire simulation are pro-
vided in Fig. 6 using the semi-implicit scheme described in
Appendix A. The results we have obtained for days 5, 10, and
15 are comparable to the corresponding results of Nair et al.
(2005), Ullrich et al. (2010), and Kang et al. (2020). We refer
the reader to Shipton et al. (2018) for further demonstrations

of shallow water test cases featuring the use of the hybridiza-
tion preconditioner described in Sect. 4.1.2.

5.3 Hybridizable methods for a linear Boussinesq
model

As a final example, we consider the simplified atmospheric
model obtained from a linearization of the compressible
Boussinesq equations in a rotating domain:

∂u
∂t
+ 2�×u=−∇p+ bẑ, (90)

∂p

∂t
=−c2

∇ ·u, (91)

∂b

∂t
=−N2u · ẑ, (92)

where u is the fluid velocity, p the pressure, b the buoy-
ancy, � the planetary angular rotation vector, c the speed
of sound (≈ 343ms−1), and N the buoyancy frequency (≈
0.01s−1). Equations (90)–(92) permit fast-moving acous-
tic waves driven by perturbations in b. This is the model
presented in Skamarock and Klemp (1994), which uses a
quadratic equation of state to avoid some of the complica-
tions of the full compressible Euler equations (the hybridiza-
tion of which we shall address in future work). We solve
these equations subject to the rigid-lid condition u ·n= 0 on
all boundaries.

Our domain consists of a spherical annulus, with the mesh
constructed from a horizontal “base” mesh of the surface of
a sphere of radius R, extruded upwards by a height H�. The
vertical discretization is a structured one-dimensional grid,
which facilitates the staggering of thermodynamic variables,
such as b. We consider two kinds of meshes: one obtained
by extruding an icosahedral sphere mesh and another from a
cubed sphere.

Since our mesh has a natural tensor product structure, we
construct suitable finite element spaces constructed by tak-
ing the tensor product of a horizontal space with a vertical
space. To ensure our discretization is “compatible,” we use
the one- and two-dimensional finite element de Rham com-

plexes: V 0
h

∂z
→ V 1

h and U0
h

∇
⊥

→ U1
h

∇·
→ U2

h . We can then con-

struct the three-dimensional complex: W 0
h

∇
→W 1

h

∇×
→ W 2

h

∇·
→
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Table 3. Preconditioner solve times for a 25-step run with 1t = 100s. These are cumulative times in each stage of the two preconditioners
throughout the entire profile run. We display the average iteration count (rounded to the nearest integer) for both the outer and the inner
Krylov solvers. The significant speedup when using hybridization is a direct result of eliminating the outermost solver.

Preconditioner and solver details

Mixed method Preconditioner ttotal (s)
Avg. outer Avg. inner tSC

total

t
hybrid.
totalits. its.

RT1×DG0
approx. Schur. (PSC) 15.137 2 8

3.413
hybridization (Phybrid) 4.434 none 2

BDM2×DG1
approx. Schur. (PSC) 300.101 4 9

5.556
hybridization (Phybrid) 54.013 none 6

Table 4. Breakdown of the cost (average) of a single application of the preconditioned flexible GMRES method and hybridization precondi-
tioner. Hybridization takes approximately the same time per iteration.

Preconditioner Stage
RT1×DG0 BDM2×DG1

tstage (s) % ttotal tstage (s) % ttotal

approx. Schur (PSC)

Schur solve 0.07592 91.28 % 0.78405 93.53 %
invert velocity operator: A 0.00032 0.39 % 0.00678 0.81 %
apply inverse: A−1 0.00041 0.49 % 0.00703 0.84 %
gmres other 0.00652 7.84 % 0.04041 4.82 %

Total 0.08317 0.83827

hybridization (Phybrid)

Transfer: R1X→ R̂1X 0.00322 7.26 % 0.00597 1.10 %
Forward elim.: −CÂ−1R̂1X 0.00561 12.64 % 0.12308 22.79 %
Trace solve 0.02289 51.63 % 0.28336 52.46 %
Back-sub. 0.00986 22.23 % 0.12220 22.62 %
Projection: 5div1Ud 0.00264 5.96 % 0.00516 0.96 %

Total 0.04434 0.54013

W 3
h , where

W 0
h = U

0
h ⊗V

0
h , (93)

W 1
h = HCurl(U

1
h ⊗V

0
h )⊕HCurl(U

0
h ⊗V

1
h )=:

W
1,h
h ⊕W

1,v
h , (94)

W 2
h = HDiv(U

1
h ⊗V

1
h )⊕HDiv(U

2
h ⊗V

0
h )=:

W
2,h
h ⊕W

2,v
h , (95)

W 3
h = U

2
h ⊗V

1
h . (96)

Here, HCurl and HDiv denote operators which ensure that
the correct Piola transformations are applied when mapping
from physical to reference element. We refer the reader to
McRae et al. (2016) for an overview of constructing tensor

product finite element spaces in Firedrake. For the analysis
of compatible finite element discretizations and their relation
to the complex Eqs. (93)–(96), we refer the reader to Natale
et al. (2016). Each discretization used in this section is con-
structed from more familiar finite element families, shown in
Table 5.

5.3.1 Compatible finite element discretization

A compatible finite element discretization of Eqs. (90)–(92)
constructs solutions in the following finite element spaces:

uh ∈ W̊ 2
h , ph ∈W

3
h , bh ∈W

b
h , (97)

where W̊ 2
h is the subspace of W 2

h ⊂H(div) whose functions
w satisfy w ·n= 0 on ∂�, W 3

h ⊂ L
2, and W b

h ≡ U
2
h ⊗V

0
h .

Note that W b
h is just the scalar version of the vertical veloc-

ity space.6 That is, W b
h and W 2,v

h have the same number of

6The choice of Wb
h

in Eq. (97) corresponds to a Charney–
Phillips vertical staggering of the buoyancy variable, which is the
desired approach for the UK Met Office’s Unified Model (Melvin
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Figure 6. Snapshots (view from the northern pole) from the isolated mountain test case. The surface height (m) at days 5, 10, and 15. The
snapshots were generated on a mesh with 20 480 simplicial cells, a BDM2×DG1 discretization, and 1t = 500 s. The linear system during
each Picard cycle was solved using the hybridization preconditioner.

Table 5. Vertical and horizontal spaces for the three-dimensional compatible finite element discretization of the linear Boussinesq model.
The RTk and BDFMk+1 methods are constructed on triangular prism elements, while the RTCFk method is defined on extruded quadrilateral
elements.

Compatible finite element spaces
Mixed method V 0

h
V 1
h

U0
h

U1
h

U2
h

RTk CGk([0,H�]) DGk−1([0,H�]) CGk(4) RTk(4) DGk−1(4)
BDFMk+1 CGk+1([0,H�]) DGk([0,H�]) CGk+1(4) BDFMk+1(4) DGk(4)
RTCFk CGk([0,H�]) DGk−1([0,H�]) Qk(�) RTCFk(�) DQk−1(�)

degrees of freedom but differ in how they are pulled back to
the reference element.

To obtain the discrete system, we simply multiply
Eqs. (90)–(92) by test functions w ∈ W̊ 2

h , φ ∈W 3
h , and η ∈

W b
h and integrate by parts. We introduce the increments

δuh ≡ un+1
h −unh, and set u0 ≡ unh (similarly for δph, p0, δbh,

and b0). Using an implicit midpoint rule discretization, we
need to solve the following mixed problem at each time step:

et al., 2010). One could also collocate bh with ph (bh ∈W3
h

), which
corresponds to a Lorenz staggering. This, however, supports a com-
putational mode which is exacerbated by fast-moving waves. We
restrict our discussion to the former case.

find δuh ∈ W̊ 2
h , δph ∈W 3

h and δbh ∈W b
h such that

(w,δuh)Th +
1t

2
(w,2�× δuh)Th −

1t

2

(∇ ·w,δph)Th −
1t

2

(
w,δbhẑ

)
Th = ru,∀w ∈ W̊

2
h (98)

(φ,δph)Th +
1t

2
c2(φ,∇ · δuh)Th = rp, ∀φ ∈W

3
h , (99)

(η,δbh)Th +
1t

2
N2(η,δuh · ẑ)Th = rb, ∀η ∈W b

h , (100)
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where the residuals are ru =−1t(w,2�×u0)Th , rp =
−c21t(φ,∇ ·u0)Th , and rb =−N21t

(
η,u0 · ẑ

)
Th .

The resulting matrix equations have the form Au −
1t
2 DT −

1t
2 QT

1t
2 c

2D Mp 0
1t
2 N

2Q 0 Mb

{ U
P
B

}
=

{ Ru
Rp
Rb

}
, (101)

where Au =Mu+
1t
2 C�, C� is the asymmetric matrix as-

sociated with the Coriolis term, Mu, Mp, and Mb are mass
matrices, D is the weak divergence term, and Q is an opera-
tor containing the vertical components of δuh. In the absence
of orography, we can use the point-wise expression for the
buoyancy,

δbh = rb−
1t

2
N2δuh · ẑ, (102)

and eliminate δbh from Eq. (101) by substituting Eq. (102)
into Eq. (98). This produces the following mixed velocity–
pressure system:

A
{

U
P

}
=

[
Ãu −

1t
2 DT

c21t
2 D Mp

]{
U
P

}
=

{
R̃u
Rp

}
, (103)

where Ãu = Au+
1t2

4 N2QTM−1
b Q and R̃u =

Ru+
1t
2 QTM−1

b Rb are the modified velocity operator
and right-hand side, respectively. Note that in our elimina-
tion strategy, Ãu corresponds to the bilinear form obtained
after eliminating the buoyancy at the equation level:

Ãu← (w,δu)Th +
1t

2
(w,2�× δu)Th +

1t2

4
N2(w · ẑ,δu · ẑ)Th . (104)

A similar construction holds for R̃u. Once Eq. (103) is
solved, δbh is reconstructed by solving

MbB= Rb−
1t

2
N2QU. (105)

Equation (105) can be efficiently inverted using the conjugate
gradient method.

5.3.2 Preconditioning the mixed velocity pressure
system

The primary difficulty is finding efficient solvers for
Eq. (103). This was studied by Mitchell and Müller (2016)
within the context of developing a preconditioner which is
robust against parameters, like1t and mesh resolution. How-
ever, the implicit treatment of the Coriolis term was not taken
into account. We consider two preconditioning strategies.

One strategy proposed by Mitchell and Müller (2016) is to
build a preconditioner based on the Schur complement fac-
torization of A in Eq. (103):

A−1
=

[
I 1t

2 Ã−1
u DT

0 I

][
Ã−1

u 0
0 H−1

]
(106)

[
I 0
−c21t

2 DÃ−1
u I

]
,

where H=Mp + c
21t2

4 DÃ−1
u DT is the dense pressure

Helmholtz operator. Because we have chosen to include the
Coriolis term, the operator H is nonsymmetric and has the
form

H=Mp + c
21t

2

4
D
(

M̃u+
1t

2
C�
)−1

DT , (107)

where M̃u is a modified mass matrix. As 1t increases, the
contribution of C� becomes more prominent in H, making
sparse approximations of H more challenging. We shall elab-
orate on this further below when we present the results of our
second solver strategy.

Our preferred strategy solves the hybridizable formulation
of the system Eq. (103). Let W 2,d

h denote the broken version
of W 2

h and Mh the space of Lagrange multipliers. Then the
hybridizable formulation for the velocity–pressure system
reads as follows: find δudh ∈W

2,d
h , δph ∈W 3

h , and λh ∈Mh

such that(
w,δudh

)
Th
+
1t

2

(
w,2�× δudh

)
Th

+
1t2

4
N2
(

w · ẑ,δudh · ẑ
)
Th
−
1t

2
(∇ ·w,δph)Th

+〈[[w]] ,λh〉∂Th = r̃u,∀w ∈W
2,d
h (108)

(φ,δph)Th +
1t

2
c2(φ,∇ · δuh)Th = rp, ∀φ ∈W

3
h , (109)

〈
γ,
[[
δudh

]]〉
∂Th
= 0, ∀γ ∈Mh. (110)

The system Eqs. (108)–(110) is automati-
cally formed by the Firedrake preconditioner:
firedrake.HybridizationPC. We then locally
eliminate the velocity and pressure after hybridization,
producing the following condensed problem:

H∂3= E, H∂ =
[

C 0
][ ̂̃Au −

1t
2 D̂T

c21t
2 D̂ Mp

]−1

(111)

[
CT
0

]
,E =

[
C 0

][ ̂̃Au −
1t
2 D̂T

c21t
2 D̂ Mp

]−1{
R̂u
Rp

}
,

where ·̂ denotes matrices or vectors with discontinuous test
and trial functions. The nonsymmetric operator H∂ is in-
verted using a preconditioned generalized conjugate resid-
ual (GCR) Krylov method, as suggested in Thomas et al.
(2003). For our choice of preconditioner, we follow strate-
gies outlined in Elman et al. (2001) and employ an algebraic
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Figure 7. Buoyancy perturbation (y−z cross section) at t = 3600 s
from a simple gravity wave test (1t = 100 s). The initial conditions
(in lat–long coordinates) for the velocity are a simple solid-body
rotation: u= 20eλ, where eλ is the unit vector pointing in the di-
rection of decreasing longitude. A buoyancy anomaly is defined
via b = d2

d2+q2 sin(πz/10000), where q = Rcos−1(cos(φ)cos(λ−
λφ)), d = 5000 m, R = 6371km/125 is the planet radius, and λφ =
2/3. The equations are discretized using the lowest-order method
RTCF1, with 24 576 quadrilateral cells in the horizontal and 64
extrusion levels. The velocity–pressure system is solved using hy-
bridization.

multigrid method (V cycle) with GMRES (five iterations)
smoothers on the coarse levels. The GMRES smoothers are
preconditioned with block ILU on each level. For the finest
level, block ILU produces a line smoother (necessary for effi-
cient solution on thin domains) when the trace variable nodes
are numbered in vertical lines, as is the case in our Firedrake
implementation. On the coarser levels, less is known about
the properties of ILU under the AMG coarsening strategies,
but as we shall see, we observe performance that suggests
ILU is still behaving as a line smoother. More discussion on
multigrid for nonsymmetric problems can be found in Bram-
ble et al. (1994, 1988) and Mandel (1986). A gravity wave
test using our solution strategy and hybridization precondi-
tioner is illustrated in Fig. 7 for a problem on a condensed
Earth (radius scaled down by a factor of 125) and 10 km lid.

5.3.3 Robustness against acoustic Courant number
with implicit Coriolis

In this final experiment, we repeat a similar study to that
presented in Mitchell and Müller (2016). Our setup closely
resembles the gravity wave test of Skamarock and Klemp
(1994) extended to a spherical annulus. We initialize the ve-
locity in a simple solid-body rotation and introduce a local-
ized buoyancy anomaly. A Coriolis term is introduced as a
function of the Cartesian coordinate z and is constant along
lines of latitude (f plane): 2�= 2�r zR ẑ, with angular ro-
tation rate �r = 7.292× 10−5s−1. We fix the resolution of

the problem and run the solver over a range of 1t . We mea-
sure this by adjusting the horizontal acoustic Courant num-
ber λC = c 1t1x , where c is the speed of sound and 1x is the
horizontal resolution.

Note that the range of Courant numbers used in this paper
exceeds what is typical in operational forecast settings (typ-
ically between O(2)–O(10)). The grid setup mirrors that of
actual global weather models; we extrude a spherical mesh of
the Earth upwards to a height of 85 km. The setup for the dif-
ferent discretizations (including degrees of freedom for the
velocity–pressure and hybridized systems) is presented in Ta-
ble 6.

It was shown in Mitchell and Müller (2016) that using a
sparse approximation of the pressure Schur complement of
the form

H̃=Mp + c
21t

2

4
D
(
Diag(Ãu)

)−1DT (112)

served as a good preconditioner, leading to a system that was
amenable to multigrid methods and resulted in a Courant-
number-independent solver. However, when the Coriolis
term is included, this is no longer the case: the diagonal ap-
proximation Diag(Ãu) becomes worse with increasing λC .
To demonstrate this, we solve the gravity wave system on
a low-resolution grid (10 km lid, 10 vertical levels, main-
taining the same cell aspect ratio as in Table 6) using the
Schur complement factorization Eq. (106). LU factorizations
are applied to invert both Ã−1

u and H̃−1. Inverting the Schur
complement H−1 is done using preconditioned GMRES iter-
ations, and a flexible-GMRES algorithm is used on the full
velocity–pressure system. If H̃−1 is a good approximation to
H−1, then we should see low iteration counts in the Schur
complement solve. Figure 8 shows the results of this study
for a range of Courant numbers.

For the lower-order methods, the number of iterations to
invert H grows slowly but remains under control. Increas-
ing the approximation degree by 1 results in degraded per-
formance. As 1t increases, the number of Krylov iterations
needed to invert the system to a relative tolerance of 10−5

grows rapidly. It is clear that this sparse approximation is
not robust against Courant number. This can be explained by
the fact that diagonalizing the velocity operator fails to take
into account the effects of the Coriolis term (which appear in
off-diagonal positions in the operator). Even if one were to
use traditional mass lumping (row-wise sums), the Coriolis
effects are effectively canceled out due to asymmetry.

Hybridization avoids this problem entirely: we always
construct an exact Schur complement and only have to worry
about solving the trace system Eq. (111). We now show that
this approach (described in Sect. 5.3.2) is much more robust
to changes in 1t . We use the same workstation as for the
three-dimensional CG/HDG problem in Sect. 5.1 (executed
with a total of 40 MPI processes). Figure 9 shows the param-
eter test for all the discretizations described in Table 6. We
see that, in terms of total number of GCR iterations needed
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Table 6. Grid setup and discretizations for the acoustic Courant number study. The total number of degrees of freedom (dofs) for the mixed
(velocity and pressure) and hybridizable (velocity, pressure, and trace) discretizations are shown in the last two columns (millions). The
vertical resolution is fixed across all discretizations.

Discretizations and grid information

Mixed method No. of horiz. cells No. of vert. layers 1x 1z U -P dofs Hybrid. dofs

RT1 81 920 85 86 km 1 000 m 24.5 M 59.3 M
RT2 5 120 85 346 km 1 000 m 9.6 M 17.4 M
BDFM2 5 120 85 346 km 1 000 m 10.5 M 18.3 M
RTCF1 98 304 85 78 km 1 000 m 33.5 M 83.7 M
RTCF2 6 144 85 312 km 1 000 m 16.7 M 29.3 M

Figure 8. Number of Krylov iterations to invert the Helmholtz sys-
tem using H̃−1 as a preconditioner. The preconditioner is applied
using a direct LU factorization within a GMRES method on the en-
tire pressure equation. While the lowest-order methods grow slowly
over the Courant number range, the higher-order (by only 1 approx-
imation order) methods quickly degrade and diverge after the criti-
cal range λC =O(2)–O(10). At λC > 32, the solvers take over 150
iterations.

to invert the trace system, hybridization is far more controlled
as Courant number increases. They largely remain constant
throughout the entire parameter range, only varying by an it-
eration or two. It is not until after λC > 32 that we begin to
see a larger jump in the number of GCR iterations. This is
expected, since the Coriolis operator causes the problem to
become singular for very large Courant numbers. However,
unlike with the approximate Schur complement solver, itera-
tion counts are still under control. In particular, each method
(lowest and higher order) remains constant throughout the
critical range (shaded in gray in Fig. 9).

In Fig. 9b, we display the ratio of execution time and
the time-to-solution at the lowest Courant number of 2.
We perform this normalization to better compare the lower

and higher-order methods (and discretizations on triangular
prisms vs. extruded quadrilaterals). The calculation of the ra-
tios includes the time needed to eliminate and reconstruct
the hybridized velocity–pressure variables. The fact that the
hybridization solver remains close to 1 demonstrates that
the entire solution procedure is largely λC-independent un-
til around λC = 32. The overall trend is largely the same as
the number of Krylov iterations to reach solver convergence.
This is due to our hybridization approach being solver domi-
nated, with local operations like forward elimination together
with local recovery taking approximately one-third of the to-
tal execution time for each method. The percentage break-
down of the hybridization solver is similar to what is already
presented in Sect. 5.1.2.

Implicitly treating the Coriolis term has been discussed for
semi-implicit discretizations of large-scale geophysical flows
(Temperton, 1997; Cullen, 2001; Nechaev and Yaremchuk,
2004). The addition of the Coriolis term presents a particu-
lar challenge to the solution finite element discretizations of
these equations since it increases the difficulty of finding a
good sparse approximation of the nonsymmetric elliptic op-
erator. Hybridization shows promise here, as it allows for the
assembly of the elliptic equation that both captures the ef-
fects of rotation and results in a sparse linear system.

6 Conclusions

We have presented Slate, and shown how this language can
be used to create concise mathematical representations of lo-
calized linear algebra on the tensors corresponding to finite
element forms. We have shown how this DSL can be used
in tandem with UFL in Firedrake to implement solution ap-
proaches making use of automated code generation for static
condensation, hybridization, and localized post-processing.
Setup and configuration are done at runtime, allowing one to
switch in different discretizations at will. In particular, this
framework alleviates much of the difficulty in implement-
ing such methods within intricate numerical code and paves
the way for future low-level optimizations. In this way, the
framework in this paper can be used to help enable the rapid
development and exploration of new hybridization and static
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Figure 9. Courant number parameter test run on a fully loaded compute node. Both figures display the hybridized solver for each discretiza-
tion, described in Table 6. Panel (a) displays to total iteration count (preconditioned GCR) to solve the trace system to a relative tolerance of
10−5. Panel (b) displays the relative work of each solver, which takes into account the time required to forward eliminate and locally recover
the velocity and pressure.

condensation techniques for a wide class of problems. We re-
mark here that the reduction of global matrices via element-
wise algebraic static condensation, as described in Guyan
(1965) and Irons (1965) is also possible using Slate, includ-
ing other more general static condensation procedures out-
side the context of hybridization.

Our approach to preconditioner design revolves around
its composable nature, in that these Slate-based implemen-
tations can be seamlessly incorporated into complicated so-
lution schemes. In particular, there is current research in the
design of dynamical cores for numerical weather prediction
using implementations of hybridization and static condensa-
tion with Slate (Bauer and Cotter, 2018; Shipton et al., 2018).
The performance of such methods for geophysical flows are
a subject of ongoing investigation.

In this paper, we have provided some examples of hy-
bridization procedures for compatible finite element dis-
cretizations of geophysical flows. These approaches avoid
the difficulty in constructing sparse approximations of dense
elliptic operators. Static condensation arising from hybridiz-
able formulations can best be interpreted as producing an ex-
act Schur complement factorization on the global hybridiz-
able system. This eliminates the need for outer iterations
from a suitable Krylov method to solve the full mixed system
and replaces the original global mixed equations with a con-
densed elliptic system. More extensive performance bench-
marks, which require detailed analysis of the resulting op-
erator systems arising from hybridization, are a necessary
next step to determine whether hybridization provides a scal-
able solution strategy for compatible finite elements in oper-
ational settings.
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Appendix A: Semi-implicit method for the shallow
water system

For some tessellation, Th, our semi-discrete mixed method
for Eqs. (81)–(82) seeks approximations (uh,Dh) ∈ Uh×
Vh ⊂H(div)×L2 satisfying(

w,
∂uh
∂t

)
Th
−

(
∇
⊥

(
w ·u⊥h

)
,u⊥h

)
Th
+

(
w,f u⊥h

)
Th

+

〈[[
n⊥w ·u⊥h

]]
, ũ⊥h

〉
∂Th

(A1)

−

(
∇ ·w,g (Dh+ b)+

1
2
|uh|2

)
Th
= 0,∀w ∈ Uh,

(
φ,
∂Dh

∂t

)
Th
− (∇φ,uhDh)Th +

〈
[[φuh]] , D̃h

〉
∂Th
,

= 0,∀φ ∈ Vh, (A2)

where ·̃ indicates that the value of the function should be
taken from the upwind side of each facet. The discretiza-
tion of the velocity advection operator is an extension of the
energy-conserving scheme of Natale and Cotter (2017) to the
shallow water equations.

The time-stepping scheme follows a Picard iteration semi-
implicit approach, where predictive values of the relevant
fields are determined via an explicit step of the advection
equations and corrective updates are generated by solving an
implicit linear system (linearized about a state of rest) for
(1uh,1Dh) ∈ Uh×Vh, given by

(w,1uh)Th +
1t

2

(
w,f1u⊥h

)
Th
−
1t

2
(∇ ·w,g1Dh)Th

=−Ru[un+1
h ,Dn+1

h ;w],∀w ∈ Uh,
(A3)

(φ,1Dh)Th +
H1t

2
(φ,∇ ·1uh)Th

=−RD[un+1
h ,Dn+1

h ;φ], ∀φ ∈ Vh, (A4)

whereH is the mean layer depth and Ru and RD are residual
linear forms that vanish when un+1

h andDn+1
h are solutions to

the implicit midpoint rule time discretization of Eqs. (A1)–
(A2). The residuals are evaluated using the predictive values
of un+1

h and Dn+1
h .

The implicit midpoint rule time discretization of the non-
linear rotating shallow water Eqs. (A1)–(A2) is(

w,un+1
h −unh

)
Th
−1t

(
∇
⊥

(
w ·u∗h

⊥
)
,u∗h
⊥
)
Th
+

1t
(

w,f u∗h
⊥
)
Th
+1t

〈[[
n⊥w ·u∗h

⊥
]]
, ũ∗h
⊥
〉
∂Th

−1t

(
∇ ·w,g

(
D∗h+ b

)
+

1
2
|u∗h|

2
)
Th
= 0,∀w ∈ Uh, (A5)

(
φ,Dn+1

h −Dnh

)
Th
−1t

(
∇φ,u∗hD

∗

h

)
Th

+1t
〈[[
φu∗h

]]
, D̃∗h

〉
∂Th
,= 0,∀φ ∈ Vh, (A6)

where u∗h = (u
n+1
h +unh)/2 and D∗h = (D

n+1
h +Dnh)/2.

One approach to construct the residual functionals Ru and
RD would be to simply define these from Eqs. (A5)–(A6).
However, this leads to a small critical time step for the sta-
bility of the scheme. To make the numerical scheme more
stable, we define residuals as follows. For Ru, we first solve
for vh ∈ Uh such that(
w,vh−unh

)
Th −1t

(
∇
⊥

(
w ·u∗h

⊥
)
,v]h
⊥
)
Th

+1t
(

w,f v]h
⊥
)
Th
+1t

〈[[
n⊥w ·u∗h

⊥
]]
, ṽ]h
⊥
〉
∂Th

−1t

(
∇ ·w,g

(
D∗h+ b

)
+

1
2
|u∗h|

2
)
Th
= 0,∀w ∈ Uh, (A7)

where v]h = (vh+unh)/2. This is a linear variational problem.
Then,

Ru[un+1
h ,Dn+1

h ;w] =
(

w,vh−un+1
h

)
Th
. (A8)

Similarly, for RD we first solve for Eh ∈ Vh such that(
φ,Eh−D

n
h

)
Th −1t

(
∇φ,u∗hE

]
h

)
Th

+1t
〈[[
φu∗h

]]
, Ẽ

]
h

〉
∂Th
= 0,∀φ ∈ Vh, (A9)

where E]h = (Eh+D
n
h)/2. This is also a linear problem.

Then,

RD[un+1
h ,Dn+1

h ;φ] =
(
φ,Eh−D

n+1
h

)
Th
. (A10)

This process can be thought of as iteratively solving for
the average velocity and depth that satisfies the implicit mid-
point rule discretization. Both Eqs. (A7) and (A9) can be
solved separately, since there is no coupling between them.
The fields vh and Eh are then used to construct the right-
hand side for the implicit linearized system in Eqs. (A3)–
(A4). Once the system is solved, the solution (1uh,1Dh)
is then used to update the iterative values of un+1

h and Dn+1
h

according to (un+1
h ,Dn+1

h )← (un+1
h +1uh,Dn+1

h +1Dh),
having initially chosen (un+1

h ,Dn+1
h )= (unh,D

n
h).
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