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ABSTRACT
Using science verification observations obtained with ESPRESSO at the Very Large Telescope (VLT)
in 4UT mode, we report the first bound on the carbon isotope ratio 12C/13C of a quiescent, near-
pristine damped Lyα (DLA) system at z = 2.34. We infer a limit log10

12C/13C > +0.37 (2σ). We use
the abundance pattern of this DLA, combined with a stochastic chemical enrichment model, to infer
the properties of the enriching stars, finding the total gas mass of this system to be log10(Mgas/M� ) =
6.3+1.4
−0.9 and the total stellar mass to be log10(M?/M� ) = 4.8±1.3. The current observations disfavour

enrichment by metal-poor Asymptotic Giant Branch (AGB) stars with masses < 2.4 M� , limiting
the epoch at which this DLA formed most of its enriching stars. Our modelling suggests that this
DLA formed very few stars until & 1 Gyr after the cosmic reionization of hydrogen and, despite
its very low metallicity (∼ 1/1000 of solar), this DLA appears to have formed most of its stars
in the past few hundred Myr. Combining the inferred star formation history with evidence that
some of the most metal-poor DLAs display an elevated [C/O] ratio at redshift z . 3, we suggest
that very metal-poor DLAs may have been affected by reionization quenching. Finally, given the
simplicity and quiescence of the absorption features associated with the DLA studied here, we use
these ESPRESSO data to place a bound on the possible variability of the fine-structure constant,
∆α/α = (−1.2 ± 1.1) × 10−5.

Key words: stars: Population III – quasars: absorption lines – ISM: abundances –
cosmology: dark ages, reionization, first stars

1 INTRODUCTION

The earliest episodes of star formation can be studied
by measuring the chemical composition of near-pristine
environments. Indeed, there may be some environments
in the Universe that have been solely enriched by the
first generation of metal-free stars (also known as Pop-

? Based on observations collected at the European Organisation
for Astronomical Research in the Southern Hemisphere, Chile

[VLT program IDs: 60.A-9508(A), 086.A-0204(A)], and the W.
M. Keck Observatory [Keck program ID: A185Hb], which is op-

erated as a scientific partnership among the California Institute

of Technology, the University of California and NASA, and was
made possible by the generous financial support of the W. M.

Keck Foundation. We also utilise observations collected with the

William Herschel Telescope [ING program ID: W/2019B/4] op-
erated on the island of La Palma by the Isaac Newton Group of

Telescopes in the Spanish Observatorio del Roque de los Mucha-
chos of the Instituto de Astrof́ısica de Canarias.
† E-mail: louise.a.welsh@durham.ac.uk

ulation III stars) — a population of stars that we still
know very little about; we are yet to discover a star that
shows no detectable metals. However, dedicated surveys
(e.g. Bond 1980; Beers et al. 1985, 1992; Keller et al.
2007; Christlieb et al. 2008; Aoki et al. 2013; Caffau et al.
2013; Li et al. 2015; Aguado et al. 2016; Howes et al. 2016;
Starkenburg et al. 2017; Da Costa et al. 2019) have revealed
an interesting trend in the chemical composition of the
lowest metallicity stars. Notably, there is an overabundance
of carbon in some of the most iron-poor stars found in the
halo of the Milky Way; indeed, every star with a measured
iron abundance [Fe/H] ≤ −5.0 exhibits a strong carbon
enhancement1 (Christlieb et al. 2004; Frebel et al. 2005;
Aoki et al. 2006; Frebel et al. 2015; Allende Prieto et al.

1 Here, and throughout this paper, [X/Y] denotes the logarith-
mic number abundance ratio of elements X and Y relative to
their solar values X� and Y� , i.e. [X/Y] = log10

(
NX/NY

)
−

log10
(
NX/NY

)
� .
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2015; Nordlander et al. 2019).
Despite concentrated efforts, and increasingly sophis-

ticated cosmological hydrodynamic simulations, we have
yet to establish whether or not low mass (∼ 1 M�) metal-
free stars can form. Seminal simulations of Population
III star formation, like those of Tegmark et al. (1997);
Barkana & Loeb (2001); Abel et al. (2002); Bromm et al.
(2002), suggested an initial mass range from 100− 1000 M� .
As the resolution of these simulations improved, alongside
our ability to incorporate more detailed physics, the
predicted minimum mass of the first stars has decreased.
Current simulations suggest that Population III stars
were dominated by stars in the mass range 10 − 100 M�
(Turk et al. 2009; Greif et al. 2010; Clark et al. 2011;
Hirano et al. 2014; Stacy et al. 2016). Given that we are
yet to discover a metal-free star around the Milky Way, one
might conclude that Population III stars were dominated
by more massive (> 10 M�) stars that lived relatively short
lives. There are, however, simulations that suggest low
mass Population III stars can form, either through efficient
fragmentation of the primordial gas (Clark et al. 2011;
Stacy et al. 2016) or through the re-cooling of preserved
pristine gas that has been photoionised by a nearby burst
of metal-free star formation (Stacy & Bromm 2014).

A complementary approach to study the imprints of
Population III stars in second generation (Population II)
stars is the analysis of metal-poor absorption line systems
(Erni et al. 2006; Pettini et al. 2008; Penprase et al. 2010).
Of all known damped Lyα systems (DLAs, which are
defined as absorption line systems with a neutral hydrogen
column density log10 N (H i)/cm−2 > 20.3), only one gas
cloud reportedly shows a carbon enhancement similar to
that seen in metal-poor halo stars (Cooke et al. 2011a; see
also, Dutta et al. 2014; Cooke et al. 2015). This system is
located at a redshift zabs ' 2.34 along the line-of-sight to the
quasar SDSS J003501.88−091817.6 (hereafter J0035−0918),
and displays a large column density of neutral hydrogen,
log10 N (H i)/cm−2 = 20.43 ± 0.04. Previous observations of
this DLA towards J0035−0918 have shown that it is one of
the least polluted reservoirs of neutral gas currently known,
with a relative iron abundance almost 1/1000 that of the
Sun. DLAs are thought to be self-shielded from external
radiation due to their large H i column density; their
constituent elements tend to exist in a single, dominant
ionisation state. We can therefore determine the chemical
abundance patterns of these systems without needing to
apply ionisation corrections. We note there are some reser-
voirs of partially ionised gas that show no detectable metals
(e.g. Fumagalli et al. 2011 and Robert et al. 2019). The
metal paucity of the DLA towards J0035−0918, alongside
the originally reported overabundance of carbon, makes
this an interesting environment to search for signatures of
Population III stars.

Here, we propose an observational approach to assess
the existence or absence of low mass Population III stars.
Simulations of stellar evolution have shown that most stellar
populations predominantly produce 12C. There are only two
channels through which low values of 12C/13C can be pro-
duced. These involve either: (1) low mass metal-free stars;
or (2) metal-poor intermediate mass Asymptotic Giant
Branch (AGB) stars (Campbell & Lattanzio 2008; Karakas
2010). Note that both metal-free and metal-enriched

massive stars (i.e. M > 10 M�) produce 12C/13C > 100
(Heger & Woosley 2010).2 Therefore, by measuring the
carbon isotope ratio of a near-pristine gas cloud, we can
test if low mass Population III stars might have contributed
to the enrichment. Moreover, because stars of different mass
produce different quantities of 12C/13C, we can use the
measured abundance as a ‘clock’ to infer the enrichment
time scale of a system. As only the intermediate mass
metal-poor stars produce significant yields of 13C, there is
a finite time in which a system will retain a distinctive low
12C/13C signature before the 12C-rich yields of low mass
stars return the isotope ratio to larger values.

A measurement of the carbon isotope ratio in near-
pristine gas relies on our ability to distinguish absorption
lines that are separated by a small isotope shift; for the
C ii λ1334 absorption line, 13C is shifted by −2.99 km s−1

relative to 12C. In typical metal-poor DLAs, the overall
line profile contains a small number (. 5) of absorption
clouds spread over a velocity interval of tens km s−1, where
each individual absorption component exhibits a total line
broadening of 3−5 km s−1. The DLA towards J0035−0918 is
particularly quiescent, where the absorption is concentrated
in a single component with an estimated total Doppler
width of b ' 3.5 km s−1 (Cooke et al. 2015), which is related
to the velocity dispersion of the gas, σ =

√
2 b. With such a

system, it may be possible to detect 13C as an asymmetry
of the C ii λ1334 feature. Such an asymmetry will not be
present in the absorption lines of other elements.

A measurement of the 12C/13C ratio has never been
attempted in a near-pristine environment. The only high
redshift bound currently available using absorption line
techniques was based on neutral C i absorption lines asso-
ciated with a metal-rich ([Zn/H]= −0.49) sub-DLA towards
HE 0515−4414 (Levshakov et al. 2006). This study utilised
the Ultraviolet and Visual Echelle Spectrograph (UVES;
Dekker et al. 2000) at the European Southern Observatory
(ESO) Very Large Telescope (VLT), and reported a limit
12C/13C> 80 (95 per cent confidence).

Complementary high redshift measurements of the
12C/13C isotope ratio are afforded by sub-mm studies
of the 12CO and 13CO emission lines (Béthermin et al.
2018). However, the sensitivity of current instrumentation
means that these works are generally focused on relatively
metal-rich galaxies at high redshift.

To reach the required level of accuracy, we need to
employ a very high spectral resolution instrument that has
an accurate wavelength calibration. Such a requirement is
now met with the Echelle SPectrograph for Rocky Exo-
planet and Stable Spectroscopic Observations (ESPRESSO;
Pepe et al. 2010) at the ESO VLT. This high resolution
(R ' 70,000 − 140,000) spectrograph provides an unprece-
dented level of wavelength accuracy; when used in 4UT
mode, the relative velocity accuracy is better than 5 m s−1,
corresponding to an accuracy of ∼ 10−4 Å at 4000 Å.

In this paper, we present the first bound on the
12C/13C isotope ratio of the DLA towards J0035−0918 using

2 While we utilise the yields of non-rotating stellar models,

we note that extremely metal-poor, rapidly-rotating massive
(> 7 M�) stars are capable of producing 4 <12C/13C< 77
(Meynet et al. 2010).
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Measuring 12C/13C with ESPRESSO 3

ESPRESSO data obtained during the science verification
process. These data have also allowed us to explore the
chemical enrichment history of this DLA and to place a
bound on the fine-structure constant variation. The paper
is organised as follows. Section 2 describes our observations
and data reduction. In Section 3 we present our data and
determine the chemical composition of the DLA towards
J0035−0918 using the detected metal absorption line
profiles. We then discuss the chemical enrichment history
of this system and infer some of its physical properties in
Section 4, before drawing overall conclusions and suggesting
future work in Section 5.

2 OBSERVATIONS AND DATA REDUCTION

J0035−0918 is a mr = 18.89 quasar at zem = 2.42 whose line-
of-sight intersects a large pocket of neutral hydrogen. This
intervening gas cloud was identified as a DLA at zabs ' 2.34
from the Sloan Digital Sky Survey (SDSS) discovery spec-
trum. The lack of metal lines associated with this DLA
motivated follow up observations with the HIgh Resolu-
tion Echelle Spectrograph (HIRES; Vogt et al. 1994) on the
Keck I telescope by Cooke et al. (2011a). Further observa-
tions were carried out using UVES by Dutta et al. (2014).
The combined analysis of these UVES and HIRES data re-
vealed that the DLA towards J0035−0918 is one of the least
polluted neutral gas clouds currently known with [Fe/H] =
−2.94± 0.06 (Cooke et al. 2015). Furthermore, it is the only
very metal-poor DLA to show an overabundance of carbon
relative to iron, [C/Fe] = +0.58±0.16 (Cooke et al. 2015). An
enhancement of carbon is thought to be a chemical signa-
ture of Population III enriched systems (Beers & Christlieb
2005). While the DLA towards J0035−0918 is not carbon-
enhanced to the same degree exhibited by some metal-poor
stars, its enhancement of C and N relative to Fe is a rarity
amongst the very metal-poor DLA population.

Previous observations indicated that the DLA towards
J0035−0918 is particularly quiescent, with a single absorp-
tion component exhibiting a total Doppler parameter of
b ' 3.5 km s−1 (Cooke et al. 2015). The 12C and 13C isotopes
produce rest frame absorption features at λ1334.5323 Å and
λ1334.519 Å , respectively (Morton 2003); the isotope shift
is therefore just 2.99 km s−1. Given the narrow broadening
of this system, it is therefore possible to distinguish between
the contribution of each C isotope to the total C ii λ1334
line profile. Thus, the DLA towards J0035−0918 is a near-
ideal environment to measure the carbon isotope ratio and
search for the chemical signature of low mass (∼ 1 M�)
Population III stars. Given the potential promise of this sys-
tem, we secured new observations with the ultra-stable ESO
ESPRESSO spectrograph.

New data were collected with ESPRESSO in 4UT mode
(R ' 70,000) on 2019 August 28 spanning the wavelength
range 3800 to 7880Å. We acquired 3×2100 s exposures on
target using 8 × 4 binning in slow readout mode. In 4UT
mode, the light from the four UTs is incoherently sent to
ESPRESSO. The size of the entrance fibre at each UT
is 1.0 arcsec. The average seeing during our observations
was 0.64 arcsec. These data were reduced using the EsoRex
pipeline, including the standard reduction steps of subtract-

ing the detector bias, locating and tracing the echelle orders,
flat-fielding, extracting the 1D spectrum, performing a wave-
length calibration, and relative flux calibrations.

Due to the faint nature of our target, we have not per-
formed the conventional sky subtraction which would intro-
duce additional sky and read noise into our data.3 Given
that we are already nearing the magnitude limit of what is
feasible with this instrument, we decided to maximise the fi-
nal combined signal-to-noise ratio (S/N) and model the zero
level of the data in our analysis. This will be discussed fur-
ther in Section 3.

As a final step, we combined the three individual expo-
sures using uves popler4 with a pixel sampling of 2 km s−1.
uves popler allowed us to manually mask cosmic rays and
minor defects from the combined spectrum. The final com-
bined S/N of the data near the C ii λ1334 absorption line (at
observed wavelength λobs = 4457.8 Å) is S/N ' 9. The peak
S/N of the data is near 5300 Å (S/N ' 30). As will be de-
scribed in the following section, alongside these ESPRESSO
data, we utilise the spectra from previous observations of the
DLA towards J0035−0918 to model the metal line profiles
of this absorption system. These data were recorded with
a resolution of R ' 40,000 and a reported S/N per pixel
of S/N ' 18 at 4500 Å (Cooke et al. 2011a) and S/N ' 13
at 5000 Å (Dutta et al. 2014). We refer the reader to these
publications for details of these data.

3 RESULTS

We exploit the superior wavelength calibration of
ESPRESSO to pin down the redshift of the DLA us-
ing O, Al, Si, and Fe absorption lines, and search for a
shift/asymmetry of the C ii line profile — relative to the
other metals — indicative of absorption from 13C.

Using the Absorption LIne Software (alis) package5—
which uses a χ-squared minimisation procedure to find
the model parameters that best describe the input data
— we simultaneously analyse the full complement of high
S/N and high spectral resolution data currently available.
While the ESPRESSO data provide the most reliable
wavelength solution, the UVES and HIRES data can be
leveraged alongside the ESPRESSO data to enable a more
accurate determination of the metal ion column densities
and assist in the determination of the zero-level of the
ESPRESSO data. To achieve this, the redshift of the DLA
is driven by the accurate wavelength solution provided by
the ESPRESSO data. The centre of each absorption feature
in the UVES and HIRES data is then modelled with an
independent velocity offset to ensure that these data are
coincident with the well-calibrated ESPRESSO data.

We model the absorption line profiles as a single com-
ponent Voigt profile, which consists of three parameters:
a column density, a redshift, and a line broadening. We

3 This is because the science and sky fibres project to the same
number of pixels on the detector. For faint objects, performing a

sky subtraction results in counting the sky and read noise twice.
4 uves popler is available from:

https://astronomy.swin.edu.au/~mmurphy/UVES_popler/
5 alis is available from:

https://github.com/rcooke-ast/ALIS.
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Figure 1. Continuum normalised ESPRESSO data (black histograms) of the absorption features produced by metal ions associated with
the DLA at zabs = 2.340064 towards the quasar J0035−0918. Overplotted in red is our best-fitting model. The blue dashed line indicates

the position of the continuum while the green dashed line indicates the zero-level. The red ticks above the absorption features indicate

the centre of the Voigt line profiles. In the panel that shows C ii λ1334 absorption, the tick marks at a relative velocity of 0.0 km s−1 and
−2.99 km s−1 represent the centroid of the 12C and 13C absorption line profiles, respectively. Below the zero-level, we show the residuals

of this fit (black histogram) where the grey shaded band encompasses the 2σ deviates between the model and the data. Note, in the

panel corresponding to O i λ1302, there is an unrelated emission line (due to an unrelated, intervening galaxy at redshift z ' 0.15; see
text) that we have modelled as a Gaussian during the line-fitting procedure.

assume that all lines of comparable ionisation level have the
same redshift, and any absorption lines that are produced
by the same ion all have the same column density. The
total broadening of the lines includes a contribution from
both turbulent and thermal broadening. The turbulent
broadening is assumed to be the same for all absorption
features, while the thermal broadening depends inversely on
the square root of the ion mass; thus, heavy elements (e.g.
Fe) will exhibit absorption profiles that are intrinsically
narrower than the profiles of lighter elements, (e.g. C).
There is an additional contribution to the line broadening
due to the instrument.

The nominal ESPRESSO instrument resolution in
4UT mode is vFWHM = 4.28 km s−1, and we have explicitly
checked this by measuring the widths of ThAr emission
lines from the calibration data to infer the instrument full
width at half maximum (FWHM) at wavelengths close
to the DLA’s absorption features. We find that across
the wavelength range (4450 − 7830) Å the wavelength
specific FWHM varies from 4.14 to 4.53 km s−1. We adopt
these wavelength specific resolutions as our fiducial choice
when fitting the data. However, we also checked that our
results did not change when using the nominal instrument

FWHM. For the HIRES and UVES data, the respective
nominal instrument resolutions are vFWHM = 8.1 km s−1

and vFWHM = 7.75 km s−1. When fitting to the data we
allow these to vary as free parameters, since the DLA
absorption features are unresolved in the UVES and HIRES
data. We found that the choice of instrument resolution
does not have a significant impact on the resulting column
densities. We have performed additional checks to ensure
that the system is best modelled by a single absorption
component with a stable redshift; for example, we included
fictitious isotope transitions in the fit to the line profiles
of other elements (like Si ii), and these tests demonstrated
that the absorption profiles preferred a single, symmetric
absorption line. We have also tested that our result cannot
be replicated using a ‘mirrored’ 13C feature that has an
offset from 12C of +2.99km s−1 (instead of the true value,
−2.99km s−1).

Finally, we note that we simultaneously fit the absorp-
tion, quasar continuum, and in the case of the ESPRESSO
data, the zero-level of the data. We model the continuum
around every absorption line as a low order Legendre
polynomial (of order 3). We assume that the zero-levels
of the sky-subtracted UVES and HIRES data do not
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Table 1. Ion column densities of the DLA at zabs = 2.340064
towards the quasar J0035−0918. The quoted column densities

are based on the combined fit of the available ESPRESSO, UVES

and HIRES data. The quoted column density errors are the 1σ
confidence limits. We also report the carbon isotope ratio as a 2σ
limit.

Ion log10 N(X)/cm−2

H ia 20.43 ± 0.04
12C ii + 13C ii 14.29 ± 0.13

N i 13.37 ± 0.04
O i 14.67 ± 0.05

Mg ii 12.89 ± 0.13

Al ii 11.74 ± 0.04
Si ii 13.35 ± 0.04

Fe ii 13.01 ± 0.03

Isotope ratio

log10 N (12C)/N (13C) > +0.37 (2σ)

a The H i column density was reported by Cooke et al. (2015).

depart from zero (this is confirmed by measuring the
troughs of saturated absorption lines). Upon inspection
of the sky-subtracted ESPRESSO data, we identified a
few emission lines that appear to be due to contamination
by a nearby galaxy in the field. These emission lines are
not present in the UVES or HIRES data. The redshift of
this galaxy was determined through observations using
the William Herschel Telescope (WHT) that revealed
strong O ii λ3727 Å emission at an observed wavelength
λ ' 4297 Å , corresponding to z ' 0.15. This galaxy is just
6.8 arcsec from the line-of-sight to the background quasar
(corresponding to an impact parameter of 21 kpc at the
redshift of the intervening galaxy). We confirmed that there
are no sky or galaxy emission lines that contaminate the
DLA absorption lines. Therefore to account for the sky
continuum and potential low-level contamination by the
continuum of this low redshift galaxy, we include a single
parameter to model the zero-level of the ESPRESSO data
(assumed constant for all lines).

3.1 Ion column densities

The ESPRESSO data, along with the best-fitting model are
presented in Figure 1, while the corresponding column den-
sities are listed in Table 1. The simultaneous analysis of the
ESPRESSO+HIRES+UVES data have allowed us to accu-
rately determine the metal column densities, gas kinetic tem-
perature and total Doppler parameter of the DLA. We find
an absorption redshift of zabs = 2.340064 ± 0.000001 and a
gas temperature of T = (9.1 ± 0.5) × 103 K. We have found
that the line broadening of this system is entirely dominated
by its thermal motions; the minor contribution due to the
turbulent motions cannot be determined given the current
data and, intriguingly, is consistent with no turbulence. The
extreme quiescence of this system raises an interesting pos-
sibility about the existence of other thermally dominated
DLAs yet to be found, or whether known systems that con-
tain multiple absorption components, may still have compo-
nents that are dominated by thermal broadening.

For the C ii absorption, we found that the best-
determined parameter combination was the isotope ra-
tio 12C/13C and the total column density of C ii,
N (12C ii)+N (13C ii). The carbon isotope ratio of this model
is log10

12C/13C = +1.15 ± 0.65, where the quoted error is
simply the diagonal term of the covariance matrix. How-
ever, given the large range allowed by this uncertainty, we
have performed a suite of detailed Monte Carlo simulations
to uncover the posterior distribution of the 12C/13C ratio,
given our data. Using the parameters of our best-fitting line
model, we generate mock ESPRESSO data varying the rela-
tive amount of 13C in the system. These mock data provide
perfect (error free) line profiles of C ii λ1334 for different val-
ues of the 12C/13C isotope ratio (while the total C ii column
density remains constant). By perturbing these line profiles
using the error spectrum of our data, we can emulate how
these ESPRESSO data would look as a function of the un-
derlying isotope ratio. We have performed 500 realisations
of these perturbations for a variety of underlying isotope
ratios. The results of these simulations are presented in Fig-
ure 2. Given that our line fitting procedure, applied to the
real data, suggests a central value log10

12C/13C = +1.15, we
infer log10

12C/13C > +0.37 (2σ). This lower bound is visu-
alised in Figure 3, which shows the model line profiles for
various 12C/13C abundance ratios. The line corresponding
to log10

12C/13C = +0.37 falls at the edge of the asymmet-
ric line profile where the 13C absorption is most noticeable;
the corresponding residuals are also at the 2σ boundary of
the model fit. As the amount of 12C relative to 13C in a
system increases, the asymmetry due to the presence of 13C
becomes increasingly subtle in the C line profiles. This is,
in part, why we expect to recover a broad range of isotope
ratios once log10

12C/13C > +1.10. However, we expect with
higher S/N data, the threshold for a detection would extend
to larger isotope ratios.

This is the first limit on the carbon isotope ratio in
a near-pristine absorption system. With these data we can
empirically rule out the presence of large amounts of 13C
relative to 12C in the DLA towards J0035−0918. The im-
plications of this abundance ratio for the chemical enrich-
ment of this DLA will be discussed in Section 4. The rel-
ative abundances of the detected metals are provided for
convenience in Table 2. We note that with the latest data,
[C/Fe] = +0.32±0.13. While consistent with the previous de-
terminations by Carswell et al. (2012); Dutta et al. (2014)
and Cooke et al. (2015), this indicates that the DLA to-
wards J0035−0918 is not as abundant in carbon as previ-
ously thought, owing to the unusual quiescence of the gas
cloud whose broadening is dominated by the thermal mo-
tions. However, this system still exhibits an unusually high
[N/O] ratio, compared with the typical very metal-poor
DLA population (Cooke et al. 2011b). The [N/O] abun-
dance of this DLA places it just above the primary N plateau
(Pettini et al. 2008; Petitjean et al. 2008; Zafar et al. 2014).
Furthermore, the [Mg/Si], [Mg/O], and [Mg/Fe] ratios are
remarkably subsolar, quite unlike the ratios that are seen
in extremely metal-poor halo stars of the Milky Way (e.g.
Andrievsky et al. 2010).
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Figure 2. Monte Carlo simulations of our data used to infer a confidence bound on the amount of 13C in the DLA towards J0035−0918
(left panel). The blue line indicates the median recovered value of the 12C/13C ratio given 500 realisations of the absorption feature

generated using the model 12C/13C ratio indicated by the x-axis. The dark and light blue shaded bands encompass the 1σ and 2σ limits
of the distribution, respectively. The horizontal dot-dashed line marks the 12C/13C measured in our analysis. The black arrow indicates

where this value intersects the 97.5 percentile of the distribution. This corresponds to a 2σ lower limit of 12C/13C > +0.37. The right

panel shows the percentile value as a function of the model (i.e. true) 12C/13C isotope ratio given our measured value. The shaded bands
have the same meaning as in the left panel. The dotted lines mark the 50th percentile and the corresponding model value.
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Figure 3. ESPRESSO data centred on the C ii λ1334 absorption

feature shown alongside different model line profiles. Each model
curve represents a different 12C/13C abundance ratio (as indicated

by the legend) while retaining a constant total carbon abundance
of log10 N (Ctot)/cm−2 = 14.29. Below the zero-level of these data

(green dashed line), we show the residuals of the model fit to the
data. The shaded band encompasses the 2σ deviations of these
model profiles, illustrating that we can rule out log10

12C/13C ≤
+0.37 with 95 per cent confidence.

4 ANALYSIS

Given our robust determination of the chemical abundance
pattern of the DLA towards J0035−0918, we now investigate
the enrichment history of this system. Our lower bound on
the 12C/13C isotope ratio indicates that there is at least 2.3
times more 12C than 13C in this DLA; this does not empiri-
cally rule out enrichment from low mass Population III stars.
To test whether the chemical signature of this system is bet-
ter modelled by Population III or Population II enrichment,
we can exploit the stochastic chemical enrichment model
developed by Welsh et al. (2019), alongside the yields from
simulations of stellar evolution. The resulting enrichment

Table 2. Relative abundances of the elements detected in the
DLA towards J0035−0918 alongside their solar abundances as

determined by Asplund et al. (2009).

X [X/H] [X/Fe] [X/O] X�

C −2.57 ± 0.14 +0.32 ± 0.13 −0.12 ± 0.14 8.43

N −2.89 ± 0.06 0.00 ± 0.05 −0.44 ± 0.06 7.83

O −2.45 ± 0.06 +0.44 ± 0.06 . . . 8.69
Mg −3.10 ± 0.14 −0.21 ± 0.13 −0.65 ± 0.14 7.56

Al −3.13 ± 0.06 −0.24 ± 0.05 −0.68 ± 0.06 6.44
Si −2.59 ± 0.06 +0.30 ± 0.05 −0.14 ± 0.06 7.51

Fe −2.89 ± 0.05 . . . −0.44 ± 0.06 7.47

models can be used to infer the epoch at which this DLA
formed its enriching stars as well as its total stellar mass and
total gas mass. In addition to investigating the physical and
chemical properties of the DLA towards J0035−0918, given
the simplicity of the absorption line profiles and the reliable
wavelength solution delivered by ESPRESSO, we can also
use these data to test the invariance of the fine-structure
constant.

4.1 Stochastic Enrichment Model

In previous work (Welsh et al. 2019), we developed a
stochastic chemical enrichment model that uses the abun-
dance patterns of near-pristine environments to infer their
chemical enrichment history. This model describes the ini-
tial mass function (IMF) of an enriching stellar population
as a power law, governed by the slope, α. The normalisation
of this power law, k, is set by the number of stars, N?, that
form within a given mass range:

N? =
∫ Mmax

Mmin

k M−αdM . (1)
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Figure 4. 12C/13C yield as a function of progenitor mass for both Population III and Population II stars. The yields of low mass

Population III stars are from CL08 while those of Population II stars are from K10. The yields of massive Population III and Population
II stars are given by HW10. We have only included the yields of stars whose lifetimes are shorter than the age of the Universe at z = 2.34
(i.e. those with M > 1.46 M�). The stellar lifetimes are indicated by the top x-axis (Woosley et al. 2002, Karakas 2014). The horizontal

grey dashed line indicates the solar C isotope ratio, 12C/13C = 89 (Asplund et al. 2009).

For reference, a Salpeter IMF corresponds to α = 2.35
(Salpeter 1955). For a given enrichment model, we then
stochastically sample the IMF and, using the yields from
simulations of stellar evolution, determine the distribution
of chemical abundances we expect to see across an enriched
population of objects. These distributions can then be used
to gauge the likelihood of measuring our observed abun-
dances given any underlying enrichment model. This ap-
proach assumes that the gas within the DLA is well-mixed
and that the system experiences no inflow or outflow of gas;
for further details of this model, see Welsh et al. (2019).

The stellar yields used in this analysis are from three
sources: (1) Campbell & Lattanzio (2008), hereafter CL08,
who simulate the evolution of low mass metal-free stars in
the mass range (1 − 3) M� ; (2) Karakas (2010), hereafter
K10, who simulate the evolution of very metal-poor AGB
stars (Z ∼ 0.005Z�) in the mass range (1 − 6) M� ; and, (3)
Heger & Woosley (2010), hereafter HW10, who simulate the
evolution and core-collapse supernovae (CCSNe) of massive
(> 10 M�) metal-free stars. Throughout this work, we use
the combined yields of CL08 and HW10 to define the yields
of Population III stars. In lieu of simulations that calculate
the 12C/13C ratio for intermediate mass Population III stars,
we have chosen to extrapolate the yields of CL08 to meet
the yields of HW10.

While the HW10 yields have been calculated for metal-
free stars, they are also indicative of Population II CC-
SNe yields; this can be seen by comparison with the
Woosley & Weaver (1995) yields of metal-enriched massive

stars (at least for the elements under consideration in this
work). We therefore define Population II yields as the com-
bined yields of K10 and HW10. We necessarily implement
another yield extrapolation to bridge the gap between the
K10 and HW10 yields. Although this extrapolation is not
ideal, this is the best option available to us until a more com-
plete set of yields becomes available. K10 report stellar yields
covering a range of metallicities, spanning 0.0001< Z <0.02.
We choose Population II yields with an initial metallicity
Z = 0.0001. We note that the HW10 yields have been calcu-
lated as a function of the progenitor star mass, the explosion
energy of their supernova, and the mixing between the dif-
ferent stellar layers. When considering these yields, we have
adopted the recommended prescription for mixing between
stellar layers, defined to be 10 per cent of the helium core
size. For the explosion energy, we adopt Eexp = 1.8×1051 erg.
This is a measure of the final kinetic energy of the ejecta at
infinity and is consistent with the typical value found by
Welsh et al. (2019) when investigating the properties of the
stars that enrich the most metal-poor DLAs. Figure 4 shows
the resulting 12C/13C yields of these stellar populations as a
function of both their progenitor mass and stellar lifetime.

From Figure 4 we can see that it is the low mass Pop-
ulation III stars, and the intermediate mass Population II
stars, that are capable of producing comparable amounts of
the carbon isotopes (i.e. 12C/13C' 1). Generally, it is surface
mixing events that facilitate the production of 13C. AGB
(both Population II and Population III) stars produce 13C
through a process known as hot bottom burning (HBB).
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Figure 5. Results of our MCMC analysis of the chemical enrichment of the DLA towards J0035−0918. The diagonal panels indicate the

maximum likelihood posterior distributions of our enrichment model parameters while the 2D contours indicate the correlation between

these parameters. Our Population II model is shown in grey. Overplotted in purple is the result of considering Population III stars as
the dominant source of enrichment. In the diagonal panels, the horizontal blue dashed line indicates the zero-level of each distribution.

This process involves the convection induced transport of
12C from the burning shell to the proton-rich envelope where
13C can then be synthesised via proton-capture (Iben 1975;
Prantzos et al. 1996). HBB is dependent on both the mass
and metallicity of the progenitor stars. For a star to un-
dergo HBB, the convective envelope must reach a sufficiently
high temperature. The transition seen at ∼ 10 M� between
the yields of massive stars and those of lower mass stars
originates because massive stars do not show signs of these
surface mixing events (Karakas & Lattanzio 2014); they are
only capable of producing 13C through secondary processes.

Using our enrichment model with these yields, we can
investigate the chemical enrichment of the DLA towards
J0035−0918 under the assumption of either Population II
or Population III enrichment. We use the relative abun-
dances of [C/O], [Si/O], and [Fe/O] as given in Table 2,
alongside the lower limit on 12C/13C from Table 1 to eval-
uate the likelihood of a given model. We choose to model
only these abundance ratios because our stochastic chemical

enrichment model is computationally expensive. We there-
fore focus our attention on the most abundant elements
that are relatively well-modelled by stellar evolution. We
use the emcee Markov Chain Monte Carlo (MCMC) sam-
pler (Foreman-Mackey et al. 2013) to determine the enrich-
ment model parameters that provide the best fit to these
data. The model parameters that we consider are those de-
fined by Equation 1 (α,N?,Mmin,Mmax). We impose uniform
priors on these parameters, limited by the boundary condi-
tions:

0 ≤ log10 N? ≤ 5 ,

1.46 ≤ Mmin/M� ≤ 11 ,

20 ≤ Mmax/M� ≤ 70 ,

−8 ≤ α ≤ 8 .

Since the number of stars contributing to the enrichment
of the DLA, N?, could be quite large in the case of a low
value of Mmin, we choose to sample log10 N?; this allows
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us to stochastically sample the IMF at high masses (a
regime we suspect may be dominated by just a few massive
stars), while still allowing for a much larger number of low
mass stars. The minimum mass of the enriching stars is
set by considering the age of the Universe at the redshift
of the DLA. Using the latest Planck Collaboration et al.
(2018) cosmology, where H0 = 67.4 ± 0.5 km s−1Mpc−1 and
Ωm = 0.315 ± 0.007, we find that the age of the Universe is
2.792 Gyr at the redshift of this absorption system (recall
zabs = 2.34006). Given that the first stars are thought to
have formed between z ∼ 15 − 20, there is a finite time in
which stars can contribute to the enrichment of this system.
Using the stellar lifetimes from Karakas (2014), we find that
stars with masses . 1.46 M� live longer than the age of the
Universe at redshift z ' 2.34. Therefore we only expect to
see the chemical signature of stars with masses above this
limit in the chemistry of this near-pristine DLA. The upper
limit of the mass of the enriching stars marks the transition
from CCSNe to pulsational pair instability SNe, as found
by Woosley (2017).

During our MCMC analysis, we utilise the chains of
400 randomly initialised walkers to determine the posterior
distributions of our enrichment model parameters. After
adopting a burn-in that is half the original length of the
chains, we find the posterior distributions shown in Figure
5. We found that these distributions are invariant once the
walkers have each taken 2100 steps. From this figure, we see
that the maximum likelihood enrichment model parameters
are almost unchanged by the assumption of Population
II versus Population III enrichment. Both enrichment
histories suggest an IMF slope that is preferably steeper
than, but still consistent with, a Salpeter distribution,
α = 3.6+3.7

−2.0 (Population II) α = 3.8+3.6
−2.0 (Population III),

where the quoted errors encompass 95 per cent of the
parameter distributions. We have repeated our analysis
under the assumption of a Salpeter-like IMF slope and
found that introducing this prior has a negligible impact on
the resulting distributions.

Our analysis suggests that this DLA has been enriched
by at least 10 stars, with maximum likelihood values of
log10 N? = 2.3+2.5

−1.4 (Population II) and log10 N? = 2.5+2.3
−1.7

(Population III). In each enrichment scenario, Mmax is
unconstrained, with both distributions showing a slight
preference towards a larger maximum enriching mass. We
find the only parameter estimate that varies significantly
between these enrichment histories is that of the minimum
enriching mass, Mmin. Under the assumption of Population
II enrichment, the data disfavour enrichment from low mass
(< 2.4 M�) stars. While, if this is a Population III enriched
system, enrichment from low mass stars is preferable. This
is likely being driven by the divergent yields of [C/O] across
the stellar populations. From the simulations of stellar
evolution, we see that the lowest mass Population II stars
produce supersolar [C/O] relative to our measured value
([C/O] = −0.12 ± 0.14), while the lowest mass Population
III stars produce subsolar yields of [C/O]. Given that our
maximum likelihood enrichment model is consistent with a
well-sampled IMF, to investigate this divergence further,
we can calculate the IMF weighted abundance of [C/O] for
both Population II and Population III enrichment. These
calculations show that, given our maximum likelihood
estimate of α, when Mmin < 2.4 M� the C-rich yields of the

lowest mass Population II stars result in supersolar [C/O].
These yields are hard to reconcile with our measured value.

Given current data, we are only able to utilise the
12C/13C lower bound to constrain our enrichment model.
This lower bound does little to drive the results of our
current analysis. However, as can be seen from Figure
4, the C isotope ratio is also divergent at low masses
for the different stellar populations. Therefore, a precise
measurement of the 12C/13C ratio, in combination with
the [C/O] abundance, would enable us to distinguish more
clearly whether the DLA towards J0035−0918 shows the
signature of Population III versus Population II enrichment.
We also note that there are some extremely metal-poor,
rapidly-rotating stars, with masses > 7 M� , that are capable
of producing 4 <12C/13C< 77 (Meynet et al. 2010). These
stars, that have metallicities between Z = 5 × 10−7 Z� and
Z = 5 × 10−4 Z� , are capable of producing an enhancement
of alpha elements, akin to that observed in the most
iron-poor stars of the Milky Way halo. At present, our
limit on 12C/13C is not able to rule out rapidly-rotating
extremely metal-poor stars as a potential source of the
enrichment of this near-pristine DLA. However, future
higher S/N observations of J0035−0918 will be able to test
this possibility.

4.2 Physical and chemical properties

Using the results of our enrichment model analysis, we can
infer some of the physical and chemical properties of the
DLA towards J0035−0918, such as the total stellar mass and
the total gas mass of the system. To calculate the total stellar
mass, we use the inferred model parameter distributions and
integrate over the IMF, weighted by mass (cf. Equation 1).
For stars above 1 M� , we adopt a power law IMF, while for
stars < 1 M� , we adopt the IMF as described by Chabrier
(2003). This results in the stellar mass distribution as shown
in the left panel of Figure 6. We find that the total stellar
mass (≥ 1 M�) of this DLA is log10(M?/M� ) = 4.8±1.3. We
can also infer the total gas mass of the DLA using our en-
richment model, as follows. Assuming that the DLA towards
J0035−0918 has retained 100 per cent of the metals produced
in-situ, we can calculate the total gas mass required to pro-
duce the observed metal abundance. For this calculation we
use the observed [O/H] abundance as a proxy of the metal
abundance. The resulting distribution is shown in the right
panel of Figure 6. If this is a Population III enriched system,
to achieve the measured abundance [O/H] = −2.45 ± 0.06,
we would require a total gas mass log10(Mgas/M� ) = 6.3+1.4

−0.9.
If, in fact, some metals were not retained by the DLA, the
observed [O/H] abundance could be achieved through met-
als mixing with a smaller reservoir of hydrogen. In this case,
our inference would correspond to an upper limit of the total
gas mass. We find that our inferences of the stellar and gas
mass of this DLA are consistent (i.e. within 1σ) of the cor-
responding values quoted by Welsh et al. (2019) for typical
very metal-poor DLAs.
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Figure 6. Left: The total inferred stellar mass of the DLA towards J0035−0918 as a function of the minimum mass with which stars can

form. The purple solid curve indicates the median value given our Population III enrichment model and the shaded region encompasses
the 16th and 84th percentiles. The grey curves have the same meaning, but are based on our Population II enrichment model. Right: The

total gas mass of the DLA towards J0035−0918 inferred from our enrichment models combined with the measured [O/H] abundance
([O/H]= −2.45), assuming 100 per cent metal retention (see text for further details).
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4.3 Enrichment timescale: Evidence of
reionization quenching?

Our constraints on the minimum mass of the enriching stars
can be used to estimate the epoch when the DLA experi-
enced most of its star formation. Using the stellar lifetimes
from Woosley et al. (2002) and Karakas (2014) as well as
the posterior distribution of Mmin (see the histogram on the
third row of Figure 5), we can convert the Mmin distribution
to a distribution of enrichment timescales. The results of
this transformation for both Population II and Population
III stars are shown in Figure 7. Since our analysis disfavours
a large ( ∼ 8 M�) minimum enriching mass, the sharp fall of
these distributions as we approach the redshift of the DLA
suggests that the majority of star formation must have ended
prior to this epoch. We can see from this figure that if Popu-
lation II stars are the predominant enrichers, then the DLA
must have had a burst of star formation just a few hundred
Myr before we observe the DLA today. Such a timescale
is relatively short given that the DLA would need to have
recovered quickly from the putative supernova feedback in
order to be observed at z = 2.34 with a significant quantity
of neutral gas and apparently no turbulence. Hydrodynamic
models of the enrichment of ultra-faint dwarf (UFD) galaxies
(Webster et al. 2015a) indicate that the chemistry of these
systems requires periods of extended star formation, which
may also be required to explain the enrichment of this DLA
(see also, Webster et al. 2015b).

In this DLA, however, we find no evidence of enrichment
by low mass Population II stars. As shown in Figure 7 by
the grey curve, the most likely explanation in this scenario is
that the DLA experienced no significant star formation post-
reionization, for at least & 1 Gyr. There are several mecha-
nisms that can temporarily quench a low mass galaxy. One
such possibility is reionization quenching (e.g. Bullock et al.
2000) due to the cosmic reionization of hydrogen at z ' 8
(Planck Collaboration et al. 2018; light blue band in Figure
7). Reionization played two critical roles that affected star
formation in low mass galaxies. First, reionization heated up
the intergalactic medium, thereby limiting the accretion of
gas onto low mass galaxies. This starved low mass galaxies
of the gas supply needed to form stars. Moreover, reioniza-
tion heated up the interstellar medium of low mass galaxies,
bringing a halt to any ongoing star formation.

The main thrust of current observational efforts to
study the reionization quenching of low mass galaxies utilise
deep observations of the lowest mass UFD galaxies orbit-
ing the Milky Way (Weisz et al. 2012; Brown et al. 2014;
Weisz et al. 2014). These studies use color magnitude dia-
grams to reconstruct the star formation histories of the UFD
galaxies. This technique allows us to study the present prop-
erties of UFD galaxies in detail, but currently suffers from
poor time resolution at z & 2. Therefore it is difficult to
study the finer details of the reionization quenching process,
such as the duration of the quenching and the properties of
the gas that survives reionization. Simulations of low mass
galaxy formation (e.g. Wheeler et al. 2015; Oñorbe et al.
2015) indicate that reionization can bring a halt to star for-
mation for ∼ 1 Gyr; furthermore, these simulations indicate
that some low mass galaxies are able to retain a small reser-
voir of gas for future star formation. Some of these quenched
dwarf galaxies may re-ignite their star formation through in-
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Redshift
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]
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Figure 8. The redshift evolution of the measured [C/O] ratio of
near-pristine DLAs. These systems are all bona fide DLAs (i.e.

log10 N (H i)/cm−2 > 20.3) with metallicity [O/H]< −1.75 that

have been observed with a high resolution (R > 30, 000) echelle
spectrograph. The potential upward trend in [C/O] at lower red-

shift is supported by the [C/O] determination of J0035−0918.

teractions with gaseous streams in the intergalactic medium
(Wright et al. 2019).

Studying the chemical enrichment of the most metal-
poor DLAs may therefore offer a novel and exciting op-
portunity to study reionization quenching in detail by us-
ing certain chemical tracers as a ‘chemical clock’. Taken at
face value, our observations combined with our stochastic
chemical enrichment model tentatively suggest that star for-
mation in the DLA towards J0035−0918 may have experi-
enced a ∼ 1 Gyr hiatus. In principle, one might be able to
tease out the signature of reionization quenching by study-
ing a sample of metal-poor DLAs; reionization is a cosmic
event that comparably affects all galaxies at a given mass
scale. This signature may be encoded in the star formation
histories (and therefore chemistry) of the most metal-poor
DLAs. One prediction of this scenario is that the most metal-
poor DLAs should exhibit a general increase of their [C/O]
at redshift z ∼ 3; oxygen is primarily produced by mas-
sive stars on short timescales, while carbon is produced by
massive stars as well as low and intermediate mass stars on
longer timescales (Akerman et al. 2004; Cescutti et al. 2009;
Romano et al. 2010). Thus, an increase of [C/O] at low red-
shift would mark the yields of the first low and intermediate
mass Population II stars to have formed post-reionization.
We may be witnessing the first tentative evidence of this
effect in Figure 8 where we plot the [C/O] abundances of
the most metal-poor DLAs currently known as a function
of their redshift. These data are based on the list compiled
by Cooke et al. (2017) who investigated the chemical evo-
lution of DLAs with [O/H]< −1.75. We consider only those
with log10 N(H i)/cm−2 > 20.3 that have also been observed
with a high resolution (R > 30,000) spectrograph. Figure 8
shows tentative evidence that some near-pristine DLAs dis-
play slightly elevated [C/O] at lower redshift. We note that
the size of the errors associated with each system is due to
the relative saturation of the lines used to determine the
abundance ratio.
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4.4 Fine-structure constant

Given the quiescence and intrinsically simple cloud struc-
ture of the DLA towards J0035−0918, in combination with
the wavelength stability of ESPRESSO, we have an ideal
dataset for placing a bound on the invariance of the fine-
structure constant α at high redshift. Given that this DLA
is a near-pristine environment which is presumably living in
a relatively underdense part of the Universe compared to
other absorption line systems, it also offers an alternative
environment to test the invariance of the fundamental cou-
plings.

Astrophysical determinations of the variability of the
fine-structure constant, α ≡ e2/4πε0~c ≈ 1/137, which char-
acterises the strength of the electromagnetic force, has been
the subject of many investigations since the advent of the
10 m class telescopes. The general principle is to measure the
change of the fine-structure constant measured today (α0)
relative to a measurement at high redshift (αz), leading to
a bound of the form:

∆α/α ≡ (αz − α0)/α0 (2)

To obtain a measure of αz, the observed wavelengths of sev-
eral spectral lines need to be measured very accurately, as
each absorption line exhibits a different sensitivity to α.
This sensitivity can be parameterised by a change to the
wavenumber of a given transition at high redshift, ωz, rel-
ative to the same value measured in the laboratory today,
ω0:

ωz = ω0 + q x (3)

where q is the sensitivity coefficient which determines how
sensitive a given transition is to changes in α, and x =
(1 + ∆α/α)2 − 1. In this work, we use the q-coefficients
compiled by Berengut et al. (2011) and Murphy & Berengut
(2014).

For this test, we use only the ESPRESSO data and
include the absorption lines of O i λ1302, Al ii λ1670, Si ii
λ1536, Fe ii λ1608, and Fe ii λ2344, which exhibit sensitiv-
ity coefficients in the range −1165 ≤ q/cm−1 ≤ 1375. The
alis line-fitting code that we use in our analysis includes
∆α/α as an optional extra parameter in the line fitting pro-
cess. Specifically, alis reads in the atomic data (q and ω0)
of each transition, and calculates the observed wavelengths
given the two model parameters (redshift and ∆α/α). We
can therefore constrain both ∆α/α and z simultaneously
when optimising the model profiles of the ESPRESSO data.
Based on just the one absorption line system that we report
here, we infer a bound on the invariance of the fine-structure
constant, ∆α/α = (−1.2 ± 1.1) × 10−5. Given the relatively
low S/N of our data owing to the faint background quasar
and short integration time, this bound is impressively tight,
falling just a factor of ∼ 8 short of the precision achieved
by Kotuš et al. (2017), who reported the most precise mea-
surement from any single absorber to date. In addition, the
simplicity and quiescence of the cloud structure provides us
with confidence that the modelling of the line profile has not
introduced unaccounted for systematic uncertainties. We re-
fer the reader to Murphy & Cooksey (2017) for a discussion
of possible sources of uncertainty and a compilation of the
most reliable results to date. This is the first result that
we are aware of that demonstrates the superior wavelength

accuracy delivered by the ESPRESSO instrument in 4UT
mode.

5 CONCLUSIONS

We report the first bound on the 12C/13C abundance ratio of
a near-pristine environment using science verification data
acquired with ESPRESSO in 4UT mode. Our main conclu-
sions are as follows:

(i) We have demonstrated that the wavelength accuracy
afforded by ESPRESSO permits a limit on the 12C/13C iso-
tope ratio in the quiescent DLA towards J0035−0918 using
the C ii λ1334 absorption line. A significant quantity of 13C,
if found, could be a signature of low mass metal-free star
formation.

(ii) We find that the gas cloud is well-modelled by a
single absorption component whose broadening is entirely
dominated by the thermal motions of the gas. On the ba-
sis of this model, we report a conservative 2σ lower limit
log10

12C/13C > +0.37. We therefore conclude that this DLA
predominantly contains 12C. Given this 2σ limit, we are un-
able to confidently rule out the presence of low mass Popu-
lation III stars at this stage.

(iii) We developed a stochastic chemical enrichment
model to test whether the chemistry of this system is bet-
ter modelled by Population III or Population II enrichment.
We have found, given current data, that both scenarios are
plausible and are equally capable of producing the observed
abundances of 12C/13C, [C/O], [Si/O], and [Fe/O].

(iv) Based on our best-fitting enrichment model, we esti-
mate the DLA contains a stellar mass of log10(M?/M� ) =
4.8 ± 1.3 and a gas mass of log10(Mgas/M� ) = 6.3+1.4

−0.9.
(v) We report tentative evidence that the most metal-

poor DLA population exhibits somewhat higher [C/O] val-
ues at redshift z . 3. The elevated [C/O] ratios at z . 3
might be a signature of enrichment from the first metal-
enriched low and intermediate mass stars.

(vi) Our enrichment model also suggests that — if this
gas cloud is predominantly enriched by Population II stars
— the bulk of the metals were produced just a few hundred
Myr before the time that we observe the DLA. Prior to that,
star formation in this DLA appears to have experienced a
period of quiescence. We propose that this quiescence may
have been caused by the cosmic reionization of hydrogen,
but this can only be confirmed with future observations of
near-pristine DLAs covering the redshift interval z ' 2 − 4.

(vii) We use the simplicity of the absorption profile of this
system to investigate whether there is a detectable spatial
or temporal variation of the fine-structure constant. When
including ∆α/α as a free parameter in our line-fitting proce-
dure, we find ∆α/α = (−1.2 ± 1.1) × 10−5.

Our work demonstrates the wealth of information made
available through studying the chemistry of near-pristine
absorption systems. The detailed abundance patterns of
the most metal-poor DLAs provide insight into the earliest
episodes of chemical enrichment. Indeed, this first bound on
the C isotope ratio in a near-pristine environment has ruled
out the presence of strong 13C in this DLA; with data of
S/N=20, we could observationally rule out significant enrich-
ment by low mass Population III stars in this near-pristine
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environment. A similar study across the metal-poor DLA
population would determine whether these systems typi-
cally show signatures of Population II or Population III en-
richment. From these reconstructed enrichment histories, we
may find observational evidence of reionization quenching at
2 < z < 4 (within the redshift interval where these absorp-
tion systems are most easily studied), and be able to study
the physical properties (e.g. density, temperature) of the gas
affected by reionization quenching. Thanks to ESPRESSO,
studies of this nature are now within the realm of possibility.
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