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ABSTRACT
We present the first application of a variance-based sensitivity analysis (SA) to a model
that aims to predict the evolution and properties of the whole galaxy population. SA is a
well-established technique in other quantitative sciences, but is a relatively novel tool for
the evaluation of astrophysical models. We perform a multiparameter exploration of the
GALFORM semi-analytic galaxy formation model, to compute how sensitive the present-day
K-band luminosity function is to varying different model parameters. The parameter space is
scanned using a low-discrepancy sampling technique proposed by Saltelli. We first demonstrate
the usefulness of the SA approach by varying just two model parameters, one that controls
supernova feedback and the other the heating of gas by active galactic nucleus. The SA
analysis matches our physical intuition regarding how these parameters affect the predictions
for different parts of the galaxy luminosity function. We then use SA to compute Sobol’
sensitivity indices varying seven model parameters, connecting the variance in the model
output to the variance in the input parameters. The sensitivity is computed in luminosity bins,
allowing us to probe the origin of the model predictions in detail. We discover that the SA
correctly identifies the least important and most important parameters. Moreover, the SA also
captures the combined responses of varying multiple parameters at the same time. Our study
marks a much needed step away from the traditional ’one-at-a-time’ parameter variation often
used in this area and improves the transparency of multiparameter models of galaxy formation.
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1 IN T RO D U C T I O N

Galaxy formation is a complex process, which we are only now
just starting to understand through a combination of observations,
numerical simulations, and analytical modelling. Two main theo-
retical techniques are used to model the formation and evolution
of galaxies: semi-analytical modelling (SAM) and hydrodynamic
simulations (for a review, see Somerville & Davé 2015). SAMs use
physically motivated, simplified mathematical relations to describe
the evolution of baryons in growing dark matter haloes (Baugh
2006; Benson 2010). Hydrodynamic simulations, on the other hand,
tend to make fewer assumptions and approximations than SAMs
and solve the fluid equations governing the dynamics of baryons.
Nevertheless, in hydrodynamic simulations many processes, such
as star formation, remain ’subgrid’ due to the finite numerical
resolution of the simulation and our inability to write down the
precise equations describing some processes (Crain et al. 2015;
Ludlow, Schaye & Bower 2019). In the absence of a complete
mathematical description, physical processes are described in both
SAMs and hydrodynamic simulations by approximate equations
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that contain parameters. Values have to be chosen for these param-
eters to specify a model. Here, we present a new application of an
established statistical method to assess the impact of changes in
model parameters on the output of a model.

The past few years have seen tremendous breakthroughs in
the hydrodynamic simulation of galaxy formation for significant
galaxy populations in cosmological volumes (Schaye et al. 2014;
Vogelsberger et al. 2014; Pillepich et al. 2018). Nevertheless, SAMs
remain an attractive and valuable complement to hydrodynamical
simulations due to their flexibility and speed. These properties
of SAMs mean that they can be used to build intuition about
physical processes, by running thorough investigations of the
impact of varying model parameters [e.g. see the comprehensive
exploration of perturbations around the fiducial model presented by
Lacey et al. (2016)]. Also, SAMs remain the method of choice to
populate large-volume N-body simulations using a physical galaxy
formation model: the fiducial simulation volumes used in SAMs
are around 100 times bigger than those used in the current state-of-
the-art hydrodynamical simulations. The predictions of SAMs have
reached an impressive level of maturity through careful comparisons
between the predictions of different groups and techniques (e.g.
Contreras et al. 2013; Knebe et al. 2015; Guo et al. 2016; Mitchell
et al. 2018).
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Nevertheless, some scepticism remains regarding SAMs, much
of which can be traced to the way in which the model parameters
are set. Traditionally, models have been calibrated by developing
physical intuition about how the model responds to changes in
selected parameter values, such as those which control the mass
loading of winds driven by supernovae, and then varying one
parameter at a time to hone in on a best-fitting model. Often the
quality of the model reproduction of the calibration data is judged
by eye and compromises are made in order to match multiple
data sets; these steps are hard to quantify and therefore difficult
to reproduce. The ’best-fitting’ model is reported as a single choice
of parameter set that defines the model. The primary motivation for
producing a single model is the desire to build mock catalogues for
galaxy surveys (Baugh 2013). However, users often want to know
the uncertainty on the model predictions and how the predictions
respond to changes in the input parameters.

The range of processes modelled by SAMs lends them the
flexibility to predict varied observation but at the cost of having
to specify a number of parameters, which complicate model
optimization or calibration. A number of techniques have been
devised to reduce the complexity or dimensionality of the parameter
space and to perform efficient searches of the parameter space:
principal component analysis (hereafter PCA; Benson & Bower
2010), Bayesian emulators (Bower et al. 2010; Gómez et al. 2012),
particle swarm optimizer (hereafter PSO; Ruiz et al. 2015), Markov
Chain Monte Carlo (Henriques et al. 2009; Lu et al. 2011, 2012;
Henriques et al. 2013; Mutch, Poole & Croton 2013; Martindale
et al. 2017), and Latin-hypercube sampling (Bower et al. 2010;
Rodrigues, Vernon & Bower 2017).

Here, we apply sensitivity analysis (SA) to quantify the depen-
dence of the model output on the variation in the values of the
model input parameters. The analysis of Gómez et al. (2014) using
the CHEMTREEN SAM of Tumlinson (2009) is similar in scope to
our work. They use an analysis of variance (ANOVA) technique for
variance decomposition instead of sensitivity indices, and Gaussian
processes for model fitting. Here, we use the GALFORM SAM
effectively as a black-box model, and evaluate the sensitivity of
the model outputs to the variation of the input parameters. A SAM
is an ideal candidate for sensitivity analysis, as the interactions
between parameters are complex enough to develop a black-
box-like behaviour (becomes easier to experiment with than to
understand; Golovin et al. 2017); however, many parameters have a
natural physical interpretation, and hence it will be straightforward
to develop intuition about how sensitive the model outputs should be
to changing the inputs. Many parameters also have either physically
motivated bounds, or at least a plausible range of possible values.

A criticism often aimed at SAMs is that they contain too many
free parameters. This is usually rebuffed with the insistence that the
parameters are physical, not statistical. Model fitting alone is there-
fore insufficient for interpreting how well a SAM is performing. A
different research question, one this study tries to address, is how
sensitive the model is to the parameter variation – in other words,
how well do we understand the impact of the physical processes
and their interactions on the model predictions?

Sensitivity analysis (Fisher 1918; Sobol’ 1993, 2001; Saltelli
et al. 2010) is an area of statistical modelling that analyses how
the variance of the output of a model is affected by variance in the
model inputs. It is closely related to uncertainty analysis and model
optimization, and can be used to test the robustness of the model
predictions to uncertainty in the input parameters, quantify depen-
dence of the outputs of a model on different parameters, identify
model non-linearities, and guide subsequent model optimization.

This addresses a common criticism of black-box models, namely
that after adding sufficiently many free parameters they can be
fine-tuned to match any observations, and provide a single set of
predictions. While model optimization can be used to compute
confidence intervals, SA is uniquely positioned to quantify model
responses and the relative importance of the inputs. This addresses
the complaint about SAMs listed above, that providing a spread of
model predictions is preferable to fitting to the observations. Using
SA, we will be able to not only tell how much model predictions vary
for individual outputs but also quantify how much of this variance
can be attributed to individual model inputs (or their combinations).

There are several SA techniques, not all of which are suitable
for analysing non-linear models with a high-dimensional parameter
space. With a few exceptions,1 SA is done in three stages:

(i) sampling of the parameter space
(ii) model evaluation in the parameter space
(iii) computation of sensitivity indices

Here, we use a variance-based SA, which adopts the improve-
ment introduced by Saltelli et al. (2017) over the Sobol’ indices.
Variance-based methods aim to decompose the variance of the
model output into the contributions from individual parameter
variances, as well as the combined variances of the interactions
of multiple combinations of parameters changing at once. In
order to avoid a computational penalty for evaluating all possible
parameter combinations, input parameters are treated as probability
distributions, and the sensitivity of the model output is estimated
approximately. Moreover, a number of numerical optimizations
have been introduced into the sampling and index calculation
techniques, to improve the convergence of the indices and average
over the values that are too difficult to compute efficiently.

This work diverges from previous studies in two important ways:
first, we narrow the scope of this investigation to computing only
sensitivity indices, and we do not attempt to provide the best-
fitting values for a galaxy formation model. We believe that SA
is not the best tool for this task, as it investigates model responses
at the extreme values of input parameters, and often for unusual
combinations of inputs, where the model no longer reproduces the
observable values. Second, we do not limit ourselves to measuring
responses of the model to individual parameters and their linear
combinations. Instead, we use sensitivity indices to capture both
individual and combined impacts of parameters. Lastly, this study
focuses exclusively on one observable, the K-band luminosity
function (LF), calculated using the GALFORM SAM, and probes
how this specific model reacts to changes in the input parameters.
Our scope is narrower, but also deeper than any previous study in
this area.

The layout of this paper is as follows. In Section 2, we set
out the theoretical background, introducing the GALFORM model
and, for completeness, giving the equations for the processes that
we vary (Section 2.1). We then discuss variance-based sensitivity
analysis (Section 2.2), the concept of low-discrepancy sampling
(Section 2.3), the exploration of parameter space using Saltelli
sampling (Section 2.4), and we define the sensitivity indices (Sec-
tion 2.5) and illustrate these ideas with a toy model (Section 2.6).
Our results using GALFORM are presented in Section 3 and our
conclusions are given in Section 4.

1Some methods, such as Gaussian processes, use parameter exploration to
simultaneously measure model sensitivity and maximize goodness-of-fit for
model output(s).
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2 TH E O R E T I C A L BAC K G RO U N D

Here, we set out the theoretical ideas used in the paper. Section 2.1
gives a brief overview of the GALFORM semi-analytical model,
introducing the processes that are varied in the sensitivity anal-
ysis. Section 2.2 introduces variance-based sensitivity analysis,
Section 2.3 discusses the sampling of a model parameter space,
and Section 2.4 covers Saltelli sampling. Section 2.5 defines the
sensitivity indices and Section 2.6 illustrates their use with a toy
model. Section 2.7 discusses the use of GALFORM output in the
sensitivity analysis.

2.1 GALFORM

GALFORM is a SAM that aims to predict the properties of galaxies
starting from dark matter halo merger histories that are typically
extracted from an N-body simulation (Cole et al. 2000; Baugh
2006; Bower et al. 2006; Lacey et al. 2016). GALFORM models the
processes that shape the galaxy population using a set of physically
motivated, non-linear differential equations that track the exchange
of mass, energy, and angular momentum between the different
components of a galaxy. The processes modelled are

(i) the merger histories of dark matter haloes
(ii) the heating and cooling of gas and the formation of galactic

discs
(iii) quiescent star formation in galactic discs
(iv) bursts of star formation triggered by galaxy mergers or

dynamically unstable discs
(v) feedback driven by supernovae (SNe), which can eject cold

gas from a galaxy
(vi) heating by an active galactic nucleus (AGN), which can

prevent gas cooling
(vii) chemical enrichment of stars and gas

These processes are in many cases modelled by equations that
contain parameters. A GALFORM model corresponds to a set of
parameters whose values have been chosen so that the model re-
produces a particular set of observations. Some of these parameters
govern different choices for processes in the model, such as the
radial density profile assumed for the hot gas within a halo or the
stellar initial mass function (IMF) that describes the number of
stars of different masses produced in episodes of star formation.
For example, the Gonzalez-Perez et al. (2014) model assumes a
universal, solar neighbourhood IMF whereas the Lacey et al. (2016)
model invokes a top-heavy IMF in bursts of star formation and a
solar neighbourhood IMF in quiescent star formation. Even though
these two models are implemented in the same N-body simulation,
the choices made regarding the IMF and the slightly different
emphasis on which observations the model should reproduce most
closely mean that there are several differences in the values of the
parameters that define these galaxy formation models.

Here, we use the recalibration of the Gonzalez-Perez et al. (2014)
model introduced by Baugh et al. (2019) for the Planck Millennium
N-body simulation, which we refer to as GP14.PMILL. The Planck
Millennium N-body simulation (hereafter the PMILL simulation)
adopts the Planck cosmology (Planck Collaboration XVI et al.
2014; see Table 1) and has superior mass resolution and halo
merger histories that are better sampled in time compared with
earlier N-body simulations into which GALFORM was implemented
(see Table 1). Below, we review the processes that we vary in the
sensitivity analysis. A full description of GALFORM can be found
in Lacey et al. (2016).

Table 1. Planck Collaboration XVI et al. (2014) cos-
mology used in the P-Millennium simulation; the last
two rows give the simulation box length and the number
of particles used.

Parameter Value

�� 0.693
�M 0.307
�baryon 0.04825
h 0.6777
σ 8 0.8288
n 0.967
L[h−1 Mpc] 542.16
NP 50403

2.1.1 Star formation rate

The GP14.PMILL model uses an empirically motivated star for-
mation law that was introduced by Blitz & Rosolowsky (2006) and
implemented in GALFORM by Lagos et al. (2011). The star formation
rate is given by

�SFR = νSF × fmol × �gas, (1)

where �SFR is the star formation rate per unit area, �gas is the
surface density of gas, νSF is the inverse of the star formation time-
scale, and fmol is the ratio of the surface densities of the molecular
and total gas masses, �mol/�gas.

2.1.2 Supernova feedback

Supernova feedback in GALFORM is modelled as a process that
ejects cold gas from a galaxy to a reservoir of mass mres, at a
rate of

ṁout = βψ, (2)

where ψ is the star formation rate and β is a mass loading factor
defined as

β =
(

Vc

Vhot

)−γSN

. (3)

Here, Vhot and γ SN are model parameters and Vc is the effective
circular velocity of the disc or bulge (for starbursts) at the half-
mass radius. Note that these equations are applied to quiescent and
burst star formation. Different values can be adopted for the Vhot

parameters for the disc and burst contributions to star formation.
Gas is returned from this reservoir to the hot gas halo at the

rate of

ṁret = αret × mres

τdyn
, (4)

which is controlled by the free parameter αret; τ dyn = rvir/Vvir is the
dynamical time of the halo, where rvir is the virial radius of the halo
and Vvir is the effective circular velocity at this radius.

2.1.3 AGN feedback

Supermassive black holes (SMBHs) grow in the centres of galaxies,
and inject energy into the gas reservoir of a halo following accretion,
which disrupts the cooling process (see Fanidakis et al. 2011 and
Griffin et al. 2019 for descriptions of the treatment of SMBHs in
GALFORM). In GALFORM AGN heating occurs when two conditions
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Table 2. The GALFORM parameters analysed in this work. The
parameter ranges have been taken from previous analyses (Bower
et al. 2010; Rodrigues et al. 2017).

Process Parameter Min. Max.

Star formation νSF [Gyr−1] 0.2 1.2
Supernova feedback γ SN 1.0 4.0

αret 0.2 1.2
Vhot, disc [km s−1] 100 550
Vhot, burst [km s−1] 100 550

AGN feedback αcool 0.2 1.2
Disc instabilities fstab 0.61 1.1

are met: (i) the hot gas halo is in quasi-hydrostatic equilibrium,
defined in terms of the ratio of the cooling time, τ cool, to the free-
fall time, τ ff:

τcool(rcool)

τff (rcool)
>

1

αcool
, (5)

where αcool is a parameter, and (ii) the AGN power required to
balance the radiative cooling luminosity Lcool is below a fraction
fEdd of the Eddington luminosity LEdd of the SMBH of mass MBH:

Lcool < fEddLEdd (MBH) . (6)

2.1.4 Disc instabilities

Galaxies can also undergo morphological transformations and
starbursts as a result of disc instabilities. Galaxy discs that are
dominated by rotational motions are unstable to bar formation
when they are sufficiently self-gravitating. We assume that discs
are dynamically unstable to bar formation if (Efstathiou, Lake &
Negroponte 1982)

Fdisc = Vc(rdisc)√
1.68 G Mdisc/rdisc

< fstab, (7)

where Mdisc is the total disc mass (i.e. stars plus cold gas), rdisc

is the disc half-mass radius, and the factor 1.68 relates this to the
exponential scale length of the disc.

The quantity Fdisc measures the contribution of disc self-gravity
to its circular velocity, with larger values corresponding to less self-
gravity and so greater disc stability. Efstathiou et al. (1982) found a
stability threshold Fstab ≈ 1.1 for a family of exponential stellar disc
models. Note that a completely self-gravitating stellar disc would
have Fdisc = 0.61, which is therefore the minimum value allowed
for this parameter.

2.1.5 Parameter selection

We consider the relative importance of the processes described in
Sections 2.1.1–2.1.4 by performing an SA on the parameters that
describe these phenomena. The parameters and the ranges over
which they are varied are listed in Table 2. In some instances,
the parameter range is reasonably well defined, such as fstab, as
discussed above in Section 2.1.4. In other cases, the choice of range
of parameter values is less well defined. For example, using simple
conservative arguments, γ SN could take on values of 1 and 2 in
the momentum and energy conserving phases of the wind evolution
(Ostriker & McKee 1988; Lagos, Lacey & Baugh 2013). Numerical
simulations of winds have suggested different values of γ SN. The
other parameters defining the GALFORM model beyond those listed
in Table 2 are held fixed.

2.1.6 Model output

After the formation and evolution of galaxies are calculated over
the merger history of the dark matter haloes in the PMILL simu-
lation, galaxy luminosities can be obtained from the predicted star
formation rate and metallicity of the stars produced using a stellar
population synthesis model. Dust extinction is calculated in post-
processing, based on the size and gas metallicity of each galaxy
(Gonzalez-Perez et al. 2014; Lacey et al. 2016). The model output
that we focus on here is the K-band luminosity function at z = 0.

2.2 Variance-based sensitivity analysis

The SA method we use here closely follows those used by Sobol’
(2001) and Saltelli et al. (2017), which are designed to decompose
variance in the model output into the variances of the input
parameters and their interactions using as few model evaluations
as possible.

Many SA approaches suffer from a number of shortcomings,
which make them unsuitable for analysing non-linear models. By
non-linear models, we mean here those that are characterized
by interactions between the inputs2 and which therefore cannot
be analysed effectively using regression or one-at-a-time (OAT)
parameter variation techniques (Morris 1991).

Unlike other methods, variance-based SA allows a full explo-
ration of the input space, and therefore accounts for the interactions
between parameters and non-linear responses of the model. It
follows that variance-based methods are able to evaluate the total-
effect indices (see below) and rank the parameters in order of their
influence on the output (Chan, Saltelli & Tarantola 1997; Sobol’
2001; Saltelli et al. 2010).

Finally, we note that all SA methods assume that the model
inputs are independent, which might not hold in general for
complex models. For instance, correlations between inputs, or
unphysical combinations of their values, cannot be recognized by
SA techniques. Similarly, variance-based SA currently assumes that
the model output is a scalar. This means that the model outputs
are independent of one another; for example, in the case of the
luminosity function, the model prediction in a luminosity bin is
considered to be independent of the results in other bins and from
other outputs, e.g. other galaxy statistics. Even if the output of
the model is multidimensional, and even if it is correlated across
one or more dimensions,3 each of the outputs must be analysed
in isolation from the others. Unfortunately, at the time of writing,
there are no well-established techniques that quantify or alleviate
these two shortcomings. However, these limitations do not apply
to GALFORM: the input parameters can all be varied independently
and freely across the entire parameter space, and our outputs will
be quantized and analysed independently.

2.3 Sampling parameter space

Sampling the high-dimensional parameter space of a complex
model requires a trade-off between the accuracy of the sampling and

2Interactions between inputs occur, for example, when varying two or more
input parameters produces a significantly different response from the model
than would be expected from summing the change produced by varying the
parameters independently.
3We know that this is the case in galaxy formation models because if the
luminosity function changes in a given bin, this will lead, for example,
to a change in the luminosity–circular velocity relation. Benson (2014)
argued that correlations between bins in the observed luminosity function
are important in setting model parameters.
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computational expense. The accuracy of the sampling describes how
well the space is probed – have any potentially interesting regions
of the parameter space been overlooked because too few points have
been sampled or because the method used has left gaps in the space?

The accuracy of a sampling scheme can be assessed formally
in terms of its ’discrepancy’. The lowest discrepancy sampling
possible is a regular grid. However, this is subject to ’aliasing’
or a lack of resolution due to the fixed gaps in the parameter
space between the model evaluations; interesting model behaviour
could be hidden in the unsampled parts of the parameter space. The
convergence of the exploration of the parameter space is slow with
a regular grid. The aliasing can be reduced and the convergence
rate sped up by using a random sequence to sample the parameter
space, which leads to a higher density of sampling in some parts
of parameter space compared to a regular grid. The drawback in
this case is that some regions of the parameter space will be more
sparsely sampled than they were using a regular grid. A random
sequence is formally described as the highest discrepancy sampling.
Ideally, for a fixed number of sampling points, we want to strike
a balance between avoiding the regular sampling achieved using
a grid and leaving big gaps unsampled in the parameter space, as
happens with random sampling.

Several quasi-random techniques have been proposed to generate
sequences that approach this ideal of ’low-discrepancy’ sampling,
and which also ensure fast convergence of the uncertainties in the
sensitivity indices. A quasi-random sequence is one designed to
generate points in d-dimensions, which appear random but which
are generated deterministically to have certain desired properties.
Unlike pseudo-random and truly random sequences, successive
points in a quasi-random sequence fill the gaps left by the previous
points in the parameter space. The ’random’ part of the name is
technically a misnomer, as the sequence is fully deterministic, but
yields a uniform distribution when projected on to any dimension
of the parameter space.

A quasi-random sequence can be designed to minimize its dis-
crepancy. For a low-discrepancy sequence, all of its subsequences
also have low discrepancy. If a given sequence is uniform, its dis-
crepancy tends to be zero as its length increases. For these reasons,
quasi-random low-discrepancy sequences are used to maintain a
balance between rapid convergence of numerical algorithms, a
thorough coverage of the parameter space, and a high uniformity of a
resulting sample along all dimensions of the parameter space (Press
et al. 2007, section 7.8). Quasi-random sequences are therefore
an attractive replacement for pseudo-random sequences in many
applications that require a high-quality sampling.

Sampling based on low-discrepancy sequences, such as the
recurrent additive sequence (Ulam 1960), Halton sequence (Halton
1964), Latin hypercube (Stein 1987), or Sobol’ sequence (Sobol’
1967; Levitan et al. 1988), can be used in numerical integration and
model optimization and have been shown to outperform schemes
based on truly random, or pseudo-random number generators, while
achieving significantly faster convergence rates (Sobol’ 1993). The
advantage of these sequences over truly random and pseudo-random
sequences can be attributed to the fact that the low-discrepancy
property guarantees gapless sampling over the entire parameter
space.

The low-discrepancy quasi-random sequence typically used in
SA is the Sobol’ sequence (Sobol’ 1967). It can be efficiently
calculated, and produces a sample that quickly converges to the
correct set of sensitivity indices, as verified by checking against
analytically calculated values for test models. Even though it is
impossible to estimate the required number of model evaluations

prior to running the SA, there exists a natural convergence criterion
– the sum of the first-order indices, defined in equation (11), has
to add up to unity. Moreover, even if the SA did not converge after
the initial run, additional evaluations can be easily added (see the
example in the next subsection).

2.4 Saltelli sequence sampling

The Sobol’ sequence was originally proposed as a method of
improving the convergence of numerical integration (Sobol’ 1967).
Antonov & Saleev (1979) developed an efficient computational
method to implement Sobol’ sampling. Saltelli et al. (2010) com-
bined multiple Sobol’ sequences to further reduce the number
of points required for the estimation of the sensitivity indices,
improving the convergence rate.

Hereafter, we refer to the Sobol’ sequence as an N by d matrix,
where N is the number of points of a d dimensional parameter space.

The Saltelli sequence is obtained as follows: first, we generate
an N by 2d Sobol’ sequence, (as demonstrated for the case of N
= 4, d = 3 in the first line of equation 8). Let the first d columns
be called submatrix A (blue), and the last d submatrix B (red),
color text is available online. The values in the matrices indicate the
locations in parameter space at which the model is to be evaluated,
for parameters which can take on values over the range 0 to 1. We
next construct a number d of N by d matrices A(i)

B , for i ∈ {1, 2, ..., d},
such that for each A(i)

B the ith column is taken from matrix B, while
the remaining columns come from matrix A. The matrices A, B, and
A(i)

B specify all the points of the parameter space at which the model
is to be evaluated (one point per row), giving a total of N × (2 + d)
evaluations that are required to calculate the first-order sensitivity
indices.

Sobol(4, 3) =

⎡
⎢⎢⎣

0.500 0.500 0.500 0.500 0.500 0.500
0.250 0.750 0.250 0.750 0.250 0.750
0.750 0.250 0.750 0.250 0.750 0.250
0.125 0.625 0.875 0.875 0.625 0.125

⎤
⎥⎥⎦

A(1)
B =

⎡
⎢⎢⎣

0.500 0.500 0.500
0.750 0.750 0.250
0.250 0.250 0.750
0.875 0.625 0.875

⎤
⎥⎥⎦

A(2)
B =

⎡
⎢⎢⎣

0.500 0.500 0.500
0.250 0.250 0.250
0.750 0.750 0.750
0.125 0.625 0.875

⎤
⎥⎥⎦

A(3)
B =

⎡
⎢⎢⎣

0.500 0.500 0.500
0.250 0.750 0.750
0.750 0.250 0.250
0.125 0.625 0.125

⎤
⎥⎥⎦ (8)

A visual impression of the different sampling approaches is given
by Fig. 1, which shows five commonly used types of sampling: OAT,
uniform pseudo-random number generator, uniform grid sampling,
a two-dimensional Sobol’ sequence, and Saltelli sampling. The OAT
approach is often used with far fewer evaluations than shown here,
which makes it computationally cheaper than the other approaches.
The drawback of this method is clear from the vast areas of the
parameter space that are left unexplored. This problem is only
exacerbated on increasing the dimensionality of the parameter
space. The pseudo-random number generation suffers from poor
convergence, as randomness often results in over- and undersam-
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1832 P. Oleśkiewicz and C. M. Baugh

Figure 1. Comparison of selected parameter space sampling strategies. Each panel contains 400 points sampled between [0,1] in the X0 and X1 dimensions
using different methods, as labelled in each panel.

pling of many regions. The Sobol’ and Saltelli sequences uniformly
sample the parameter space and achieve the low-discrepancy target
at a reasonable computational cost.

2.5 Sensitivity indices

Given a scalar model Y with independent inputs, we can define the
first-order effect of the variance in the input Xi as

Ei = EX∼i (Y |Xi) =
∫

Y (Xi)pdf(Xi)
d∏

i �=j

dXi (9)

Vi = VarXi
(Ei) =

∫
(Ei − E(Y ))2 pdf(Xi)dXi, (10)

where Xi is ith model input, Vi is the variance integrated in Xi space
over dimension i, and Ei is the mean Y value, integrated over the
d-dimensional X space in all dimensions except i. Since Vi can only
take values between 0 and Var(Y ), the total variance in the model
output, we can define normalized first-order sensitivity indices Si of
each input parameter as

Si = Vi

Var (Y )
, (11)

which measures the effect that varying the input Xi has on the output,
averaged over variations of all other inputs. If Si = 1, all variance in
Y comes from the variance in Xi, whereas if Si = 0, none of it does,
and Y is independent of Xi.

In order to measure the interactions between model parameters,
we can define higher order indices. For second-order interactions,
the combined variance is

Vij = VarXij

(
EX∼ij

(
Y |Xi, Xj

)) − Vi − Vj , (12)

from which Si, j can be calculated analogously to Si.
It should now be obvious from the definition of the model variance

why the OAT methods are inappropriate for complex models – they
do not consider the full contribution to the model variance given
by equation (9) (which averages over all values of the other inputs,
instead of being measured only at a designated slice, as shown in the
relevant panel of Fig. 1), nor does OAT treat the combined variance
of two (equation 12) or more variables correctly.

For a deterministic model, the only source of variance in the
output is the variances of the inputs. Therefore, from variance
decomposition it follows that

d∑
i=1

Vi +
d∑

i<j

Vij + ... + V12...d = Var(Y ), (13)

which we normalize to obtain the sensitivity indices of all orders

d∑
i=1

Si +
d∑

i<j

Sij + ... + S12...d = 1. (14)

A direct consequence is that, in order to analytically decompose
the total variance of the model, one needs to compute variances of 2d

− 1 variables, which can be computationally expensive for complex

MNRAS 493, 1827–1841 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/493/2/1827/5682498 by D
urham

 U
niversity user on 28 February 2020



GALFORM sensitivity analysis 1833

models. However, if we assume that the indices decrease as their
order increases (which is correct for the model of interest here),
we might be less interested in the precise values of higher order
contributions, and focus instead on the total higher order response
of a given variable. In this case, it is convenient to combine the
higher order terms into a total-order index

ST i = EX∼i

(
VarXi

(Y | X∼i)
)

Var(Y )
= 1 − VarX∼i

(
EXi

(Y | X∼i)
)

Var(Y )
, (15)

containing all terms of the decomposed output variance, which
include Xi. Unlike the first-order indices, the STi do not have to add
up to 1, as they include all the input interactions.4

Higher order effects can also be calculated in simpler analyses,
such as ANOVA (Fisher 1918), high-dimensional model represen-
tations (Sobol’ 1993), or derivative-based methods. However, the
total indices are a unique feature of the variance-based SA, and
are a major advantage of this methodology, as they allow for a
direct comparison of the linear and non-linear impacts of the input
parameters.

Following Jansen (1999), Sobol’ (2001), and Saltelli et al. (2010),
we can use the approximate forms of the first- and total-order
sensitivity indices, based on the sampling matrices A, B, and A(i)

B

VarXi

(
EX∼i (Y |Xi)

) ≈ 1

N

N∑
j=1

f (B)j

(
f
(

A(i)
B

)
j
− f (A)j

)

(16)

EX∼i

(
VarXi

(Y |X∼i)
) ≈ 1

2N

N∑
j=1

(
f (A)j − f

(
A(i)

B

)
j

)2

, (17)

where f (X) is the model f evaluated at point X.

2.6 Illustrative sensitivity analysis of a toy model

The performance of the sensitivity analysis estimator can be demon-
strated using a toy model. The Ishigami function is an example of
such a model, and is commonly used to test the predictions of
sensitivity analysis because it contains non-linear interacting terms.
Nevertheless, the sensitivity indices can be calculated analytically
and compared to the estimated values.

The Ishigami function is defined by equation (14) of Ishigami &
Homma (1991) as

Y (X1, X2, X3) = sin (X1) + a sin2 (X2) + b X4
3 sin (X1) , (18)

where the Xi are random variables uniformly distributed between
−π and π , such that pdf(Xi) = U(−π , π ), and a, b are numerical
constants, here chosen to be 7 and 0.1, respectively.

The SA was carried out by running the model on inputs generated
by a three-dimensional Sobol’ sequence for 500 realizations, which
resulted in 4000 = 500 × (2 + 2 × 3) values of Xi (as explained
in Section 2.4). Next, equation (18) was evaluated at each Xi point,
giving a vector Y of length 4000. Finally, the vector Y was analysed
using the SALib Python package (Herman & Usher 2017).

The evaluations of equation (18) are shown in Fig. 2, and the
first- and total-order sensitivity indices of the three input parameters
are shown in Fig. 3. It is interesting to draw some qualitative
observations from Fig. 2:

(i) varying X1 and X2 in isolation results in large changes in Y;
this is reflected by large values for S1 and S2.

4In this case, the whole is literally more than the sum of the parts.

Figure 2. The 4000 evaluations of the Ishigami function (equation 18). On-
diagonal histograms show distribution of the Xi parameters. Off-diagonal
scatter plots show pairs of parameters and are colour-coded to show the
value of output Y.

Figure 3. First-order (red) and total (blue) sensitivity indices of the three
input parameters of the Ishigami function, with 1σ confidence bars (black).

(ii) varying X1 and X2 together has a large effect on Y; this is
reflected by large values for ST1 and ST2.

(iii) varying X3 for mid-range values produces little effect, but
varying other parameters at extreme X3 values produces a large
change in Y; correspondingly, S3 is nearly zero, but ST3, which
captures the global response of Y to X3, is larger.

(iv) S1 is negative, despite being defined in terms of non-zero
variance (equation 11); this is the result of using a numerical
approximation instead of an analytical formula to estimate S1;
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1834 P. Oleśkiewicz and C. M. Baugh

however, note that the confidence interval includes the origin, and
so the value of S1 is consistent with zero.

A more complete SA would involve computing second-order
indices, and comparing sensitivity indices for different versions of
the Ishigami function, such as with different a, b parameters, or over
different Xi ranges. However, this more complete analysis is beyond
the scope of this section, as it is only meant for demonstration
purposes. The source code used to reproduce this analysis has been
made public: https://github.com/oleskiewicz/sensitivity/releases/ta
g/v1.0.

2.7 GALFORM output used in the sensitivity analysis

When applying SA to a model with a multidimensional output,
it is necessary to select the most interesting outputs manually.
The Sobol’ index method assumes, and can only be calculated
for, separate one-dimensional output vectors Y. From the formal
standpoint, this is problematic as the sensitivity indices contain
no information about any correlations between various model
outputs. However, in practice, one could perform model runs that
follow the Saltelli sampling and then carry out separate sensitivity
analyses for any desired number of model outputs, since running
the model is more time consuming than calculating the Sobol’
indices.

Here, we focus on the prediction of GALFORM for the K-band LF
at z = 0, calculated as described in Section 2.1.6. We have chosen
to consider this statistic due to the well-understood influence of the
model parameters on the form of the luminosity function [see the
extensive discussion in Lacey et al. (2016)]. Varying the parameters
around the values used in the fiducial model shows that the bright
and faint ends of the luminosity function are regulated by different
physical processes. Therefore, the sensitivity indices could be easily
verified for errors, and we will be able to quantify our intuition
regarding the relative importance of the different feedback modes
on the abundance of galaxies at different luminosities.

We have elected to perform the analysis on the model output
values normalized by the observational data (see equation 20)
instead of on the model output itself. This way, the values we focused
on were close to the ones typically used for model optimization,
and had a reduced dynamic range, being effectively normalized
by the observational values. Analysing a SAM independently of
the observational constraints, while interesting in its own merit, is
outside the scope of this work.

3 R ESULTS

3.1 Sensitivity analysis experiments

We have carried out two separate sensitivity analyses using GAL-
FORM: (i) 600 GALFORM model runs varying two parameters (αcool

and γ SN), and (ii) 1600 model GALFORM runs varying seven
parameters (see Table 2).

For both series of runs, an SA was carried out on the K-band LF
at z = 0, with two different binnings of the LF used to compute the
sensitivity indices, as explained below.

In the first instance, we performed a simple analysis by splitting
the LF into two broad luminosity bins, one covering a range of
luminosities brighter than L∗ and the other luminosities fainter than
L∗ (see Fig. 4). For each run, we calculated two model outputs
covering the bright and faint ends of the LF, dfaint and dbright, defined
by summing the normalized differences between the observed and

Figure 4. The K-band LF at z = 0 in the AB magnitude system. Grey
lines represent 10 GALFORM model realizations randomly chosen from the
1600-model run series. The black line represents the observational data from
Driver et al. (2012). The black vertical line is drawn at L = L∗, and separates
the bright and the faint ends of the LF.

predicted values of the luminosity function for luminosities brighter
and fainter than L∗, e.g.

dfaint =
∑
L<L∗

log10(φ) − log10(φ̂)

log10(φ)
, (19)

with dbright defined analogously for L > L∗. The observed luminosity
function φ̂ is taken from Driver et al. (2012). Unlike a traditional
measure of model fitness, we do not take the absolute value or square
of the distance between the model prediction and the data. This is
because the sign of the output (i.e. the sense of the discrepancy) is
valuable information for the sensitivity indices, as it contains the
direction of the model response.

This coarse analysis is quantitatively identical to measuring the
LF using only two broad luminosity bins. This exercise has two
goals: (i) to verify that SA produces explainable results that can
be interpreted in accordance with our physical intuition about the
galaxy formation model, and (ii) to check the convergence of the
sensitivity indices and their confidence intervals, which can be
estimated as explained in Section 2.2.

After this coarse two-bin analysis, in the second case we calculate
sensitivity indices for each of the 18 luminosity bins, Li, using the
quantity

di = log10(φi) − log10(φ̂i)

log10(φi)
. (20)

This serves as a fine-grained analysis, which can quantify the
relative impact of different parameters on the individual segments
of the LF, as well as uncovering interactions between model
parameters.

3.2 Feedback processes and the luminosity function

The first series of runs, which analysed the effects of changing
two of the parameters that specify different feedback processes in
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Figure 5. Sensitivity indices for the first series of runs, when varying two parameters in GALFORM: αcool and γ SN, for the K-band luminosity function
measured in two coarse luminosity bins. The colours of the bars indicate different indices, first (blue) (equation 11) and total (red) (equation 15) order for a
given variable. The left-hand panel shows indices for L < L∗, and the right for L > L∗ (see equation 19). The black bars show the 1σ confidence interval for
the sensitivity indices.

Figure 6. Convergence of the first- and total-order sensitivity indices for
the first series of runs, when varying two parameters of GALFORM, αcool

and γ SN, as a function of a number of samples. The sensitivity indices
in this case are computed in each of two broad luminosity bins, covering,
respectively, the faint and bright ends of the luminosity function. Individual
subplots show the results for the faint and bright ends of the K-band LF
(columns, labelled on the top), and the α parameters (rows, labelled on the
right). Solid lines correspond to the values of the indices, and the shaded
regions to the 1σ confidence band of the values, both colour-coded by the
order of the indices as labelled in the legend.

GALFORM, αcool and γ SN, was carried out to verify the usefulness of
the SA and to evaluate its effectiveness, given our physical intuition,
regarding the expected impact on the LF of varying these model
parameters. Only two parameters were allowed to vary to speed-up
the analysis and allow for an easier interpretation of results: αcool

and γ SN (see Table 2 for the range of parameter values considered).
Recall that γ SN controls the mass loading of SNe-driven winds and
αcool determines the halo mass above which AGN heating shuts
down the cooling flow.

Fig. 5 shows the first- and total-order sensitivity indices
calculated from 600 GALFORM model runs for the coarse-binned
analysis of luminosity function using two bins, one fainter and one
brighter than L∗, as prescribed by equation (19). The results are
striking, but not unexpected: it is clear that γ SN is the dominant
parameter out of the two in shaping the model output for galaxies
fainter than L∗ (and hence, that such galaxies are mainly affected by
SNe feedback) and that both parameters have similar significance
for galaxies brighter than L∗ (albeit αcool is slightly more important),
and so bright galaxies are affected by SNe feedback and AGN
heating. Moreover, S1 and ST are comparable in all cases, which
means that the model response to varying these parameters is mostly
linear.

Fig. 6 shows the convergence of the indices from Fig. 5 as a
function of the number of samples N. The indices do not change
substantially after 100 GALFORM runs.

Fig. 7 shows the first- and total-order sensitivity indices for the
fine-grained analysis of the LF using multiple luminosity bins, using
equation (20) as model output. We can see that L∗ is close to
coinciding with the bin at which AGN heating starts to become
important, which explains the results shown in Fig. 5. We also learn
that while SNe feedback does not interact with the AGN heating at
the faint end of the LF, its influence over the bright end is strongly
correlated.
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1836 P. Oleśkiewicz and C. M. Baugh

Figure 7. First- and total-order sensitivity indices (equation 11) for the first series of runs, when varying two parameters in GALFORM: αcool and γ SN. Bottom
panel: K-band luminosity function at z = 0 like in Fig. 4; grey lines correspond to 10 randomly chosen runs; black line is the observational data from Driver
et al. (2012); dashed vertical line corresponds to L∗. Top panels: first- and total-order (as labelled on the right) sensitivity indices of two variables (y-axis) for
18 individual magnitude bins (x-axis), colour-coded by value between 0 (not sensitive) and 1 (most sensitive) as labelled by the colour bar at the top.

We did not consider the best-fitting model for this two-parameter
case, since we perform a rudimentary estimate of the best-fitting
parameter set in the next section, when varying mor GALFORM

model parameters at the same time.

3.3 Sensitivity analysis over a multidimensional parameter
space

The design of the second experiment, in which seven GALFORM

parameters are varied simultaneously (Table 2), is inspired by

the work on parameter optimization using Bayesian emulators by
Bower et al. (2010) and Rodrigues et al. (2017). For comparison,
we use the same parameter ranges adopted in their studies. This
exercise requires significantly more model realizations than the first
one, since we sample a higher dimensional parameter space and aim
to observe interactions between more parameters.

Fig. 8 shows the parameter space and its sampling, colour-coded
by the goodness-of-fit measure

χ2 =
∑

i

(
log10(φi) − log10(φ̂i)

)2

log10(φi)
, (21)
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GALFORM sensitivity analysis 1837

Figure 8. The parameter space of the second GALFORM experiment in which seven parameters are varied over 1600 realizations of the model. On-diagonal
histograms show the nearly uniform distribution of the individual parameters, as expected for Saltelli sampling. Off-diagonal scatter plots show the parameter
space for pairs of parameters, colour-coded by the goodness-of-fit χ2 (equation 21) of the model prediction for the K-band luminosity function using 18
luminosity bins (Fig. 4), to the observational estimate from Driver et al. (2012); blue points correspond to runs with low values of χ2, as labelled by the
colour bar.

where the sum is carried out over all luminosity bins and low values
of χ2 are blue. While χ2 is not a robust model output for SA, as
it does not contain information about the direction of the model
response as explained in Section 3, it is still a useful measure
of a global model response or ’quality of fit’. The on-diagonal
histograms indicate that the Saltelli sampling produces a nearly

uniform sampling of parameter space, as expected from a low-
discrepancy sequence. The off-diagonal scatter plots give a first
indication of some of the first-order index results: the χ2 of the
model LFs is sensitive to variation of γ SN, is degenerate in the
γ SN–vhot disc plane (which follows directly from equation 3), and
depends only weakly on other parameters.
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Figure 9. Sensitivity indices for the second series of 1600 GALFORM uns, varying seven model parameters (Table 2), computed using the coarse two-bin
description of the luminosity function. The bar colours indicate the values of different indices, the first index (equation 11) (S1, red) and total-order index
(equation 15) (ST, blue) for each parameter. The left-hand panel shows indices for galaxies in the luminosity bin fainter than L∗, and the right-hand panel for
galaxies in the bin brighter than L∗ (equation 19). The black bars show the 1σ confidence intervals for the sensitivity indices.

Fig. 9 shows the first- and total-order sensitivity indices for the
coarse-binned analysis of the LF (equation 19). Since sensitivity
indices are derived from the normalized variance (equations 11 and
15), the values should always be between 0 and 1, which they are
(including the confidence interval). Similarly to Fig. 5, in Fig. 9 we
see two different types of behaviour of the GALFORM model: the
faint end is dominated by SNe feedback, while the bright end has a
mixed, non-linear response to many parameters. Interestingly, while
AGN feedback (via αcool) has the highest first-order sensitivity index
(S1) for the bright end of the LF, the total-order indices (ST) of SNe
feedback processes dominate. Of particular interest are the fstab and
vhot,burst parameters. These parameters have nearly zero first-order
response indices (which means that their impact cannot be detected
by an OAT analysis), but their combined higher order responses are
significant.

It is instructive to see the origin of the values reported in Fig. 9,
by inspecting how the sensitivity changes bin-by-bin (equation
20) in Fig. 10. The results are consistent with Section 3.2, and
together provide an interpretation of the behaviour of the GALFORM

model. Moreover, displaying the model output together with model
sensitivity can be of use when manually tweaking the model,
allowing for a fine, manual control over the precise details of the
LF (or, indeed, other outputs).

Finally, we note that Fig. 10 also shows the LF for the best-fitting
model, as determined by the smallest value of equation (21). This
can be considered an additional benefit of running SA – requiring
so many model realizations naturally finds one that is likely to
be close to a global optimum. The best-fitting parameter values
are reported in Table 3. Note that the values diverge from those
reported in Lacey et al. (2016), due to different fitting method and the
fact that this study only considered the K-band LF, whereas Lacey
et al. (2016) took into account multiple observations in a manual
parameter tuning. Of particular interest is the value of Vhot,disc, which
is over 20 per cent larger than in the previous calibration of this

GALFORM model. We attribute this difference to the fact that, as
discussed in Section 3.3 and shown in Fig. 9, the combined total-
order sensitivity index of Vhot,disc outweighs the first-order index
for both ends of the K-band LF. This suggests that the optimal
value of this parameter could be missed by OAT model fitting. The
differences in the other parameter values are not as significant as
they might seem – the variables with the highest sensitivity match
the previously reported values pretty closely (e.g. γ SN is within
7 per cent), and the variables with low sensitivity that diverge by
a significant margin by definition of the sensitivity indices do not
have significant impact on the K-band LF.

4 C O N C L U S I O N S

We have used variance-based sensitivity analysis to analyse the
sensitivity of the K-band luminosity function predicted using
the GALFORM semi-analytical model of galaxy formation to the
variation of the model parameters. We have shown that sensitivity
analysis is a useful tool, which goes beyond simple model fitting
and OAT parameter variation, and we have demonstrated that it can
be applied to a challenging problem in computational astrophysics.
Variance-based sensitivity analysis is perhaps particularly useful
for the semi-analytic modelling of galaxy formation modelling,
due to the computational expense of searching a multidimensional
parameter space and the non-linearity of the model. These features
have led some to view such models as black boxes. Part of the aim of
the sensitivity analysis presented here is to make the behaviour of the
model and how it responds to parameter changes more transparent.

In its present form, sensitivity analysis can only deal with one-
dimensional outputs of a model, which on the one hand means
that it cannot be used to resolve correlations in model outputs
(such as between the predictions in different bins of the luminosity
function or between the luminosity function in different bands;
see Benson 2014), yet on the other hand this feature gives the
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GALFORM sensitivity analysis 1839

Figure 10. First- and total-order sensitivity indices (equation 11) for the second series of runs, when varying seven GALFORM parameters (Table 2). Bottom
panel: K-band luminosity function at z = 0 as in Fig. 4; grey lines show 10 randomly chosen GALFORM models; the black line connects observational data
from Driver et al. (2012); dashed vertical line corresponds to L∗; the solid red line shows the best-fitting model. Top panels: first- and total-order (as labelled
on the right) sensitivity indices of two variables (y-axis) for individual magnitude bins (x-axis), colour-coded by value between 0 (not sensitive) and 1 (most
sensitive) as labelled by the colour bar at the top.
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Table 3. The best-fitting GALFORM parameters found in
this work, in relation to Driver et al. (2012).

Parameter Value

νSF [Gyr−1] 0.46
γ SN 3.45
αreheat 0.74
Vhot,disc [km s−1] 332.69
Vhot,burst [km s−1] 392.90
αcool 0.58
fstab 0.77

scientist performing the study unlimited flexibility in choosing and
parametrizing the outputs they find the most important. Here, we
have elected to perform the sensitivity analysis using the model
predictions in luminosity bins cast in terms of the difference between
the computed and measured K-band luminosity function at z =
0. Our motivation for this was that by choosing an established
observable with a well-understood connection to the underlying
physical processes and their description in terms of GALFORM

parameters, we could make a convincing case for the usefulness
of the sensitivity analysis.

With this in mind, future work on SA might want to examine
the variance of the outputs of the semi-analytic model alone,
independently of the corresponding measured observable values.
There are three main reasons for such an approach: (i) Using the
full dynamic range of the predictions: normalizing the model output
by observations flattens the dynamic range, and while SA works
equally well for small and large values, by only analysing a flat
version of the model predictions we effectively take the regions in
which the model gives a flat or steep response (for instance, the
faint and bright ends of the LF, respectively) and make them look
the same. (ii) Independence of post-processing: by comparing to
data, we had to make a choice about the norm of the discrepancy
between the model output and observations – do we retain the
sense of the discrepancy or square it? A different SA study could
have chosen differently, altering the results. By analysing model
outputs independently of the observations, these choices are no
longer necessary. (iii) Data independence: SA results could change
if a different data set is used with the same model.

Moreover, the K-band luminosity function is just one possible
output and there are many others, which a successful semi-analytic
model should reproduce accurately. Analysing all of these is outside
the scope of this study, but we hope to have shown that SA is a
promising avenue of research.

Finally, we note that while correctly estimating model sensitivity
can be useful in guiding model optimization and improving the
physical interpretation of the parameters of the galaxy formation
models, one must remember that even the most rigorous sensitivity
analysis can only provide the answers with regard to the model,
not the underlying physical system itself (Taleb & Douady 2013).
Therefore, the relationship between the structure of the model and
that of the physical system remains open to discussion.
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Sobol’ I. M., 1967, Ž. Vyčisl. Mat. Mat. Fiz., 7, 784
Sobol’ I. M., 1993, Math. Model. Comput. Exp., 1, 407
Sobol’ I., 2001, Math. Comput. Simul., 55, 271
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