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INTRODUCTION

ABSTRACT

We present the first application of a variance-based sensitivity analysis (SA) to a model that aims
to predict the evolution and properties of the whole galaxy population. SA is a well-established
technique in other quantitative sciences, but is a relatively novel tool for the evaluation of astro-
physical models. We perform a multi-parameter exploration of the GALFORM semi-analytic galaxy
formation model, to compute how sensitive the present-day K-band luminosity function is to vary-
ing different model parameters. The parameter space is scanned using a low-discrepancy sampling
technique proposed by Saltelli. We first demonstrate the usefulness of the SA approach by varying
just two model parameters, one which controls supernova feedback and the other the heating of
gas by AGN. The SA analysis matches our physical intuition regarding how these parameters affect
the predictions for different parts of the galaxy luminosity function. We then use SA to compute
Sobol’ sensitivity indices varying seven model parameters, connecting the variance in the model
output to the variance in the input parameters. The sensitivity is computed in luminosity bins,
allowing us to probe the origin of the model predictions in detail. We discover that the SA correctly
identifies the least- and most important parameters. Moreover, the SA also captures the combined
responses of varying multiple parameters at the same time. Our study marks a much needed step
away from the traditional “one-at-a-time” parameter variation often used in this area and improves
the transparency of multi-parameter models of galaxy formation.
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rameters to specify a model. Here, we present a new applica-

Galaxy formation is a complex process which we are only
now just starting to understand through a combination
of observations, numerical simulations and analytical mod-
elling. Two main theoretical techniques are used to model
the formation and evolution of galaxies: semi-analytical
modelling (SAM) and hydrodynamic simulations (for a re-
view see Somerville & Davé 2015). SAMs use physically mo-
tivated, simplified mathematical relations to describe the
evolution of baryons in growing dark matter haloes (Baugh
2006; Benson 2010). Hydrodynamic simulations, on the
other hand, tend to make fewer assumptions and approx-
imations than SAMs and solve the fluid equations govern-
ing the dynamics of baryons. Nevertheless, in hydrodynamic
simulations many processes, such as star formation, remain
“sub-grid” due to the finite numerical resolution of the simu-
lation and our inability to write down the precise equations
describing some processes (Crain et al. 2015; Ludlow et al.
2019). In the absence of a complete mathematical descrip-
tion, physical processes are described in both SAMs and
hydrodynamic simulations by approximate equations that
contain parameters. Values have to be chosen for these pa-
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tion of an established statistical method to assess the impact
of changes in model parameters on the output of a model.

The past few years have seen tremendous break-
throughs in the hydrodynamic simulation of galaxy for-
mation for significant galaxy populations in cosmologi-
cal volumes (Vogelsberger et al. 2014; Schaye et al. 2014;
Pillepich et al. 2018). Nevertheless, SAMs remain an attrac-
tive and valuable complement to hydrodynamical simula-
tions due to their flexibility and speed. These properties of
SAMs mean that they can be used to build intuition about
physical processes, by running thorough investigations of
the impact of varying model parameters (e.g. see the com-
prehensive exploration of perturbations around the fiducial
model presented by Lacey et al. 2016). Also, SAMs remain
the method of choice to populate large volume N-body simu-
lations using a physical galaxy formation model: the fiducial
simulation volumes used in SAMs are around 100 times big-
ger than those used in the current state-of-the-art hydrody-
namical simulations. The predictions of SAMs have reached
an impressive level of maturity through careful comparisons
between the predictions of different groups and techniques
(e.g. Contreras et al. (2013); Knebe et al. (2015); Guo et al.
(2016); Mitchell et al. (2018)).

Nevertheless, some scepticism remains regarding SAMs,
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much of which can be traced to the way in which the model
parameters are set. Traditionally models have been cali-
brated by developing physical intuition about how the model
responds to changes in selected parameter values, such as
those which control the mass loading of winds driven by su-
pernovae, and then varying one parameter at a time to hone
in on a best-fitting model. Often the quality of the model
reproduction of the calibration data is judged by eye and
compromises are made in order to match multiple datasets;
these steps are hard to quantify and therefore difficult to
reproduce. The “best-fitting” model is reported as a single
choice of parameter set that defines the model. The primary
motivation for producing a single model is the desire to build
mock catalogues for galaxy surveys (Baugh 2013). However,
users often want to know the uncertainty on the model pre-
dictions and how the predictions respond to changes in the
input parameters.

The range of processes modelled by SAMs lends them
the flexibility to predict varied observation but at the cost
of having to specify a number of parameters which compli-
cate model optimisation or calibration. A number of tech-
niques have been devised to reduce the complexity or di-
mensionality of the parameter space and to perform efficient
searchs of the parameter space: principal component analy-
sis (Benson & Bower 2010, hereafter PCA), Bayesian emula-
tors (Bower et al. 2010; Gémez et al. 2012), particle swarm
optimiser (Ruiz et al. 2015, hereafter PSO), Markov Chain
Monte Carlo (Henriques et al. 2009; Lu et al. 2011, 2012;
Henriques et al. 2013; Mutch et al. 2013; Martindale et al.
2017), and Latin-hypercube sampling (Bower et al. 2010;
Rodrigues et al. 2017).

Here we apply sensitivity analysis to quantify the de-
pendence of the model output on the variation in the values
of the model input parameters. The analysis of Gémez et al.
(2014) using the ChemTreeN SAM of Tumlinson (2009) is
similar in scope to our work. They use an analysis of variance
technique for variance decomposition instead of sensitivity
indices, and Gaussian processes for model fitting. Here we
use the GALFORM SAM effectively as a black-box model, and
evaluate the sensitivity of the model outputs to the variation
of the input parameters. A SAM is an ideal candidate for
sensitivity analysis, as the interactions between parameters
are complex enough to develop a black-box-like behaviour
(“becomes easier to experiment with than to understand”)
(Golovin et al. 2017); however, many parameters have a nat-
ural physical interpretation, and hence it will be straightfor-
ward to develop intuition about how sensitive the model
outputs should be to changing the inputs. Many parameters
also have either physically motivated bounds, or at least a
plausible range of possible values.

A criticism often aimed at SAMs is that they contain
too many free parameters. This is usually rebuffed with the
insistence that the parameters are physical, not statistical.
Model fitting alone is therefore insufficient for interpreting
how well a SAM is performing. A different research question,
one this study tries to address, is how sensitive the model is
to the parameter variation — in other words, how well do we
understand the impact of the physical processes and their
interactions on the model predictions?

Sensitivity analysis (SA) (Fisher 1918; Sobol’ 1993,
2001; Saltelli et al. 2010) is an area of statistical modelling
which analyses how the variance of the output of a model

is affected by variance in the model inputs. It is closely re-
lated to uncertainty analysis and model optimisation, and
can be used to test the robustness of the model predictions
to uncertainty in the input parameters, quantify dependence
of the outputs of a model on different parameters, identify
model non-linearities, and guide subsequent model optimisa-
tion. This addresses a common criticism of black-box mod-
els, namely that after adding sufficiently many free parame-
ters they can be fine tuned to match any observations, and
provide a single set of predictions. While model optimisation
can be used to compute confidence intervals, SA is uniquely
positioned to quantify model responses and the relative im-
portance of the inputs. This addresses the complaint about
SAMs listed above, that providing a spread of model predic-
tions is preferable to fitting to the observations. Using SA,
we will be able to not only tell how much model predictions
vary for individual outputs, but also quantify how much of
this variance can be attributed to individual model inputs
(or their combinations).

There are several SA techniques, not all of which
are suitable for analysing non-linear models with a high-
dimensional parameter space. With a few exceptions®, SA is
done in 3 stages:

(i) sampling of the parameter space
(ii) model evaluation in the parameter space
(iii) computation of sensitivity indices

Here, we use a variance-based SA which adopts the im-
provement of introduced by Saltelli et al. (2017) over the
Sobol’ indices. Variance-based methods aim to decompose
the variance of the model output into the contributions from
individual parameter variances, as well as the combined vari-
ances of the interactions of multiple combinations of param-
eters changing at once. In order to avoid a computational
penalty for evaluating all possible parameter combinations,
input parameters are treated as probability distributions,
and the sensitivity of the model output is estimated ap-
proximately. Moreover, a number of numerical optimisations
have been introduced into the sampling and index calcula-
tion techniques, to improve the convergence of the indices
and average over the values which are too difficult to com-
pute efficiently.

This work diverges from previous studies in two impor-
tant ways: firstly, we narrow the scope of this investigation to
computing only sensitivity indices, and we do not attempt to
provide the best-fitting values for a galaxy formation model.
We believe that SA is not the best tool for this task, as it
investigates model responses at the extreme values of input
parameters, and often for unusual combinations of inputs,
where the model no longer reproduces the observable values.
Secondly, we do not limit ourselves to measuring responses
of the model to individual parameters and their linear com-
binations. Instead, we use sensitivity indices to capture both
individual and combined impacts of parameters. Lastly, this
study focuses exclusively on one observable, the K-band lu-
minosity function, calculated using the GALFORM SAM, and
probes how this specific model reacts to changes in the input

1 Some methods, such as Gaussian processes, use parameter ex-
ploration to simultaneously measure model sensitivity and max-
imise goodness-of-fit for model output(s).
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Table 1. Planck Collaboration et al. (2014) cosmology used in
the P-Millennium simulation; the last two rows give the simula-
tion box length and the number of particles used.

parameter value
Qa 0.693
Qs 0.307
Qbaryon 0.04825
h 0.6777
os 0.8288
n 0.967
L[h~'Mpc]  542.16
Np 50403

parameters. Our scope is narrower, but also deeper than any
previous study in this area.

The layout of the paper is as follows. In Section 2 we
set out the theoretical background, introducing the GAL-
FORM model and, for completeness, giving the equations for
the processes that we vary (§ 2.1). We then discuss vari-
ance based sensitivity analysis (§ 2.2), the concept of low-
discrepancy sampling (§ 2.3), the exploration of parameter
space using Saltelli sampling (§ 2.4), define the sensitivity
indices (§ 2.5) and illustrate these ideas with a toy model
(§ 2.6). Our results using GALFORM are presented in Section 3
and our conclusions are given in Section 4.

2 THEORETICAL BACKGROUND

Here we set out the theoretical ideas used in the paper. § 2.1
gives a brief overview of the GALFORM semi-analytical model,
introducing the processes that are varied in the sensitivity
analysis. § 2.2 introduces variance based sensitivity analy-
sis, § 2.3 discusses the sampling of a model parameter space
and § 2.4 covers Saltelli sampling. § 2.5 defines the sensitiv-
ity indices and § 2.6 illustrates their use with a toy model.
§ 2.7 discusses the use of GALFORM output in the sensitivity
analysis.

2.1 GALFORM

GALFORM is a SAM which aims to predict the properties
of galaxies starting from dark matter halo merger his-
tories that are typically extracted from an N-body sim-
ulation (Cole et al. 2000; Baugh 2006; Bower et al. 2006;
Lacey et al. 2016). GALFORM models the processes which
shape the galaxy population using a set of physically mo-
tivated, non-linear differential equations which track the ex-
change of mass, energy and angular momentum between the
different components of a galaxy. The processes modelled
are:

(i) the merger histories of dark matter haloes

(ii) the heating and cooling of gas and the formation of
galactic discs

(iii) quiescent star formation in galactic discs

(iv) bursts of star formation triggered by galaxy mergers
or dynamically unstable disks

(v) feedback driven by supernovae (SNe), which can eject
cold gas from a galaxy

(vi) heating by an active galactic nucleus (AGN), which
can prevent gas cooling
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(vil) chemical enrichment of stars and gas

These processes are in many cases modelled by equa-
tions that contain parameters. A GALFORM model corresponds
to a set of parameters whose values have been chosen so that
the model reproduces a particular set of observations. Some
of these parameters govern different choices for processes in
the model, such as the radial density profile assumed for
the hot gas within a halo or the stellar initial mass func-
tion (IMF) which describes the number of stars of different
masses produced in episodes of star formation. For exam-
ple, the Gonzalez-Perez et al. (2014) model assumes a uni-
versal, solar neighbourhood IMF whereas the Lacey et al.
(2016) model invokes a top-heavy IMF in bursts of star for-
mation and a solar neighbourhood IMF in quiescent star
formation. Even though these two models are implemented
in the same N-body simulation, the choices made regarding
the IMF and the slightly different emphasis on which obser-
vations the model should reproduce most closely means that
there are several differences in the values of the parameters
which define these galaxy formation models.

Here we use  the  recalibration of  the
Gonzalez-Perez et al.  (2014) model introduced by
Baugh et al.  (2019) for the Planck Millennium N-
body simulation, which we refer to as GP14.PMILL.
The Planck Millennium N-body simulation (hereafter
the PMILL simulation) adopts the Planck cosmology
(Planck Collaboration et al. 2014; see Table 1) and has
superior mass resolution and halo merger histories that
are better sampled in time compared with earlier N-body
simulations into which GALFORM was implemented (see
Table 1). Below we review the processes that we vary in the
sensitivity analysis. A full description of GALFORM can be
found in Lacey et al. (2016).

2.1.1 Star formation rate

The GP14.PMILL model uses an empirically motivated star
formation law that was introduced by Blitz & Rosolowsky
(2006) and implemented in GALFORM by Lagos et al. (2011).
The star formation rate is given by

YSFR = VsF X fmol X Egaa (1)

where Ygrr is the star formation rate per unit area, Ygas
is the surface density of gas, vsr is the inverse of the star
formation time-scale, and fmo is the ratio of the surface
densities of the molecular and total gas masses, Ymol/Zgas-

2.1.2  Supernova feedback

Supernova feedback in GALFORM is modelled as a process
which ejects cold gas from a galaxy to a reservoir of mass
Myes, at a rate of

Tout = ﬂd)a (2)

where v is the star formation rate and 8 is a mass loading
factor defined as

() o

Here Vhot and ysn are model parameters and V; is the effec-
tive circular velocity of the disk or bulge (for starbursts) at
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the half mass radius. Note that these equations are applied
to quiescent and burst star formation. Different values can
be adopted for the Viot parameters for the disk and burst
contributions to star formation.
Gas is returned from this reservoir to the hot gas halo
at the rate of
mres

mrct = Qret X 3 (4)
Tdyn

which is controlled by the free parameter aret; Tdayn
Tvir/Veir is the dynamical time of the halo, where ryi; is
the virial radius of the halo and Vi is the effective circular
velocity at this radius.

2.1.3 AGN feedback

Supermassive black holes (SMBHs) grow in the centres of
galaxies, and inject energy into the gas reservoir of a halo
following accretion, which disrupts the cooling process (see
Fanidakis et al. 2011 and Griffin et al. 2019 for descriptions
of the treatment of SMBHs in GALFORM ). In GALFORM AGN
heating occurs when two conditions are met: (i) the hot gas
halo is in quasi-hydrostatic equilibrium, defined in terms of
the ratio of the cooling time, Tcool, to the free-fall time, 74:

COO. COO. 1
Toalleon) o, 1 )
T (rcool) Qcool

where ool is @ parameter, and (ii) the AGN power required
to balance the radiative cooling luminosity Lcoor is below a
fraction fraq of the Eddington luminosity Lgaq of the SMBH
of mass Mpyu:

Leool < fraaLrda (MpH) . (6)

2.1.4 Disc instabilities

Galaxies can also undergo morphological transformations
and starbursts as a result of disc instabilities. Galaxy discs
which are dominated by rotational motions are unstable to
bar formation when they are sufficiently self-gravitating. We
assume that discs are dynamically unstable to bar formation
if (Efstathiou et al. 1982):

‘/C(Tdisc)
1.68G Mdisc/rdisc

where Mgisc is the total disc mass (ie stars plus cold gas),
rdisc is the disc half-mass radius, and the factor 1.68 relates
this to the exponential scale length of the disc.

The quantity Faisc measures the contribution of disc
self-gravity to its circular velocity, with larger values cor-
responding to less self-gravity and so greater disc stability.
Efstathiou et al. (1982) found a stability threshold Fsiap =
1.1 for a family of exponential stellar disc models. Note
that a completely self-gravitating stellar disc would have
Faisc = 0.61, which is therefore the minimum value allowed
for this parameter.

Fdisc = < fstaba (7)

2.1.5 Parameter selection

We consider the relative importance of the processes de-
scribed in § 2.1.1 - § 2.1.4 by performing a SA on the pa-
rameters that describe these phenomena. The parameters

Table 2. The GALFORM parameters analysed in this work.
The parameter ranges have been taken from previous analyses
(Bower et al. 2010; Rodrigues et al. 2017).

process parameter min max
star formation vsr [Gyr—1] 0.2 1.2
supernova feedback  ysn 1.0 4.0

Qret 0.2 1.2

Vhot,disk [km/sec} 100 550
Vhot,burst [km/sec] 100 550
AGN feedback Qeool 0.2 1.2
disc instabilities Sfstab 0.61 1.1

and the ranges over which they are varied are listed in Ta-
ble 2. In some instances, the parameter range is reasonably
well defined, such as fstap, as discussed above in § 2.1.4.
In other cases, the choice of range of parameter values is
less well defined. For example, using simple conservation ar-
guments, ysn could take on values of 1 and 2 in the mo-
mentum and energy conserving phases of the wind evolution
(Ostriker & McKee 1988; Lagos et al. 2013). Numerical sim-
ulations of winds have suggested different values of ysn. The
other parameters defining the GALFORM model beyond those
listed in Table 2 are held fixed.

2.1.6  Model output

After the formation and evolution of galaxies is calculated
over the merger history of the dark matter haloes in the
PMILL simulation, galaxy luminosities can be obtained from
the predicted star formation rate and metallicity of the stars
produced using a stellar population synthesis model. Dust
extinction is calculated in post-processing, based on the size
and gas metallicity of each galaxy (Gonzalez-Perez et al.
2014; Lacey et al. 2016). The model output that we focus
on here is the K-band luminosity function at z = 0.

2.2 Variance-based sensitivity analysis

The SA method we use here closely follows those used by
Sobol’ (2001) and Saltelli et al. (2017), which are designed to
decompose variance in the model output into the variances
of the input parameters and their interactions using as few
model evaluations as possible.

Many SA approaches suffer from a number of short-
comings which make them unsuitable for analysing non-
linear models. By non-linear models we mean here ones that
are characterised by interactions between the inputs® and
which therefore cannot be analysed effectively using regres-
sion or one-at-a-time (OAT) parameter variation techniques
(Morris 1991).

Unlike other methods, variance-based SA allows a full
exploration of the input space, and therefore accounts for the
interactions between parameters and non-linear responses of
the model. It follows that variance-based methods are able
to evaluate the total effect indices (see below) and rank

2 Interactions between inputs occur, for example, when varying
two or more input parameters produces a significantly different
response from the model than would be expected from summing
the change produced by varying the parameters independently.
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Figure 1. Comparison of selected parameter space sampling strategies. Each panel contains 400 points sampled between [0, 1] in the X

and X; dimensions using different methods, as labelled in each panel.

the parameters in order of their influence on the output
(Chan et al. 1997; Sobol’ 2001; Saltelli et al. 2010).
Finally, we note that all SA methods assume that the
model inputs are independent, which might not hold in gen-
eral for complex models. For instance, correlations between
inputs, or unphysical combinations of their values, cannot be
recognised by SA techniques. Similarly, variance-based SA
currently assumes that the model output is a scalar. This
means that the model outputs are independent of one an-
other; for example in the case of the luminosity function,
the model prediction in a luminosity bin is considered to
be independent of the results in other bins and from other
outputs, e.g. other galaxy statistics. Even if the output of
the model is multi-dimensional, and even if it is correlated
across one or more dimensions®, each of the outputs must
be analysed in isolation from the others. Unfortunately, at
the time of writing there are no well-established techniques
which quantify or alleviate these two shortcomings. How-
ever, these limitations do not apply to GALFORM : the input

3 We know that this is the case in galaxy formation models be-
cause if the luminosity function changes in a given bin this will
lead, for example, to a change in the luminosity - circular velocity
relation. Benson (2014) argued that correlations between bins in
the observed luminosity function are important in setting model
parameters.

parameters can all be varied independently and freely across
the entire parameter space, and our outputs will be quan-
tised and analysed independently.

2.3 Sampling parameter space

Sampling the high-dimensional parameter space of a com-
plex model requires a trade-off between the accuracy of the
sampling and computational expense. The accuracy of the
sampling describes how well the space is probed — have any
potentially interesting regions of the parameter space been
overlooked because too few points have been sampled or be-
cause the method used has left gaps in the space?

The accuracy of a sampling scheme can be assessed for-
mally in terms of its “discrepancy”. The lowest discrepancy
sampling possible is a regular grid. However, this is subject
to “aliasing” or a lack of resolution due to the fixed gaps in
the parameter space between the model evaluations; inter-
esting model behaviour could be hidden in the unsampled
parts of the parameter space. The convergence of the explo-
ration of the parameter space is slow with a regular grid.
The aliasing can be reduced and the convergence rate sped
up by using a random sequence to sample the parameter
space, which leads to a higher density of sampling in some
parts of parameter space compared to a regular grid. The
drawback in this case is that some regions of the parameter
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space will be more sparsely sampled than they were using a
regular grid. A random sequence is formally described as the
highest discrepancy sampling. Ideally, for a fixed number of
sampling points, we want to strike a balance between avoid-
ing the regular sampling achieved using a grid and leaving
big gaps unsampled in the parameter space, as happens with
random sampling.

Several quasi-random techniques have been proposed to
generate sequences that approach this ideal of “low discrep-
ancy” sampling, and which also ensure fast convergence of
the uncertainties in the sensitivity indices. A quasi-random
sequence is one designed to generate points in d-dimensions
which appear random, but which are generated determinis-
tically to have certain desired properties. Unlike pseudo- and
truly-random sequences, successive points in a quasi-random
sequence fill the gaps left by the previous points in the pa-
rameter space. The “random” part of the name is technically
a misnomer, as the sequence is fully deterministic, but yields
a uniform distribution when projected onto any dimension
of the parameter space.

A quasi-random sequence can be designed to minimise
its discrepancy. For a low-discrepancy sequence, all of its
subsequences also have low discrepancy. If a given sequence
is uniform, its discrepancy tends to zero as its length in-
creases. For these reasons, quasi-random low-discrepancy se-
quences are used to maintain a balance between rapid con-
vergence of numerical algorithms, a thorough coverage of the
parameter space, and a high uniformity of a resulting sam-
ple along all dimensions of the parameter space (Press et al.
2007, §7.8). Quasi-random sequences are therefore an at-
tractive replacement for pseudo-random sequences in many
applications which require a high quality sampling.

Sampling based on low discrepancy sequences, such
as the recurrent additive sequence (Ulam 1960), Halton
sequence (Halton 1964), Latin hypercube (Stein 1987) or
Sobol” sequence (Sobol’ 1967; Levitan et al. 1988) can be
used in numerical integration and model optimisation and
have been shown to outperform schemes based on truly ran-
dom, or pseudo-random number generators, while achieving
significantly faster convergence rates (Sobol’ 1993). The ad-
vantage of these sequences over truly random and pseudeo-
random sequences can be attributed to the fact that the low
discrepancy property guarantees gap-less sampling over the
entire parameter space.

The low discrepancy quasi-random sequence typically
used in SA is the Sobol’ sequence (Sobol’ 1967). It can be
efficiently calculated, and produces a sample which quickly
converges to the correct set of sensitivity indices, as veri-
fied by checking against analytically calculated values for
test models. Even though it is impossible to estimate the
required number of model evaluations prior to running the
SA, there exists a natural convergence criterion — the sum
of the first-order indices, defined in Eq (11), has to add up
to unity. Moreover, even if the SA did not converge after the
initial run, additional evaluations can be easily added (see
the example in the next subsection).

2.4 Saltelli sequence sampling

The Sobol’ sequence was originally proposed as a method
of improving the convergence of numerical integration
(Sobol’ 1967). Antonov & Saleev (1979) developed an effi-

cient computational method to implement Sobol’” sampling.
Saltelli et al. (2010) combined multiple Sobol” sequences to
further reduce the number of points required for the esti-
mation of the sensitivity indices, improving the convergence
rate.

Hereafter we refer to the Sobol’ sequence as an N by d
matrix, where N is the number of points of a d dimensional
parameter space.

The Saltelli sequence is obtained as follows: first we gen-
erate an N by 2d Sobol’ sequence, (as demonstrated for the
case of N = 4, d = 3 in the first line of Eq (8)). Let the
first d columns be called submatrix A (blue), and the last
d submatrix B (red). The values in the matrices indicate
the locations in parameter space at which the model is to
be evaluated, for parameters which can take on values over
the range 0 to 1. We next construct a number d of N by
d matrices Ag), for i € {1,2,...,d}, such that for each Ag)
the i*" column is taken from matrix B, while the remaining
columns come from matrix A . The matrices A, B and Ag)
specify all the points of the parameter space at which the
model is to be evaluated (one point per row), giving a total
of N x (2 4 d) evaluations which are required to calculate
the first order sensitivity indices.

[0.500 0.500 0.500 0.500 0.500 0.500
0.250 0.750 0.250 0.750 0.250 0.750
Sobol(4,3) = | ) 750 0250 0.750 0.250 0.750 0.250
0125 0.625 0.875 0.875 0.625 0.125
(8)
[0.500  0.500 0.500]
A _ 0750 0750 0.250
B = 10250 0.250 0.750
0875 0.625 0.875]
[0.500  0.500 0.500]
A _ 0250 0250 0.250
B = 0750 0.750 0.750
0125 0.625 0.875)
[0.500  0.500 0.500]
AG) _ 0250 0.750 0.750
B = [0.750 0.250 0.250
0125 0.625 0.125)

A visual impression of the different sampling approaches
is given by Fig. 1 which shows five commonly used types of
sampling: OAT, uniform pseudo-random number generator,
uniform grid sampling, a two-dimensional Sobol’ sequence
and Saltelli sampling. The OAT approach is often used with
far fewer evaluations than shown here, which makes it com-
putationally cheaper than the other approaches. The draw-
back of this method is clear from the vast areas of the param-
eter space that are left unexplored. This problem is only ex-
acerbated on increasing the dimensionality of the parameter
space. The pseudo-random number generation suffers from
poor convergence, as randomness often results in over and
under sampling of many regions. The Sobol’ and Saltelli se-
quences uniformly sample the parameter space and achieve
the low discrepancy target at a reasonable computational
cost.

020z Asenuep g0 uo Jasn weyin( 10 Alsiaaiun Ag 8642895/095EZ1S/SEIUW/EE0 L 0 | /I0P/10BIISqB-0[01B-80UBAPE/SRIUL/WOD dNoolwepeoe//:sdiy wWo.l papeojumod



2.5 Sensitivity indices

Given a scalar model Y with independent inputs, we can
define the first order effect of the variance in the input X;
as:

E; = Ex_, (Y|X;) = / Y (X)pdf(X,) [ ] dx. (9)
i#j
V; = Vary, (E;) = /(E,— — B(Y))? pdf(X;)dX;, (10)

where X; is i™® model input, V; is the variance integrated

in X; space over dimension 7, and F; is the mean Y value,
integrated over the d-dimensional X space in all dimensions
except i. Since V; can only take values between 0 and Var(Y'),
the total variance in the model output, we can define nor-
malised first-order sensitivity indices S; of each input pa-
rameter as
Vi

S = Var ()’ (11)
which measures the effect that varying the input X; has on
the output, averaged over variations of all other inputs. If
S; = 1, all variance in Y comes from the variance in X;,
whereas if S; = 0, none of it does, and Y is independent of
X;.

In order to measure the interactions between model pa-
rameters, we can define higher order indices. For second or-
der interactions, the combined variance is

Vij = VarXij (EXNij (Y|Xi:Xj)) -Vi=Vj, (12)

from which S; ; can be calculated analogously to S;.

It should now be obvious from the definition of the
model variance why the OAT methods are inappropriate for
complex models — they do not consider the full contribu-
tion to the model variance given by Eq (9) (which averages
over all values of the other inputs, instead of being measured
only at a designated slice, as shown in the relevant panel of
Fig. 1), nor does OAT treat the combined variance of two
(Eq (12)) or more variables correctly.

For a deterministic model, the only source of variance
in the output is the variances of the inputs. Therefore, from
variance decomposition it follows that

d d
STVt S Vig 4 4 Viaa = Var(Y), (13)
i=1 1<J

which we normalise to obtain the sensitivity indices of all
orders

d d
S Si+> S+t S a=1 (14)
i=1 i<j

A direct consequence is that, in order to analytically
decompose the total variance of the model, one needs to
compute variances of 2¢ — 1 variables, which can be com-
putationally expensive for complex models. However, if we
assume that the indices decrease as their order increases
(which is correct for the model of interest here), we might
be less interested in the precise values of higher-order contri-
butions, and focus instead on the total higher-order response
of a given variable. In this case it is convenient to combine
the higher-order terms into a total-order index

Ex; (Vary, (Y|X~i)) . Varx, (Ex; (Y[X~i))

Var(Y) =1 Var(Y) ’

Sti =

GALFORM Sensitivity Analysis 7

Figure 2. The 4000 evaluations of the Ishigami function (Eq (18).
On-diagonal histograms show distribution of the X; parame-
ters. Off-diagonal scatter plots show pairs of parameters and are
colour-coded to show the value of output Y.

(15)

containing all terms of the decomposed output variance
which include X;. Unlike the first-order indices, the St; do
not have to add up to 1, as they include all the input inter-
actions®.

Higher order effects can also be calculated in sim-
pler analyses, such as Analysis of Variance (Fisher 1918,
ANOVA), High Dimensional Model Representations (Sobol’
1993, HDMR) or derivative-based methods. However, the
total indices are a unique feature of the variance-based SA,
and are a major advantage of this methodology, as they allow
for a direct comparison of the linear and non-linear impacts
of the input parameters.

Following  Jansen (1999), Sobol’ (2001) and
Saltelli et al. (2010), we can use the approximate forms of
the first and total order sensitivity indices, based on the
sampling matrices A, B, Ag).

J

1 ;
Vars, (Bx, (V1X0) ~ 3 Y @), (1 (aB) - 7(a),)
1o o
By (Vars, (VX)) % 50 > (£8), - 7 (a8) )

where f (X) is the model f evaluated at point X.

4 In this case, the whole is literally more than the sum of the
parts.
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Figure 3. First-order (red) and total (blue) sensitivity indices
of the three input parameters of the Ishigami function, with lo
confidence bars (black).
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Figure 4. The K-band LF at z = 0 in the AB magnitude system.
Gray lines represent 10 GALFORM model realisations randomly cho-
sen from the 1600-model run series. The black line represents the
observational data from Driver et al. (2012). The black vertical
line is drawn at L = L*, and separates the bright and the faint
ends of the LF.

2.6 Illustrative sensitivity analysis of a toy model

The performance of the sensitivity analysis estimator can
be demonstrated using a toy model. The Ishigami function
is an example of such a model, and is commonly used to
test the predictions of sensitivity analysis because it con-
tains non-linear interacting terms. Nevertheless, the sensi-
tivity indices can be calculated analytically and compared
to the estimated values.

The Ishigami function is defined by Eq. 14 of
Ishigami & Homma (1991) as

Y (X1, X2, X3) = sin (X1)+asin® (Xa2)+b X3 sin (X1), (18)

where the X; are random variables uniformly distributed
between —7 and m, such that pdf(X;) = U(—m, ), and a,b
are numerical constants, here chosen to be 7 and 0.1 respec-
tively.

The SA was carried out by running the model on inputs
generated by a 3-dimensional Sobol” sequence for 500 real-
isations, which resulted in 4000 = 500 x (2 + 2 x 3) values
of X; (as explained in Section 2.4). Next, Eq (18) was eval-
uated at each X; point, giving a vector Y of length 4000.
Finally, the vector Y was analysed using the SALib Python
package (Herman & Usher 2017).

The evaluations of Eq (18) are shown in Fig. 2, and the
first- and total- order sensitivity indices of the three input
parameters are shown in Fig. 3. It is interesting to draw
some qualitative observations from Fig. 2:

e varying X; and X3 in isolation results in large changes
in Y’; this is reflected by large values for S; and Ss.

e varying X; and X together has a large effect on Y'; this
is reflected by large values for S and Sts.

e varying X3 for mid-range values produces little effect,
but varying other parameters at extreme X3 values produces
a large change in Y'; correspondingly, S5 is nearly zero, but
St3, which captures the global response of Y to X3, is larger

e S; is negative, despite being defined in terms
of non-zero variance (Eq (11)); this is the result of
using a numerical approximation instead of an an-
alytical formula to estimate Si; however, note that
the confidence interval includes the origin, and so
the value of S, is consistent with zero.

A more complete SA would involve computing second
order indices, and comparing sensitivity indices for different
versions of the Ishigami function, such as with different a,
b parameters, or over different X; ranges. However, this
more complete analysis is beyond the scope of this section,
as it is only meant for demonstration purposes. The source
code used to reproduce this analysis has been made public:

https://github.com/oleskiewicz/sensitivity/releases/tag/

2.7 GALFORM output used in the sensitivity analysis

When applying SA to a model with a multi-dimensional out-
put, it is necessary to select the most interesting outputs
manually. The Sobol’ index method assumes, and can only
be calculated for, separate one-dimensional output vectors
Y. From the formal standpoint this is problematic as the
sensitivity indices contain no information about any corre-
lations between various model outputs. However, in practice

v
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Figure 5. Sensitivity indices for the first series of runs, when varying two parameters in GALFORM : «coo1 and sn, for the K-band
luminosity function measured in two coarse luminosity bins. The colours of the bars indicate different indices, first (blue) (Eq (11)) and
total (red) (Eq (15)) order for a given variable. The left panel shows indices for L < L*, and the left for L > L* (see Eq (19)). The black

bars show the 1o confidence interval for the sensitivity indices.

one could perform model runs which follow the Saltelli sam-
pling and then carry out separate sensitivity analyses for any
desired number of model outputs, since running the model
is more time consuming than calculating the Sobol” indices.

Here we focus on the prediction of GALFORM for the K-
band luminosity function (LF) at z = 0, calculated as de-
scribed in Section 2.1.6. We have chosen to consider this
statistic due to the well-understood influence of the model
parameters on the form of the luminosity function (see the
extensive discussion in Lacey et al. 2016). Varying the pa-
rameters around the values used in the fiducial model shows
that the bright and faint ends of the luminosity function are
regulated by different physical processes. Therefore, the sen-
sitivity indices could be easily verified for errors, and we will
be able to quantify our intuition regarding the relative im-
portance of the different feedback modes on the abundance
of galaxies at different luminosities.

We have elected to perform the analysis on the model
output values normalised by the observational data (see
Eq (20)) instead of on the model output itself. This way,
the values we focused on were close to the ones typically
used for model optimisation, and had a reduced dynamic
range, being effectively normalised by the observational val-
ues. Analysing a SAM independently of the observational
constraints, while interesting in its own merit, is outside the
scope of this work.

3 RESULTS
3.1 Sensitivity analysis experiments

We have carried out two separate sensitivity analyses us-
ing GALFORM : (1) 600 GALFORM model runs varying two pa-
rameters (ool and ysn), and (2) 1600 model GALFORM runs
varying seven parameters (see Table 2).

For both series of runs, a SA was carried out on the
K-band LF at z = 0, with two different binnings of
the LF used to compute the sensitivity indices, as
explained below.

In the first instance we performed a simple analysis by
splitting the LF into two broad luminosity bins, one cover-
ing a range of luminosities brighter than L* and the other
luminosities fainter than L* (see Fig. 4). For each run, we
calculated two model outputs covering the bright and faint
ends of the LF, dfaint and dpright, defined by summing the
normalised differences between the observed and predicted
values of the luminosity function for luminosities brighter
and fainter than L*. e.g.:

diaint = Z log, () — 10%10(‘2’)

loglo(¢) ’ (19)

L<L*

with dprignt defined analogously for L > L*. The observed
luminosity function ¢ is taken from Driver et al. (2012). Un-
like a traditional measure of model fitness, we do not take the
absolute value or square of the distance between the model
prediction and the data. This is because the sign of the out-
put (i.e. the sense of the discrepancy) is valuable information
for the sensitivity indices, as it contains the direction of the
model response.
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Figure 6. Convergence of the first- and total-order sensitivity
indices for the first series of runs, when varying two parameters
of GALFORM, a0 and ~sN, as a function of a number of samples.
The sensitivity indices in this case are computed in each
of two broad luminosity bins, covering, respectively, the
faint and bright ends of the luminosity function. Individual
subplots show the results for the faint and bright end of the
K-band LF (columns, labelled on the top), and the o parameters
(rows, labelled on the right). Solid lines correspond to the values
of the indices, and the shaded regions to the 1o confidence band
of the values, both colour-coded by the order of the indices as
labelled in the legend.

This coarse analysis is quantitatively identical to mea-
suring the LF using only two broad luminosity bins. This ex-
ercise has two goals: (1) to verify that SA produces explain-
able results which can be interpreted in accordance with our
physical intuition about the galaxy formation model, and (2)
to check the convergence of the sensitivity indices and their
confidence intervals, which can be estimated as explained in
Section 2.2.

After this coarse two-bin analysis, in the second case
we calculate sensitivity indices for each of the 18 luminosity
bins, L;, using the quantity:

o 10g10(¢i) - 10g10(¢i)
= log,o(¢:) . (20)

This serves as a fine-grained analysis, which can quantify
the relative impact of different parameters on the individ-
ual segments of the LF, as well as uncovering interactions
between model parameters.

3.2 Feedback processes and the luminosity
function

The first series of runs, which analysed the effects of chang-
ing two of the parameters which specify different feedback
processes in GALFORM , aucoo1 and VSN, was carried out to ver-
ify the usefulness of the SA and to evaluate its effectiveness,

Table 3. The best-fit GALFORM parameters found in this work, in
relation to Driver et al. (2012).

parameter value
vgp [Gyr~1] 0.46
YSN 3.45
Qreheat 0.74

Vhot,disc [km/sec] 332.69
Vhot,burst [km/sec] 392.90
Qcool 0.58
fstab 0.77

given our physical intuition, regarding the expected impact
on the LF of varying these model parameters. Only two pa-
rameters were allowed to vary to speed-up the analysis and
allow for an easier interpretation of results: acoor and ysn
(see Table 2 for the range of parameter values considered).
Recall that sy controls the mass loading of SNe driven
winds and a0l determines the halo mass above which AGN
heating shuts down the cooling flow.

Fig. 5 shows the first- and total-order sensitivity indices
calculated from 600 GALFORM model runs for the coarse-bin
analysis of luminosity function using two bins, one fainter
and one brighter than L*, as presscribed by Eq (19). The
results are striking, but not unexpected: it is clear that
s is the dominant parameter out of the two in shaping
the model output for galaxies fainter than L* (and hence,
that such galaxies are mainly affected by SNe feedback) and
that both parameters have similar significance for galaxies
brighter than L* (albeit ool is slightly more important),
and so bright galaxies are affected by SNe feedback and AGN
heating. Moreover, S; and St are comparable in all cases,
which means that the model response to varying these pa-
rameters is mostly linear.

Fig. 6 shows the convergence of the indices from the
Fig. 5 as a function of the number of samples N. The indices
do not change substantial after 100 GALFORM runs.

Fig. 7 shows the first- and total-order sensitivity indices
for the fine-grained analysis of the LF using multiple lumi-
nosity bins, using Eq (20) as model output. We can see that
L* is close to coinciding with the bin at which AGN heat-
ing starts to become important, which explains the results
shown in Fig. 5. We also learn that while SNe feedback does
not interact with the AGN heating at the faint end of the
LF, their influence over the bright end is strongly correlated.

We did not consider the best-fit model for this two pa-
rameter case, since we perform a rudimentary estimate of the
best-fitting parameter set in the next section, when varying
more GALFORM model parameters at the same time.

3.3 Sensitivity analysis over a multi-dimensional
parameter space

The design of the second experiment, in which seven GALFORM
parameters are varied simultaneously (Table 2), is inspired
by the work on parameter optimisation using Bayesian em-
ulators by Bower et al. (2010) and Rodrigues et al. (2017).
For comparison, we use the same parameter ranges adopted
in their studies. This exercise requires significantly more
model realisations than the first one, since we sample a
higher dimensional parameter space and aim to observe in-
teractions between more parameters.
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Figure 7. First- and total-order sensitivity indices (Eq (11)) for the first series of runs, when varying two parameters in GALFORM: cicool
and ygn. Bottom panel: K-band luminosity function at z = 0 like in Fig. 4; gray lines correspond to 10 randomly chosen runs; black line
is the observational data from Driver et al. (2012); dashed vertical line corresponds to L*. Top panels: first- and total-order (as labelled
on the right) sensitivity indices of two variables (y axis) for 18 individual magnitude bins (x axis), colour-coded by value between 0 (not
sensitive) and 1 (most sensitive) as labelled by the colourbar at the top.

Fig. 8 shows the parameter space and its sampling,
colour-coded by the goodness-of-fit measure

+ o (10810(60) ~logy(00)
X = 2; log,o(¢:) 7

where the sum is carried out over all luminosity bins and low
values of x? are blue. While %2 is not a robust model output

(21)

for SA, as it does not contain information about the direc-
tion of the model response as explained in Section 3, it is
still a useful measure of a global model response or “quality
of fit”. The on-diagonal histograms indicate that the Saltelli
sampling produces a nearly uniform sampling of parameter
space, as expected from a low-discrepancy sequence. The off-
diagonal scatter plots give a first indication of some of the
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Figure 8. The parameter space of the second GALFORM experiment in which 7 parameters are varied over 1600 realisations of the model.
On-diagonal histograms show the nearly-uniform distribution of the individual parameters, as expected for Saltelli sampling. Off-diagonal
scatter plots show the parameter space for pairs of parameters, colour-coded by the goodness-of-fit x2 (Eq (21)) of the model prediction
for the K-band luminosity function using 18 luminosity bins (Fig. 4), to the observational estimate from Driver et al. (2012); blue
points correspond to runs with low values of x2, as labelled by the colourbar.

first-order index results: the x? of the model LFs is sensi-
tive to variation of ysn, is degenerate in the ysn—vhot, disc
plane (which follows directly from Eq (3)), and depends only
weakly on other parameters.

Fig. 9 shows the first- and total-order sensitivity indices

for the coarse-binned analysis of the LF (Eq (19)). Since
sensitivity indices are derived from the normalised variance
(Egs. (11) and (15)), the values should always be between
0 and 1, which they are (including the confidence interval).
Similarly to Fig. 5, in Fig. 9 we see two different types of be-
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Figure 9. Sensitivity indices for the second series of 1600 GALFORM runs, varying 7 model parameters (Table 2), computed using the
coarse two bin description of the luminosity function. The bar colours indicate the values of different indices, the first index (Eq (11))
(S1, red) and total order index (Eq (15)) (ST, blue) for each parameter. The left panel shows indices for galaxies in the luminosity bin
fainter than L*, and the right panel for galaxies in the bin brighter than L* (Eq (19)). The black bars show the 1o confidence intervals

for the sensitivity indices.

haviour of the GALFORM model: the faint end is dominated by
SNe feedback, while the bright end has a mixed, non-linear
response to many parameters. Interestingly, while AGN feed-
back (via agoo1) has the highest first-order sensitivity index
(S1) for the bright end of the LF, the total-order indices (ST)
of SNe feedback processes dominate. Of particular interest
are the fstab and vnot,burst parameters. These parameters
have nearly zero first-order response indices (which means
that their impact cannot be detected by an OAT analysis),
but their combined higher-order responses are significant.

It is instructive to see the origin of the values reported
in Fig. 9, by inspecting how the sensitivity changes bin-by-
bin (Eq (20)) in Fig. 10. The results are consistent with
Section 3.2, and together provide an interpretation of the
behaviour of the GALFORM model. Moreover, displaying the
model output together with model sensitivity can be of use
when manually tweaking the model, allowing for a fine, man-
ual control over the precise details of the LF (or, indeed,
other outputs).

Finally, we note that Fig. 10 also shows the LF for the
best-fitting model, as determined by the smallest value of
Eq (21). This can be considered an additional benefit of
running SA — requiring so many model realisations naturally
finds one which is likely to be close to a global optimum. The
best-fitting parameter values are reported in Table 3. Note
that the values diverge from those reported in Lacey et al.
(2016), due to different fitting method and the fact that this
study only considered the K-band LF, whereas Lacey et al.
(2016) took into account multiple observations in a man-
ual parameter tuning. Of particular interest is the value of
Vhot,disc, which is over 20% larger than in the previous cali-
bration of this GALFORM model. We attribute this difference

to the fact that, as discussed in Section 3.3 and shown in
Fig. 9, the combined total-order sensitivity index of Viot,aisc
outweighs the first-order index for both ends of the K-band
LF. This suggests that the optimal value of this parameter
could be missed by OAT model fitting. The differences in the
other parameter values are not as significant as they might
seem — the variables with the highest sensitivity match the
previously reported values pretty closely (e.g. sy is within
7%), and the variables with low sensitivity that diverge by
a significant margin by definition of the sensitivity indices
do not have significant impact on the K-band LF.

4 CONCLUSIONS

We have used variance-based sensitivity analysis to anal-
yse the sensitivity of the K-band luminosity function pre-
dicted using the GALFORM semi-analytical model of galaxy
formation to the variation of the model parameters. We
have shown that sensitivity analysis is a useful tool, which
goes beyond simple model fitting and one-at-a-time param-
eter variation, and we have demonstrated that it can be
applied to a challenging problem in computational astro-
physics. Variance-based sensitivity analysis is perhaps par-
ticularly useful for the semi-analytic modelling of galaxy
formation modelling, due to the computational expense of
searching a multi-dimensional parameter space and the non-
linearity of the model. These features have led some to view
such models as black boxes. Part of the aim of the sensi-
tivity analysis presented here is to make the behaviour of
the model and how it responds to parameter changes more
transparent.
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Figure 10. First- and total-order sensitivity indices (Eq (11)) for the second series of runs, when varying 7 GALFORM parameters (Table 2).
Bottom panel: K-band luminosity function at z = 0 as in Fig. 4; grey lines show 10 randomly chosen GALFORM models; the black line
connects observational data from Driver et al. (2012); dashed vertical line corresponds to L*; the solid red line shows the best-fitting
model. Top panels: first- and total-order (as labelled on the right) sensitivity indices of two variables (y axis) for individual magnitude
bins (x axis), colour-coded by value between 0 (not sensitive) and 1 (most sensitive) as labelled by the colour-bar at the top.
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In its present form sensitivity analysis can only deal
with one-dimensional outputs of a model, which on the one
hand means that it cannot be used to resolve correlations
in model outputs (such as between the predictions in dif-
ferent bins of the luminosity function or between the lumi-
nosity function in different bands; see Benson 2014), yet on
the other hand this feature gives the scientist performing
the study unlimited flexibility in choosing and parametris-
ing the outputs they find the most important. Here, we have
elected to perform the sensitivity analysis using the model
predictions in luminosity bins cast in terms of the differ-
ence between the computed and measured K-band luminos-
ity function at z = 0. Our motivation for this was that by
choosing an established observable with a well understood
connection to the underlying physical processes and their de-
scription in term of GALFORM parameters, we could make a
convincing case for the usefulness of the sensitivity analysis.

With this in mind, future work on SA might want to
examine the variance of the outputs of the semi-analytic
model alone, independently of the corresponding measured
observable values. There are three main reasons for such
an approach: i) using the full dynamic range of the predic-
tions: normalising the model output by observations flat-
tens the dynamic range, and while SA works equally well
for small and large values, by only analysing a flat version
of the model predictions we effectively take the regions in
which the model gives a flat or steep response (for instance,
the faint and bright end of the LF respectively) and make
them look the same. ii) independence of post-processing: by
comparing to data, we had to make a choice about the norm
of the discrepancy between the model output and observa-
tions: do we retain the sense of the discrepancy or square
it? A different SA study could have chosen differently, alter-
ing the results. By analysing model outputs independently
of the observations these choices are no longer necessary. iii)
data independence: SA results could change if a different
dataset is used with the same model.

Moreover, the K-band luminosity function is just one
possible output and there are many others which a successful
semi-analytic model should reproduce accurately. Analysing
all of these is outside the scope of this study, but we hope
to have shown that SA is a promising avenue of research.

Finally, we note that while correctly estimating model
sensitivity can be useful in guiding model optimisation and
improving the physical interpretation of the parameters of
the galaxy formation models, one must remember that even
the most rigorous sensitivity analysis can only provide the
answers with regards to the model, not the underlying phys-
ical system itself (Taleb & Douady 2013). Therefore, the re-
lationship between the structure of the model and that of
the physical system remains open to discussion.
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