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Abstract8

Ephemeral sand rivers represent an important water resource in Southern Africa. These rivers

only flow for a few days in a year. However, much of this water infiltrates the underlying river

bed sediments where it is protected from evaporation and utilized by farmers throughout the dry

season. Despite their importance, little is known about how much recoverable water is annually

stored within the sand. A particular difficulty concerns obtaining reliable estimates of transmission

losses (the amount of water that infiltrates the river bed). The objective of this article was to

develop an improved methodology for quantifying transmission loss from ephemeral sand rivers

by calibrating a lumped rainfall-runoff model to observed river flow data. Fifteen years of daily

river flow data were obtained from four sand rivers in Botswana, namely, Shahshe, Ntshe, Tati and

Metsimotlhabe. These data were supplemented with meteorological data from AgMERRA (Ruane

et al., 2015) and precipitation data from CHIRPS (Funk et al., 2015). Our simplified rainfall runoff

model had four unknown parameters including a river bed infiltration factor, a surface storage

capacity, a river bed storage capacity and an average river channel width. Posteriori parameter

distributions were derived using a GLUE (Beven and Binley, 1992) methodology. Our study

confirms that upper and lower bounds for transmission loss can be obtained by calibrating a lumped
1



rainfall runoff model to a single set of river flow gauging data. Transmission loss was found to

represent between 55% and 85% of the total surface runoff at these locations.
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balance, Arid zone hydrology10

1. Introduction11

Many ephemeral rivers in Southern Africa flow over granitic basins forming sand filled eroded12

channels referred to as sand rivers (Walker et al., 2018). Surface water flows occur for only a13

few days during the annual wet season (Shaw et al., 1994). However, much of the flowing water14

infiltrates into the underlying sand where it is protected from evaporation and utilized by farmers15

during the dry season. Unfortunately, sand rivers are increasingly under threat due to illegal sand16

mining and there is an urgent need to protect these important water resources (Makaba, 2017).17

Despite their importance, little is known about how much recoverable water is annually stored18

within the sand.19

There have been several attempts to develop groundwater flow models to describe the water20

balance within such alluvial deposits (e.g. Mansell and Hussey, 2005; Love et al., 2011; Mpala21

et al., 2020), but a particular difficulty concerns obtaining reliable estimates of transmission loss22

(Hughes, 2019). Transmission loss is a commonly used term to collectively quantify reductions in23

streamflow associated with river bed infiltration, evaporation from the river channel, and loss to24

stream banks or floodplains as water travels downstream (Shanafield and Cook, 2014).25
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In some cases, transmission loss studies have focused on observing flood induced vertical26

distributions of moisture content within river bed sediments (Parissopoulos and Wheater, 1992;27

Dahan et al., 2008). Alternatively, infiltrometers have been used to measure the infiltration capacity28

of river bed sediments whilst the river channel is dry (Dunkerley, 2008). Such methods are useful29

for observing fine-scale data both spatially and temporally. However, it remains unclear how to30

upscale these measurements for catchment water balance.31

Lange (2005) and Morin et al. (2009) determined flood induced infiltration rates by calibrating32

a numerical model, describing transient open channel flow coupled with river bed infiltration, to33

river flow rate observations. The advantage here is that estimates of infiltration rate represent a34

larger scale observation. However, both of the aforementioned studies focused on the Kuiseb River35

in Namibia, which is a special case because it has been continuously monitored by 14 river flow36

gauge stations. These studies were only made possible because good quality time-series flow data37

were available as both inputs and outputs of river reaches, such that sufficient information content38

was available for a meaningful model calibration. For most arid ephemeral rivers of concern, such39

data are not available and alternative methods are required (Love et al., 2011; Jarihani et al., 2015).40

Hughes (2019) presents a simplified method of estimating transmission losses using monthly41

flow duration curves. The approach can be described as follows. River channel flow excluding42

transmission losses are simulated using the monthly time-stepping, Pitman rainfall-runoff model43

(Hughes, 2013). A theoretical flow duration curve, excluding transmission losses, is developed.44

A simple conceptual model for transmission losses is then calibrated to a monthly flow duration45

curve based on observed flow rates from the catchment of concern, using the Pitman model as an46

input. Such a method is naturally able to provide close correspondence to observed river flow rates47
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due to the calibration process. However, models with a large number of parameters, such as the48

Pitman model, are subject to equifinality (Beven and Binley, 1992).49

The objective of this article is to develop an improved methodology for quantifying transmis-50

sion loss by calibrating a lumped rainfall-runoff model to observed river flow data. Our innovation51

in this context concerns minimising hydrological model complexity and maximising information52

content in the river flow data so as to reduce the impact of equifinality.53

Most lumped rainfall-runoff models comprise a soil water accounting procedure (SWAP) and54

a routing function (Beven, 2011). The SWAP transforms daily precipitation and potential evapo-55

transpiration data to surface runoff data. The routing function describes how the surface-runoff is56

collected across the catchment and delivered to the outlet of concern. The routing function leads57

to an attenuation of the surface runoff time-series.58

Most long-term flow records in Southern Africa are limited to daily data. When dealing with59

flash floods in ephemeral sand rivers, individual events tend to have short recession periods often60

no longer than a couple of hours. This means there is little point in trying to apply a routing61

function because the flow attenuation is on the scale of the observation time-steps.62

Excluding a routing function from a rainfall-runoff model has the advantage of reducing the63

number of model parameters requiring calibration. However, there will often be a delay between64

the surface runoff time-series and the observed flow rate, which means calibrating SWAP by di-65

rectly comparing surface runoff data with daily river flow data is unlikely to be successful.66

One option is to calibrate a SWAP to a flow duration curve derived from daily flow observa-67

tions. However, there will be some rare events that exceed one day in duration and will exhibit68

attenuation, not incorporated in the model (due to the exclusion of a routing function). Another69
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option is to calibrate a SWAP to monthly river flow data. However, this temporal aggregation70

unnecessarily gives up valuable information in the daily time-scale variations.71

An alternative idea is to calibrate the SWAP to cumulative daily river flow data. This has72

the advantage of minimising the impact of unknown delay times whilst maintaining the value of73

daily variations. But the problem here is that the quality of data collection varies considerably74

from one year to the next, and a bad year, early on in the time-series, will massively bias the75

model calibration process as compared to a bad year at the end of the time-series. Our innovative76

approach is to calibrate a SWAP to annual cumulative daily flows (i.e., a cumulative daily flow77

time-series, which is reset to zero at the end of each dry season). This way, we are able to: (1)78

maintain daily variations, (2) minimise the effect of delay between surface runoff and river flow,79

and (3) eliminate the bias caused by the timing of poor data quality years.80

The SWAP we utilize includes a surface runoff component and a river channel transmission81

loss component. Surface runoff is calculated using a one parameter form of the probability dis-82

tributed model (PDM) (Moore, 2007), previously used by Mathias et al. (2016). River channel83

transmission loss is determined as a fixed proportion of the surface runoff rate minus the rate of84

river water evaporation. The underlying assumption is that river bed infiltration is a function of85

the water depth in the river channel, which in turn is a function of the river flow rate. The storage86

capacity of the underlying river bed sediments, associated with the sand river, is treated as a fixed87

volume storage tank, which is emptied every dry season, due to a combination of anthropogenic88

abstraction, seepage into underlying aquifers and evaporation. River bed infiltration is assumed89

only to occur when there is available storage in the river bed sediments.90

The resulting model has just four unknown parameters: (1) the river bed infiltration factor, (2)91
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the surface storage capacity for the PDM, (3) the river bed storage capacity, and (4) the average92

river channel width. Note that the catchment area and length of river channel network are estimated93

using a digital elevation model.94

In this article we apply our model to 15 years of daily river flow observations from four sand95

rivers in Botswana. Catchment averaged precipitation and evapotranspiration are obtained using96

the remote sensing data packages, CHIRPS (Funk et al., 2015) and AgMERRA (Ruane et al.,97

2015), respectively. The rainfall runoff model is conditioned to annual cumulatively daily river98

flows. Posteriori probability distributions for the four model parameters are obtained using the99

generalised likelihood uncertainty estimation (GLUE) method (Beven, 2011). Cross correlation100

analysis between the four model parameters are discussed. Probability distributions are then de-101

rived for runoff and transmission loss coefficients.102

2. Data and methods103

2.1. Study area104

This study uses observed daily river flow data, provided by the Department of Water and105

Sanitation of Botswana, from four sand rivers, namely, Shashe, Ntshe, Tati and Metsimotlhabe.106

The locations of the four gauging stations are shown in Fig. 1 and given in Table 1. Note that107

Shashe, Ntshe and Tati are next to each other whereas Metsimotlhabe is 500 km south west. These108

catchments have similar, geology, land cover, catchment areas (between 525 km2 and 2530 km2)109

and channel network densities (between 0.176 per km to 0.202 per km). All four catchments110

are situated on Precambrian Basement outcrops and are overlain by a combination of grassland,111

shrubland and savannah (Upton et al., 2018). However, the dominant soil type around Shashe,112
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Ntshe and Tati is mostly classified as a clay Luvisol whereas around Metsimotlhabe it is classified113

as a sandy loam Lexisol (Nachtergaele et al., 2009).114

Details concerning the catchment areas, A [L2], and the upstream river channel lengths, Lr115

[L], are shown in Table 1. Catchment areas and catchment boundaries were derived from 15116

arc-second HydroSHEDS drainage direction data (Lehner et al., 2008) using the D8 algorithm117

(Jenson & Domingue, 1988). Upstream river channel lengths were derived from 15 arc-second118

HydroSHEDS river network shape-files. The associated catchment boundaries, river network and119

digital elevation data (also from HydroSHEDS) are shown in Figs. 1a and b.120

We also need estimates of the area of the river channel network, Ar [L2], for each river catch-121

ment. The river channel network area, Ar = LrWr, where Wr [L] represents an average river122

channel width within the catchment. Estimates of river channel width at discrete points along the123

river channel networks were obtained using satellite images from Google Earth.124
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Figure 1: Maps showing the study areas. The yellow circular markers show the locations of the gauging stations used

for the rivers Shanshe, Ntshe, Tati and Metsimotlhabe. The red lines show the corresponding catchment areas. The

black lines show the HydroSHEDS river channel networks (Lehner et al., 2008). The white lines show the international

borders between Botswana and Zimbabwe (a, c, e) and between Botswana and South Africa (b, d, f). The white

circular markers show the locations of the nearest big cities. a) and b) show digital elevation data from HydroSHEDS

(Lehner et al., 2008). c) and d) show mean annual precipitation, for the period of 1980 to 2010, according to CHIRPS

(Funk et al., 2015). e) and f) show mean annual reference crop potential evapotranspiration (PE), for the period of

1980 to 2010, according to FAO56 (Allen et al., 1998) using meteorological data from AgMERRA (Ruane et al.,

2015).
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Table 1: Background details for the four river flow gauge stations. Mean hydrometeorological data are averages over

the period from 1980 to 2010.

River Shashe Ntshe Tati Metsimotlhabe

Gauge location Shahshe Mooke Ntshe Weir Tati Wear Thamaga

Latitude and Longitude (-21.20, 27.38) (-21.04, 27.43) (-21.08, 27.52) (-24.68, 25.56)

Gauge number 4361 4532 4511 2421

Area (km2) 2530 525 765 1290

River channel length (km) 447 103 154 260

Mean annual precipitation (mm) 425 461 454 429

Mean annual PE (mm) 2410 2380 2370 2100

0 50 100 150

River channel width (m)
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Figure 2: Cumulative distribution functions for river channel width observations within each of the river catchments

studied. PNE stands for probability of non-exceedance.

The cumulative distribution functions (CDF) for these measurements are shown for each of the125
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four catchments in Fig. 2. Values range from 5 to 150 m. The median values for river channel126

width were 12 m for Shanshe and Metsimotlhabe, 27 m for Tati and 38 m for Ntshe. Median127

values for river channel width are inversely correlated with catchment area. For our subsequent128

analysis, the a priori distribution for Wr will be treated as a uniform random distribution ranging129

between 10 m and 60 m (see the line labelled “a priori” in Fig. 2).130

2.2. Hydrometeorological data131

Gridded daily mean temperature, wind speed, relative humidity and incoming shortwave radi-132

ation were acquired at 0.25◦ resolution from the AgMERRA data package (Ruane et al., 2015).133

These data were used to calculate reference crop potential evapotranspiration (PE) according to134

FAO56 (Allen et al., 1998). Gridded daily precipitation data were acquired at 0.05◦ resolution135

from the CHIRPS data package (Funk et al., 2015).136

The AgMERRA data package was chosen because it currently provides the most comprehen-137

sive gridded meteorological dataset (in terms of providing temperature, wind speed, humidity and138

shortwave radiation) for the sub-Saharan Africa. AgMERRA combines reanalysis data, gauged139

data and satellite date (Ruane et al., 2015). AgMERRA also provides precipitation data. However,140

the CHIRPS precipitation data package was chosen instead due to its higher spatial resolution.141

CHIRPS combines gauged data and satellite data (Funk et al., 2015) and has a significant track142

record of use in sub-Saharan Africa (Dinku et al., 2018; Sacre Regis et al., 2020; Ngoma et al.,143

2021).144

Four sets of catchment averaged daily precipitation and PE data were obtained by spatially145

averaging the gridded data over the four catchment areas. Mean annual precipitation and mean an-146
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nual PE for the four river catchments are shown in Table 1. All four catchments have similar mean147

annual precipitation (between 425 mm and 461 mm). However, Metsimotlhabe is slightly cooler148

than the others and consequently has a slightly lower mean annual PE (2100 mm as compared to149

between 2370 mm and 2410 mm).150

The spatial distributions of mean annual precipitation across the study areas are shown in151

Figs. 1c and d. All four catchments show an orographic effect on precipitation although this is152

less acute for Metsimotlhabe, where the mean annual precipitation is more uniform. The spatial153

distributions of mean annual PE across the study areas are shown in Figs. 1e and f. These are154

pretty much uniform across individual catchments although it is noted that PE is substantially less155

around Metsimotlhabe as compared to the other catchments because Metsimotlhabe is significantly156

cooler.157

Plots of catchment averaged monthly PE and precipitation are shown, for each of the four158

catchment areas, in Figs. 3a, c, e and g. It can be seen that monthly PE is almost always con-159

siderable greater than monthly precipitation and that precipitation mostly only occurs between the160

months of October and April. Furthermore, the highest values of PE coincide with the highest161

values of precipitation.162
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Figure 3: Catchment averaged monthly reference crop potential evapotranspiration (PE) and precipitation (a, c, e, g)

along with corresponding annual cumulative daily river flows, normalised by dividing by catchment area, (b, d, f,

h) for the four catchment areas upstream of the gauging station locations listed in Table 1. The black lines are the

observed river flow data. The green shaded areas are envelopes obtained using the posteriori parameter distributions

associated with Model 3 (see Fig. 5).
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Corresponding annual cumulative daily river flows, normalised by dividing by catchment area,163

are shown in Figs. 3b, d, f and h. Annual cumulative daily river flows are obtained by taking164

the cumulative river flows starting from 1st of June in each year, such as to capture the entire wet165

season in a single year. As with precipitation, non-zero river flows only occur between the months166

of October and April. The magnitude of normalised river flows in Shashe and Tati are quite similar.167

The normalised river flows in Ntshe are generally larger, potentially suggesting less transmission168

loss. It is also noted that Ntshe is the smallest of the three catchments. Normalised river flows in169

Metsimotlhabe are significantly lower than in the other three catchments. This could be indicative170

of higher transmission losses. Note that Metsimotlhabe has a slightly lower mean annual PE as171

compared to the other three catchments, so this reduced river flow effect is not due to an increase172

in dryness.173

2.3. Hydrological model174

2.3.1. Catchment water balance model175

The catchment is assumed to be comprised of four compartments: (1) the vegetative canopy,176

(2) the soil outside of the river channel, (3) the river channel, and (4) the underlying river bed177

sediments (Fig. 4).178

The water balance for the vegetative canopy takes the form179

dS c

dt
= qp − Ec − qc (1)

where S c [L] is the volume of water stored within the canopy per unit area of canopy covered land,180

t [T] is time, qp [LT−1] is the precipitation rate, Ec [LT−1] is the rate at which water is evaporated181
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from the canopy and qc [LT−1] is the combined rate of throughflow and stemflow of water that182

reaches the soil surface.183

Canopy

qc

qp

Es

qp

Ec

qs

qp

Er

qr

qi

Ss

h

Soil

River

ql

Sediments

Sc

Figure 4: Schematic of hydrological model.

The water balance for the soil outside the river channel takes the form184

dS s

dt
=

(
1 −

Ac

As

)
qp +

Ac

As
qc − Es − qs (2)

where S s [L] is the volume of water stored within the soil per unit area of soil outside the river185

channel, Ac [L2] is the area of land covered by vegetative canopy within the catchment, As [L2] is186

the area of the catchment excluding the river channel, Es [LT−1] is the rate of evapotranspiration187

from the soil and qs [LT−1] is the rate of surface runoff. The bedrock underlying the soil is assumed188
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to be impermeable.189

The water balance for the river channel is assumed to be instantaneous and takes the form190

qr =
Asqs + Ar(qp − Er)

A
− qi (3)

where qr [LT−1] is the river flow rate per unit area of catchment, A [L2] is the total area of catch-191

ment, Ar [L2] is the area of the river channel network, Er [LT−1] is the rate of evaporation from the192

river channel when open water is present (assumed to be when qr > 0) and qi [LT−1] is the rate of193

infiltration, per unit area of catchment, into the underlying river bed sediments, that form the river194

bed.195

Solving Eq. (1) for qc and then substituting this into Eq. (2) leads to196

dS
dt

= qp − Ea − qs (4)

where197

S = S s +

(
Ac

As

)
S c (5)

and198

Ea = Es +

(
Ac

As

)
Ec (6)

2.3.2. Actual evapotranspiration199

The evaporation from the canopy and the river channel both represent examples of open-water200

evaporation. In contrast, the evapotranspiration from the soil represents the combined process of201
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evaporation from the soil pores and transpiration from vegetation utilizing the soil water. This202

latter process is assumed to be represented by the aforementioned FAO56 reference crop PE, E0203

[LT−1]. Allen et al. (1998, Table 12) suggest that for shallow open water systems (< 2 m depth),204

the ratio of open-water evaporation to reference crop evapotranspiration is 1.05. Therefore, for205

simplicity we will assume that open-water evaporation is the same as the reference crop evapo-206

transpiration. Similar to Mathias et al. (2016), it is therefore assumed that:207

Ec =


E0, S c > 0

0, S c = 0
(7)

208

Es =


E0 −

(
Ac
As

)
Ec, S s > 0

0, S s = 0
(8)

209

Er =


E0, Ar(E0 − qp) ≤ Asqs

qp +
(

As
Ar

)
qs, Ar(E0 − qp) > Asqs

(9)

If we assume that the soil always has some moisture when the canopy has some moisture, Eq.210

(6) then leads to211

Ea =


E0, S > 0

0, S = 0
(10)
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2.3.3. Spatially uniform storage capacities212

Let cc [L] and cs [L] be spatially uniform storage capacities for the canopy and soil, respec-213

tively, such that S c ∈ [0, cc] and S s ∈ [0, cs] and214

qc =


qp, S c = cc

0, S c < cc

(11)

and215

qs =


(1 − Ac

As
)qp + Ac

As
qc, S s = cs

0, S s < cs

(12)

If we further assume that the soil never becomes waterlogged until the canopy capacity is ex-216

ceeded, it can be further stated that217

qs =


qp, S = c

0, S < c
(13)

where218

c = cs +

(
Ac

As

)
cc (14)

In this way, the canopy and soil water conservation statements have been combined into a single219

water storage statement described by Eqs. (4), (6) and (13), defined by just a single descriptive220

parameter, c [L], which represents the combined storage capacity of the canopy and the soil.221

Love et al. (2010) recently highlighted the importance of canopy interception for water balance222

in a catchment study from the Zimbabwe portion of the Limpopo basin. However, the mathemati-223
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cal analysis above shows that it is not possible to distinguish between canopy evaporation and soil224

evapotranspiration at a catchment scale when the capacity parameters, cs and cc, are unknown.225

2.3.4. Probability distributed model226

At any given time, an area within the catchment, Aw [L2], contains waterlogged soil and canopy227

such that additional precipitation leads to the generation of surface runoff. Moore (2007) considers228

the storage capacity at any point within the catchment, c [L], to be a random variable defined by229

a probability density function, f (c) [L−1]. Let C [L] be the maximum value of c observed within230

the area, Aw. It can then be stated that Aw = F(C)As where F(C) [-] is the probability of c not231

exceeding, C, defined as232

F(C) =

∫ C

0
f (c)dc (15)

It can be further asserted that233

qs = F(C)qp (16)

Importantly, the relationship between the depth of water stored in the catchment, S , and the234

cumulative distribution function, F(c), is (Moore, 2007; Mathias et al., 2016)235

S =

∫ C

0
[1 − F(c)]dc (17)

the significance of which being that, once the mathematical form of f (c) is defined, the rate, qs,236

can be determined explicitly from S .237
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Following Mathias et al. (2016), we adopt the one parameter exponential distribution function238

f (c) =
1

S max
exp

(
−

c
S max

)
(18)

where S max [L] represents an empirical scaling parameter for c. Substituting Eq. (18) into Eq. (15)239

and then Eq. (17) leads to the result (Mathias et al., 2016)240

F(C) =
S

S max
(19)

and therefore241

qs =


qp, S = S max(

S
S max

)
qp, S < S max

(20)

It can also be seen that S max represents the maximum possible value of S . S max is hereafter referred242

to as the surface storage capacity.243

2.3.5. Proportional loss model for river bed infiltration244

It is further assumed that the rate of river bed infiltration, qi, can be determined using a constant245

proportional loss coefficient, w [-], hereafter referred to as the river bed infiltration factor, such that246

qi =


0, h = hmax

wqm, h < hmax

(21)

where h [L] is the volume of water, per unit area of catchment, stored in the underlying river bed247

sediments, hmax [L] represents the river bed storage capacity and qm is the rate of net input of water248
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into the river channel found from (consider again Eq. (3))249

qm =
Asqs + Ar(qp − Er)

A
(22)

The river bed storage equation takes the form250

dh
dt

= qi − ql (23)

where ql [LT−1] represents the rate at which water is lost from the river bed sediments (per unit251

area of catchment) due to a combination of anthropogenic abstraction, seepage into underlying252

aquifers and additional evaporation.253

The river flow rate per unit area of catchment is found from254

qr = qm − qi (24)

Unfortunately we do not have information about how much water is abstracted from the sed-255

iments and how much is likely to seep into underlying aquifers. There is also uncertainty about256

the so-called extinction depth, beyond which evaporation from bare soils becomes significantly257

reduced (Gong et al., 2020). Therefore, for simplicity, ql is fixed to zero and h is set to zero at258

the beginning of each hydrological year (i.e., 1st June). The assumption here is that river bed259

sediments are completely dry at the end of each dry season, which is pretty much true in the four260

Botswanan river catchments of concern.261

A shortcoming of the above approach is that river bed sediments may reach full water capacity262
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too early on within a wet season, due to ql not being accounted for until the end of the dry season.263

However, for some sand rivers, the real-time losses associated with ql are likely to be sufficiently264

high such that river bed infiltration is unlikely to be river bed storage capacity limited. Where this265

is the case, modelled river flow rates will be insensitive to the value of hmax providing hmax is suf-266

ficiently large. The above simplified modelling approach can therefore be used to help determine267

where river bed infiltration is not river bed storage capacity limited.268

2.3.6. Three different model structures with varying complexity269

The above set of equations can be used to derive three different model structures of varying270

complexity.271

272

Model 1 assumes that river channel transmission loss represent an indistinguishable part of the273

losses accounted for within the PDM such that274

qr = qs (25)

Model 2 assumes that river channel transmission losses are distinguishable from surface infiltration275

outside of the sand river network but that water stored within the river bed sediments never gets276

close to maximum capacity (i.e., it can be assumed that hmax → ∞). In this way, qi = wqm and277

qr = (1 − w)qm (26)
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Model 3 is the same as Model 2 except the river bed sediments have a finite capacity such that278

qi and qr must be found from Eqs. (21) and Eq. (24), respectively. Model 3 represents the most279

complete model adopted in this study.280

2.4. Model implementation and parameter estimation281

The hydrological model used for our analysis is completely defined by Eqs. (4), (9), (10)282

and Eqs. (20) to (24). The differential equations are solved using an Euler explicit time-stepping283

scheme with a daily time-step, as described in Appendix B of Mathias et al. (2016). Daily ref-284

erence crop PE, E0, and daily precipitation, qp, are treated as catchment averaged quantities and285

derived as described in Section 2.2. The area of the catchment, A, and the length of the river chan-286

nel, Lr, have been determined using the spatial data described in Section 2.2 and are provided in287

Table 1.288

Remaining unknown parameters include the river bed infiltration factor, w, the surface storage289

capacity, S max, the river bed storage capacity, hmax, and the river channel width, Wr. This latter290

parameter is used to determine the area of the river channel network, i.e., Ar = LrWr.291

A priori probability distributions for these four unknown parameters are assumed to be bounded292

uniform random distributions. The w parameter is assumed to be between 0 and 1, which repre-293

sents the entire physical range. The S max parameter is assumed to be between 0 and 300 mm on the294

basis that the maximum S max value previously observed in 120 UK catchments by Mathias et al.295

(2016) was 230 mm. The hmax parameter is assumed to be between 0 and 500 mm on the basis that296

we are less certain about hmax as compared to S max. The Wr parameter is assumed to be between297

10 m and 60 m on the basis of the observed median values for river channel width observed in Fig.298
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2.299

Posteriori probability distributions for these four unknown parameters, for each of the four300

rivers are acquired using a GLUE methodology (Beven and Binley, 1992) as follows:301

1. Values of w, S max, hmax and Wr are randomly sampled from the specified a priori probability302

distributions.303

2. Theoretical river flow data, qr, are determined using each of the three model structures (see304

Section 2.3.6).305

3. The Nash Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) comparing the annual cu-306

mulative daily river flows from the modelled and observed data is calculated, using each of307

three models. Data where the observed annual cumulative daily flow are zero are excluded.308

4. Steps 1 to 3 are repeated 20,000 times. (Some preliminary analysis was performed with309

100,000 realisations and the results were found not to be significantly different to when only310

20,000 realisations were performed.)311

5. Posteriori parameter distributions for each of the unknown parameters are obtained by only312

retaining the top 1% of the realisations, in terms of highest NSE, for each of the three model313

structures.314

Note that Model 1 only has one unknown parameter, S max. Model 2 has three unknown param-315

eters, w, S max and Wr. Model 3 has four unknown paramters, w, S max, hmax and Wr.316

3. Results317

Table 2 shows the range of NSE values obtained from the top 1% realisations for each of the318

three model structures and for each of the four rivers. For all four rivers, it can be seen that Model319
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2 is significantly better at matching the observed data as compared to Model 1. Note that Model 1320

leads to negative NSE values for Metsimotlhabe because of the limited range of S max considered321

for the a priori distributions. The improvement provided by Model 3 as compared to Model 2 is322

much less significant with the exception of Ntshe.323

A comparison between the envelope of annual cumulative flows from the top 1% realisations324

for Model 3 with the observed annual cumulative flows is shown for each river in Figs. 3c, d, f and325

h. As indicated by the NSE values, the models are much better at capturing the data for Shashe,326

Ntshe and Tati as compared to Metsimotlhabe. This difference is likely due to the quality of flow327

measurement being better at these three gauging stations. Note that the models predict non-zero328

flows during years where no flows are recorded. These zero flow periods are in fact due to an329

absence of data records for those years. These years are not included in the NSE calculation.330

Table 2: Nash Sutcliffe Efficiency (NSE) range for the top 1% realisations for each of the three model structures and

for each of the four rivers.

Shashe Ntshe Tati Metsimotlhabe

Min. Max. Min. Max. Min. Max. Min. Max.

Model 1 0.630 0.630 0.729 0.729 0.606 0.606 -0.538 -0.507

Model 2 0.770 0.830 0.734 0.760 0.783 0.837 0.439 0.465

Model 3 0.750 0.834 0.741 0.850 0.763 0.837 0.437 0.486

3.1. Posteriori parameter distributions331

Fig. 5 shows the a priori and posteriori cumulative distribution functions (CDF) for the four332

unknown parameters, based on the top 1% best performing realisations, for each of the four rivers.333
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Fig. 5a shows the CDF for the river bed infiltration factor, w, using Model 2 (dashed lines) and334

Model 3 (solid lines). Recall that Model 2 assumed an infinite hmax (river bed storage capacity)335

whereas Model 3 assumed a finite hmax.336

The posteriori w distributions for Shashe, Tati and Metsimotlhabe are quite similar, suggesting337

a range of w values from 0.55 to 0.85. Furthermore, the CDFs from Model 2 and Model 3 closely338

follow each other for these rivers, suggesting that transmission loss is not hmax limited for these339

cases.340

In contrast, a much wider range of w values are possible for Ntshe, with some Model 3 values341

lower than 0.2. Furthermore, there is a wider discrepancy between the CDFs for Model 2 and342

Model 3 for this river, suggesting that transmission loss is likely to be hmax limited in this case.343

It is noted that the Ntshe catchment is the smaller of the four catchments (see Table 1) and that344

it produces more water per unit area of catchment as compared to the other three rivers (compare345

Figs. 3b, d, f and h), supporting the idea that there is less transmission loss here. Perhaps smaller346

catchments have less of an opportunity to erode out deeper sand river channels in their granitic347

basins. Interestingly, Ntshe also has a larger median river channel width as compared to the other348

rivers (see Fig. 2).349

Fig. 5b shows the CDF for the surface storage capacity parameter, S max. The dash-dot lines350

are for Model 1 where qr = qs. It can be seen that conditioning the PDM directly to the observed351

river flow data leads to very high values for S max, all of which are greater than 125 mm. In fact,352

the CDF for Metsimotlhabe suggests that S max is greater than 300 mm for that river, leading to the353

negative values of NSE in Table 2.354

Mathias et al. (2016) applied the same single parameter PDM to 120 different river catchments355
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in the UK. In their study they found that S max was always less than 230 mm and mostly less than356

100 mm. The reason why S max is coming out so high for Model 1 in this current context is that357

the calibration process is compensating for transmission loss occurring within the river channel.358

When transmission loss is explicitly accounted for (i.e., as in Model 2 and Model 3), the CDFs for359

S max give a 95% probability that S max < 115 mm for Metsimotlhabe and a 95% probability that360

S max < 51 mm for Tati (see solid lines for Model 3 in Fig. 5b). The S max values are even less for361

Shashe and Ntshe.362

It is also noted that the S max CDFs for Model 2 and Model 3 closely correspond with each other363

for Shashe, Tati and Metsimotlhabe, suggesting that the surface runoff component of the river flows364

is also not hmax limited for these rivers. However, for Ntshe, there is a notable difference between365

Model 2 and Model 3 CDFs when S max > 36 mm.366

The idea that transmission loss is not hmax limited, for Shashe, Tati and Metsimotlhabe, is367

further corroborated by the posteriori distributions for hmax, given in Fig. 5c. With the exception368

of Ntshe, these CDFs are all approximately uniformly distributed above a lower bound value of369

90 mm, suggesting that as long as hmax is set greater than 90 mm, the river flow response is370

insensitive to this parameter. In contrast, a more complicated distribution is noted for Ntshe,371

where transmission loss is likely to be hmax limited.372
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Figure 5: A priori cumulative distribution functions (CDF) and posteriori CDF for each of the four unknown parame-

ters and each of the four rivers, Shashe, Ntshe, Tati and Metsimotlhabe. PNE stands for probability of non-exceedance.

The dash-dot lines, dashed line and solid lines are from Models 1, 2 and 3, respectively (see Section 2.3.6). a) Shows

river bed infiltration factor, w. b) shows surface storage capacity, S max. c) shows river bed storage capacity, hmax. d)

shows river channel width, Wr.

Fig. 5d shows the CDFs for the river channel width, Wr. It can be seen that there is very373

little deviation between the a priori and posteriori distributions suggesting that river flow values374
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are insensitive this property. The only thing that Wr controls is the open water evaporation from375

the river channel in Eq. (22), through Ar = LrWr. Because Ar � As, this open water evaporation376

term is not that significant, and hence the river flow is largely insensitive to Wr.377

3.2. Parameter identifiability and cross-correlation378

The Kolmogorov–Smirnov (KS) statistic (Ang and Tang, 1975, p. 277-280) measures the379

maximum distance between the a priori and posteriori CDFs and provides a simple method of380

comparing the identifiability of each of the four unknown parameters in Model 3. A parameter381

with a higher KS statistic is more identifiable than a parameter with a lower KS statistic. The KS382

statistics for each of four parameters are presented in Table 3. For each of the four rivers, it is383

found that S max is the most identifiable parameter, followed by w and then hmax. The Wr parameter384

has a very low KS statistic, quantifying the fact that river flows are insensitive to this parameter.385

Table 3: Kolmogorov–Smirnov statistics from using Model 3 for each model parameter and for each of the four rivers.

Shashe Ntshe Tati Metsimotlhabe

w (-) 0.576 0.362 0.552 0.677

S max (mm) 0.862 0.785 0.774 0.568

hmax (mm) 0.260 0.171 0.310 0.167

Wr (m) 0.062 0.053 0.058 0.123

Table 4 shows the correlation coefficients between the four model parameters within their386

posteriori distributions. Mostly the parameters are not that correlated with the exception of w,387

which is strongly negatively correlated with S max. The reason for this is as follows. The higher the388
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value of S max, the more the precipitation is stored within the soil and evaporated, the less the water389

runs off into the river channel network, the less the water needs to be infiltrated into the river bed390

sediments to match the modelled river flow with observed flow rates, and the lower the necessary391

value for w. It is also noted that there is a moderate negative correlation between S max and hmax for392

Ntshe.393

Fig. 6a shows plots of w against S max within the Model 3 posteriori distributions for each of394

the four rivers. Despite the strong negative correlation between w and S max, the model calibration395

process is able to identify upper and lower bounds for both parameters. The results show that the396

value of w is between 0.55 and 0.85 for Shashe, Ntshe and Metsimotlhabe. Values of S max range397

between 40 mm and 135 mm for Metsimotlhabe and between 0 and 65 mm for Shashe and Tati.398

The results are more complicated for Ntshe due to additional correlation between S max and hmax .399

Table 4: Correlation coefficients for each model parameter pair when using Model 3 for each of the four rivers. *

indicates that a correlation is statistically significant.

Shashe Ntshe Tati Metsimotlhabe

w and S max -0.851* -0.762* -0.896* -0.929*

w and hmax 0.105 0.021 0.119 0.110

w and Wr 0.098 0.029 -0.080 -0.164*

S max and hmax -0.159 -0.401* -0.074 -0.113

S max and Wr -0.125 0.072 0.075 0.228*

hmax and Wr 0.060 -0.098 -0.030 0.106
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Figure 6: a) Plots of river bed infiltration factor, w, against surface storage capacity, S max, for each of the Model 3

posteriori distributions. b) Plots of river bed infiltration coefficient against surface runoff coefficient for each of the

Model 3 posteriori distributions.

3.3. Hydrological components as percentages of total precipitation400

Further insight into the hydrological processes taking place can be obtained by studying quan-401

tities of water associated with different hydrological components as a percentage of total precipi-402

tation.403

Fig. 7a shows the Model 3 posteriori distributions for total surface runoff as a percentage404

of total rainfall for the entire study period, hereafter referred to as the surface runoff coefficient405

(SRC). SRC is found to be between 5% and 12% for Metsimotlhabe and between 10% and 50%406

for the other three rivers. SRC could be lower for Metsimotlhabe, as compared to the other three407

catchments, on account of its sandier soil classification.408
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Figure 7: Model 3 posteriori distributions for: a) total surface runoff, qs, as a percentage of total precipitation; b) total

river bed infiltration, qi, as a percentage of total precipitation; c) total open water evaporation from the river channel,

(Ar/A)Er, as a percentage of total precipitation; d) total river flow, qr, as a percentage of total precipitation.

FAO (1995) present regional scale runoff coefficients for Africa based on the ratio of total “in-409

ternal renewable water resource” (IRWR) to total precipitation. IRWR is defined as the “average410

annual flow of rivers and groundwater generated from endogenous precipitation”. For Botswana,411

FAO (1995) cite a total IRWR of 2.9 km3 per year and a total precipitation of 233.2 km3 per year,412
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which yields a runoff coefficient of 12.4%. This is much lower than the upper bound SRC of 50%,413

estimated for Shahshe, Ntshe and Tati. The reason for this is that SRC does not take into account414

the transmission loss that occurs in the river channel network.415

Interestingly, Parida et al. (2006) estimated runoff coefficients for the Notwane river catchment416

near Gaborone, Botswana. Notwane is not classified as a sand river and is expected to have a417

relatively low transmission loss. Therefore, their runoff coefficients should be more comparable418

with our SRC. They observed annual runoff coefficients ranging from 35% to 56%.419

Fig. 7b shows posteriori distributions for total river bed infiltration as a percentage of total420

rainfall, hereafter referred to as the river bed infiltration coefficient (RBIC). RBIC is found to be421

between 4% and 10% for Metsimotlhabe and between 7% and 45% for the other three rivers.422

RBIC is lower for Metsimotlhabe on account of its lower SRC. In fact RBIC is strongly correlated423

with SRC for all of the catchments (see Fig. 6b). Nevertheless, the Monte Carlo simulation has424

provided a useful set of bounds for this property.425

Fig. 7c shows posteriori distributions for total open water evaporation from the river channel426

as a percentage of total rainfall, hereafter referred to as the open water evaporation coefficient427

(OWEC). For all rivers this represents a very small component at less than 0.8%. This is because428

the area of the river channel network is small as compared to the total catchment area and also429

the river channel network is only flowing for a small proportion of time. However, additional430

evaporation may take place from water within the river bed sediments when the river is not flowing.431

This component has not been specifically identified in our analysis but is implicitly accounted for432

by the drying out of the sediment storage at the end of each dry season (see Section 2.3.5).433

Recall that the term transmission loss is a term used to collectively quantify reductions in434
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stream flow associated with river bed infiltration and evaporation from the river channel. Given that435

OWEC is very small in this context, the RBIC can be thought of as a transmission loss coefficient.436

Fig. 7d shows posteriori distributions for total river flow as a percentage of total rainfall,437

hereafter referred to as the tributary runoff coefficient (TWC). TWC ranges between 1.5% and438

2.0% for Metsimotlhabe, 5% and 8% for Shashe and Tati, and 7% and 13% for Ntshe. These439

figures compare well with Love et al. (2010) who observed event-based TWC in the Zhulube sand440

river of the northern Limpopo basin in Zimbabwe, mostly ranging between 2% and 10%. Our441

figures are also in line with the 12.4% runoff coefficient estimated for Botswana by FAO (1995),442

especially bearing in mind that not all rivers in Botswana are sand rivers.443

4. Summary and conclusions444

The objective of this article was to develop an improved methodology for quantifying trans-445

mission loss from ephemeral sand rivers by calibrating a lumped rainfall-runoff model to observed446

river flow data. Fifteen years of daily river flow data were obtained from four sand rivers in447

Botswana, namely, Shahshe, Ntshe, Tati and Metsimotlhabe. Our simplified rainfall runoff model448

had four unknown parameters including the river bed infiltration factor, the surface storage capac-449

ity, the river bed storage capacity and the river channel width. Posteriori parameter distributions450

were derived using a GLUE methodology.451

Water stored within the river bed sediments is controlled by river bed infiltration, anthro-452

pogenic abstraction, seepage into underlying aquifers and evaporation. Due to uncertainty about453

these latter three quantities, a simplified approach was taken whereby losses were ignored during454

each wet season but assumed to be sufficiently large such that river bed sediments were completely455
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dry by the end of each dry season. Such an approach is not suitable for modelling rivers where456

channel bed infiltration is storage capacity limited. However, in an inverse modelling sense, it is457

possible to use such an approach to determine whether river bed storage capacity is affecting river458

flow rates.459

A parallel set of model runs were performed where the river bed sediments were assumed to460

have an infinite storage capacity. By comparing these results with those from models with finite461

storage capacities, it was ascertained that river bed infiltration was not river bed storage capacity462

limited for three of the four rivers studied (Shahshe, Tati and Metsimotlhabe). It was also found463

that the simulated river flows were insensitive to river channel network area. This insensitivity is464

because river channel network area only affects open water evaporation from river channels, which465

turns out to represent less than 0.8% of total precipitation.466

Only two of the unknown model parameters were of significant importance: the river bed467

infiltration factor and the surface storage capacity. These latter two parameters were found to be468

strongly negatively correlated. Nevertheless, it was possible to obtain lower and upper bounds for469

the river bed infiltration factor for three of the rivers studied (Shahshe, Tati and Metsimotlhabe).470

Our results have identified that transmission loss represents between 55% and 85% of the total471

surface runoff at these locations.472

Our study confirms that upper and lower bounds for transmission loss can be obtained by473

calibrating a lumped rainfall runoff model to a single set of river flow gauging data. Results from474

this study can be used to better inform future water balance studies for similar sand rivers in475

Southern Africa.476
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