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ABSTRACT

To answer major questions on supermassive black hole (SMBH) and galaxy evolution, a
complete census of SMBH growth, i.e. active galactic nuclei (AGN), is required. Thanks to
all-sky surveys by the Wide-field Infrared Survey Explorer (WISE) and the Spectrum-Roentgen-
Gamma (SRG) missions, this task is now feasible in the nearby Universe. We present a new
survey, the Local AGN Survey (LASr), with the goal of identifying AGN unbiased against
obscuration and determining the intrinsic Compton-thick (CT) fraction. We construct the most
complete all-sky galaxy sample within 100 Mpc (90 per cent completeness for log (M,./Mg)
~ 9.4), four times deeper than the current reference, the Two Micron All-Sky Survey Redshift
Survey (2MRS), which misses ~20 per cent of known luminous AGN. These 49k galaxies
serve as parent sample for LASr, called LASr-GPS. It contains 4.3k already known AGN, >
82 per cent of these are estimated to have L™°(12 um) < 10**3 ergs™!, i.e. are low-luminosity
AGN. As a first method for identifying Seyfert-like AGN, we use WISE-based infrared colours,
finding 221 galaxies at L™°(12 um) > 10*>? ergs~! to host an AGN at 90 per cent reliability.
This includes 61 new AGN candidates and implies an optical type 2 fraction of 5071 per cent.
We quantify the efficiency of this technique and estimate the total number of AGN with
L™(2-10 keV) > 10" ergs™" in the volume to be 362™|2 (8.6733 x 107> Mpc ™). X-ray
brightness estimates indicate the CT fraction to be 40-55 per cent to explain the Swift non-
detections of the infrared selected objects. One third of the AGN within 100 Mpc remain to be
identified, and we discuss the prospects for the eROSITA all-sky survey to detect them.
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with their host galaxies as, for example, indicated by empirical

1 INTRODUCTION scaling relations between the SMBH mass and galaxy properties,

Today it is commonly accepted that all massive galaxies host a such as the stellar velocity dispersion or stellar mass of the
supermassive black hole (SMBH) at their centres. Furthermore, spheroidal component (e.g. Kormendy & Ho 2013; Shankar et al.
there is increasing evidence that the SMBHs somehow co-evolve 2016). The existence of such relations is somewhat surprising given

the many orders of magnitude difference in size between the black
hole sphere of influence and the bulk of the galaxy. This raises
* E-mail: d.asmus @soton.ac.uk the questions of how the feeding of the SMBH exactly works (e.g.
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Alexander & Hickox 2012), and if there is significant feedback from
the SMBH onto the host galaxies. The latter process is postulated
by current cosmological simulations to suppress star formation and
explain the galaxy population as observed today in the nearby
Universe (e.g. Granato et al. 2004; Lapi et al. 2006; Shankar et al.
2006).

The last decades of research have significantly increased our
understanding of SMBH growth (see Netzer 2015 for a recent
review). We know that SMBHs grow through several phases over
cosmic time, during which large amounts of matter are accreted.
During its journey towards the event horizon, the material forms an
accretion disc which, due to the release of gravitational energy, emits
large amounts of radiation, mostly in the ultraviolet (UV) which
then is partly reprocessed by surrounding material and secondary
processes. As a result, the galaxy nuclei appear as bright compact
sources, often outshining the rest of the galaxy. They are called
active galactic nuclei (AGN). AGN are bright emitters across most
of the electromagnetic range and, thus, detectable throughout the
entire visible Universe which allows us to directly trace SMBH
growth over cosmic history. In addition, AGN can produce strong
outflows which are prime candidates for the feedback on to the
host galaxy postulated above. However, to robustly answer which
processes are dominating the SMBH growth and the feedback, we
require a complete census of the AGN phenomenon. For example,
precise knowledge of the AGN number counts in the local Universe
would provide tight constraints on the duty cycle of AGN, radiative
efficiencies, and the luminosity and accretion rate distributions (e.g.
Martini & Weinberg 2001; Shankar, Weinberg & Miralda-Escudé
2009; Goulding et al. 2010; Shankar et al. 2019). Such a census
is very challenging to carry out. First of all, the accretion rates of
SMBHs span a wide range from essentially zero up to values in
excess of the Eddington limit. Therefore, AGN span a huge range
in luminosities from the nearly quiescent Galactic Centre, Sgr A*, to
the most powerful quasars roughly twelve orders of magnitude more
luminous. Faint AGN are difficult to detect, in particular if they do
not outshine their host galaxy at some wavelengths. Moreover, the
majority of SMBH growth seems to be highly obscured from our
lines of sight (e.g. Fabian 1999; Ueda et al. 2014; Buchner et al.
2015; Ricci et al. 2015). So what is the best, i.e. most efficient and
least biased, way to find all the AGN? Our best chance to achieve
this is certainly in the nearby Universe, where the sensitivity and
angular resolution of our instruments can be used to their largest
effect for finding and characterizing even highly obscured AGN.
This is the ultimate goal of the new survey presented here, the
Local AGN Survey (LASTr). Its design is motivated by the following
insights.

1.1 Selecting AGN in the X-ray regime

So far, one of the most successful ways to identify AGN has proven
to be in the hard X-ray regime (210keV). Here, most AGN are
luminous owing to UV photons from the accretion disc being
Compton-up-scattered to higher energies by hot electrons. These
electrons are most likely part of a coronal region surrounding the
innermost accretion disc. As aresult, AGN are easily more luminous
in X-ray than any other non-transient astronomical objects. Another
advantage is that X-ray emission is less affected by extinction
than longer wavelength emission. Both reasons together make
AGN selection at these energies very reliable. Specifically, the
ongoing all-sky scan at 14-195 keV with the Burst Alert Telescope
(BAT; Barthelmy et al. 2005) on the Swift satellite (Gehrels et al.
2004) provided us with the so far least biased local AGN samples

(Markwardt et al. 2005; Tueller et al. 2008; Baumgartner et al.
2013). Prominent examples are the Luminous Local AGN with
Matches Analogues sample (LLAMA; Davies et al. 2015; see
Riffel et al. 2018 for the Northern analogue) and the BAT AGN
Spectroscopic Survey (BASS) samples, e.g. after 70 month scanning
time (hereafter B70 AGN sample; Koss et al. 2017; Ricci et al.
2017).

However, even the BAT AGN samples are restricted in two
ways. First, the sensitivity of this selection method is relatively
low because of the low photon counts. This caveat results in
relatively high flux limits, so that even relatively powerful AGN
remain undetected by BAT. Second and more importantly, even
at such high energies, Compton-thick (CT) obscuration (Ny >
1.5 x 10** cm™2) extinguishes the intrinsic flux by factors of ten
and larger, resulting in a detection bias against CT obscured AGN.
This last point is a severe problem because the intrinsic fraction
of CT-obscured AGN is probably around ~30 per cent (e.g. Ricci
etal. 2015; Lansbury et al. 2017; Georgantopoulos & Akylas 2019,
Boorman et al., in preparation), and possibly even up 50 per cent
(Ananna et al. 2019; but see Gandhi et al. 2007). Both caveats will
be somewhat mitigated in the future with deeper Swift/BAT maps
although only slowly as the mission has already reached more than
eight years of total integration time. The newest X-ray satellite,
the Russian-German ‘Spectrum-Roentgen-Gamma’ (SRG) mission
could allow for advance in this matter. It hosts two telescopes
which will perform a four-year all-sky survey at complementary
X-ray energies, namely the extended ROentgen Survey with an
Imaging Telescope Array (eROSITA; Predehl et al. 2010; Merloni
etal. 2012) operating at 0.2—10 keV and the Astronomical Roentgen
Telescope - X-ray Concentrator (ART-XC; Pavlinsky et al. 2011,
2018) operating at 4-30keV. In terms of detecting AGN with their
X-ray emission described by a typical power law, these surveys
are expected to be approximately ten times deeper than the current
Swift/BAT survey. Thus, these surveys are our best chance to probe
the local AGN population at sufficient depth, in particular to detect
(or place stringent constraints on) many of the still missing CT
AGN.

1.2 Selecting AGN in the mid-infrared regime

Complementary to X-ray selection of AGN is selection in the
mid-infrared (MIR). About half of the primary emission from the
accretion disc is absorbed by dust, surrounding the AGN probably
on parsec scales in a more or less coherent structure (see Almeida &
Ricci 2017 and Honig 2019 for recent reviews). As a result, this dust
is heated to temperatures of several hundred Kelvins and radiates
thermally with the emission peaking in the MIR (~3 to 30 wm).
Owing to the more extended and probably clumpy structure of the
dust, obscuration becomes a secondary effect at this wavelength
regime and usually does not exceed a factor of a few, even in the
worst cases (Stalevski et al. 2016). This makes MIR emission a
formidable tracer of the primary power of the AGN and allows a
highly complete selection. The recent all-sky survey of the Wide-
field Infrared Survey Explorer (WISE; Wright et al. 2010) allowed
for the most progress here in the last years, thanks to its high
sensitivity and spectral coverage. However, AGN selection in the
MIR has some major caveats as well, namely, severe contamination
by emission of stellar origin. At shorter wavelengths, <6 pum, this
includes radiation of old stars, while at longer wavelengths, 6 pwm,
dust heated by young stars in star forming regions can dominate
the total MIR emission of galaxy. Moreover, AGN and intense
star formation events often occur together in time and space, e.g.
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triggered through galaxy interaction and mergers. Therefore, any
AGN selection in the MIR is prone to host contamination. Finally,
both X-ray and MIR selection are biased against low luminosity
and low accretion rate objects, in particular if the SMBH accretes
radiatively inefficiently (e.g. Ho 2009). Such systems can be much
more efficiently selected at radio wavelengths (e.g. Best et al. 2005;
Padovani 2016; Tadhunter 2016; Baldi et al. 2018).

1.3 The new local AGN survey

The discussion above shows that no single selection technique can
lead by itself to a complete, unbiased AGN sample (see Hickox &
Alexander 2018 for a comprehensive review on AGN selection).
Instead a combination of techniques is required. This is the approach
of LAST. Specifically, we want to combine the advantages of the high
completeness achievable in the MIR and the high level of reliability
in the X-rays to identify all efficiently accreting SMBHs. Applied
to the all-sky surveys of WISE , eROSITA, and ART-XC, combined
with our nearly complete knowledge of the local galaxy population,
LASr should allow us to significantly improve our understanding
of the local AGN population and construct the most complete AGN
census yet in the nearby Universe with particular focus on the highly
obscured objects.

LASr will be performed throughout a series of papers, combin-
ing different AGN identification techniques to construct a highly
complete AGN sample as final result. In this first paper, we start
LASTr by selecting the survey volume, assembling the parent sample
of galaxies, and employing the first AGN identification technique.
Specifically, we create a list of all known galaxies within the volume
(Section 2) called the LASr galaxy parent sample (LASr-GPS). It
will serve as a base sample for the application of different AGN
identification techniques. In this paper, we focus on the MIR and use
the WISE catalogues to first characterize LASr-GPS in terms of com-
pleteness and bulge MIR properties (Section 3) before starting the
AGN census (Section 4). This first includes the characterization of
the already known AGN in the volume, followed by the application
of the first AGN identification technique, namely by WISE colours.
This is the most easily available technique, allowing us to find most
of the more luminous AGN in the sample, i.e. those that are more
luminous than their host galaxy in at least one WISE band. Usually,
this is the case for AGN with bolometric luminosities >10% erg s~!
(e.g. Alexander et al. 2005) and corresponds to AGN classified
as ‘Seyferts’ based on their optical emission line ratios. Such AGN
probe significant SMBH growth, which seem to be the most relevant
for our main science questions, i.e. cases that contribute significantly
to the total mass budget of the SMBH and/or cases where sufficient
energy is released to have an impact on the host galaxy. The big
advantage of MIR colour selection is that it is little affected by
obscuration bias, allowing us to identify highly obscured AGN with
particular focus on new CT candidates. We discuss the newly found
AGN and CT AGN candidates in Sections 4.4 and 4.5, respectively,
including the prospects to detect them in X-rays. Throughout this
work, we will use the so far least biased AGN sample, the B70 AGN
sample, in order to characterize the selection steps of LASr AGN.
Specifically, the characterization of the MIR colour-based AGN
identification technique employed here allows us to estimate the
total number counts of AGN in our volume (Section 4.6). This paper
is then concluded by a comparison of these numbers to luminosity
functions from the literature (Section 4.7).

In future papers, we will employ additional MIR-based AGN
identification techniques, e.g. variability and SED decomposition,
as well as present follow-up observations of AGN candidates. The
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highly complementary X-ray-based AGN identification can then
be provided by the eROSITA and ART-XC all-sky surveys once
available.

2 CREATION OF THE GALAXY PARENT
SAMPLE

In this section, we first describe the motivation for the selection
of the volume for LASr. Next, we require a galaxy parent sample
highly complete in terms of galaxies sufficiently massive to host
an AGN, which can then be used to select AGN from. We will
see that current local galaxy samples do not fulfil this criterion so
that we have to assemble our own galaxy parent sample. Finally,
we describe the assembly of the galaxy properties relevant for this
work, namely the coordinates, redshifts, and distances, allowing us
to find the MIR counterparts of the galactic nuclei and compute
their luminosities.

2.1 Selection of the volume

We wish to construct a highly complete census of SMBH growth in
the local Universe. The choice of volume to be used for this purpose
is motivated by several factors.

(i) In order to obtain a census that is representative for the
whole AGN population, the volume needs to be representative
of the larger scale, low redshift Universe. It is estimated that
cosmological isotropy is reached for length scales of ~2004~! Mpc
with 1 = Hy/100 km s~'Mpc~! and H, the Hubble constant (Sarkar,
Pandey & Khatri 2019).

(i1) The volume should also be large enough to sample rarer AGN
sub-populations in sufficient numbers to yield statistically robust
conclusions on their relevance. Here particular emphasis should be
on the high luminosity AGN regime because these may dominate
the integrated black hole growth and AGN feedback (e.g. Aird
et al. 2010; Fabian 2012). However, high-luminosity AGN have
a low space density. For example, current estimates of the AGN
luminosity function in X-rays, e.g. Aird et al. (2015), let us expect
a space density of ~5 x 1077 Mpc~? for AGN with an intrinsic X-
ray luminosity of L"(2-10 keV) > 10%ergs™', e.g. ~20 objects
within a sphere of 200 Mpc radius.

(iii) On the other hand, the volume should be small enough
so that the depth of the all-sky surveys, used to identify and
characterize the AGN, is sufficient to probe the lower parts of the
AGN luminosity range. This is particularly important in the X-
rays where extinction is large for obscured AGN. For example, the
final all-sky maps of eROSITA and ART-XC are expected to have
depths of ~1.6 x 10713 and ~3 x 10~ ¥ erg cm™2s7! at 2-10keV,
respectively (Merloni et al. 2012; Pavlinsky et al. 2018), which
corresponds to a distance of 150-250 Mpc for an observed X-ray
luminosity of L°»(2-10 keV) = 10¥ ergs~'. However, CT AGN
are suppressed by easily a factor of 10 to ~100 at these wavelengths.

(iv) The MIR is much less affected by extinction, but sensitivity is
the key restricting factor, i.e. the WISE all-sky maps have an average
depth capable of detecting an AGN with a 12 pm luminosity
L™¢(12 um) = 10* ergs~! up to a distance of 220 Mpc with >30
in band 3 (W3~11.6 mag; WISE documentation').

(v) Another factor to take into account is that the completeness of
our parent sample of galaxies directly restricts the completeness of

Thttp://wise2.ipac.caltech.edu/docs/release/allsky/
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our AGN search. According to a recent estimate, our all-sky redshift
completeness is only 78 per cent for galaxies with a redshift z <
0.03 (Kulkarni, Perley & Miller 2018), and the completeness is
quickly dropping towards higher redshifts.

(vi) Finally, once identified, we need to follow-up and charac-
terize all the AGN in the volume. We are especially interested in
spatially resolving the in and outflows on sub-kiloparsec scales for
as many objects as possible, which puts a feasibility-based upper
limit on the volume. For example, at an object distance of 250 Mpc,
one kiloparsec corresponds to one arcsec on sky, which is close to
the effective resolution limit of most telescopes.

The above factors advocate to implement LASr as an all-sky
survey with a spherical volume given by a radius between ~100 and
~250 Mpc. While, we plan to later use the larger value, 250 Mpc,
we start LASr first with the lower value, 100 Mpc, to verify our
approach. Using the cosmological parameters of Collaboration et al.
(2016), an object distance of 100 Mpc corresponds to a redshift of
z =0.0222.

2.2 On the 2MRS galaxy sample

The current, commonly used reference sample for the local galaxy
population is based on the Two Micron All Sky Survey (2ZMASS;
Skrutskie et al. 2006), namely the 2MASS Redshift Survey (2MRS;
Huchra et al. 2012). It contains 45k galaxies which were selected
from the 2MASS Extended Source Catalog (XSC) and the 2MASS
Large Galaxy Atlas (LGA; Jarrett et al. 2003) according to the
following criteria, (i) detected in the K-band with Kg < 11.75 mag;
(i) low foreground extinction with E(B — V) < 1.0 mag; and (iii)
sufficiently far from the Milky Way plane with |b| > 5° for 30° <
| < 330° and |b| > 8° otherwise with [ and b being the Galactic
longitude and latitude, respectively. For ~98 per cent of the objects,
redshifts were collected from the literature or dedicated follow-up
observations by Huchra et al. (2012), so that the final galaxy sample
with redshifts comprises 43.5k galaxies. Out of those, 15k galaxies
are within 100 Mpc distance from us, to which we refer to simply
as the 2MRS sample’ in the following.

So far, it has been assumed that the 2MRS sample contains all
major galaxies, at least outside of the Galactic plane. However,
13 per cent of the host galaxies of the 191 B70 AGN within D <
100 Mpc are not part of the 2MRS. This fraction increases to
26 per cent for D < 250 Mpc. Since we aim at a final completeness
of >90 per cent for AGN-hosting galaxies, we have to complement
the 2MRS sample (next section). The necessity of this extension of
the 2MRS is further discussed in Section 3.1.

2.3 The LASr-GPS

In order to build our parent sample of galaxies for LASr, here-
after LASr-GPS, we combine the 2MRS with galaxies from the
major public astronomical data bases. Namely, the LASr-GPS is
created by querying the 2018 December release of the NASA/IPAC
Extragalactic Database (NED?), the 2018 May release of the
Centre de Données astronomiques de Strasbourg (CDS) Set of
Identifications, Measurements, and Bibliography for Astronomical
Data (SIMBAD?; Wenger et al. 2000), and the most recent, i.e.
15th, data release of the Sloan Digital Sky Survey (SDSS*; Blanton

Zhttp://ned.ipac.caltech.edu/
3http://simbad.u-strasbg.fr/simbad/
“https://www.sdss.org

et al. 2017; Aguado et al. 2019) for all objects within the redshift
limit.

A multistage cleaning process is necessary with iterations before
and after merging of these different subsets to remove duplications,
spurious redshifts, and other contaminants in order to obtain a clean
galaxy sample. The full assembly process is illustrated in Fig. 1. Its
order is partly dictated by practical aspects in the selection process.

In short, we first exclude all objects classified as stars if they have
aredshift z < 0.001 as well as objects with unreliable or photometric
redshifts (step 1 in Fig. 1), yielding 157k, 60k, and 22k from NED,
SIMBAD, and SDSS respectively. We cross-match these subsets in
step 2, unifying all matches within a cone of 3 arcsec radius.’ Not
for all objects a counterpart is found in every subset. However, many
of these objects actually have entries in NED, SIMBAD, or SDSS
but either without assigned redshift or are classified as stars in that
data base. Thus, they were not selected in step 1. In order to gather
as much information as possible about each object, we therefore
query for all still missing counterparts in the corresponding data
bases (step 3). These steps yield 183k potential galaxies.

Next, we identify all known AGN within these potential galaxies
by cross-matching with all major literature samples of AGN (step
4; see Section 2.4 for details).® In the next steps, 5 and 6, we first
add the NED compiled redshifts and redshift-independent distances
(NED-D; Steer et al. 2017) and then use the added information
from all the cross-matching to perform another cleaning of Galactic
objects. This is necessary because many objects are unclassified
(or even erroneously classified as galaxies) in some of the data
bases but then identified as Galactic objects in others. Most of these
contaminants result from previous SDSS data releases included in
NED and SIMBAD. Those contaminants we can now eliminate by
using the most recent and improved classifications of SDSS DR15.
Specifically, we exclude all objects which have either (i) at least
one classification as Galactic object but none as galaxy in NED,
SIMBAD, and SDSS (63k cases); (ii) at least two classifications
as Galactic objects (4.8k cases); (iii) at least one classification
as Galactic object and a redshift <0.0011 (20k cases); or (iv)
no classification as galaxy and a redshift <0.0011 (18k cases).
This redshift threshold is determined from SDSS DR15 with the
probability of being a genuine galaxy being <1 per cent for all
redshifts lower than that. We make sure to keep all 2MRS galaxies
during this step and check all doubtful cases individually to make
sure that we do not erroneously exclude any genuine galaxy. As a
result of this cleaning, the sample is further reduced to 77k potential
galaxies. Then, we perform cross-matching with WISE (step 7; see
Section 2.7). During this step, we also check all objects visually and
identify another 22k contaminants. These are either entries from
NED and SIMBAD where no optical counterpart is identifiable in
the vicinity of the given coordinates, or cases where the coordinates
point to a part of another galaxy in the sample. The reason for
the latter can be inaccurate coordinates in NED and SIMBAD
or multiple fibres placed on different parts of larger galaxies in
SDSS. This step is also used to correct coordinates of galaxies that
are offset from its nucleus, or geometric centre (if the nucleus is
unidentifiable). The final two steps (8 and 9) clean the remaining
duplicates, e.g. objects sharing the same WISE counterpart, as well
as objects with erroneous redshifts (see Section 2.6).

SThe radius is chosen to be well below the angular resolution of WISE and
prevent incorrect matches.

OThis is done at this early stage to ensure we are not losing any relevant
objects in the following steps.
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Figure 1. Schematic recipe for assembly of the LASr-GPS and following AGN selection. It starts at the top with the numbers of potential galaxies within the
redshift limit found in the different data bases 2MRS, NED, SIMBAD, and SDSS. These are then merged into one sample of potential galaxies which is then
cleaned and further information added in a number of steps, proceeding to the bottom, until the final parent sample of 49k verified galaxies, the LASr-GPS, is
reached after step 9. See Section 2.3 for a detailed description of each step in the LASr-GPS assembly, while the AGN selection that follows below the dashed
line in steps 10 and 11 is described in Section 4.3 for the known AGN, Section 4.4 for the new candidates, and Section 4.6 total AGN number estimate.

The final galaxy sample contains 49k visually verified galaxies
and includes all but 3 of the 15k 2MRS galaxies in the volume.’
Therefore, the LASr-GPS can indeed be seen as an extension of the
2MRS, and all the following steps performed with the LASr-GPS
apply in equal measure to the 2MRS, unless mentioned otherwise.
The galaxies are listed in Table 1 which is available in its entirety
online. The LASr-GPS forms the parent sample for searching local
AGN.

2.4 Identification of known AGN

In our quest for a highly complete AGN sample, we benefit
from the large amount of literature that already identified many
of the AGN in our volume. NED and SIMBAD have collected
a lot of these classifications which we obtained together with

"The excluded are: NGC 6822 aka 2MASX J19445619-1447512 is a very
nearby dwarf galaxy which is over-resolved in WISE and 2MASS and
thus cannot be included. 2MASX J18324515-4131253 is actually part of
ESO 336-3. which is also in 2MRS, and, thus, it is excluded. 2MFGC 02101
is most likely a foreground star in the outskirts of NGC 1035 which is also
in the 2MRS.
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the object queries. In addition, for NED, we query the website
of each individual object to extract the homogenized activity
class as well as the basic description (’classifications’) that also
often contains information about any AGN in the system. This
results in 2617 AGN classifications from NED and 4398 from
SIMBAD. SDSS also provides AGN identifications based on an
automatic assignment from the template fitting to the optical spectra,
resulting in 271 automatic AGN classifications among the SDSS
galaxies.

We complement these classifications with the two largest inde-
pendent AGN collections, namely Véron-Cetty & Véron (2010) and
Zaw, Chen & Farrar (2019). The former authors have collected 169k
AGN from the literature of which 1135 are in our volume, while
the latter have analysed all available optical spectra of the 2MRS
galaxies, resulting in 8.5k AGN identifications of which 3078 are
in our volume. Finally, we add the new AGN identifications of the
191 B70 AGN within our volume.

In total, this leads to 4309 known AGN among the 49k galaxies
of the LASr-GPS, of which 3887 are also in the 2MRS sample.
Most of these have been identified using optical spectroscopic
classifications. We adopt optical AGN type classifications whenever
they are available in the data bases. In addition, for the narrow-line
AGN from Zaw et al. (2019), we perform the Seyfert, LINER
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(low-ionization nuclear emission-line region) and H1I nucleus
classification based on the emission line fluxes published in that
work and the AGN diagnostics of Kewley et al. (2006). This way,
we could retrieve optical type classifications for 95 per cent (4101 of
4309) of the known AGN including 2409 Seyfert , 2053 LINER, and
1777 Hu classifications.® Here, we allow for multiple classifications
of the same object® which is the case for 47 per cent of the AGN and
to alarge part the likely result of varying spectroscopic aperture, data
quality, and classification methods used. In addition, some of the
AGN identifications might be unreliable, in particular if the object
has not been optically classified as Seyfert (1900 objects). Most of
the latter are optically classified as LINERs which is a controversial
class with respect to its AGN nature because also stellar phenomena
can produce similar emission line ratios (e.g. Stasinska et al. 2008;
Cid Fernandes et al. 2010, 2011; Yan & Blanton 2012; Belfiore
et al. 2016; Hsieh et al. 2017). These caveats have to be taken
into account when using this compilation of classifications, and,
in this work, we use them only for indicative purposes. The same
applies to the more detailed Seyfert obscuration type classifications,
where we find 1012 objects classified as type 1 (Sy 1.x) and 1545
as type 2 (Sy2) with 9 per cent (219) of the objects having both
classifications or intermediate type (Sy 1.8 or Sy 1.9). If we exclude
all objects with multiple optical classifications, 490 type 1 and 475
type 2 AGN remain.

The known AGN are marked as such in Table 1 and their
characteristics are further discussed in Section 4.1.

2.5 Identification of known starbursts

Not only AGN can produce significant MIR emission but also
intense star formation does. Therefore, starbursts are the main
source of contamination for AGN selection in the MIR (e.g. Hainline
et al. 2016). In order to understand the effects of starbursts on the
MIR appearance of galaxies, we also collect galaxies explicitly
classified as starbursts in either of the data bases, resulting in 4006
starbursts, mostly from SDSS (3762 objects). Similar to the known
AGN, the starburst sample is probably highly incomplete, but it
shall serve us to understand the locus of starburst galaxies in the
different parameter distributions in comparison to the AGN. The
corresponding objects are marked as well in Table 1.

2.6 Determination of redshifts and distances

The most fundamental quantity that we require for each galaxy is
its distance from us, not only to decide whether the galaxy is within
our volume but also to determine its luminosity. For most galaxies,
the distance is estimated from the redshift for which we generally
prefer the value provided by SDSS DR15, or NED if the former
is not available. We consider a redshift robust if we either have a
robust value in SDSS DR15 (their redshift confidence flag = 0), or
we have at least two independent redshift measurements from all
data bases combined (including the redshift compilations in NED).
Otherwise, we consider the redshift somewhat uncertain and use a
redshift confidence flag in Table 1 to mark these cases with a value
of 1 (0.5 per cent of the LASr-GPS), meaning that these values are
not verified but there is no suspicion of a problem either. In addition,

8The remaining 208 objects are simply classified as ’AGN” in the databases
without any optical type given.

9There are 402 objects classified both as Seyfert and LINER, 993 as Seyfert
and H1I and 846 as LINER and H11.
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Figure 2. Distribution of the logarithmic ratio of the median NED-D
redshift-independent distance and the luminosity distance, Dy, of each object
as a function of Dy. The colour scaling marks the density of the data points
from yellow to black. The black line indicates the median value at a given
Dy, with a width of 2Mpc, while the grey shaded area encompasses 2/3
of the population at each Dy. The green dashed line marks the 1 to 1
correspondence.

there are several cases where the different redshift measurements
are discrepant (standard deviation of measurements >20 per cent;
4.6 per cent of all galaxies). In most of these cases, only one of the
redshift measurements for the affected object is offset from the rest,
often by a factor of two or more. In particular for the very nearby
galaxies, we can thus often guess the ‘right’ redshift from the visual
size of the galaxy. For objects with discrepant redshifts, where we
cannot make a clear decision based on all available information,
we assign a value of 2 to the redshift confidence flag (0.3 per cent
of the LASr-GPS), meaning that those redshifts are controversial
and cannot be trusted. Therefore, we have robust redshifts for
99.2 per cent of the galaxies.

With the redshifts, we compute the luminosity distance, Dy, for
all galaxies. However, in the nearby Universe D, can be inaccurate
owing to the speed of the Hubble flow here being comparable to
the peculiar motion of the galaxies. Fortunately, a major effort of
NED led to a large collection of 320k redshift-independent distance
estimates for 182k galaxies dubbed NED-D (Steer et al. 2017).

Of our 49k galaxies, NED-D values are available for 10.6k
galaxies. NED-D contains multiple measurements of very different
methods for many galaxies, leading to a very heterogeneous data
set. Unfortunately, it is not feasible here to perform a selection or
weighting of different methods for each galaxy. Instead, we simply
compute the median of the different measurements. Before adopting
the NED-D values, we first compare them to our D, values in Fig. 2.
As expected, we see that the deviation between NED-D and D,
increases for small distances, while for larger distances the median
ratio between the two converges to a constant value close to 1. This
happens roughly at D; = 50 Mpc. Here, also the width of the scatter
converges to 0.16 dex (factor 1.44), indicating that above this value
the scatter between the individual redshift-independent methods
dominates over deviations from the Hubble Flow. This motivates
us to adopt the median NED-D value for the object distance
if D; < 50Mpc (4.6k galaxies; 9.3 per cent). Otherwise we use
D;. The resulting final redshifts and distances used are listed in
Table 1.
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2.7 Identification of WISE counterparts

For the planned identification of AGN, we require the MIR
properties of all the galaxies. Therefore, we cross-match our
galaxy samples with the all-sky pointsource catalogues of WISE,
specifically, the AIIWISE catalogue (Cutri & et al. 2013), and
then visually verify the counterpart most likely corresponding to
the nucleus of the galaxy. In 93.3 per cent of the cases, this is
the AIIWISE source that is closest to the galaxy coordinates. The
median angular separation is 0.6 arcsec and the 90th percentile is
2.7 arcsec. The large majority of the remaining 6.7 per cent are
caused by inaccurate galaxy coordinates in the data bases, which
we clean manually. Furthermore, for many small, late-type or
disturbed galaxies, no nucleus can be robustly identified. This
is the case for 4 per cent of the LASr-GPS and 0.2 per cent of
the 2MRS sample. We mark these galaxies with a corresponding
warning flag in Table 1. In these cases, we choose either the
source closest to the approximate apparent geometric centre, or
we take the brightest MIR emission knot overlapping with the
optical counterpart (whichever seems more applicable). Fortunately,
these cases are predominantly small galaxies, which are the least
relevant for our AGN search. Furthermore, in 0.6 per cent of the
galaxies, the AIIWISE catalogue failed to capture the nucleus for
unknown reasons. For those, we fall back to the original data release
catalogue (Cutri & et al. 2012), which delivered a better counterpart
in all cases. This strategy allows us to allocate a WISE counterpart
to almost every object that is not rejected in any of the sample
cleaning steps and iterations so that our final WISE coverage is
99.94 per cent.

However, we found that in 1.4 per cent of the galaxies, a nearby
brighter source actually dominates the WISE emission. In those
cases, the MIR emission of the latter is taken as upper limit for the
fainter object.

Finally there are five cases'® where the angular separation of two
galactic nuclei was too small to be picked up as individual sources in
the WISE catalogues. They are treated as one object, i.e. late-stage
galaxy merger, in the following.

2.8 Computation of MIR colours and luminosities

After having identified the most likely WISE counterparts, we
can now estimate the MIR emission of the galactic nuclei. The
majority (67 per cent) of the galaxies are resolved in WISE, and,
thus, their total MIR emission is not well captured in either of
the WISE catalogues (see e.g. Cluver et al. 2014). However, since
here we are mostly interested in the nuclear MIR emission we use
the profile-fitting magnitudes in AIWISE, which roughly capture,
and certainly not underestimate, the nuclear emission. This was
verified for nearby AGN by, e.g. Ichikawa et al. (2017) through
comparison with high angular resolution MIR data. One might argue
that the profile-fitting photometry is even superior for other purposes
because it excludes most of the extended non-nuclear emission.

We calculate the observed central 3.4 and 12 um luminosities,
L(WI)and L(W3), for each galaxy using the best estimate distance
determined in Section 2.6 and the assigned WISE band 1 and
3 magnitudes, W/ (A =3.4um) and W3 (A = 11.56 pm), after
first converting magnitudes to flux densities following the WISE
documentation.'" Owing to the low redshifts of our sources, no K
corrections are required.

102MASX J09181316 + 5452324, AM 1333-254,1C 1623,1C 2554, VV 662
http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/secd_4h.html

3 CHARACTERIZATION OF THE PARENT
SAMPLE OF GALAXIES

Before we study the AGN in our volume, we first compare the
2MRS and LASr-GPS and then address the completeness of the
latter to better understand which limitations this might put on our
subsequent AGN selection.

3.1 Comparison of galaxy samples

First, we examine the spatial distribution of the galaxy parent
samples in different projections, namely the all-sky map (Fig. 3),
the 2D projection onto the Galactic plane (Fig. 4) and the redshift
distribution (Fig. 5). Most of the additional galaxies in the LASr-
GPS compared to the 2MRS are in the Northern hemisphere
(DEC>0°), which is mostly owing to SDSS. This is visible also
in Galactic coordinates (Fig. 3), where the core area of SDSS is in
the Galactic North (b > 30°). In addition, both the LASr-GPS and
2MRS are clearly missing galaxies behind the Milky Way plane (we
come back to that in Section 3.2). Otherwise, the distribution of the
2MRS galaxies in particular follows the cosmological filaments and
galaxy clusters contained in our volume (Fig. 3). This is also visible
in the Galactic plane projection (Fig. 4), although to a lesser degree
probably owing to the collapse of the latitude dimension and the
proper motions of the galaxies. The latter can affect the redshift-
based luminosity distances and, this way, artificially spread the
filaments and clusters in radial direction (e.g. Centaurus, labelled
in the figure). Both sky projections indicate that our galaxy samples
probe more or less well the cosmological structure of matter within
the volume.

The redshift distribution (Fig. 5, left-hand panel) illustrates
that the number of galaxies in the LASr-GPS steeply rises with
increasing distance up to the border of the volume. In addition, there
is a dip in the redshift distribution around z ~ 0.01 (D ~ 45 Mpc)
which is probably caused by the small-scale anisotropy of the nearby
Universe, namely voids to the Galactic East, North, and West visible
in Fig. 4.

The redshift distribution of the 2MRS sample, on the other hand,
levels off at z ~ 0.017 and even decreases towards higher redshifts
(Fig. 5, left-hand panel). This indicates that already at 100 Mpc,
the 2MRS starts missing galaxies owing to its K-band brightness
cut. The comparable shallowness of 2MRS with respect to the
LASr-GPS is also visible in the WISE central W1 magnitude and
luminosity distributions (Fig. 5, middle and right-hand panel), as
well as in the W/ luminosity over redshift distribution (Fig. 6). The
latter plot shows that the LASr-GPS probes the galaxy population
down to central luminosities of L(W1) ~ 10*' ergs™! at a distance
of 100 Mpc, while the 2MRS has a depth of L(W1) ~ 10%*3 ergs™.
The median central W1 luminosity compared to the LASr-GPS and
SDSS are also significantly higher for the 2MRS (by 1 and 1.4 dex,
respectively). Similar trends apply as well to the other WISE bands,
just at higher magnitudes and lower luminosities (thus not shown
here).

Interestingly, there are, however, also a significant number of
galaxies well within the 2MRS brightness range but missing from
2MRS, as can be seen best in Fig. 5, middle and right. Are all these
galaxies situated in the Galactic plane?

To investigate this further, we examine how the galaxy number
ratio of 2MRS over LASr-GPS evolves with luminosity in Fig. 7. In
the low luminosity regime, the galaxy ratio is ~30 per cent, while
for L(WI) > 10" ergs™!, it starts to rise, surpassing 90 per cent
at L(WI) > 10" ergs™! and finally reaching the maximum value

MNRAS 494, 1784-1816 (2020)
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Figure 3. Aitoff projection of the Galactic coordinate distributions of all galaxies within the redshift limit from the 2MRS (orange) and LASr-GPS (blue). The
darker colours mark areas of overdensity in linear scale, mostly marking the cosmic filaments within the volume. The centre lines of the plot mark Galactic
longitude / = 0 h and Galactic latitude b = 0°, respectively. Some nearby galaxy clusters are labelled.

LASr-GPS
2MRS
known AGN

Figure 4. 2D projection of the distributions of all galaxies into the Galactic longitude plane within the redshift limit from the 2MRS (orange) and LASr-GPS
(blue). The darker colours mark areas of overdensity in linear scale. The semitransparent black crosses mark known AGN. The radial axis states the radial
object distance in Mpc. Some nearby galaxy clusters are labelled.
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Figure 5. Redshift (left-hand panel), WISE central W1 magnitude (middle), and luminosity (right-hand panel) distributions of all galaxies from the 2MRS
(orange) and LASr-GPS (blue). For comparison, also the distribution of sources in SDSS DR15 is shown (green). The distribution of known starbursts is shown
in yellow, while known AGN are shown in black. In addition, the middle plot shows the nominal 5o depth of the AIIWISE catalogue as grey dashed line, while
the right-hand plot shows the median luminosities for each subsample as vertical dashed, dotted, and dash-dotted lines of the corresponding colour.
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Figure 6. Central WISE W! luminosity over redshift for all galaxies from
the 2MRS (orange) and LASr-GPS (blue). The semitransparent black crosses
mark known AGN, while magenta crosses mark B70 AGN.

of 96 per cent at L(WI) > 10¥?ergs~'. The latter numbers are
for excluding the Galactic plane as defined for the 2MRS sam-
ple selection (|b| > 8°). If, we compare the 2MRS to LASr-
GPS ratio over the whole sky, the maximum 2MRS fraction
drops to 91.6 per cent, reached at the same L(WI). We can
also look at the ratio of known AGN in 2MRS over LASr-
GPS (also shown in Fig. 7). Here, the minimum fraction is
relatively high at 90 per cent already for low luminosity thresholds,
i.e. 90 per cent of known AGN host galaxies are in the 2MRS.
However, the ratio reaches its maximum of 99.1 per cent only at
L(WI) > 10" ergs™!.

In conclusion, even outside the Galactic plane, the completeness
of the 2MRS sample peaks only at L(W1) > 10**° ergs~!, which is
well within the AGN regime, e.g. the B70 AGN host galaxies have
a median of L(WI) = 10* ergs~!. This explains why the 2MRS is
missing a significant fraction of B70 host galaxies and thus probably
of the whole local AGN population, which justifies our extension
to the LASr-GPS to maximize completeness.
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Figure 7. Galaxy and known AGN number ratios of 2MRS to LASr-GPS
over a lower central W/ luminosity limit (orange lines). The dark orange
coloured line marks the galaxy ratio outside the Galactic plane, |b| > 8°,
while the light orange coloured line shows the galaxy ratio for the whole
sky. Furthermore, the black (grey) line shows the known AGN ratio outside
the Galactic plane, |b| > 8° (for the whole sky).

3.2 Completeness of LASr-GPS

In the previous section, we have shown that the LASr-GPS provides
a higher completeness in terms of potentially AGN hosting galaxies
compared to the 2MRS sample. However, how complete and deep
is the LASr-GPS in absolute terms?

Optimally, one would want to express this depth in the physical
galaxy property of total stellar mass. However, here we simply use
the unresolved WISE emission which is missing significant stellar
light depending on the galaxy size and distance. Furthermore, the
mass-to-light ratio is not constant but depends on many galaxy
parameters like galaxy type, metallicity, and star formation rate and
history (e.g. Wen et al. 2013 and discussion therein). Therefore,
we refrain here from attempting stellar mass estimates but rather
express the sample depth simply in the central W/ luminosity. For
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Figure 8. W/ distribution of galaxies within the SDSS spectroscopic core
area. Galaxies with SDSS spectra are shown in green, galaxies without but
part of the LASr-GPS are shown in blue, and 2MRS galaxies without SDSS
spectra in that area are shown in orange.

most galaxies, this quantity is probably dominated by the stellar
bulge.

In Fig. 6, we already constrained the maximum depth of the
LASr-GPS to be ~10*! erg s~! at a distance of 100 Mpc. The actual
achieved completeness above this luminosity is dictated by the
redshift completeness in our case. Owing to the heterogeneous
nature of the public data bases, their completeness is difficult to
assess, and this can only be done empirically. For example, Kulkarni
et al. (2018) used a comparison of detected supernova events in
galaxies with and without redshifts in NED to estimate the redshift
completeness of the latter data base to be ~78 per cent within a
redshift of z < 0.03. This value provides a lower limit for our
LASr-GPS, combining NED with other sources and being at lower
redshift where completeness should be higher. In particular, we will
try to derive more accurate estimates here based on comparisons
with two highly complete galaxy surveys, one large-area survey
(being representative of the volume), and one small-area survey
(being very deep and highly complete).

3.2.1 Comparison with SDSS

The most powerful constraint for our redshift completeness is
coming from the comparison to SDSS as reference for the
highest available redshift completeness at reasonable depth and
representative sky coverage. For simplicity, we here define
the SDSS spectroscopic core area with simple cuts of 0° <
DEC <+60°, 8:40h (130°) < RA < 16:00 h (240°). This area com-
prises 13.2 per cent of the sky and contains 12.7k galaxies selected
by LASr-GPS with SDSS spectroscopy in DR15 and a redshift
placing them within our volume. The average redshift completeness
of SDSS is ~90 per cent but decreasing towards brighter galaxies
for technical reasons (Montero-Dorta & Prada 2009; Reid et al.
2016). Indeed, we find that there are an additional 1503 galaxies of
the LASr-GPS within this area but without SDSS redshifts, implying
that the SDSS completeness is at most 88 per cent. As expected,
these missing galaxies are bimodially distributed at the extremes of
the galaxy brightness distribution (Fig. 8), whereas the bright peak
is almost completely made up by 2MRS galaxies that are not in
SDSS.

To mitigate the incompleteness of SDSS, we complement it
with all galaxies from the 2MRS and LASr-GPS within the SDSS
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Figure 9. Fraction of expected galaxy included in the LASr-GPS, i.e.
completeness of LASr-GPS, over a minimum central W/ luminosity. The
expected numbers are extrapolated from the SDSS core area (see the main
text for details). The solid coloured lines mark the fraction of galaxies
away from the Galactic plane, |b| > 25°, for the LASr-GPS (blue) and
the 2MRS sample (orange), whereas the semitransparent surface gives the
lo uncertainty. The lighter coloured blue line shows the same without
excluding the Galactic plane. The grey dashed line marks the 100 per cent
completeness level.

core area and assume that the result is 100 per cent complete
within this area down to W/ < 17 mag. Further assuming that
the SDSS core area define above is representative of the whole
sky, we can use the above galaxy sample to estimate the galaxy
W1 luminosity distribution for the whole sky within our volume.
In Fig. 9, we examine how the fraction of expected galaxies that
are in the LASr-GPS above a lower W/ luminosity limit, i.e. the
completeness, depends on that lower luminosity threshold. For
L(WI) < 10" ergs™!, the completeness is approximately constant
between 50 per cent and 60 per cent, if we cut out the Milky Way
plane (|b| > 8°), and <50 per cent otherwise. For higher L(WI),
the completeness outside the Milky Way plane rises and reaches
90 per cent (100 per cent) at L(WI) = 10" ergs~! (10**3 ergs™!).

Maybe surprising, the observed to expected fraction continues
rising above 100 per cent at higher luminosities. We interpret this
behaviour as the result of a possible underdensity of such luminous
galaxies in the SDSS spectroscopic core area, which could lead
to such an effect given the decreasing number statistics at high
luminosities and the relatively small fraction of the sky contained
in that area. This would also explain why the observed to expected
fraction for the whole sky as well reaches 100 per cent despite
the obvious undersampling in the Milky Way plane. Alternatively,
this could imply that for galaxies with L(W1) > 10**% ergs~!, the
undersampled area does not contain a significant number of such
luminous galaxies (13.9 per cent of the sky for |b| = 8°). Finally, the
2MRS sample reaches 100 per cent completeness at only L(WI) >
10* erg s~!, excluding the Milky Way plane (also shown in Fig. 9).

3.2.2 Comparison with GAMA

To further assess the completeness of the LASr-GPS, we also
compare to a smaller area survey than SDSS with higher depth and
completeness like the Galaxy And Mass Assembly survey (GAMA;
Liske et al. 2015). In particular, we use the two deep fields G12
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Figure 10. Absolute galactic latitude distribution of galaxies from the
LASr-GPS (light blue) and the 2MRS sample (orange). The dark blue
histogram marks galaxies from the LASr-GPS with L(WI) > 10 ergs™!.
The dashed lines mark fits of cosine shape to the corresponding distributions.

and G15 from the latest release DR3'? (Baldry et al. 2018). The
two fields combined cover a sky area of ~120 deg” with a redshift
completeness of 98.5 per cent for r < 19.8 mag (Liske et al. 2015).
Combined, they contain almost 100k galaxies, of which 811 are
within D < 100 Mpc. The release versions of NED and SIMBAD
used here do not include the GAMA DR3, allowing us to use them to
test the completeness of LASr-GPS in an independent way. For this,
we cross-match the GAMA galaxies with the AIIWISE catalogue,
following the same method as throughout this work. This yields
counterparts for 720 of the 811 GAMA galaxies (89 per cent). Out
of those, 68 have L(W/) > 10* ergs~!. Based on the SDSS-based
result we would expect at least 90 per cent of them to be in the LASr-
GPS. Indeed, 64 out of 68 , i.e. 94 per cent, are also in the LASr-
GPS, verifying our high completeness above this lower luminosity
threshold.

3.2.3 Galactic plane shadow

The above results indicate that the LASr-GPS has a relatively high
completeness for at least moderately luminous galaxies (L(W1) >
10* erg s~!). However, this statement excludes one big source of
incompleteness of course, the shadow of the Milky Way, which
through a combination of densely clustered foreground emission
sources, and high values of extinction makes it very difficult to
identify and characterize galaxies that have sky coordinates close
to the Galactic plane. To quantify this effect, we look at the
absolute Galactic latitude distribution of galaxies (Fig. 10). If the
galaxies were distributed fully randomly in the sky, then the latitude
distribution should describe a cosine, which is approximately the
case, at least for the 2MRS and the LASr-GPS, if restricted to
galaxies with L(WI) > 10* ergs~!. At low latitudes (|b] < 20°),
the observed distributions fall short of the expectations owing to the
Galactic plane shadow. In addition, the latitude distributions of all
galaxy samples show a valley, i.e. an underdensity between 35° <
|| < 45°, caused by the voids in the local volume as already seen
in the previous sky position and redshift distributions.

2http://www.gama-survey.org/dr3/

In order to quantify the Galactic plane shadowing, we fit a cosine
functions to the bins with |b| > 20° (shown as dashed lines in
Fig. 10), and find the deficiency is 6.4 & 0.8 per cent, whereas
the uncertainty is estimated from using different binnings for the
latitude distributions. As expected, the 2MRS has a slightly higher
missing fraction, owing to its latitude cut (7.4 = 1.2 per cent). The
Milky Way foreground will always be a problem for the study of
galaxies behind it. Therefore, it is probably easier to simply exclude
this area from the volume when constructing samples for the AGN
census in order to maximize completeness.

3.2.4 Concluding remarks on completeness

In the previous subsections, we addressed the completeness of the
LASr-GPS empirically including the effect of the shadowing by the
Galactic plane, leading to an all-sky completeness of 84 per cent for
L(WI) > 10" ergs~! and 96 per cent for L(WI) > 10" ergs™).
Outside the Galactic plane, we reach a completeness of at least
90 per cent for central luminosities of L(WI) > 10" ergs~' and
approximately 100 per cent for L(W1) > 10**3 erg s~!. These lumi-
nosities approximately correspond to stellar masses of log (M../M)
~ 9.4 and 9.7, respectively, using the simple relation provided by
Wen et al. (2013). But again one has to keep in mind that these
values are missing significant amounts of stellar light for most
galaxies including only their bulges.

We plan to further increase the redshift completeness of the
LASr-GPS in future work. However, the above values mean that
LASr can already now probe quite deep into the SMBH accretion
regime, probing all galaxies where significant growth is occurring.
By going to smaller volumes, we could decrease lower luminosity
limits further. Although, at low luminosities, usually the stellar light
by far dominates the total galaxy emission over the AGN, making
it very difficult to isolate the AGN from its host. We will address
this as well in future follow-up works where we will try to use more
sensitive (but complex) AGN identification techniques. Here, we
will utilize the simple but effective WISE colour selection as a first
probe of the AGN activity within the volume.

4 STARTING THE AGN CENSUS

With the depth and completeness of the LASr-GPS characterized,
we can now move on to identify and characterize the AGN
population within our volume. We start with a brief summary
of the already known AGN and then move on to the first AGN
identificationn technique for LASr, namely WISE MIR colour
selection. We estimate the efficiency of this technique and discuss
possible limitations before applying it to the LASr-GPS to find
new AGN candidates, in particular highly obscured and CT objects.
Next, we discuss possible host contamination and provide prospects
for detecting these new AGN with the current X-ray all-sky surveys.
We conclude this section with an estimate of the total number AGN
above a given luminosity limit within the volume, constraints on
the CT fraction, and a comparison to luminosity functions from the
literature.

4.1 Luminosity estimates for the known AGN

We know already from the collection of AGN identifications from
the literature that there are at least 4.3k AGN within the volume
(Section 2.4). The redshift and brightness distributions of their host
galaxies are shown in Figs 5 and 6. In order to further characterize
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Figure 11. Top: W3 luminosity distribution for different AGN and star-
formation hosting galaxy populations within LASr-GPS, namely known
AGN (black), starbursts (yellow), HIl nuclei (blue), LINERs (green),
Seyferts (brown), and B70 AGN (magenta). The distribution of the whole
LASr-GPS is shown in grey in the background. The dashed lines of the
corresponding colour mark the median value which is also shown in the
legend. Bottom: Estimated L™¢(12 pm) distribution after decontamination
of L(W3) as described in Section 4.1.

the AGN population, we can use the W3 luminosities, tracing the
12 wm continuum of the AGN, dominated by warm (~300 K) AGN
heated dust. Compared to the shorter bands, W 3 has the advantage of
not being affected by stellar light. The W3 luminosity distribution
of known AGN is shown in Fig. 11, top panel. As expected, the
majority of known AGN seem to be relatively low-luminosity, e.g.
compared to the B70 AGN. However, we know that star formation
can also significantly contribute to W3, in particular in large aperture
measurements as used here.!?

Decoupling AGN and star formation emission in W3 is a serious
issue and requires detailed SED modelling, beyond the scope of this
work. However, we can attempt at least a rough decontamination of
the W3 luminosities by computing statistical correction factors from

13The relatively high luminosities of the H 11 nuclei confirms this statement.
This does not apply to the systems classified as starbursts because many of
them are compact dwarfs and, thus, do not reach such high luminosities.
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Figure 12. Logarithmic ratio of nuclear 12 pm luminosity, L™°(12 um)
from Asmus et al. (2014) to profile-fitting W3 luminosity, L(W3), over
L(W3) for all 146 objects in common. Objects that are identified as
star-forming in the literature (SB or H1I) are marked with golden stars,
while such with LINER classification have green triangle, and those with
Seyfert classifications have brown dots. Objects can have several of these
classifications in which cases the corresponding symbols are overplotted.
Nuclear 12 pm non-detections are marked by arrows of the corresponding
colours. The light grey line marks the zero line, while the dashed lines
provide linear fits to various sub-populations of detections, namely the dark-
grey line for all objects only classified as Seyferts, the green line for Seyferts
that also have LINER classification but not star-forming and in orange for
all objects without Seyfert classification.

the comparison of W3 to high angular resolution measurements at
the same wavelength. In particular, Asmus et al. (2014) presented
a catalogue of 253 nearby AGN with ground-based subarcsecond
MIR photometry and estimated accurate estimates of the 12 um
AGN luminosity, L™¢(12 pm). We cross-match our AGN sample
with this catalogue, finding 146 objects in common. In Fig. 12 we
show the ratios of L™¢(12 um) to the W3 profile-fitting luminosity,
L(W3). While we already know from, e.g. Asmus et al. (2014) that
the nuclear to large aperture 12 um ratio is a strong function of
the AGN luminosity, the same ratio shows only a weak increas-
ing trend with increasing L(W3) with a large scatter of 0.5 dex
(Kendall’s tx = 0.25, null hypothesis probability logpx = 4.1).
On the other hand, we see that the ratio depends somewhat on
the optical classification of the object with Seyferts having the
highest and starbursts the lowest ratios. Therefore, we determine a
L(W3) to L™°(12 um) correction based on optical classification.
Owing to the differing classifications in the literature, some of
the objects are classified at the same time as Seyferts, LINERs,
H1 and/or starbursts (Sections 2.4 and 2.5). Therefore, we test
different groupings and find a distinction in the following three
subgroups leading to the best corrections: (i) pure Seyferts (no
other classification), (ii) Seyferts also classified as LINERs'* (but
not as HIl or starburst classification), and (iii) non-Seyferts (no
classification as Seyfert). Corresponding ordinary least-squares
linear regression in logarithmic space with treating L(W3) as the

4These probably correspond to objects situated in the Seyfert and LINER
overlapping region in the BPT diagrams, i.e. Seyfert-LINER transition
objects.
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Figure 13. WI1-W2 versus W2-W3 colour—colour distribution for all galaxies from the 2MRS (orange) and LASr-GPS (blue) detected in W1, W2, and W3.
Yellow ‘X’s mark starburst galaxies, while black crosses mark known AGN and magenta crosses mark B70 AGN. The R90 AGN colour selection criterion
is shown as dashed, grey line (for W2 < 13.86 mag), and galaxies that fulfil RO0 are marked with large symbols. In addition, the R90 AGN candidates with
L(W3) > 10*>3 ergs~! have green circles. The theoretical AGN/extreme-starburst discriminator line from Satyapal, Abel & Secrest (2018) is shown as dashed
orange line (AGN left, starbursts right). The star formation main sequence line from Jarrett et al. (2019) is shown as white dashed line. Some notable galaxies
are labelled with short names (‘M’ stands for Messier, ‘N’ for NGC, and ‘F’ for Fairall).

independent variable leads to the following corrections:

L™(12 pm)
L(W3)

0.11(log L(W3) —42) — 0.34

pure Seyfert

_ ) 0.17(log L(W3) — 42) — 0.63  Sy-LINER
) 0.23(log L(W3) — 42) — 1.06  non-Seyfert
0.18(log L(W3) —42) — 0.57 no classif.

The last case provides the general correction if no optical classifica-
tion is available. The 2/3-of-the-population scatter around these
best-fitting lines is 0.22, 0.57, 0.23, and 0.43 dex, respectively.
As said, this scatter is considerable and the above corrections
should not be used for individual objects but only in a statistical
sense.

Applying the above corrections to estimate L"*°(12 um) for all
known AGN, we obtain the following distribution shown in the
bottom panel of Fig. 11. The estimated L"*°(12 wm) distribution for
all known AGN is on average 0.7 dex lower than the one of L(W3)
with amedian L™¢(12 um) of 10*'#7 erg s~!. Only 18 per cent (781)
of the known AGN have L™(12 um) > 10**3 ergs™, i.e. are at
least moderately luminous. For Seyferts, this number increases
to 30 per cent (716 of 2385), while it is 68 per cent for the B70
AGN (130 of 190). Again, these numbers should just provide a
rough guidance for the luminosity ranges to be expected for the

AGN in the volume. More accurate numbers will become available
in the future based on SED decomposition and MIR follow-up
observations.

4.2 MIR colours of AGN, galaxies, and starbursts

Let us now examine the MIR colour distribution of the known
AGN in the context of normal and starburst galaxies. The MIR
colour distribution in the W/-W2 over W2-W3 plane is shown
in Fig. 13 for all galaxies that are detected in the three WISE
bands (76 per cent of the LASr-GPS and 99.9 per cent of the 2MRS
samples), while the distributions of the individual colours are shown
inFig. 14. The large majority of galaxies, and in particular the 2MRS
galaxies, form a relatively narrow star formation main sequence
from blue to red W2—-W3 colours at almost constant W/-W2 colour
(as already previously found in the literature, e.g. Jarrett et al.
2019). This sequence is caused by star formation which leads to
an increasing amount of warm dust emission and, thus, redder
W2-W3 colours with increasing star formation intensity relative
to the direct stellar emission of the galaxy. For example, the bluest
W2-W3 objects are mostly passive, early-type galaxies like e.g.
NGC548 at W2 — W3 =0.23mag and W/ — W2 = —0.08 mag.
On the red side, the sequence is bending up to redder WI-W2
colours of WI — W2 ~ 0.4 mag at its approximate reddest end
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Figure 14. WISE colours W1-W2 (left-hand panel), W2-W3 (middle), and W3-W4 (right-hand panel) distributions of all galaxies from the 2MRS (orange)
and LASr-GPS (blue) that have detections in the corresponding bands of each colour. The distribution of known starbursts is shown in yellow, while known
AGN are shown in black and B70 AGN are shown in magenta. In addition, the median colours for each subsample are shown as vertical dashed, dotted, and

dash-dotted lines of the corresponding colour, and listed in the figure legends.

of W2 — W3 ~ 5mag. One of the most extreme objects here is
the starbursting NGC 1808 (W2 — W3 = 0.43 mag; W1 — W2 =
4.98 mag). In addition, the galaxy distribution of the LASr-GPS
extends to redder WI-W2 colours (W1 — W2 ~ 0.3 mag at inter-
mediate W2-W3 colours (2 < W2 — W3 < 4) filling up roughly
the expected locus area of the spiral galaxies in fig. 12 of Wright
et al. (2010). Most of the galaxies are dwarfs according to their
W1 luminosity and optical appearance. The reason for the redder
WI1-W2 colours is again star formation which can dominate W2
if strong enough with respect to the stellar light of the host. This
WI1-W2 reddening effect of star formation is the main source of
contamination in AGN selections that are based on this colour,
and will have to be taken into account (further discussed in
Section 4.4.1).

Most of the galaxies known to host an AGN follow the WISE
colour distributions of the 2MRS, i.e. rather massive galaxies. Only
in W2-W3 colour, they are slightly redder on median (2.66 mag
versus 2.42mag), i.e. they either prefer star-forming hosts, or
contribute themselves the most to this colour. Galaxies with hosting
a luminous AGN, comparable MIR brightness at least in W2, have
a redder WI/-W?2 colour. They leave the main sequence and move
upwards in the colour—colour plane of Fig. 13 with increasing AGN
luminosity. This trend motivates the colour selection based on W/-
W2 as discussed in the following.

4.3 Identification of AGN by MIR colour

‘We now proceed to the MIR colour-based identification of AGN and
quantify how its efficiency depends on the AGN luminosity. Since
the advent of the WISE mission, many MIR colour selection methods
have been put forward to find AGN (e.g. Mateos et al. 2012; Stern
etal. 2012; Assef et al. 2013). At the core, they are similar, building
on the fact that the AGN-heated, warm dust emits significantly
redder WI-W2 colours than the light of the old stellar population
in the host galaxy. In addition, the WI/-W2 is little affected by
extinction, in particular at low redshifts (e.g. Stern et al. 2012),
making WI-W2 based AGN selection a formidable tool to select
highly obscured and even CT AGN. Here, we will use the most
recent and refined selection criterion introduced in Assef et al.
(2018), namely one that was designed to have 90 per cent reliability
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Figure 15. Illustration of the R90 WISE colour selection criterion based
in WI-W2. The solid lines show the different SED templates for AGN and
galaxy types taken from Assef et al. (2010), see that work for details. The
thick horizontal bars indicate the synthetic photometry in W/ and W2, for
each SED in the same colour, respectively. The SEDs are normalized to the
W1 synthetic flux density. The green semitransparent triangle indicates the
SED slopes that would be selected by the R90 criterion as AGN. WI-W2 =
0.65 mag corresponds to straight line in flux density space.

in selecting AGN (hereafter R90):

Wil — W2 >
0.65 if W2 < 13.86 mag,
0.65exp[0.153(W2 — 13.86)%] otherwise,

The R90 criterion is illustrated in Fig. 15 for typical galaxy and
AGN SEDs from Assef et al. (2010). This criterion works best for
W2 detections with a signal-to-noise greater than 5 (otherwise biases
can occur; see Assef et al. 2018 for details'?). All the 2MRS galaxies

15Normally, it is recommended to also remove objects for which the
contamination and confusion flag in the AIIWISE catalogue is set (cc_flags).
However, here, to be inclusive, we keep such galaxies and examine them
individually where necessary.



LASr I. Galaxy sample & MIR colour selection 1799

and 93 per cent of the LASr-GPS are above this limit (99 per cent
for L(W3) > 10* ergs™").

The R90 criterion for W2 < 13.86 mag is shown as grey dashed
line in Fig. 13. Out of the 4.3k known AGN in the volume, 172
fulfil the R90 criterion as visualized in that figure with larger
symbols.'® For 97 per cent (167) of the 172 R90 AGN, optical
type classifications are available, 97 per cent (162) of which have
a classification as Seyfert, while 9 per cent (15) are classified as
LINERs and 18 per cent (29) as H1I, i.e. 21 per cent (34) have
multiple classifications in the literature. The type 2 to type 1 ratio
for the R90 AGN is 0.52 (similar as for the whole population
of known AGN; Section 2.4) with a significant population with
intermediate (Sy 1.8 or Sy 1.9) or both types 1 and 2 classi-
fications (36 per cent). Depending on their treatment, the type 2
fraction among the known AGN'7 is between 38 and 62 per cent.
The R90 AGN including their optical classifications are listed in
Table 2.

As said, we expect the R90 criterion to preferentially select
luminous AGN. This effect is clearly visible in Fig. 16, where
galaxies hosting known AGN, and in particular those from the B70
AGN sample, exhibit a trend of redder WI—-W2 colour for increasing
W3 luminosity. The L(W3) and estimated L"*°(12 wm) distributions
of R90 selected objects are shown in Fig. 17. While the median
L(W3) of known AGN is 10*>2 ergs~!, the corresponding median
luminosity for R90 selected AGN is more than 1dex higher, i.e.
1043 ergs~!. For B70 AGN the trend is similar albeit smaller, i.e.
0.3 dex. If instead of the observed L(W3), we use the estimated AGN
luminosity, L™°(12 um), the trend becomes even clearer, and the
gap in luminosities larger (1.6 dex for all known AGN and 0.5 dex
for the B70 AGN.

To quantify the fraction of AGN selected by the R90 criterion we
look at its luminosity dependence in Fig. 18 for different subsamples
of known AGN. Independent of the AGN subsample and selected
luminosity as AGN power tracer, for L < 104> erg s~! the fraction
of AGN selected by the R90 criterion is relatively low and constant,
while for higher luminosities it rapidly increases. For using W3 as
AGN power tracer, the fraction of AGN selected by R90 levels off at
a relatively low 60 — 70 per cent for L(W3) > 10%- ergs~! (grey
line in Fig. 18). Most of the remaining 30 — 40 per cent of AGN not
selected by R90 despite high W3 luminosity are situated in heavily
star forming galaxies that dominate the MIR over the AGN. These
are classified as HII in the optical indicating that the corresponding
AGN are intrinsically much less luminous than L(W3) values
suggest. Indeed, if we use the decontaminate L™°(12 um) estimates
from Section 4.1, the R90-selected fraction increases more rapidly,
reaching 67 per cent at L™(12 um) > 10**!ergs™! and peaking
at 92 per cent (black line in Fig. 18). The completeness of the
R90 selection even further increases if one only looks at the X-ray
luminous B70 AGN (magenta line in Fig. 18). For this particular
sample, we have the advantage of a better tracer of the AGN
power than the W3 luminosity, namely the intrinsic 2-10keV X-
ray luminosity (taken from Ricci et al. 2017). This allows us to
assess the ‘true’ efficiency of the R90 criterion (dark violet line
in Fig. 18). Namely, R90 selects 54 & 9 per cent of the AGN
with L"(2-10 keV) > 10" ergs~!, while for L™(2-10 keV) >

19Interestingly, only 83 per cent of the corresponding galaxies are in the
2MRS, once more confirming the incompleteness of 2MRS in terms of
AGN.

"The intrinsic type 2 fraction is probably higher because we expect the
majority of AGN candidates to be obscured, i.e. type 2 (Section 4.4).

10" ergs™!, 86 26 per cent are selected.'® Using our estimated
L™°(12 um) gives similar results to L™(2-10 keV) which confirms
the validity of our decontamination of the former in Section 4.1. In
addition, the comparison between the R90 fractions depending on
L(W3) and L™(2-10 keV) for the B70 sample verifies that the
L(W3)-based fractions are to be regarded as lower limit on the true
efficiency of the R90 selection.

4.4 New AGN candidates

Not all the galaxies selected by the R90 criterion are already known
to host AGN. There are 159 such galaxies, and thus new AGN
candidates based on their W/-W2 colour. We double-check all
galaxies individually to make sure that they are genuine galaxies
with valid WISE measurements and robust redshifts (as far as we
can assess from the information at hand). The resulting list of new
AGN candidates and their properties can be found in Table 3.
Only 31 (19 per cent) of the hosts of the new AGN candidates
are in the 2MRS sample, indicating that they are relatively faint
or compact galaxies. Indeed, the median L(W3) of the candidate
systems is only 10> erg s~!, so much lower than the median of the
verified AGN systems that fulfil the R90 criterion (10~ ergs™!;
see Fig. 17, top). If we apply our W3 decontamination (Sec-
tion 4.1), the resulting L"*°(12 wm) distribution fractures into two
peaks, one peaking at L™°(12 um) ~ 103 ergs~! and the other
at L™°(12 um) ~ 10*%ergs™! (Fig. 17, bottom). This is caused
by 51 of the AGN candidates having HII or starburst classifi-
cations and thus higher corrections to their L(W3). It indicates
that a significant fraction of objects with low L(W3) luminosities
might be contaminants, i.e. not AGN but star-formation dominated
systems.

4.4.1 On contamination by starbursts

The R90 criterion was designed for selecting distant, luminous, and
point-like AGN. Its 90 per cent reliability in selecting AGN might
not hold for local, extended galaxies. We saw in Fig. 13 that the
large majority of star-forming galaxies lie on the red W2-W3 tail
of the main sequence but significantly below typical AGN W/-W2
colours. However, it was argued by Hainline et al. (2016) that strong
star formation, in particular in dwarf galaxies, can also lead to red,
AGN-like WI-W?2 colours. These systems would then have as well
very red W2-W3 colours (=4 mag) which would motivate us to add
a W2-W3 colour cut to improve the reliability of a W/-W2-based
AGN selection. Satyapal, Abel & Secrest (2018) further investigated
this with theoretical colour tracks of extreme starburst systems
and determined a theoretical W2—-W3 colour criterion (hereafter
S18):

W2 — W3 <0.17(WI — W2 4 24.5),

to separate AGN and starbursts. This criterion is plotted in
Fig. 13 as orange dot-dashed line and marked for individual
known R90 AGN and R90 AGN candidates in Tables 2 and 3,
respectively. Of the 159 R90 AGN candidates, 100 (63 per cent)
fulfil the S18 criterion and, thus, are expected to not be starburst
dominated. Among the R90 AGN candidates not fulfilling S18,
there are indeed some of those compact star-forming galaxies
that Hainline et al. (2016) identified as ‘AGN imposters’ (e.g.

18The relatively large uncertainties results from the small number statistics
of the B70 within the volume at such high luminosities.
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Figure 16. W/-W2 colour over W3 luminosity for all galaxies from the LASr-GPS detected in W/, W2, and W3. Description of the symbols is as in Fig. 13.

In addition, the vertical dot-dashed line marks L(W3) = 1023 erg s~1.

IZw 40, Mrk 193, SBS 0335-052, and UGC5189). In total, 28
(18 per cent) of the AGN candidates are classified as starbursts
or blue compact dwarfs in our literature collection. However,
only 14 (50 per cent) of them would be excluded by the S18
criterion.

Among the known AGN, 89 per cent (154 of 172) fulfil the S18
criterion.!” For the B70 AGN, fulfilment is even 98 per cent (89
of 91). Of the 17 R90 AGN not fulfilling S18, nine show signs of
strong star formation in the literature and are in fact controversial
concerning the existence of luminous AGN in these galaxies.?”
On the other hand, two of the remaining galaxies, NGC4418
(aka NGC 4355) and 2MASX J04282604-0433496, show no signs
of strong star formation, judging from their Spirzer/IRS spectra
(Asmus et al. 2014). Instead, NGC 4418 hosts a highly obscured
nucleus with the obscuration probably causing the red W2-W3
colour (see e.g. Roche, Alonso-Herrero & Gonzalez-Martin 2015).
In fact, both objects are among the reddest in terms of W2-W3
colour (>5) of all galaxies in the LASr-GPS. While, the nature
of the dominating MIR emitter in NGC 4418 is still somewhat
controversial (e.g. Sakamoto et al. 2013; Varenius et al. 2014), the
case of object makes clear that also heavy obscuration can lead to

90ne object, Mrk 3 aka UGC 3426 has no valid W3 measurement and thus
S18 cannot be computed.

20These are Arp220, CGCG032-017, Mrk93, NGC 253, NGC 3256,
NGC 3690E, NGC 7130, NGC 7552, and TOLOLO 1220 + 051.

very red W2—-W3 colours.?! Thus, the application of the S18 criterion
might exclude the most obscured AGN, which are the ones we are
hunting for!

In addition, for a complete, unbiased sample of AGN, one wants
to include even star-formation dominated galaxies, as long as
the intrinsic luminosity of the AGN is above the selected lower
threshold.??> We conclude from this discussion that applying a W2—
W3-based criterion like the S18 in addition to the R90 criterion
indeed increases pureness of AGN selection. However, a significant
fraction of starbursts still remains while many AGN that are either
heavily obscured or live in hosts with dominating star formation are
excluded.

Instead, we notice that in the W3 luminosity distribution in
Fig. 17 that most of the starbursts have relatively low luminosities.
For example, 90 per cent (25 of 28) of the starbursts and BCDs
selected by R90 have L(W3) < 10**3ergs™!. This suggests that
a lower luminosity cut could be more successful at removing
contaminating non-AGN galaxies with dominating starbursts. Using
L(W3) > 10*3 ergs™! as threshold, leaves 61 of the RO0 AGN

21See also the similarly mysterious Arp 220 (e.g. Martin et al. 2016; Paggi
et al. 2017; Sakamoto et al. 2017; Yoast-Hull et al. 2017).

22Finding such objects is difficult with WISE colour selection alone but
might require high angular resolution data over a wide wavelength range,
something we plan for the future with dedicated follow-up of these red
objects.
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Figure 17. Top: W3 luminosity distribution for R90 selected AGN and
candidates in comparison to all known AGN (grey) and B70 AGN (light
magenta). R90 selected objects from all known AGN are shown in black,
from B70 in dark magenta, from unidentified AGN in green and from
known starbursts in gold. The dashed lines of the corresponding colour
mark the median value which is also shown in the legend. Bottom:
Corresponding estimated L™¢(12 um) distribution after decontamination
of L(W3) following Section 4.1.

candidates which according to the above number should be genuine
AGN with 90 per cent probability. They are marked with green
circles in Figs 13 and 16.

4.4.2 Prospects for detection in X-rays

There is a close correlation between the observed MIR and intrinsic
X-ray luminosities for local AGN (e.g. Lutz et al. 2004; Gandhi et al.
2009), allowing us to estimate the intrinsic X-ray AGN luminosities
of our new AGN candidates and infer the chances to detect them with
the X-ray all-sky missions, Swift/BAT, SRG/ART-XC/eROSITA. In
the following, we detail our Monte Carlo simulation per source to
estimate the detection rates for the 61 R90 AGN candidates with
L(W3) > 10%3 ergs~! (corresponding to intrinsic X-ray luminosi-
ties above the nominal sensitivity of eROSITA after eight passes;
Fo»(2-10 keV) 2> 1.6 x 107 erg cm™2s~! (Merloni et al. 2012).
In particular, these steps are performed:
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Figure 18. Fraction of AGN selected by the R90 criterion depending on
luminosity. The grey line marks the fraction for all known AGN as a function
of W3 luminosity, while the black marks the fraction as a function of the
estimated L""°(12 pm). The thin magenta line shows the fraction for the B70
AGN as a function of W3 luminosity, while the thick, dark violet line shows
the same fraction but as a function of intrinsic 2-10keV X-ray luminosity.
The shaded regions indicate the 1-o uncertainty on the number counts.

(1) L™¢(12 pm) prediction: we use the L(W3) decontamination
method from Section 4.1 to estimate L"°(12 um).

(ii) Intrinsic Lx prediction: we use the most accurate determi-
nation of the MIR—X-ray luminosity relation by Asmus et al. (2015)
to convert L™(12 um) into L™(2-10 keV):

) (L“’“(Z—IO keV)

L™e(12 pm
[Oergs ):—0.32+0.9510g( dzp ))

10%ergs—!

with an observed scatter of 0.4 dex.

(iii) Ny assignment: to estimate the observed X-ray fluxes from
L™(2-10 keV), we have to assign an obscuring column density,
Ny. Here, we use the bias-corrected intrinsic Ny distribution from
the BAT 70 month AGN (Ricci et al. 2015) as reference probability
function to draw a random Ny (shown in Fig. 19, left-hand panel).

(iv) Application of extinction: In Fig. 19, middle, we show
the B70 AGN observed to intrinsic X-ray flux ratios versus Ny
from Ricci et al. (2017). This was fit with an exponential function,
which was found to give a good description of the data yielding a
theoretical extinction curve.

We then performed a Monte Carlo resampling of the above steps.
We assumed the probability distributions of each L™¢(12 um) and
L™(2-10 keV) value to be Gaussian-distributed with width equal
to the observed scatter in both conversions (much larger than the
individual source X-ray fit uncertainties). For 10* iterations, the
resulting observed X-ray flux distributions are stable (Fig. 19, right-
hand panel) and can be compared to the flux limits provided for the
all-sky surveys of Swift/BAT and SRG/eROSITA. >

According to this simulation, we would expect to detect 33 £+ 9
of the 61 R90 AGN candidates already in the first pass of the
eROSITA all-sky survey, and 43 + 6 in the full survey. The

23We omit ART-XC here because its different energy band would require
further conversion with additional uncertainties but given the flux limit of
its all-sky survey (Pavlinsky et al. 2018), we expect detection rates to be a
factor two to three lower than with eROSITA.
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Figure 19. Left-hand panel: normalized distributions of obscuring column density, Ny, for the BAT 70 month AGN sample. In light magenta is shown the
observed distribution for the B70 AGN in LASr fulfilling R90, while in dark purple is shown the inferred intrinsic distribution from Ricci et al. (2015). Middle:

empirical X-ray extinction curves for the BAT 70 month AGN sample with 1

020

< log(Ny cm?) < 24.5 for observed and intrinsic fluxes as well as Ny values

taken from Ricci et al. (2017). In purple is the shown the observed to intrinsic flux ratio for the 14195 keV energy range, while in green the same is shown for
the 2-10keV range. The darker coloured dot-dashed and dashed lines give exponential fits to the data, respectively, with the corresponding best parameters
shown as well in the same colour. Right-hand panel: simulated detection rates for Swift/BAT after 70 months (magenta) and SRG/eROSITA after one (blue)
and eight all-sky passes (gold). The distributions show the results of the iterations of the Monte Carlo simulation using the intrinsic Ny distribution, while the
dashed lines give the median and the shaded areas the standard deviation. These values are given in the legend as well. In addition, the expected number of CT

AGN is shown in black.

remaining objects would then expected to be highly obscured, with
16 £ 3.5 objects expected to be CT obscured. However, if we convert
the intrinsic 2-10keV fluxes into 14-195keV fluxes using the
median ratio 0.42 + 0.25 dex as determined from the BAT 70 month
AGN, then we would expect that 20 & 10 of the candidates®*
would have been detected already in the 70 month Swift/BAT all-
sky map with the nominal detection limit is F°**(14-195 keV) =
1.34 x 107" erg cm™2s~! (Baumgartner et al. 2013). This might
indicate that a larger fraction of the R90 AGN candidates are highly
obscured than assumed. On the other hand, the fact that none are
detected in the 70 month BAT map is in fact consistent with the
design-based expectation that only 90 per cent of the 221 galaxies
that fulfil the R90 criterion indeed host an AGN. In other words, we
have to expect that ~22 of the 221 R90 objects are contaminants,
and all of them would be among the R90 AGN candidates.

Alternatively, one could argue that possibly many of the CT
obscured AGN that are missing according to the difference of the
intrinsic to observed Ny distribution (Fig. 19) are among the R90
AGN candidates. If we assume that the R90 selection is independent
of X-ray obscuration, we expect 54 CT objects according to the
intrinsic Ny distribution from Ricci et al. (2015), while only
18 AGN are currently known to be CT obscured, as we further
discuss in Section 4.5. Therefore, easily twice as many CT AGN
might be present among the candidates as assumed in the above
simulation which would then lower the expected detection rates
correspondingly, and, in particular, remove any expected detections
in the BAT 70 month map.

4.5 On the CT AGN fraction and CT candidates

As discussed in Section 1, one of the main caveats of current AGN
samples is the bias against the most obscured, i.e. CT, objects.?® The

24The large uncertainty on this expected number of detections is caused by
the scatter of the flux ratio in the X-ray bands.

25Note that CT AGNs are likely not a special class of AGN but just the high
end of a continuous obscuration distribution in the AGN population which

real fraction of the CT AGN is still highly uncertain with estimates
ranging from 10 per cent to 50 per cent of all AGN (e.g. Gandhi &
Fabian 2003; Gilli, Comastri & Hasinger 2007; Burlon et al. 2011;
Ueda et al. 2014; Ricci et al. 2015; Akylas et al. 2016; Lansbury
et al. 2017; Ananna et al. 2019; Georgantopoulos & Akylas 2019;
Boorman et al., in preparation). The effort of building a complete
AGN sample, starting with this work, will hopefully help to narrow
down the uncertainty on this fraction. In the meantime, we can
derive lower limits on the CT fraction by simply adding up the
number of known CT AGN in the volume. The first lower limit
comes from the B70 AGN sample. It has 20 out of 153 AGN with
L™(2-10 keV) > 10*? ergs~! within the volume determined to be
CT, i.e. a fraction of 13 per cent. Among the R90 galaxies with
L(W3) > 103 ergs™!, 10 of the 84 B70 AGN are CT obscured,
i.e. 12 per cent. In addition, there are eight more known AGN that
are not in the B70 but are CT and fulfil the R90 and luminosity
cuts.26 Together, this means at least 18 of the 160 R90 AGN with
L(W3) > 10**3 ergs~! are CT obscured, i.e. 11 per cent.
However, it is likely that the true CT fraction is significantly
higher as was indicated in Section 4.4.2 already, since none of
the (predicted) intrinsically X-ray-bright R90 AGN candidates
have been detected by BAT. In particular, if we assume the bias-
corrected Ny distribution of Ricci et al. (2015), i.e. a CT fraction
of 27 per cent, to apply for all 221 R90 objects with log L(W3) >
10%3 ergs™!, then we would expect 60 CT AGN in total. Since
in the BAT detected subset, there are only 10, there should be 50
CT AGN among the 137 R90 objects not in B70. To test whether
this is consistent with the observations, we repeat the Monte Carlo
simulation of Section 4.4.2 for these 137 objects assuming 50 CT

is hard to detect because obscuration becomes opaque even at the highest
photon energies.

20These are IC 3639, Mrk573 aka UGC 1214, NGC 660, NGC 1320,
NGC 1386, NGC 4418, NGC 5135, and NGC 5347 (in order of the object
list: Boorman et al. 2016; Guainazzi, Matt & Perola 2005; Annuar et al.,
in preparation; Balokovic et al. 2014; Levenson et al. 2006; Maiolino et al.
2003; Singh et al. 2012; Levenson et al. 2006).
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AGN among them. As a result we would still expect 60 + 25
objects to have been detected in the 70 month BAT map. Even if we
assume again 22 contaminants as a result of the R90 selection, this
leaves 38 =4 25. In fact, it would take an intrinsic CT fraction of
40 per cent to become consistent with no BAT detection within 1o
uncertainty. On the other hand, we do not expect more than ~100
CT AGN among the 137 because of at least 14 of the known AGN
being optically classified as type 1 AGN and thus unlikely CT. This
would translate into an intrinsic CT fraction of 55 per cent which we
regard as an upper limit. These findings suggest that the intrinsic CT
fraction is between 40 and 55 percent in the here probed luminosity
regime. However, these numbers should be regarded as indicative
only owing to the large number of very simplified assumptions made
here.

Let us examine some of the objects in more detail. The most
promising CT candidates are those with the highest MIR-to-X-ray
ratio, for example sources that are not detected by Swift/BAT after
70 months but are 1dex brighter than the W3 magnitude corre-
sponding to the nominal detection limit of F°*(14-195 keV) =
1.34 - 107" erg cm™2s7!, namely W3 < 4.7 mag. Indeed, we find
that six out of the eight known CT AGN that remained undetected in
the BAT 70 month map fulfil this criterion, so a 75 per cent success
rate. If we apply this magnitude limit to the whole R90 AGN sample
excluding B70, we identify a further nine CT candidates among the
known AGN. Six of them do not fulfil the S18 criterion and are
in fact known to host starbursts (Arp 220, IC 1623B, NGC 253,
NGC 3256, NGC 3690E, and NGC 7552).?" So their W3 emission
could be star-formation dominated. This leaves three more robust
CT AGN candidates (ESO 420-13, NGC 1377, and NGC 3094).

We can also apply this diagnostic to the R90 AGN candidates
which yields six galaxies, of which three are known to host starbursts
(MCG +12-02-001, NGC 520, and NGC 3690W), leaving another
three candidates for CT AGN (ESO 127-11, ESO 173-15, and
ESO495-5). We plan to investigate these candidates further in the
future.

4.6 Total number of AGN estimate

Even without having confirmed all the R90 objects as AGN, we can
make a rough estimate of the total number of AGN above a given
luminosity limit within the volume based on the characterization
of the criterion and found numbers from the previous sections. The
main assumption is that the defining feature of the R90 criterion
is valid also in our volume, namely that 90 per cent of galaxies
with such a red WI-W2 colour indeed host an AGN, at least for
objects with L(W3) > 10**3 ergs~! as concluded in Section 4.4.1.
This lower luminosity limit matches well with our completeness
limit for the LASr-GPS (Section 3.2). Furthermore, R90 selects
the majority of AGN with luminosities greater than this threshold
(Section 4.3). Therefore, we use L(W3) > 10**3 ergs~! here in the
absence of a more accurate AGN power tracer.

There are 221 R90 galaxies with L(W3) > 10°*?ergs~!, of
which 160 are known to host an AGN, 84 of which are in the
B70 sample. According to the R90 definition, we expect that 199
(90 per cent) of them host genuine AGN. This number is consistent
with applying the S18 cut to the R90 sample instead, which would
return 186 objects, i.e. 84 per cent, which is slightly lower but we
know that S18 also removes some AGN. Owing the complications

2THowever, Teng et al. (2015) find that the X-ray data of Arp 220 is consistent
with a CT AGN being present in this source.
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of S18 discussed in Section 4.4.1, we stick with the simple R90-
based estimate in the following, i.e. our initial estimate for the total
number of AGN in the volume is N;,; = 199. For the final best
estimate, this number has to be corrected by the various factors of
incompleteness as discussed in the following.

4.6.1 Colour selection incompleteness

The main source of incompleteness is the colour selection. The
R90 criterion from Assef et al. (2018) was designed for high
reliability. This reliability comes at the price of a significant level
of incompleteness, which we have seen already in Section 4.3.
Namely, for a lower luminosity of L(W3) > 10**3ergs™!, only
51 % 10 per cent of AGN are selected. Thus, we require N, to be
multiplied by a colour selection incompleteness correction factor,
cost = 1.9510488 This factor does not yet account for contamination

of the L(W3) flux, which is addressed next.

4.6.2 Host contribution to W3

Host contribution, mostly through star formation, to W3 leads us to
overestimate the intrinsic AGN luminosity and, thus, to the inclusion
of AGN with intrinsic luminosities below our completeness limit.
We have already estimated this effect statistically in Section 4.1 and
applied a corresponding correctop in the Monte Carlo simulations
of Section 4.4.2. Thus, we here just repeat the first part of the
Monte Carlo simulation of that section to estimate the L"°(12 pwm)
distribution for the AGN in our R90 galaxies, where no direct
measurement is available. This way, we find that 187 £ 22 out
of the 221 (85 £ 10 per cent) of the R90 galaxies have expected
L™°(12 um) > 10*3ergs™! . Therefore, the corresponding host
contamination correction factor is cyc = 0.85 &= 0.1.

4.6.3 Parent sample incompleteness

Another source of incompleteness is of course the galaxy parent
sample used for the AGN selection. The level of incompleteness
of the LASr-GPS was estimated in Section 3.2. There, we used
W1 as rough tracer of the stellar mass of the galaxies, while here
we want to know the completeness with respect to the L(W3)
luminosity threshold. Thus, we repeat the completeness analysis of
Section 3.2 but using W3, and find that for L(W3) > 10*>3 ergs™!
and |b| > 8°, the galaxy parent sample is 96.1 &+ 4.2 per cent
complete.?® As discussed in Section 3.2.3, the shadow of the Milky
Way further increases the incompleteness of the parent sample by
6.4 & 0.8 per cent. Therefore, we adopt a total galaxy parent sample
incompleteness correction factor, cps; = 1.11 &£ 0.04.

4.6.4 Other corrections, not accounted for

We did not attempt to correct for the fact that redshift-independent
distances are not available for all of the galaxies. This is the
case for 71 per cent of the R90 AGN and candidates. We found
that the redshift independent distances are on average 10 per cent

28The cross-matching with WISE is normally another source of incomplete-
ness but we found WISE counterparts for all galaxies in the LASr-GPS.
On the other hand, the WISE counterparts for 1.4 per cent of the galaxies
were drowned by brighter nearby objects (Section 2.7). However, we do not
consider this effect in the total number of AGN estimate because it is much
smaller than the uncertainties of the other corrections.
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smaller than the redshift-based distances. This would mean that the
luminosities of these galaxies would decrease by 0.04 dex, leading
to the loss of 3 candidate AGN but none of the known AGN. At
the same time, 31 additional known AGN and 20 candidates would
fall into the volume. However, since we did not consider redshift-
independent distances for galaxies with D;, > 50 Mpc, a correction
is not straightforward and thus not applied here.

In addition to the above incompleteness effects, there are also
object intrinsic effects like obscuration in the MIR. The latter,
however, has little effect on the W/—-W2 colour at low redshifts as
shown in Stern et al. (2012), because extinction at the wavelengths of
W1 and W2 is low and approximately constant in typical extinction
laws (e.g. Fritz et al. 2011). Thus, no correction for that is applied
here.

Finally, one might ask, what about beamed MIR emission, i.e.
blazars? Out of the full sample of 838 AGN in the full BAT
70 month catalogue, 105 are classified as beamed sources according
to BZCAT (Massaro et al. 2009), and 5 are in our D < 100 Mpc
volume, implying a beamed fraction of ~3 per cent! On the other
hand, all of these 5 objects are known to have SEDs that are not
dominated by beamed emission (Cen A, Mrk 348, NGC 1052, NGC
1275, NGC 7213). This suggests that the true beamed fraction is
<1 per cent, and, thus we ignore this effect here.

4.6.5 Best estimate

We applied all the above correction factors to our initial average
estimate, N;,; = 199, to arrive at our best estimate:

4145
Npest = Nini - cest - cuc - cpst = 1.82Njpi = 36275

AGN  with  L™(12 um) > 10**3 ergs™! (equivalent  to
L™(2-10 keV) > 10¥ergs™") in our D < 100Mpc volume.
This corresponds to a number density of 8.6%33 x 107> Mpc .

We also repeat the above estimation for L™(2-10 keV) >
10% ergs~! and L™(2-10 keV) > 10* ergs~!, resulting in 101733
and 41'% AGN above these luminosity thresholds, respec-
tively. These compare to 53 and 2 AGN known with
L™(2-10 keV) > 10¥ ergs™! and L™(2-10 keV) > 10*ergs™!,
respectively, within the volume.

4.7 Comparison to estimates from luminosity functions

Finally, with these purely observational estimates for the number of
AGN within 100 Mpc, one might want to compare to the predictions
from currently used AGN luminosity functions. First, we compare to
an optical luminosity function, namely the one derived by Palanque-
Delabrouille et al. (2013) for luminous AGN in the redshift range
0.7 < z < 4, whereas its shape was assumed to be a standard
double power law following Boyle et al. (2000). For a redshift
of 0.01, they found a break magnitude of —22.1 and the power-
law indices « = 3.5 and B = 1.43, while the break value for the
bolometric luminosity is ~10% ergs™!. Here, we used the lower
cut-off of 10 erg s~! for the bolometric luminosity which with the
simple assumption of Ly, = 10L"(2-10 keV) (e.g. Vasudevan &
Fabian 2007) corresponds to the same lower luminosity cut used
for our total AGN number estimate in the previous section, i.e.
L"(2-10 keV) = 10* ergs™'. We then integrated the luminosity
function over the whole sky up to a redshift of 0.0222 (correspond-
ing to our distance limit of 100 Mpc). This results in an estimated
number of optical AGN of 82. The latter number corresponds only
to the unobscured AGN, so we need to correct for the obscuration

fraction which is somewhere between ~50 per cent to 80 per cent
(e.g. Schmitt et al. 2001; Hao et al. 2005), resulting in 164 to 410
objects.

Instead of an optical luminosity function, using an X-ray luminos-
ity function has the advantage of also including obscured AGN (e.g.
Ueda et al. 2003). There is a large variety of such functions available
in the literature. For simplicity, we here choose only one of the
recent works that attempted to incorporate the CT fraction as well,
namely Aird et al. (2015). This work compares several different
approaches for determining an X-ray luminosity function, and we
refer the reader to that work for more details. We try several of those
functions, for example the luminosity-dependent density evolution
model which returns an estimate of 125 AGN including obscured
objects, while the flexible double power law (FDPL) yields a total
number estimate of 175 AGN above our luminosity limit. Finally,
Aird et al. (2015) put forward a model that includes a description of
the absorption distribution function (XLAF), allowing to compute
the number of unobscured and obscured AGN separately. It results in
an estimate of 97 unobscured and 264 obscured AGN, i.e. 361 AGN
in total. This number is indeed very close to our best estimate of
362 AGN in our volume and also agrees well with a corresponding
estimate using the luminosity function from Ueda et al. (2014).
Interestingly, the best-fitting CT/Compton-thin obscured fraction
found in Aird et al. (2015) of 34 per cent predicts that 90 out of the
361 AGN are CT, i.e. a total CT fraction of 25 per cent. Once, the
R90 AGN sample has been better characterized and the candidates
verified, more constraining tests will be possible.

5 SUMMARY AND CONCLUSIONS

The recent and ongoing sensitive all-sky surveys including WISE,
eROSITA, and ART-XC, in combination with the collected knowl-
edge of large astronomical data bases, now allow us to obtain a
complete census of significantly accreting SMBHs manifesting as
AGN in the local Universe. This is the goal of LASTr, and this work
has presented the first steps in this project. In particular, we first
created a LASr galaxy parent sample, LASr-GPS, of ~49k galaxies
by combining NED, SIMBAD, SDSS, and 2MRS for a volume of
D < 100 Mpc. We then cross-matched the sample with WISE to
obtain the MIR properties of the host galaxy bulges. The analysis
based on this sample leads to the following main results:

(i) First, we estimated the resulting LASr-GPS is ~90 per cent
complete for galaxies with central (bulge) luminosities of L(W1) >
10*? erg s~! (Section 3.2), a factor ~4 deeper than the 2MRS galaxy
sample (Section 3.1).

(i1) The 20.6k galaxies above this luminosity harbour 4.3k known
AGN collected from identifications in the literature (Section 2.4).
However, we caution the reader that not all of these AGN iden-
tifications might be reliable which is particularly true for the
controversial class of the LINERs. Of these 56 per cent have an
optical classification as Seyfert with the apparent type 2 to type 1
ratio between 49 to 60 per cent.

(iii) We compute optical classification-based corrections to es-
timate the nuclear 12 um luminosities of the AGN from the W3
profile fitting magnitudes, and find that the majority of the known
AGN have low luminosities, i.e. only 18 per cent are estimated to
have L™°(12 um) > 10*>3 ergs~! (Section 4.1).

(iv) We then proceed to use WISE-based AGN identification
by MIR colour to find new AGN candidates. For this purpose
we employ the R90 criterion from Assef et al. (2018), which
is based on the WI-W2 and selects AGN with a 90 per cent
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pureness. We estimate that this criterion has an average efficiency of
51 =4 10 per centtoselect AGN with L™(2-10 keV) > 10" ergs™!
(Section 4.3).

(v) The R90 criterion selects 172 galaxies known to host AGN
(Section 4.3), and 159 AGN candidates (Section 4.4). Of the R90
selected AGN, 97 per cent are classified optically as Seyferts with
an apparent type 2 fraction between 38 and 62 per cent, depending
on how objects with multiple or intermediate classifications are
treated. The intrinsic optical type 2 fraction is likely higher than
50 per cent because we expect most of the R90 candidates to be
type 2. It could be up to 71 per cent, depending how many of the
R90 candidates are genuine AGN and obscured.

(vi) We find that the W2-W3-based criterion presented by
Satyapal et al. (2018) to exclude strong starbursts indeed further
increases the pureness of R90 selected AGN but also excludes some
highly obscured AGN and AGN hosted in star-forming galaxies
(Section 4.4.1).

(vii)) A lower luminosity cut of L(W3)>1 ergs”! s
90 per cent efficient at removing compact star-forming galaxies,
so that remaining contamination in our R90 sample should be
low (Section 4.4.1). This luminosity cut leaves 61 robust AGN
candidates.

(viii) We predict detection rates for the eROSITA all-sky survey,
and find that the majority of the AGN candidates are expected
to be highly obscured, in order to explain their non-detection by
Swift/BAT and reach the expected intrinsic CT fraction for the whole
sample (Section 4.4.2).

(ix) The discussion of constraints on the CT fraction based on
the R90 selected AGN sample indicates the intrinsic CT fraction is
likely higher than the 27 per cent estimated from the BAT 70 month
sample, and could be up to 55 per cent (Section 4.5).

(x) Finally, we use the R90 selection to estimate the to-
tal number of AGN with L™(2-10 keV) > 10¥ ergs™' within
100 Mpc to be 36245:‘1‘2, corresponding to a number density of
8.6133 x 10~ Mpc > (Section 4.6). This estimate is consistent with
estimates from recent X-ray luminosity functions for AGN in the
literature (Section 4.7).

042.3

In future LASr work, we plan to follow up the new AGN
candidates, e.g. with optical spectroscopy and present a full char-
acterization of the R90 AGN sample, before adding additional
AGN identification techniques, e.g. based on MIR variability to
increase the fraction of identified AGN within 100 Mpc. In the long
term, data from the X-ray missions will complement the MIR-based
identification of AGN and provide intrinsic AGN power estimates,
allowing us to combine MIR and X-ray diagnostics to identify and
characterize the majority of CT AGN. The final volume-limited
sample of LASr AGN should provide a robust redshift zero anchor
for AGN population models.
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