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Abstract

Zero Shot Learning (ZSL) aims to classify images of unseen target classes by

transferring knowledge from source classes through semantic embeddings. The

core of ZSL research is to embed both visual representation of object instance

and semantic description of object class into a joint latent space and learn

cross-modal (visual and semantic) latent representations. However, the learned

representations by existing efforts often fail to fully capture the underlying cross-

modal semantic consistency, and some of the representations are very similar

and less discriminative. To circumvent these issues, in this paper, we propose a

novel deep framework, called Modality Independent Adversarial Network (MI-

ANet) for Generalized Zero Shot Learning (GZSL), which is an end-to-end deep

architecture with three submodules. First, both visual feature and semantic

description are embedded into a latent hyper-spherical space, where two or-

thogonal constraints are employed to ensure the learned latent representations

discriminative. Second, a modality adversarial submodule is employed to make

the latent representations independent of modalities to make the shared repre-

sentations grab more cross-modal high-level semantic information during train-
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ing. Third, a cross reconstruction submodule is proposed to reconstruct latent

representations into the counterparts instead of themselves to make them cap-

ture more modality irrelevant information. Comprehensive experiments on five

widely used benchmark datasets are conducted on both GZSL and standard

ZSL settings, and the results show the effectiveness of our proposed method.

Keywords: Generalized Zero Shot Learning (GZSL), Orthogonal Constraint,

Cross Reconstruction, Adversarial Network, Modality Independent Learning

1. Introduction

Along with the development of deep learning techniques, conventional close

set image classification has achieved the level of human beings. However, in

this big data era, an increasing number of new categories of objects are emerg-

ing everyday, so conventional close set methods need to be retrained to include5

the new categories, which is time-consuming and infeasible for realistic applica-

tions. To circumvent this issue, Zero Shot Learning (ZSL) [54, 53, 1, 36, 58, 25]

is proposed to recognize novel categories that are invisible during training. This

task is achieved by the assist of an auxiliary intermediate information, e.g. at-

tributes annotated by experts [13], to establish the bridge between the source10

and target objects, just as our human beings classify novel categories via the

previous knowledge. In recent years, ZSL has achieved great success and at-

tracted much attention, but traditional ZSL only concentrates on classifying

novel objects within the scope of unseen categories, which is unreasonable in

realistic scenarios because we cannot decide the ascription of the new emerging15

instance. Therefore, Chao et al. [7] proposed a more realistic Generalized ZSL

(GZSL) setting, which extends the testing scope from only unseen classes to all

classes, including both seen and unseen.

As shown in Fig. 1, most of the existing ZSL methods address this task by

finding the relationships between visual features and semantic embeddings of20

seen classes and then transferring them to unseen categories. Therefore, how

to make the model extract the most representative latent embeddings of seen
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Figure 1: The core problem of ZSL is how to learn the most representative representations in

latent space.

categories is one of the most crucial issues for ZSL research. Some early efforts

such as Direct Attribute Projection (DAP) [25], Attribute Label Embedding

(ALE) ALE [2] and Semantic Auto-Encoder (SAE) [23], have adopted different25

constraints, e.g., cosine distance, bilinear compatibility function or Frobenius

norm, to constrain the pairwise similarity between visual feature and seman-

tic attribute during the training phase. However, visual features and semantic

attributes are from two different modalities, where the modality discrepancy

exists, thus the learned shared representation will fail to capture the underlying30

cross-modal semantic information, and finally lead to unsatisfactory classifica-

tion results. We argue that employing a simple pairwise constraint is far from

sufficient because it only considers the pairwise correlation, while the most essen-

tial information transferred to target domain should be the high-level semantic

consistency, which is needed to be fully modeled.35

Besides, attributes of some categories are very similar to each other, which

make them less discriminative, e.g the attribute of ‘Persian Cat’ is similar to

that of ‘Siamese Cat’, and consequently lead to a wrong classification. Zhang

et al. in [52] tried to enlarge the gap between the attributes of seen classes by

employing triple verifications. However, this method only concentrates on the40

prototypes of seen classes, while the unseen classes are totally ignored, which
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makes some prototypes of unseen classes still similar to each other, and finally

lead to a wrong classification, especially on the more realistic GZSL setting. In

addition, some other efforts disperse the distance of class prototypes of all classes

but only focus on semantic modality and ignore the correlation between visual45

features and semantic embeddings [21], which makes the latent representation

less discriminative and less representative.

Recently, unseen sample synthetic based methods have attracted more atten-

tion due to their excellent performance [20]. Different from compatible methods

[48], they often utilize Generative Adversarial Network (GAN) [16] to train50

a projection from semantic attributes to visual features, and then exploit the

learned network model to synthesize samples of unseen classes, which are subse-

quently combined with seen samples to train a supervised close-set model [34].

However, these synthetic based methods usually encounter a serious problem,

that is, they are learned within a close-set, and when a new class is added, the55

entire model should be retrained with new synthetic visual samples.

In order to solve the aforementioned problems, in this paper, we propose a

novel deep framework, called Modality Independent Adversarial Network (MI-

ANet) for generalized zero shot image classification, which is an end-to-end

architecture to learn the more discriminative and representative latent repre-60

sentations. The novelties of our model lie in the following three aspects. Firstly,

both visual features and semantic attributes are projected into a latent space,

where two orthogonal constraints, including semantic to semantic and semantic

to visual, are employed to make the latent representations more discriminative.

Secondly, an adversarial training mechanism is constructed in the latent space.65

Considering the former projector as a generator to yield semantic discriminative

latent representation, we employ another modality discriminator to distinguish

the modalities of the shared representation, which competes with the genera-

tor to alternately boost each other. This adversarial training mechanism can

facilitate the learned representation more discriminative for semantics but indis-70

tinguishable for modalities [16], thus it can effectively enhance the cross-modal

semantic consistency and will finally lead to performance improvement. It is
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noteworthy that this adversarial strategy is different from those GAN based

unseen sample synthetic based methods [47, 31, 53], which often suffer from

the retraining problem of the close-set image classification when new category75

emerges. At last, in order to alleviate the domain shift problem [15, 23] and

let the latent vectors preserve more information from their respective original

spaces, we proposed a reconstruction subnetwork. Instead of directly recon-

structing themselves, we propose a novel cross reconstruction submodule to re-

construct the counterpart representation, which can preserve more cross-modal80

information. The contributions of this work are summarized as follows,

• We propose a novel and effective zero shot image classification framework,

namely Modality Independent Adversarial Network (MIANet), which is

an end-to-end architecture to learn more representative and discriminative

latent representation for visual features and semantic embeddings;85

• To create a discriminative latent space, two orthogonal constraints are

applied to make each vector orthogonal to other if they belong to differ-

ent categories, otherwise normalized. Furthermore, a cross reconstruction

framework for both visual and semantic modalities is employed to make

the latent vectors more representative;90

• Adversarial training mechanism is exploited to confuse the source modality

of the latent vectors, which can make the pairwise vectors indistinguish-

able for modalities, and results in preserving more high-level semantic

consistency within them;

• Extensive experiments are conducted on five popular datasets, and the95

results show that our MIANet can outperform most of the state-of-the-art

compatible methods on both GZSL and ZSL settings.

The main content of this paper is organized as follows: In section 2 we

briefly introduce the existing methods for ZSL and GZSL. Section 3 describes

the proposed method in detail. Section 4 gives the experimental results of100
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comparison with existing methods on several metrics. Finally in section 5, we

conclude this paper.

2. Related work

2.1. Compatible methods

Zero Shot Learning (ZSL) models are trained without unseen classes but try105

to classify unseen samples within the scope of unseen categories. So far, many

researchers have been devoting to this research area. Early efforts like DAP

[25] estimate the labels by learning probabilistic attribute classifiers. In ALE

[2] and SJE [3], Akata et al. projected visual features into semantic space via a

bilinear compatibility constraint. Other ZSL baseline methods such as CONvex110

combination of Semantic Embeddings (CONSE) [35] and Semantic Similarity

Embedding (SSE) [57] try to automatically build unseen attributes from the

instances of seen categories to reduce the effect of manual attributes. Further-

more, researchers like Kodirov et al. [23] used the concept of Auto-Encoder and

directly use Euclidean distance to constrain the similarity of projected visual115

vectors and semantic embeddings. After that Ding et al. in [10] made efforts on

the method based on low-rank embedded semantic dictionary. These methods

often employ a constraint to measure the similarity of latent vectors that from

the same category. However, we argue that the high-level semantic consistency,

which should be transferred to unseen classes, is the core information and em-120

ploying such a manual constraint is insufficient. What’s more, these methods

only focus on the relationship between visual features and semantic embeddings

from seen classes and do not take full advantage of the attributes of all the

categories.

Different from conventional ZSL, which assumes that all the test samples are125

only from unseen categories, Generalized ZSL (GZSL), which is firstly proposed

by Chao et al. in [7], enlarges the search scope to all classes, because we cannot

obtain the information that whether the test data only belongs to the unseen

classes beforehand in most scenarios, therefore GZSL is a more realistic and
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challenging task. Besides, it is noteworthy that Xian et al. [48] in 2017 put130

forward a new split of several popular datasets for GZSL testing, and released

a benchmark of some recent ZSL methods, which has greatly promoted the

development of ZSL research. To compensate the domain gap between the seen

classes and the unseen classes, many specialized methods have been developed

for GZSL. For example, Zhang et al. proposed an embedding model called135

co-representation network [50], which contains two modules, one of them is a

collaborative module for projecting the semantic space into the visual embedding

space, and another is relationship module for classification. This model can learn

a uniform visual embedding space that effectively alleviates the bias problem.

Liu et al. proposed a novel Deep Calibration Network (DCN) [28] approach,140

which enables simultaneous calibration of deep networks on the confidence of

source classes and uncertainty of target classes.

2.2. Synthetic based methods

Recently, synthetic based methods have elicited wide interest among re-

searchers because they can achieve very significant performance. Long et al. in145

[31] firstly proposed to use the attributes of unseen classes to synthesize unseen

visual features, and then train a fully supervised model with the seen data and

the synthesized unseen visual features. From then on, an increasing number

of synthesized feature based methods have being proposed [53, 24, 40, 8], and

many of them are based on Variational Auto-Encoder (VAE) [22] or GAN [16]150

since adversarial learning can encourage the networks to synthesize more realis-

tic samples [55, 56]. CVAE-ZSL [33] uses a conditional variational autoencoder

to implement the unseen sample generation. Xian et al. proposed a method

called f-CLSWGAN to train a Wasserstein GAN with a classification loss and

is able to generate sufficiently discriminative CNN features [47]. Huang et al.155

[20] trained three components, including visual to semantic mapping, semantic

to visual mapping and a metric to evaluate the closeness of an image feature

and a class embedding, under the combination of cyclic consistency loss and

dual adversarial loss to learn a visual generative network for unseen classes.
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Dual Adversarial Semantics-Consistent Network (DASCN) [34] learns primal160

and dual GAN in a unified framework, where the primal GAN learns to syn-

thesize inter-class discriminative and semantics-preserving visual features and

the dual GAN enforces the synthetic visual features to represent prior semantic

knowledge via semantics-consistent adversarial learning. Although these meth-

ods can achieve significant performance, they all suffer from a common serious165

problem that when there comes an object of a new category, the model should

be retrained with the new synthesized samples of the coming category. Differ-

ent from these GAN based synthetic methods, our approach is a compatible

one, which does not suffer from the previous mentioned problem, and it utilizes

adversarial training to generate latent modality independent vectors for both170

visual features and semantic attributes.

2.3. Representation Learning

Representation Learning is widely used in cross-modal retrieval methods.

Since visual features and semantic attributes are from different modalities, and

they usually have inconsistent representation and distribution, thus it is neces-175

sary to find a way to measure the semantic similarity of samples across modal-

ities and learn the cross-modal representations to bridge the modality gap. A

variety of cross-modal methods [12, 17, 38] have been proposed in different ways

to learn the common representation in latent space. Early efforts [19] employs

Canonical Correlation Analysis (CCA) to maximize pairwise correlation of cross-180

modal data to learn a linear projection matrices. Cross-modal Factor Analysis

(CFA) [27] learns the the common representation of pairwise data by directly

minimizing the Frobenius norm between them. Recently, Wang et al. in [44]

for the first time utilize an adversarial training mechanism to minimize the gap

among the representations from different modalities for image retrieval, which185

can effectively preserve the high-level semantic consistency in latent space.
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Figure 2: An illustration of the framework of our proposed method. “SRE” means shared

representation embedding, “ARL” stands for adversarial representation learning and “CR”

denotes cross reconstruction.

3. Methodology

3.1. Problem Definition

Given a dataset D, which is composed of two disjoint groups, seen classes

S = {1, · · · , s} and unseen classes U = {s+1, · · · , s+u}, where S∩U = ∅. The190

training set Xs ∈ Rd×N is consist of N d-dimensional visual features and each of

them is associated with a label from seen classes, while K d-dimensional visual

features of unseen classes construct the testing set Xu ∈ Rd×K , which is invisible

during training phase. As for the auxiliary intermediate semantic embeddings,

it is given a set Aall = As ∪Au, where As ∈ Rl×s denotes the corresponding195

class-level s l-dimensional attributes of seen classes, while Au ∈ Rl×u represents

the unseen categories attributes. Under both the conventional ZSL setting and

the more realistic GZSL setting, Xs, As and Au are assumed to be known in

advance, but the difference is that the goal of ZSL is to recognize unseen samples

Xu with the search scope fixed on U , while GZSL executes classification on both200

U and S.
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3.2. Model Architecture

The proposed MIANet aims at learning more discriminative and represen-

tative cross-modal latent representations of visual features and semantic at-

tributes, and the whole architecture is illustrated in Fig. 2. MIANet consists205

of three subnetworks: 1) Shared Representation Embedding (SRE) subnetwork

(gray block in Fig. 2), 2) Modal-Adversarial Representation Learning (ARL)

subnetwork (yellow block) and 3) Cross Reconstruction (CR) subnetwork (blue

block). The three subnetworks form an end-to-end deep architecture, which is

alternately trained to generate cross-modal latent representations of both visual210

features and semantic attributes.

3.2.1. Shared Representation Embedding

The Shared Representation Embedding (SRE) subnetwork is proposed to

perform projection from visual space and semantic space into latent space. Dur-

ing the training stage, we take one visual feature xi and one semantic attribute215

ai as a pair < xi,ai >, as shown in the upper-left and lower-left parts in Fig. 2,

then feed them simultaneously into two independent fully connected networks

with the parameters Wf and Ws respectively to learn the latent representations.

Due to the fact that some manually annotated attributes and visual features

of different categories are very similar to each other, e.g, the attribute of ‘Persian220

Cat’ is very similar to that of ‘Siamese Cat’. Thus it is necessary to make the

representations far away from each other if they come from different categories

while ensuring that the representations of the same category are closer in latent

space. Here, we constrain the projected representations should be normalized in

latent space, so the vectors in latent space can be considered as the distribution225

points on the surface of a unit hyper-sphere. In addition, it is impossible to make

the representations of all categories far away from each other on the limited

surface of the sphere, thus the best way to make them discriminative is to let

them orthogonal with each other. Here, we propose a Bi-Orthogonal Constraint

(BOC) in this latent space to fulfill the above demands.230
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BOC consists of two different orthogonal constraints, one is for feature-

semantic, shown as the red arrows in Fig. 2, and another is for semantic-

semantic, shown as the green arrows in Fig. 2. The former one builds up a

bridge between the visual and semantic modalities, and the latter one is to take

full advantages of the attributes of both the seen and unseen classes to make235

the latent semantic representations more discriminative for all classes, which is

very beneficial for improving the classification performance, especially for the

more realistic GZSL setting.

Firstly, for the feature-semantic orthogonal constraint, we randomly select a

visual-semantic pair < xi,ai > and feed it into the two independent networks

shown in Fig. 2, then two latent representations vi and si for visual feature xi

and the semantic attribute respectively can be obtained. Here, when xi and ai

come from different classes, the similarity score (cosine distance) of them is set

to zero, that is to say, constraining them to be orthogonal to each other, and

contrarily, it is set to one when they belong to the same category. Therefore, the

loss function of this feature-semantic orthogonal constraint can be represented

with Cross-Entropy,

Lorf = − 1

n

n∑
i=1

(milog(vT
i si) + (1−mi)log(1− vT

i si)), (1)

where, n is the batch size used in training, mi is the ground-truth similarity

label of each pair < xi,ai >, when xi and ai share the same class label, mi240

equals 1, otherwise it equals 0.

Another orthogonal constraint is employed for semantic-semantic discrimi-

nation. It is hoped that all the latent representations of semantic attributes,

including both the seen and the unseen, are discriminative, thus we feed all the

class attributes Aall into the semantic subnetwork to obtain their latent repre-245

sentations Al. The best way to make them discriminative is to constrain them

to be orthogonal to each other on the limited surface of the unit hyper-sphere.

we directly constrain their inner product instead of the cosine similarity, this

constraint will guide them to be orthogonal for each other while also make these

vectors to be normalized. The loss function of the semantic-semantic orthogonal250
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Figure 3: The detail structure of our Modality-Adversarial Representation Learning Subnet-

work.

constraint can be represented as,

Lors = ‖AT
l Al − I‖2F . (2)

3.2.2. Modal-Adversarial Representation Learning

This subnetwork is proposed to further discover the cross modality relation-

ships between two latent representations. Although the introduced SRE subnet-

work has already learned latent representation of visual features and semantic255

attributes, there are still two problems,

1) There are two independent subnetworks for visual and semantic modali-

ties, and they only consider whether they come from the same class or not,

which cannot fully extract the modality-irrelevant information to reduce

the heterogeneity gap.260

2) Like many existing ZSL efforts, SRE uses a predefined metric to extract

the pairwise relationship, but ignores the high-level semantic consistency,

which should be effectively contained.

It is believed that ideal latent representations should have two properties,

and both of them are very important for the information transferred between265

domains and modalities in ZSL task. One is that the latent representation

should be discriminative for semantics, so it can preserve more semantic consis-

tency within a single modality. Another is that the representation should also
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be indistinguishable for modalities, so the heterogeneity gap can be effectively

reduced. Therefore, for addressing the above problems and inspired by [44], in270

this paper we build an adversarial training mechanism to confuse whether the

latent representation comes from the visual space or the semantic space, and

train our model to reduce the modality discrepancy to make the representations

discriminative for semantics but indistinguishable for modalities.

The architecture of this subnetwork is shown in Fig. 3. It considers the for-

mer subnetwork as a latent representation generator to yield semantic discrim-

inative vectors. Then we build another modality discriminator to distinguish

different modalities, that is to say, the aforementioned generator aims to maxi-

mize the semantic discriminative ability, while the discriminator is proposed to

maximize the modality differentiable ability. To be specific, the discriminator is

consisted of two fully connected layers with the parameters Wd, and followed by

a softmax layer as the output. We feed both the latent representations of vi and

si into it, where each input vector is assigned with a binary ground-truth value

to indicate which modality it belongs to. The loss function of this discriminator

can be represented with Cross-Entropy,

Ldis =
1

2n
(

n∑
i=1

f (y
(x)
i , D(vi)) +

n∑
i=1

f (y
(s)
i , D(si)), (3)

where, D(·) denotes the discriminator and it outputs 2-dimensional probability

value for modality indicator. y
(x)
i and y

(s)
i are the corresponding modality

ground-truth for xi and ai, and they are represented in the form of one-hot

vector, i.e., the ground-truth label of y
(x)
i is 10, and that of y

(s)
i is 01. f(·, ·) is

the Cross-Entropy function, which is defined as,

f (y,d) = −
2∑

i=1

yilogdi + (1− yi)log(1− di), (4)

where, yi and di are the ith entry of y and d. During training stage, the275

modality discriminator aims to distinguish different modalities, while the latent

representations generator tries to decrease the discrepancy of cross-modal repre-

sentation to confuse the modality discriminator through an adversarial training

strategy.
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3.2.3. Cross Reconstruction280

At last, in order to reduce the influence of the projection domain shift prob-

lem [15] and make the latent vectors more representative, we proposed a Cross

Reconstruction (CR) subnetwork to reconstruct the original vectors xi and ai

from the latent representation vi and si, which means that the latent represen-

tations can carry more information from their respective original spaces. Due to285

the function of discriminator learning, the latent representation vi and si so far

contain the information of not only their original modality but also the other

modalities. Therefore, different from traditional AutoEncoder, we propose CR

to hope that the latent vectors can preserve more cross-modal information in

addition to the original information.290

To be specific, we constrain the latent vectors can be reconstructed to the

counterpart representation, i.e the original semantic vector should be able to

be rebuilt by the latent visual feature representation and vice versa. The recon-

struction loss can be defined as, with the Frobenius norm,

Lrec = ‖Rs(vi)− ai‖2F + ‖Rf (si)− xi‖2F , (5)

where, the function Rf (·) and Rs(·) denote the feature reconstructor and seman-

tic reconstructor respectively, which can be found in Fig. 2, and the parameters

of this subnetwork are the transpose of corresponding embedding parameters

Wf and Ws.

Our MIANet is an end-to-end architecture with three submodules to learn295

more discriminative and representative latent vectors for both visual features

and semantic attributes, and the three subnetworks are trained in two adver-

sarial processes to boost each other. In the testing phase, e.g. under GZSL

setting, each test image feature and attributes of all classes are fed into the

network to generate the latent representations. Then we directly calculate the300

similarities, such as the cosine distance, of them to find the nearest pair as their

classification result.
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Table 1: Summary of the five employed datasets. “SS” denotes the number of Seen Samples

for training, “TS” and “TR” refer to the numbers of unseen class samples and seen class

samples respectively for testing.

Datasets
Dimension Class Number Samples Number

Feat. Att. Seen Unseen SS TS TR

SUN 2048 102 645 72 10320 1440 2580

CUB 2048 312 150 50 7057 2967 1764

AWA1 2048 85 40 10 19832 4958 5685

AWA2 2048 85 40 10 23527 5882 7913

aPY 2048 64 20 12 5932 7924 1483

3.3. Optimization

Since the proposed model is designed to generate modality-irrelevant repre-

sentations for both visual features and semantic attributes, it should be trained305

through an adversarial manner like a two-player game with an iterative manner,

1) Fix Wf and Ws, and update Wd only, which can be written as,

Ŵd = argmin
Wd

Ldis. (6)

After this operation, the discriminator can distinguish the latent repre-

sentations of different modalities better.

2) By fixing the discriminator parameters Wd, the generators and the recon-

structors can be updated by,

(Ŵf , Ŵs) = arg min
Wf ,Ws

Lorf + αLors + βLrec − γLdis, (7)

where, maximizing Ldis can encourage our model to reduce the hetero-

geneity gap among modalities and generate more similar representations310

to confuse the discriminator, so that our model can grab more high-level

semantic consistence information. In addition, minimizing other losses can

make the latent representation more discriminative.
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4. Experiments

4.1. Datasets315

In our experiments, we employ five popular benchmark datasets, i.e., SUN

(SUN attribute) [37], CUB (Caltech-UCSD-Birds 200-2011) [43], AWA1 (Ani-

mals with Attributes) [26], AWA2 and aPY (attribute Pascal and Yahoo) [11].

Among them, SUN and CUB are fine-grained while AWA1/2 and aPY are

coarse-grained. Some other details of the datasets can be found in Tab. 1,320

where “SS” denotes the number of Seen Samples for training, “TS” and “TR”

refer to the numbers of unseen class samples and seen class samples respectively

for testing. In addition, all the comparisons with state-of-the-art methods below

are under the same split strategy, which is proposed by Xian et al. in [48].

Table 2: Comparison of our MIANet and state-of-the-art methods under GZSL setting. Bold

font stands for the best result of the corresponding column and ‘-’ means not reported.
SUN CUB AWA1 AWA2 APY

Method ts tr H ts tr H ts tr H ts tr H ts tr H

DAP [25] 4.2 25.1 7.5 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0

CONSE [35] 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0

CMT [41] 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 0.5 90.0 1.0 0.0 91.2 0.0

LATEM [46] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2

SSE [57] 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 8.1 82.5 14.8 0.2 78.9 0.4

ALE [2] 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7

DEVISE [14] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2

SJE [3] 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 8.0 73.9 14.4 3.7 55.7 6.9

ESZSL [39] 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6

SYNC [6] 7.0 43.4 13.4 11.5 70.9 19.8 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3

SAE [23] 8.8 18.0 11.8 7.8 54.0 13.6 1.8 77.1 3.5 1.1 82.2 2.2 1.1 82.2 2.2

GFZSL [42] 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 2.5 80.1 4.8 0.0 83.3 0.0

LAGO [4] 18.8 33.1 23.9 21.8 73.6 33.7 23.8 67.0 35.1 - - - - - -

PSEUDO [30] 19.0 32.7 24.0 23.0 51.6 31.8 22.4 80.6 35.1 - - - 15.4 71.3 25.4

KERNEL [51] 21.0 31.0 25.1 24.2 63.9 35.1 18.3 79.3 29.8 18.9 82.7 30.8 11.9 76.3 20.5

TRIPLE [52] 18.2 28.9 22.3 26.5 62.3 37.2 27.0 67.9 38.6 28.5 66.7 39.9 16.1 66.9 25.9

VZSL [45] 15.2 23.8 18.6 17.1 37.1 23.8 22.3 77.5 34.6 21.7 78.6 34.0 8.4 75.5 15.1

LESAE [29] 21.9 34.7 26.9 24.3 53.0 33.3 19.1 70.2 30.0 21.8 70.6 33.3 12.7 56.1 20.1

LESD [9] 15.2 19.8 17.2 14.6 38.5 21.2 12.6 71.0 21.4 15.3 71.5 25.2 11.8 49.3 19.0

Ours 22.2 35.6 27.4 33.3 49.5 39.9 46.5 68.5 55.4 43.7 70.2 53.3 27.6 55.8 37.0

4.2. Experimental Setting325

We employ the extracted features with ResNet [18] as our input, and all

the settings, e.g. employed attributes and classes split, are the same as that in

[48]. Additionally, since the probability of randomly selecting one pair of visual
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feature and semantic attribute that belong to the same category is extremely

low, we employ a strategy to build training pairs to ensure that the positive and330

negative pairs are balanced in quantity. Concretely, we first attach an attribute

of the same category to each training feature as a positive pair, and then we

construct a negative pair by attaching an attribute of a random different class

to the feature.

As for the details of the SRE architecture, we deploy a three-layer Fully-335

Connected (FC) deep network with ReLU activation to nonlinearly project the

raw image features into the latent space and a two-layer FC network to embed

attributes, and the parameter numbers of the networks are 2048→ 2048→ 2×

(s+u) for visual features and l→ 2×(s+u) for semantic attributes respectively.

The CR subnetwork employs the transpose layers and parameters of the SRE.340

Besides, the discriminator is also composed of a two-layer FC network, and

the layer dimensions are 100 → 30 → 2 with ReLU activation attached to the

middle layer.

There are three hyper-parameters α, β, γ in our method, and we randomly

select 20% of the seen classes in ‘SS’ as validation unseen classes, and the param-345

eters of the best average performance of 5 executions are picked as the optimal

parameters. The optimal values of α is obtained as 100 on SUN and 1000 on

other datasets, and β, γ are obtained as 0.01, 0.01 respectively. The great dif-

ference of which is mainly due to that the entropy loss value and Frobenius

norm loss values have different orders of magnitude. At last, we set the batch350

size to 300 and the learning rate to 1× 10−4. In addition to some of the base-

line methods evaluated in [48], we also compare our MIANet with some newly

proposed frameworks, such as GFZSL [42], LAGO [4], PSEUDO [30], KERNEL

[51], TRIPLE [52], LESAE [29], LESD [9] and VZSL [45].

4.3. Results on GZSL355

Since GZSL is a more realistic and valuable setting than conventional ZSL,

we firstly discuss the performance on GZSL. The evaluation criteria employed

for evaluating our model under GZSL setting is the harmonic mean H, which
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Table 3: Comparison of our MIANet and state-of-the-art methods under ZSL setting. Bold

font stands for the best result of the corresponding column, and ‘-’ means not reported.

Method(%) SUN CUB AWA1 AWA2 aPY Average

DAP [25] 39.9 40.0 44.1 46.1 33.8 40.8

CONSE [35] 38.8 34.3 45.6 35.9 26.9 36.3

CMT [41] 39.9 24.6 39.5 37.9 28.0 34.0

LATEM [46] 55.3 49.3 55.1 55.8 35.2 50.1

SSE [57] 51.5 43.9 60.1 61.0 34.0 50.1

ALE [2] 58,1 54.9 59.9 62.5 39.7 55.0

DEVISE [14] 56.5 52.0 54.2 59.7 39.8 52.4

SJE [3] 53.7 53.9 65.6 61.9 32.9 53.6

ESZSL [39] 54.5 53.9 58.2 58.6 38.3 52.7

SYNC [6] 56.3 55.6 54.0 46.6 23.9 47.3

SAE [23] 40.3 33.3 43.0 54.1 8.3 35.8

GFZSL [42] 62.5 42.0 55.6 63.8 32.8 51.3

LAGO [4] 57.5 57.8 - 64.8 - -

PSEUDO [30] 60.4 57.2 66.2 - 40.4 -

TRIPLE [52] 59.3 54.9 64.7 65.8 40.9 57.1

VZSL [45] 52.0 43.8 63.7 64.2 30.3 50.8

LESD [9] 50.4 38.9 53.4 55.8 29.8 43.7

LESAE [29] 60.0 53.9 66.1 68.4 40.8 57.8

Ours 60.5 57.9 70.1 69.0 41.2 59.5

is defined as,

H =
2× acctr × accts
acctr + accts

, (8)

where, acctr and accts are the accuracies of test samples from seen classes and

unseen categories respectively, and we adopt the average per-class top-1 accu-

racy as the final result.

The experimental results on all five datasets are recorded in Tab. 2. From

Tab. 2, we can clearly see that our MIANet outperforms all the other methods360
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on ts and H, which are two important metrics in GZSL setting [48]. To be

specific, our MIANet improves H by 1.1% on SUN, 2.7% on CUB, 14.8% on

AWA1, 22.5% on AWA2 and 11.1% on APY respectively. Compared to those

existing methods that have high tr but low ts and H, such as DAP and CONSE,

our MIANet can obtain more balanced results on ts and tr and eventually get a365

significant improvement on H. We ascribe this improvement to the Orthogonal

Constraint and the Modal-Adversarial submodules, the former makes the latent

space more discriminative for all the classes and the latter encourages the latent

representations to preserve more high-level cross-modal information.

4.4. Results on ZSL370

To further show the priority of our method, we also evaluate our MIANet

under the conventional ZSL setting, where the search space is restricted on

unseen classes. Similar with the experiment on GZSL, we adopt the average

per-class top-1 accuracy as the final accuracy for ZSL, and the final results

are recorded in Tab. 3. It is obvious that our MIANet can outperform other375

state-of-the-art methods on CUB, AWA1, AWA2 and APY, and also obtain

competitive results on SUN. Specifically, we obtain the improvement of 0.1% on

CUB, 3.9% on AWA1, 4.2% on AWA2, 0.3% on APY. Although our method do

not perform the best in every dataset, we believe that a good method should

perform well on most datasets rather than just on a single dataset, thus we also380

compare the average performance on all the five datasets, and the results are

recorded in the last column of Tab. 3. It is clear that our MIANet can obtain

the best average performance, which indicates the robustness of our method.

4.5. Detailed Analysis

4.5.1. Effect of Each Submodule385

In this subsection, we conduct experiments to show how much the adversarial

training mechanism and the cross reconstruction affect the final performance.

Firstly, we remove the ARL to investigate the effect of this submodule, and

the results under GZSL setting are illustrated in Fig. 4 (a). It is clearly seen
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(b) With or Without Reconstruction

正常 Z tr ts H 无重建 Z H
SUN 57.9 22.2 35.6 27.4 SUN 56.3 22.3
CUB 57.6 33.3 49.5 39.9 CUB 43.6 32.2
AWA1 68 41.4 75.2 53.4 AWA1 62.1 51.2
AWA2 66.6 43.7 70.2 53.3 AWA2 62.3 51.9
APY 41.2 27.6 55.8 37 APY 37.1 29.7

22.3 27.4 24.8 27.4
32.2 39.9 36.4 39.9
51.2 53.4 45.8 53.4
51.9 53.3 48 53.3
29.7 37 32.7 37

(c) Self or Cross Reconstruction

Figure 4: The effect of each submodule on the GZSL setting.

that the model with adversarial training mechanism can significantly enhance390

the final classification accuracy on all five datasets, especially on AWA1 and

AWA2. In addition, the results under ZSL setting are illustrated in Fig. 5 (a),

from which we can also find that this strategy can enhance the ZSL accuracy

on all datasets. Since this adversarial training is employed to confuse the source

modality of visual and semantic inputs, the projected visual vector can retain395

more global semantic information like attributes rather than the local details.

Therefore, we attribute this improvement to the adversarial training mecha-

nism for its ability of capturing high-level semantic consistency and modality

independent representation.

Secondly, in order to analyze the effect of the CR subnetwork, we train our400

model with and without this submodule and conduct the test under GZSL set-
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CUB 57.6 33.3 49.5 39.9 CUB 43.6 32.2
AWA1 68 41.4 75.2 53.4 AWA1 62.1 51.2
AWA2 66.6 43.7 70.2 53.3 AWA2 62.3 51.9
APY 41.2 27.6 55.8 37 APY 37.1 29.7
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(a) With or Without Adversarial

正常 Z tr ts H 无重建 Z H
SUN 57.9 22.2 35.6 27.4 SUN 56.3 22.3
CUB 57.6 33.3 49.5 39.9 CUB 43.6 32.2
AWA1 68 41.4 75.2 53.4 AWA1 62.1 51.2
AWA2 66.6 43.7 70.2 53.3 AWA2 62.3 51.9
APY 41.2 27.6 55.8 37 APY 37.1 29.7

22.3 27.4 24.8 27.4
32.2 39.9 36.4 39.9
51.2 53.4 45.8 53.4
51.9 53.3 48 53.3
29.7 37 32.7 37

56.3 57.9
43.6 57.6
62.1 68
62.3 66.6
37.1 41.2

(b) With or Without Reconstruction

正常 Z tr ts H 无重建 Z H
SUN 57.9 22.2 35.6 27.4 SUN 56.3 22.3
CUB 57.6 33.3 49.5 39.9 CUB 43.6 32.2
AWA1 68 41.4 75.2 53.4 AWA1 62.1 51.2
AWA2 66.6 43.7 70.2 53.3 AWA2 62.3 51.9
APY 41.2 27.6 55.8 37 APY 37.1 29.7

22.3 27.4 24.8 27.4
32.2 39.9 36.4 39.9
51.2 53.4 45.8 53.4
51.9 53.3 48 53.3
29.7 37 32.7 37

56.5 57.9
48.8 57.6
63.5 68
59.8 66.6
34.1 41.2

(c) Self or Cross Reconstruction

Figure 5: The effect of each submodule on the ZSL setting.

ting, the results are shown in Fig. 4 (b). From this figure, it can be discovered

that this constraint has a great impact on SUN, CUB and APY, because the

reconstruction constraint can encourage the latent representations to preserve

more information from their original space and also can alleviate the domain405

shift problem [23]. And the ZSL results are illustrated in Fig. 5 (b). The

performance with reconstruction is better than that without it, especially on

CUB, because CUB is a fine-grained dataset, the semantic information of which

is more similar and needs more cross-modal information learned from CR sub-

network.410

Thirdly, we replace the CR subnetwork with a self reconstruction module to

show whether the cross reconstruction is effective. The experimental results on

GZSL setting are recorded in Fig. 4 (c). Combined with Fig. 4 (b), we can see
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Figure 6: Comparison with different dimensions of the latent space on AWA1.

that although self reconstruction is better than no reconstruction, it is still not

as good as the proposed CR, because reconstructing the cross-modal counter-415

parts stimulates the latent representation to obtain more modality independent

information. This phenomenon can be also found on other datasets like SUN,

CUB, and AWA1 under ZSL setting in Fig. 5 (c).

4.5.2. Dimensions of Latent Space

In this subsection, we conduct experiment to show whether the dimension of420

the latent hyper-spherical space has an effect on the final classification accuracy.

The results of both ZSL and GZSL on AWA1 are illustrated in Fig. 6, where the

X-axis represents the multiple of the dimension of the latent space relative to

the number of categories, and the blue line denotes the result on convention ZSL

setting while the red one represents that on the more realistic GZSL setting.425

From Fig. 6, it is obvious that there is a common characteristic on both ZSL and

GZSL, i.e., when the number of dimensions of the latent space is about twice the

number of categories, the ZSL accuracy and H can reach the peak. Since it is

known that we need at least the same dimension as the category number to make

all classes orthogonal to each other in latent space, the dimension cannot be too430

low. Besides, too high dimension may bring too much redundant information.

22



0 500 1000 1500
# iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

T
es

t 
A

cc
ur

ac
y 

of
 Z

SL
Two-step Iteration
Two-step Same-time
Three-step
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4.5.3. Effectiveness of Iterative Optimization Strategy

In this subsection, we conduct experiment to show the effectiveness of op-

timization via an iterative manner. To be specific, we compare the trend of

ZSL accuracy under three different training strategy: 1) Green curve in Fig.435

7, training with two optimizers, one is for the weights of discriminator by Eq.

6 and one is for the others by Eq. 7, and update the weights in an iterative

manner. 2) Yellow curve of Fig. 7, two optimizers and we update the weights at

the same time. 3) Blue curve in Fig. 7, we add a third optimizer to update all

weights by Eq. 7. From Fig. 7, it can be clearly found that training with our440

iterative strategy can converge faster than that of updating weights at the same

time, and obtain better results; the optimization will become easier when the

discriminator or generator is well-trained. And if we update all weights at the

same time by Eq. 7, the model will be confused and not sure which direction

to make the optimization, and eventually lead to a bad result.445
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4.6. Emergence of new categories

Since we have claimed that our method is different from those synthetic

based method and can achieve competing performance when a new category

appears, we have to conduct experiment to show how it performs when a new

category emerges. In this experiment, we exploit the dataset AWA1 as an ex-450

ample, gradually decrease the number of unseen semantic attributes involved in

training, and test the accuracies of the uninvolved categories on both ZSL and

GZSL. We record the experimental results in Fig. 8, from which it can be clearly

discovered that our method can still accept new categories and achieve compet-

ing performance, which is different from the synthetic based method that cannot455

accept any new category without retraining. The accuracy curves illustrated in

Fig. 8 monotonically increase when the number of new categories decreases,

which means that the more semantic attributes are involved in training the

better performance our method can obtain.
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4.7. Similarities of Class Prototypes460

Since it is known that the more distinguishable the class prototypes are from

each other, the easier the data samples can be classified, we analyze the similar-

ities of class prototypes in attribute space and latent space respectively in this

subsection. Firstly, we compute the normalized cosine similarity of each class

prototype in both attribute and latent spaces on AWA1, and visualize the simi-465

larity matrix in Fig. 9. Specifically, the vectors from 0# to 40# in the matrix are

the seen classes prototypes and the remaining ones belong to the unseen classes.

Fig. 9 (a) demonstrates the original expert-annotated attributes similarity in se-

mantic space, while Fig. 9 (b) illustrates the class prototype similarities learned

with our MIANet in latent space. By comparing these two figures, it can be470

obviously discovered that the prototypes we learned are much more discrimina-

tive from each other, which reveals the effectiveness of our proposed method.

Noted that not only seen classes become more discriminative against seen, but

also seen against unseen and unseen against unseen become more discriminative.

For example, we choose three pairs from the prototypes in Fig. 9, and the left475

one is the similarity of ’weasel’ (Seen) and ’hamster’ (Seen), the top-right one

denotes the similarity of ‘Killer Whale’ (Seen) and ‘Blue Whale’ (Unseen) and

the bottom-right one stands for ‘Walrus’ (Unseen) to ‘Seal’ (Unseen). Each

of the three pairs is very similar to each other, and the similarities are all over

0.78 in cosine similarity, and it is difficult to classify them directly in original480

attribute space, while our model can make them much more different and the

similarities of them are substantially decreased, which shows the superiority of

our proposed method.

4.7.1. Distribution in Latent space

The objective of the proposed orthogonal constraint in latent space is to485

disperse all the classes, including both seen and unseen, and make them more

discriminative. Therefore, in order to have a more intuitive understanding,

we employ t-SNE [32] to illustrate the distributions of AWA1 in this space.

Specifically, we choose several representative class pairs whose cosine similarities
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Figure 9: The cosine similarities of class prototypes in latent space on AWA1. Best viewed in

color.

of prototypes in semantic space is very high, i.e., they are very similar and hard490

to be classified. After the process, we finally obtain five pairs, including eight

seen classes and two unseen classes, which can be found in the legend of Fig.

10. In Fig. 10, we illustrate the data distributions of the samples from the

selected classes with and without the orthogonal constraint in the latent space.

From this figure, it can be clearly seen that the samples of ‘Killer Whale’ (Seen)495

and ‘Blue Whale’ (Unseen) are overlapped without orthogonal constraint, while

our MIANet can disperse them effectively. This phenomenon can also be found

in other pairs, such as ‘Persian Cat’ and ‘Siamese Cat’, which indicates our

method can perform well for all the classes.

4.7.2. Zero Shot Image Retrieval500

In this subsection, we conduct experiments to show zero shot retrieval perfor-

mance of our proposed MIANet. In this task, we apply the semantic attributes

of each unseen category as the query vector, and compute the mean Average

Precision (mAP) of the returned images. MAP is a popular metric for evalu-

ating the retrieval performance, it comprehensively evaluates the accuracy and
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Figure 10: Visualization of similar classes on AWA1 in latent space with t-SNE [32]. Best

viewed in color.

ranking of returned results, and defined as,

mAP =
1

u

u∑
i=1

 1

ri

ri∑
j=1

j

pi(j)

 , (9)

where, ri is the number of returned correct images from the dataset correspond-

ing to the ith query attribute, pi(j) represents the position of the j th retrieved

correct image among all the returned images according to the ith query at-

tribute. In this experiment, the number of returned images equals the number

of the samples in unseen classes.505

For the convenience of comparison, we employ the standard split of the

four datasets, including SUN, CUB, AWA1 and aPY, which can be found in

[48], and the results are shown in Tab. 4. The values of the baseline methods

listed in Tab. 4 are directly cited from [10]. The results show that our method

can outperform the baselines on all four datasets, especially on the fine-grained510

dataset CUB, which reveals that our method can make the prototypes in latent

space more discriminative.

Furthermore, we randomly select five unseen class attributes from AWA2

[48] as the query vectors, and the returned top-5 similar images for each class
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are illustrated in Fig. 11. We can clearly find that all the returned images are515

correct, which also verifies the effectiveness of the proposed method.

Table 4: The mean Average Precision (mAP) for zero shot image retrieval.

Methods SUN CUB AWA1 aPY Average

SSE [57] 58.9 4.7 46.25 15.4 31.3

JSLE[58] 76.5 23.9 66.5 32.7 49.9

SynC [6] 74.3 34.3 65.4 30.4 51.1

ISEC [5] 52.7 25.3 68.1 36.9 45.8

MFMR [49] 77.4 30.6 70.8 45.6 56.2

LESD [9] 76.6 31.3 71.2 40.3 54.9

GSDL [10] 79.2 34.2 73.6 44.8 58.0

Ours 79.5 40.7 77.2 46.1 60.9

Blue Whale

Horse

Sheep

Seal

Bat

Figure 11: The top-5 retrieval results on AWA.

5. Conclusions

In this paper, we have proposed a novel and effective GZSL image clas-

sification model named MIANet, which aims at learning more representative

and discriminative latent representations. Specifically, in order to make the520
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latent vectors more discriminative, we employ a bi-orthogonal constraint in la-

tent hyper-spherical space. In addition, an adversarial training method is con-

ducted in our network to encourage the latent representations to capture more

high-level semantic consistency information. Furthermore, in order to get more

modality independent information for the latent vectors, we propose a cross re-525

construction subnetwork. Finally, we conduct a minimax training mechanism

to optimize the discriminator and the generator. Extensive experiments on all

five popular datasets are conducted, and the results on both GZSL and ZSL

demonstrate the superiority of our method.
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