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ABSTRACT

The point spread function reflects the state of an optical telescope and it is important for
the design of data post-processing methods. For wide-field small-aperture telescopes, the
point spread function is hard to model because it is affected by many different effects and
has strong temporal and spatial variations. In this paper, we propose the use of a denoising
autoencoder, a type of deep neural network, to model the point spread function of wide-field
small-aperture telescopes. The denoising autoencoder is a point spread function modelling
method, based on pure data, which uses calibration data from real observations or numerical
simulated results as point spread function templates. According to real observation conditions,
different levels of random noise or aberrations are added to point spread function templates,
making them realizations of the point spread function (i.e. simulated star images). Then we
train the denoising autoencoder with realizations and templates of the point spread function.
After training, the denoising autoencoder learns the manifold space of the point spread function
and it can map any star images obtained by wide-field small-aperture telescopes directly to
its point spread function. This could be used to design data post-processing or optical system
alignment methods.
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1 INTRODUCTION

Wide-field small-aperture telescopes (WFSATSs) normally have a
small aperture (around or less than 1 m) and a wide field of view
(several degrees). These properties make WFSATs light-weight and
low-cost. With remote control, WFSATSs are widely used in optical
observations for time domain astronomy (Burd et al. 2005; Ma,
Zhao & Yao 2007; Ping & Zhang 2017; Ratzloff et al. 2019;
Sun & Yu 2019). Meanwhile, because WFSATs normally work
automatically and there are no wavefront sensors installed in them,
they are hard to maintain in a timely manner. Lack of maintenance
can severely affect the quality of observation data and can limit the
scientific output of WFSATs.

Two effective ways to increase the scientific output of WFSATs
are to align the optical system remotely or to use post-processing
methods to increase the quality of observation data. For both
methods, the state of the whole optical system is required as prior
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knowledge. The point spread function (PSF) refers to the pulse
response of the whole optical system and it can be used to describe
states of a telescope (Racine 1996). Several different PSF models
have been proposed, such as analytical PSF modelling methods
(Moffat 1969) or data-based PSF modelling methods (Jee et al.
2007).

Analytical PSF modelling methods assume that the PSF can be
described by an analytical function with several experimental or
physical parameters. The Moffat model is a widely used analytical
PSF model that contains two parameters to describe the PSF. The
Moftat model and basis functions based on the Moffat model are
candidate PSF reconstruction methods for general purpose survey
telescopes (Li et al. 2016). For WESATSs, the Moffat model can fit
the peak of star images, but it cannot give promising results for the
remaining parts of the images. Because the field of view of WFSATs
is very big, off-axis aberrations will result in highly deformable
PSFs, which are hard to describe using circular symmetric functions
(Piotrowski et al. 2013).

Through careful analysis and complicated computation, we can
directly calculate the PSFs of space-based telescopes with analytical
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PSF models and physical parameters (Rhodes et al. 2005, 2007;
Makidon et al. 2007; Perrin et al. 2014). However, it is almost
impossible to compute the PSFs of WFSATs directly, because
WESATSs are seriously affected by complex off-axis aberrations,
which are hard to describe or estimate with contemporary methods.

The PSF modelling method based on principal component anal-
ysis (PCA), as proposed by Jee et al. (2007), is a modelling method
based on pure data. It does not require complex calculations. If
the number of star images is large enough and these images have
adequate signal-to-noise ratio (S/N), the PCA-based PSF modelling
method can give promising results. Because WFSATs have larger
field of views, shorter exposure times and smaller aperture size,
many star images obtained by WFSATs have low S/N and low
spatial sampling rates. In this circumstance, results obtained using
the PCA-based PSF modelling method are seriously affected by
stars with different S/N (Wang et al. 2018) so we need a new PSF
modelling method.

The autoencoder is a kind of deep neural network, which can learn
an efficient data representation method under some regularization
conditions. When linear activations are used, the optimal solution
of an autoencoder is strongly related to the solution obtained
by the PCA method (Bourlard & Kamp 1988). With non-linear
activations and different regularization conditions, autoencoders
can obtain different data representations as required. The denoising
autoencoder (DAE) is a special kind of autoencoder, which can
obtain original data from distorted noisy data (Vincent et al. 2008).
Because images obtained by WFSATSs usually contain a lot of star
images with low S/N, if we use the DAE method to replace the PCA
method for PSF modelling, we can use all star images as references
in post-processing methods. This would increase the robustness
of these methods. In this paper, we describe this DAE-based PSF
modelling method and we discuss its possible applications.

This paper is organized as follows. In Section 2, we introduce
the DAE-based PSF modelling method and compare it with the
PCA-based PSF modelling method. In Section 3, we test the DAE-
based PSF modelling method with simulated data and show how
the DAE-based PSF modelling method can increase the accuracy of
secondary mirror alignment. In Section 4, we make our conclusions
and anticipate our future work.

2 DATA-BASED PSF MODELLING METHODS
FOR WFSATS

The quality of images obtained by optical telescopes is very
sensitive to the outer environment. Aberrations induced by atmo-
spheric turbulence or by variations in temperature or gravity will
introduce PSFs with temporal and spatial variations. According
to our experience, the PSFs of WESATSs are too complex to be
modelled by analytical methods (Sun & Jia 2017). Data-based PSF
modelling methods use statistical techniques to obtain PSFs from
real observation data, and these techniques are elegant and do not
need complex analysis of optical configurations of telescopes or
fine-tuning of experimental parameters.

PCA is a widely used data-based PSF modelling method. It was
first proposed to model PSFs of space-based telescopes (Jee et al.
2007) and later to model PSFs of ground-based telescopes (Jee &
Tyson 2011). Now, for general purpose sky survey telescopes with
adequate spatial sampling rates and long enough exposure times, the
PCA-based PSF modelling method has been accepted as a standard
method (Bailey 2012; Li et al. 2016).

For WFSATSs, which are generally used for fast all-sky surveys,
we propose to use the PCA-based PSF modelling method to model
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the PSF. We have found that the PSF model can be used to increase
astrometric accuracy (Jia et al. 2017; Sun & Jia 2017). However,
there are several drawbacks to using PCA methods to model PSFs
for WFSATs. First of all, WFESATSs are low-cost telescopes and
the cameras installed in them have a very small number of pixels
(a star image with moderate S/N normally has around 3 x 3 to
5 x 5 pixels). The low spatial sampling rate will reduce the number
of effective components obtained by the PCA method. Secondly,
because WFSATs have smaller apertures and shorter exposure
times, very few stars have adequate S/N to be used as references.
Our previous work shows that star images with different S/Ns will
lead to different results for the PCA-based PSF modelling method
(Wang et al. 2018). Besides, if we only select star images with
adequate S/N, the number of stars would be too small and they
will not distribute uniformly in the field of view. These problems
will make the manifold space of PSFs obtained using PCA methods
suboptimal (Vidal, Ma & Sastry 2005).

It is commonly accepted that neural networks can be used to
build an equivalent representation as that built by the PCA method
(Bourlard & Kamp 1988). Besides, the neural network has the
flexibility that we can add regularization conditions to further
increase its ability in representing data for different purposes. The
DAE is a type of neural network, which can map a corrupted
image to its uncorrupted version, according to the low-dimensional
manifold of the training set. For the DAE-based PSF modelling
method, the low-dimensional manifold is equivalent to the principal
component space in the PCA method, although it is obtained in
a slightly different way. The manifold of PSFs in WFSATs is
built by training the DAE with pairs of real observation images
and calibration images. After training, the DAE can map star
images to their PSFs directly. We discuss these two data-based PSF
models here, the PCA model in Section 2.1 and the DAE model in
Section 2.2.

2.1 PCA-based PSF modelling method

The PCA method was proposed in 1933 (Hotelling 1933). It is a
multivariate statistical technique that reduces the dimension of the
original data set to its low-dimensional representation called the
principal component. In Wang et al. (2018), we further develop
the traditional PCA-based PSF model method (Jee et al. 2007) and
propose a PCA-based PSF model for WFSATs. Our method first
uses the PCA method to obtain principle components as the PSF
basis and then uses a self-organizing map (SOM; Kohonen 1982)
to cluster these PSFs according to their basis. We briefly describe
our method below.

We obtain several star images x; from observation data as
realizations of the PSF and we stretch all these images to vectors.
These vectors are placed in a matrix x as shown in

x=[x,x,...x]% i=1,...,N. e))

Here, the size of x is N x M, where N is the size of star images
and M is the number of star images. Then, we standardize vectors
x; with

X
mean = N ;xi )
and

w; = Xx; — mean. 3)

We use the singular value decomposition (SVD) algorithm to
calculate eigenvalues A; and eigenvectors e; of the covariance matrix
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Y as shown in
S =wwT, C))

where W is a matrix composed of the column vectors w; placed side
by side.

We sort eigenvalues according to their values and select the
largest K eigenvalues as effective components. The corresponding K
eigenvectors are the basis of PSFs. With these eigenvectors, we can
transform all star images into a new space €2, which has K feature
vectors as shown in

Q=[yiy...vxl", S

where y; = efw;. After PCA decomposition, star images are
transformed to the PSF manifold space, which has much fewer
dimensions. We can then classify these PSFs in this space with the
SOM.

The SOM is an unsupervised competitive learning neural net-
work, which mainly consists of an input layer and a competition
layer. A node weight vector m; € R" connects with every node i in
the map, as shown in

R" =[my,my,...,m]". (6)

Weight vectors m; in different nodes are first initialized by random
numbers and then we calculate the distance between each PSF
and node weight. The neuron with the smallest distance wins the
competition and is set as the winning neuron c, as shown in

Iy —mell = minly — m;]. O]

Note that y is mapped on to the winning neuron c. After selecting
the winner node, we update the weights of the winning neuron’s
neighbours, as defined in

mi(t + 1) = m;(t) + he; (OLy(®) —m;®)], ®)

where 7 is the current iteration number and /4, ; is the function to
define weights of neighbourhood neurons. The SOM repeats the
process above in several iterations until # becomes the maximal
iteration number #,,,x (in general, we set #,x to be 200). Finally, the
network will classify PSFs into different clusters according to their
relations to different nodes. We then calculate the mean PSF of all
PSFs in the same cluster and use it as the PSF of that area. Because
the PCA-based PSF modelling method is a statistical method, the
effectiveness of this method very much depends on the amount and
variety of the data. Star images obtained by WFSAT's normally have
low S/N, and it would introduce strong bias to the final results if we
only select stars with adequate S/N as references.

2.2 DAE-based PSF modelling method

The autoencoder is a special kind of neural network, which has an
encoder and a decoder. It compresses (encodes) the input data into
a data set with reduced dimension and reconstructs (decodes) the
compressed data back to their original form. Through the encoding
and decoding process, the DAE can effectively learn the manifold
space from the original data.

However, there are some risks that the autoencoder will even-
tually become a ‘identity function’, which simply learns a null
function. A null function will output the input data directly and this
is not useful for our applications. In order to avoid this problem,
it is necessary to add certain constraints. The DAE (Vincent et al.
2008, 2010) is proposed to learn to map between corrupted images
and original images. The DAE has the same structure as that of
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the autoencoder, except that it adds different levels of noise to the
input data during training. After training, the DAE learns a robust
expression of manifold space of the input data (Vincent et al. 2010;
Cha, Kim & Lee 2019).

In this paper, we assume that the PSFs of WESATs distribute
in a manifold space that can be represented by calibration data
from real observations or simulated data from physical calculations,
or a mixture of both. PSFs represented by these data are called
PSF templates. According to real observation conditions, we add
different levels of noise or random aberrations to PSF templates
to generate realizations of PSFs (simulated real observation star
images). Then we train the DAE with PSF templates and realizations
of PSFs. After training, the DAE is able to map real observation
images to their original PSFs. The steps of our DAE-based PSF
modelling method are described below.

We extract star images x; with size d X d as the input for the DAE.
Their brightest pixel is in the centre of these images. Considering
that, in real applications, there might exist errors brought by the
centroid algorithm, we set a 1 pixel uncertainty in the training set
and the test set to increase the generalization ability of our neural
network. Then we normalize star images with the flux normalization
algorithm, as shown in

Xi

pi= sum(x;)’ ©)

In real applications, star images with different S/Ns can be used
to restore their PSFs. To increase the generalization ability of the
DAE, we use star images with different levels of S/N as the training
set. We also find that the DAE is robust to the S/N and therefore we
do not need to subtract the background before the flux normalization
step.

Normalized star images p; are input into the DAE as shown
in Fig. 1. We use convolutional layers to build the DAE in this
paper, because a convolutional layer is effective in building a
model with spatial connectivity (Cavallari, Ribeiro & Ponti 2018).
Our DAE contains five convolutional layers for the encoder and
five convolutional layers for the decoder (Ichimura 2018). Each
convolutional layer employs rectified linear units (ReLUs) as non-
linear activation functions. The convolutional kernels of the encoder
or the decoder are organized in an inverted pyramid way. For the
encoder, the kernel size is setas 9 x 9,7 x 7,5 x 5,3 x 3 and
1 x 1, respectively, and for the decoder the kernel size is set as
1 x1,3x3,5%x5,7x 7and9 x 9, respectively. With this
structure, the convolutional layer uses a larger perceptual domain
when it is closer to the input or output layer, and vice versa.

We do not use pooling or unpooling layers in the DAE because
the pooling function may discard useful details that are essential
for PSF modelling. We only pad the input image to make the input
image and the output image the same size. An input image p; is
transferred through the DAE with the following steps. First of all,
the autoencoder maps p; to its hidden representation z;, which has
much smaller dimensions d’ x d’, as shown in

zi =s(W - p; + ), (10)

where s is the ReLU function. Then, z; is mapped back (decode) to
vi, which has the same size as x;. With size d X d, y; can be viewed
as the reconstructed PSF,

Vi :S(W"Zl‘-i—b/), (11)

where W and W' are weight matrices with size d” x dand d x d’,
respectively, and b and b’ are bias matrices with size d’ x d’ and
d x d, respectively. These parameters (W, W', b, b') are optimized
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Input: batchsizex1xdxd

Encoder 4: Conv2d (64, 64, 3, 1, 1)

v

Encoder 5: Conv2d (64, 64, 1, 1,0)

Y

Decoder 1: Conv2d (64, 64, 1, 1, 0)

v

Decoder 2: Conv2d (64, 64, 3, 1, 1)

Conv: Conv2d (64, 1, 3, 1, 1)

Y

Output: batchsizex1xdxd

Figure 1. Architecture of the DAE-based PSF model. Boxes with Encoder
are encoder layers and boxes with Decoder are decoder layers. Conv2d
denotes that the structure of that layer is a two-dimensional convolution
layer. Boxes with the same colour mean the convolutional kernel in that
layer has the same size. The white boxes denote the input and output layers.

to minimize reconstruction error, which can be assessed by different
loss functions such as mean squared error (MSE) or cross-entropy:

N
Lu(pi,y) =Y Ipi = »ill® (12)
i=1
Lu(pi, yi) = H(B,,||By)
d

== [pilog, +(1— pi)log,_, )] (13)
k=1

Here, Ly, is the traditional MSE, Ly stands for the cross-entropy,
which assumes p; and y; as matrices of bit probabilities, and p;; or
vir are normalized star images and their corresponding PSFs. In this
paper, we use the Ly/(p;, y;) as a loss function.

MNRAS 493, 651-660 (2020)

Table 1. Parameters of a simulated WESAT for the first scenario.

Parameters Values
Optical design Cassegrain telescope
Aperture diameter 1.0m

Field of view 1221 x 1221
Pixel scale 0.01 arcsec
Spherical aberration 0.500 wavelengths

Coma 4.000 wavelengths
Field curvature 1.813 wavelengths
Astigmatism 4.196 wavelengths
Distortion —0.113 wavelengths

3 APPLICATIONS OF THE DAE-BASED PSF
MODEL

In this section, we test the performance of the DAE-based PSF
modelling method with simulated data. There are three scenarios.
The first is modelling the PSF for a telescope with field-dependent
aberrations and the second is modelling the PSF for a telescope
with static aberrations induced by atmospheric turbulence. These
two scenarios are used to show that the DAE-based PSF model is
capable of learning effective PSF representation, even for images
with low S/N or highly variable PSFs. In the third scenario, we
show that our DAE-based PSF modelling method can increase the
accuracy of the secondary mirror alignment algorithm.

The DAE-based PSF model is implemented by PYTORCH (Kos-
saifi et al. 2019) and CUDA (Grimm & Heng 2015) in a computer
with Intel Core E5-2620 v3 and NVIDIA Tesla K40 GPU. Hyper-
parameters, such as the learning rate, epoch size and optimization
method, are important regularization conditions. In this paper, we
set epoch = 100, batchsize = 125 and learning rate = 0.00005.
The Adam optimization algorithm (Kingma & Ba 2014) is used for
optimization with the MSE as the loss function. We discuss details
of these three scenarios below.

3.1 Testing the method with a simulated WFSAT

Here, we simulate a WESAT with the parameters listed in Table 1. It
is a classical reflective telescope with small aberrations. However,
we add large field-dependent Seidel aberrations (coma and astig-
matism) to its primary mirror to increase the spatial variability of
its PSFs. We calculate 121 images with size 16 x 16 pixels in the
whole field of view through Fresnel propagation (Perrin et al. 2016)
and these images are separated by 1?1, as shown in Fig. 2. Because
no additional noise is added to these images, they can be viewed
as PSF templates of this telescope. In this scenario, we assume that
the aberrations of this telescope are known and we test whether the
DAE-based PSF model can obtain PSFs from real noisy observation
data. In real applications, aberrations are usually unknown to users
and PSF templates obtained from real observations would be better.

The data regularization condition is important for the DAE. For
our application, we use two methods to generate regularized data:
adding different levels of random aberrations to its primary mirror
and adding different levels of noise to change the S/N of star images,
as shown in Table 2. The Poisson distribution is used to simulate
the photon noise and the background noise. Different levels of noise
are added to each data set. Note that A, which is shown in Table 2,
denotes the worst case and it will change inside the same data set
to make star images have different levels of S/N. Different levels of
random wave-front aberrations, represented by low-order Zernike
polynomials, are added to the primary mirror of this telescope to
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Figure 2. The shape and position of 121 PSFs in the full field of view.

Table 2. Simulated star images with different levels of noise and aberration.
In Noisel, A = 0.00003, 0.00005, 0.00007 and 0.00009, respectively, in
Noise2, 2 =0.0003, 0.0005, 0.0007 and 0.0009, respectively, and in Noise3,
A = 0.001, 0.002, 0.003 and 0.005, respectively. A is the expectation of
Poisson distribution. The 10% random aberration denotes random Seidel
aberrations, which satisfies normal distribution with zero mean and variance
of 10 per cent of its original aberrations. The 50% random aberration
wdenotes random Zernike low-order aberrations, which satisfies normal
distribution with zero mean and variance of 50 per cent of its original
aberrations.

Aberration Noisel Noise2 Noise3
10% random aberration dataset1 dataset2 dataset3
50% random aberration dataset4 dataset5 dataset6

generate random interference, which would increase the ability of
the DAE to generalize. The coefficients of these random aberrations
are set as a percentage of that of static Seidel coefficients. This
simulation is close to real situations. During real observations, the
atmospheric turbulence will introduce random aberrations and the
different levels of noise will affect the S/N of observed images, while
we need to obtain static aberrations represented by PSF templates
from these observation data.

First, we use star images with relatively high S/N from datasetl
to train the DAE-based PSF model. We randomly pick 6724 star
images as a training set and 1681 star images as a test set. After
training, we use the DAE to obtain PSFs from star images in the
test set. Several results are shown in Fig. 3. From these figures, we
can see that when the noise level is low, the DAE-based PSF model
is able to obtain original PSFs from star images directly.

Then, we use star images with slightly smaller S/N to test the
DAE. We also pick 6724 star images randomly as a training set and
1681 star images as a test set from dataset2. The results are shown in
Fig. 4. We can see that with a larger noise level, the PSF obtained by
the DAE is almost the same as the original PSF. We contiguously
increase the noise level and generate images with lower S/N to
test the DAE-based PSF modelling method. We find that the DAE-
based PSF modelling method is robust. As shown in Fig. 5, when the
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Figure 3. Results obtained by the DAE-based PSF model for datasetl.
Images in the first row show original images, images in the second row
show noisy images with o = 0.0005 and images in the third row show PSFs
obtained by the DAE.
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Figure 4. Results obtained by the DAE-based PSF model for dataset2.
Images in the first row show original images, images in the second row
show noisy images with o = 0.001 and images in the third row show PSFs
obtained by the DAE.

noise level (1) is 0.003, it is almost impossible for human beings to
recognize the original PSF from star images. The DAE is still able to
obtain the original PSF. We further use the structural similarity index
(SSIM) and the MSE functions from the SCIKIT-IMAGE package
(van der Walt et al. 2014) to evaluate PSFs reconstructed by the
PCA-based and DAE-based PSF modelling methods. As shown in
Tables 3 and 4, the DAE-based PSF modelling method is able to
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Figure 5. Results obtained by the DAE-based PSF model for dataset3.
Images in the first row show original images, images in the second row
show noisy images with o = 0.003 and images in the third row show PSFs
obtained by the DAE.

Table 3. SSIM of dataset3.

SSIM o0 =0.001 o0=0002 o=0003 o =0.005
Original noise 0.9512 0.8347 0.7326 0.5258
PCA 0.9237 0.9242 0.9220 0.9147
DAE 0.9549 0.9548 0.9544 0.9539
Table 4. MSE of dataset3.

MSE o =0.001 o =0.002 o =0.003 o =0.005
Original noise 2.6600 x 107> 1.0957 x 10~*  2.1422 x 10~*  6.0358 x 10~*
PCA 3.5375 x 1075 34552 x 1075 3.8546 x 10~°  5.2028 x 1073
DAE 27568 x 1075 2.7631 x 1075 2.7842 x 1075 2.8271 x 1073

achieve much higher SSIM and much smaller MSE.

We also test the DAE-based PSF modelling method with
50 per cent random aberrations and the results are shown in Fig. 6.
When the S/N is large, we can see that the original PSF can be
obtained. As shown in Tables 5 and 6, we also use the SSIM and
the MSE to evaluate results obtained by the DAE-based and PCA-
based PSF modelling methods. We can see that the DAE-based PSF
modelling method can still achieve better performance with star
images of high S/N, even when the random aberration is big.

However, when we reduce the S/N, the results obtained by
the DAE-based PSF modelling method are not consistent. PSFs
obtained by star images at the centre of the field of view are relatively
good, but PSFs obtained by star images at the edge of the field
of view are not good. This is probably caused by the way we add
random aberrations. As we add wave-front aberration in percentage,
at the edge of the field of view, when the aberration is larger,
the random interference will be larger. Large random interference
will make the DAE-based PSF modelling method ineffective.
Meanwhile, it also indicates that the performance of the DAE-
based PSF modelling method is limited by outer interference and
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Figure 6. Results obtained by the DAE-based PSF model for dataset4 and
dataset5. Images in the first row show original images, images in the second
row show noisy images with o = 0.00003 and images in the third row show
PSFs obtained by the DAE. Images in the fourth row show noisy images
with o = 0.0009, and images in the fifth row show PSFs obtained by the
DAE from noisy images in the fourth row.

Table 5. SSIM of dataset5.

SSIM 0 =0.0003 o =0.0005 o =0.0007 o = 0.0009
Original noise 0.9949 0.9853 0.9728 0.9562
PCA 0.9935 0.9937 0.9936 0.9934
DAE 0.9993 0.9993 0.9993 0.9992

Table 6. MSE of dataset5.

MSE o =0.0003 o = 0.0005 o =0.0007 o = 0.0009

Original noise 2.1611 x 107° 63513 x 107 1.1926 x 107> 1.9634 x 107>
PCA 2.5760 x 107° 25124 x 107®  2.6983 x 107°  2.9674 x 10~°
DAE 3.7504 x 1077 3.8568 x 1077 3.9869 x 1077  4.4674 x 1077

random noise. When random aberration is larger than 50 per cent of
its original aberrations and observed images are affected by large
random noise, the DAE-based PSF modelling method cannot give
promising results.
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Figure 7. PSFs for a ideal telescope with static atmospheric turbulence
aberrations. There are 400 PSFs distributed equally in a field of view of 14
arcmin.

3.2 Testing the method with a WFSAT affected by static
atmospheric turbulence aberrations

Here, we consider a telescope with more complex aberrations. It is
an ideal telescope with wave-front aberrations in its pupil induced
by static atmospheric turbulence. In this scenario, PSFs would have
highly spatial variation. We use this scenario to test the performance
of the DAE in modelling complex PSFs.

We generated PSF templates with size 24 x 24 pixels in 400
locations equally distributed in a field of view of 14 arcmin, as shown
in Fig. 7. The atmospheric turbulence phase screen is generated by
the method proposed in Jia et al. (2015a,b) and we use the Durham
Adaptive Optics Simulation Platform to generate PSFs (Basden
et al. 2018). We add different levels of noise to the PSFs to make
them as simulated star images in dataset7 and dataset8. In dataset7,
Poisson noise is added to the PSFs with A = 0.0003, 0.0005, 0.0007
and 0.0009. In dataset8, Poisson noise with A = 0.001, 0.002, 0.003
and 0.005 is added to these PSFs. The A used here is the same as we
defined in Section 3.1: it stands for the worst case in each data set.

We use star images from dataset7 or dataset8 to train two DAEs.
We randomly pick 8000 star images as a training set and 2000 star
images as a test set for each of these DAEs. After training, we use the
trained DAE to obtain PSFs from star images in the test set. We find
that the DAE is robust when A = 0.0005, as shown in Fig. 8. When
A = 0.005, it is almost impossible for human beings to recognize
original PSFs from star images, the DAE-based PSF model can still
obtain part of the original PSFs. These tests show that the DAE-
based PSF modelling method has a relatively good representation
ability in modelling PSFs with complex structure. However, when
the S/N is extremely low, its performance will drop. We also use
the SSIM and MSE to evaluate the performance of the DAE-based
and PCA-based PSF modelling methods. As shown in Tables 7 and
8, we can see that the DAE-based PSF modelling method has better
performance than the PCA-based PSF modelling method.

PSF denoising autoencoder 657

Figure 8. Results obtained by the DAE PSF modelling method in dataset7
and dataset8. Images in the first row are original PSFs, images in the second
row show noisy images with A = 0.0005 and images in the third row show
PSFs obtained by the DAE-based PSF model from noisy images in the
second row. Images in the fourth row show noisy images with A = 0.005,
and images in the fifth row are PSFs obtained by the DAE-based PSF model
from noisy images in the fourth row.

Table 7. SSIM of dataset8.

SSIM o0 =000 0=0002 o0=0.003 o =0.005
Original noise 0.9430 0.7612 0.6866 0.4288
PCA 0.9874 0.9858 0.9832 0.9749
DAE 0.9995 0.9994 0.9994 0.9992
Table 8. MSE of dataset8.

MSE o =0.001 o =0.002 o =0.003 o =0.005
Original noise 26071 x 1075 13834 x 107*  2.0626 x 10™*  6.2944 x 107*
PCA 57382 x 107 82983 x 1070 1.2569 x 1075 2.6235 x 1073
DAE 7.1009 x 1077 7.6685 x 1077 8.4012 x 1077 1.0136 x 10~°
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Figure 9. Distribution of star images that are used for secondary mirror
alignment. They are distributed in the centre and eight corners of the field
of view.

3.3 Secondary mirror alignment with a convolutional neural
network and DAE PSF model

To better show increments brought by our DAE-based PSF model
to other post-processing or telescope alignment methods, we con-
sider a real application case in this subsection. Secondary mirror
alignment is a common problem for real observations in wide-field
survey telescopes, because these telescopes normally have small
F-number and the performance of these telescopes is very sensitive
to secondary mirror misalignment (Li, Yuan & Cui 2015).

For secondary mirror alignment, astronomers need to obtain
the position of the secondary mirror. We consider four degrees
of freedom for the secondary mirror in this paper: decenter along
the X and Y directions and tilt along the X and Y directions. Because
misalignment will introduce PSF variations in the whole field of
view, we can obtain the amount of misalignment according to PSFs
in different field of views. Obtaining the amount of misalignment
according to variation of PSFs is a traditional regression problem
and it can be solved through machine learning techniques. It should
be noted that we set the CCD plane in a fixed position and do not
consider decenter along the Z direction, because these two degrees
of freedom are highly correlated and are hard to solve directly using
a machine learning algorithm.

In this paper, we consider a Ritchey—Chrétien telescope with a
field corrector, which is adapted from a sample file in Zemax. The
telescope has a diameter of 1.5 m and a field of view of 1 deg.
We use nine PSFs obtained from the centre and corners of the field
of view to obtain the mount of misalignment, as shown in Fig. 9.
A simple convolutional neural network (CNN) is proposed in this
paper to solve the regression problem, and the structure of this
CNN is shown in Fig. 10. There are five convolution layers and
a fully connected layer in this CNN. We use batch normalization
(Ioffe & Szegedy 2015) after each convolution layer and select the
Leaky—ReLU function (Laurent & von Brecht 2017) as an activation
function. We use the original PSFs (images with nine channels and
in each channel the PSF is in a different position) as input and the
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Input: batchsizex9xdxd

v

conv2d 1:Conv2d (9, 54, 5, 1, 2)

v

conv2d 2:Conv2d (54, 144, 3, 1, 1)

Y

conv2d 3: Conv2d (144, 288, 3, 1, 1)

Y

conv2d 4: Conv2d (288, 576, 3, 1, 1)

Y

conv2d_5: Conv2d (576, 288, 3, 1, 1)

Y

dense: Linear (288xdxd, 4)

v

Output: batchsizex4

Figure 10. Structure of the CNN used for regression of secondary mirror
alignment. The input dimension is 9 x d x d, where d and d are the width
and height of the image, respectively. In the figure, Conv2d represents the
convolutional layer and Linear represents the full connection layer.

amount of misalignment (four dimensions, i.e. decenter along the
x and y directions and tilt along the x and y directions) as output
to train the CNN. The CNN is trained with batchsize = 10 and
epoch = 100. The learning rate is 0.001 at the beginning and we
update the learning rate after 30 epochs with

Ir = 0.001 s (0.1lepoch30ly, (14)

where epoch is the epoch number and | | denotes the floor function.
We use the Adams algorithm with MSE loss function to update
weights in the CNN. After training, the CNN can output the value
of decenter and tilt along the X and Y directions directly according
to nine PSFs.

The amount of misalignment lies between —0.1 to 0.1 deg for
tilt and —0.1 to 0.1 cm for decenter. We obtain Zernike coefficients
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Table 9. Mean and variance of errors between the estimated and the original
values of tilt and decenter for original images and PSFs obtained by the DAE
PSF model with Possion noise of A = 0.002.

o =0.002 Mean value Variance

DAE PSF 2.28 x 1072,2.65 x 1072, 274 x 1074,3.58 x 1074,
4.07 x 1072, 1.74 x 1072 3.17 x 1074, 1.71 x 10~*

Original data 1.21 x 1071, 1.78 x 107, 4.20 x 1073,6.05 x 1073,

4.56 x 1072,9.30 x 1072 1.01 x 103,243 x 1073

Table 10. Mean and variance of errors between the estimated and the
original values of tilt and decenter for original images and PSFs obtained
by the DAE PSF model with Possion noise of A = 0.005.

o =0.005 Mean value Variance

DAE PSF 2.92 x 1072,2.62 x 1072, 2.81 x 107#,3.78 x 1074,
438 x 1072,1.98 x 1072 3.87 x 1074,2.07 x 107*

Original data 6.76 x 107',8.02 x 107", 2.36 x 1072,3.58 x 1072,

1.39 x 1071, 7.32 x 107! 1.62 x 1072, 1.49 x 1072

Table 11. Correlation coefficients between estimation errors of different
parameters.

Correlation coefficients decenterX—tiltY decenterY—tiltY tiltX-tiltY

Original Data 0.002 0.3787 0.0937 0.1255
Original Data 0.005 0.2386 0.0128 0.1351
DAE PSF 0.002 0.1461 0.1798 0.3224
DAE PSF 0.005 0.1182 0.2098 0.3313

for different fields of view by continuously adjusting the amount
of misalignment. Then we calculate PSFs according to the Zernike
coefficients through Fresnel propagation (Perrin et al. 2016). We
obtain 625 states of misalignment and there are nine PSFs in each
state. We add Poisson noise with A of 0.002 and 0.005 to these PSFs
to make simulated observation images. Here, A used is the same as
we defined in Sections 3.1 and 3.2 (i.e. the worst case of each data
set). We use 5625 simulated PSFs to train the DAE PSF model with
steps discussed at the start of Section 3. After training, the DAE PSF
model can output PSFs directly according to observation images.

We generate a new set of observation images with misalignments
in the same range and noise within the same level as the test set.
We first input the test set into the CNN to obtain the amount of
misalignment directly. The results obtained in this way stand for a
common situation of secondary mirror alignment, where we directly
use a trained CNN to obtain the amount of misalignment without
considering the PSF model. Meanwhile, we input the test set into
the DAE-based PSF model to obtain PSFs and input these PSFs
into the CNN to obtain the mount of misalignment. The results are
shown in Tables 9 and 10. As can be seen from these tables, the CNN
is robust to noise level, if we use it for misalignment estimation.
It can give relatively good estimates regardless of the noise level.
However, we also find that our DAE-based PSF model can further
improve estimation accuracy when the noise level is high. These
results show that our DAE PSF model can be used to increase the
performance of post-processing methods.

However, it should be noted that because there are some corre-
lations between tilt and decenter, the estimation accuracy of these
parameters is affected by these correlations. We have calculated
the correlation of errors between each predicted value, as shown in
Table 11. We find that decentX and tiltY, decentY and tiltY, and
tiltX and tiltY have very strong positive correlations. Our DAE PSF
model cannot suppress these correlations. This is a problem and we

PSF denoising autoencoder 659

will try to further discuss this problem in our future paper about the
secondary mirror alignment method.

4 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a DAE-based PSF modelling method.
Our method assumes that the PSF can be represented by the
PSF templates obtained by calibration data. According to real
observation conditions, we train the DAE with PSF templates and
simulated observation data. After training, the DAE can be used to
map any star image to its original PSF. Our method can obtain the
original PSF regardless of the noise level and random aberration
interference. We find that our DAE-based PSF model can increase
the accuracy of the telescope’s secondary mirror alignment. Our
work shows that the state of a telescope, which is represented by the
PSF, can be well described by a trained neural network. It provides a
new approach to understanding the PSF of telescopes. In the future,
we will design post-processing methods with the DAE-based PSF
model to further increase the observation data quality in WESATSs.
Besides, obtaining the map between the shape of the PSF and their
position in the field of view is also important. We will carry out our
further research in this area in the future.
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