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In recent years, several optimal dynamos have been discovered. They minimize
the magnetic energy dissipation or, equivalently, maximize the growth rate at a
fixed magnetic Reynolds number. In the optimal dynamo of Willis (Phys. Rev. Lett.,
vol. 109, 2012, 251101), we find mean-field dynamo action for planar averages. One
component of the magnetic field grows exponentially while the other decays in an
oscillatory fashion near onset. This behaviour is different from that of an α2 dynamo,
where the two non-vanishing components of the planar averages are coupled and
have the same growth rate. For the Willis dynamo, we find that the mean field is
excited by a negative turbulent magnetic diffusivity, which has a non-uniform spatial
profile near onset. The temporal oscillations in the decaying component are caused
by the corresponding component of the diffusivity tensor being complex when the
mean field is decaying and, in this way, time dependent. The growing mean field can
be modelled by a negative magnetic diffusivity combined with a positive magnetic
hyperdiffusivity. In two other classes of optimal dynamos of Chen et al. (J. Fluid
Mech., vol. 783, 2015, pp. 23–45), we find, to some extent, similar mean-field dynamo
actions. When the magnetic boundary conditions are mixed, the two components of
the planar averaged field grow at different rates when the dynamo is 15 % supercritical.
When the mean magnetic field satisfies homogeneous boundary conditions (where the
magnetic field is tangential to the boundary), mean-field dynamo action is found for
one-dimensional averages, but not for planar averages. Despite having different spatial
profiles, both dynamos show negative turbulent magnetic diffusivities. Our finding
suggests that negative turbulent magnetic diffusivities may support a broader class of
dynamos than previously thought, including these three optimal dynamos.
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2 A. Brandenburg and L. Chen

1. Introduction
Since the works of Varley, Wheatstone and Siemens of around 1867, we know

that electromagnetic dynamos can be self-excited, i.e. they work without permanent
magnets to turn kinetic energy into electromagnetic energy. Unlike those technical
dynamos with wires, homogeneous dynamos work in uniformly conducting media
(Larmor 1919). They are prone to short-circuiting themselves, so for a long time it
was unclear whether they could work at all. Indeed, it became clear that axisymmetric
magnetic fields cannot be sustained by a dynamo (Cowling 1933). Axisymmetric flows,
on the other hand, are capable of producing dynamos, but the resulting magnetic field
is necessarily non-axisymmetric (Gailitis 1970; Ponomarenko 1973; Dudley & James
1989). Moss (1990) found that the critical magnetic Reynolds number, i.e. the ratio of
inertial to resistive electromagnetic forces, is rather large for the dynamo of Gailitis
(1970) to be excited. This means that the typical scale and velocity can be very
large, so an experimental verification is difficult for that flow. For the Ponomarenko
dynamo, by contrast, the critical magnetic Reynolds number is sufficiently low so
that an experimental verification was successful (Gailitis et al. 2000).

Another self-excited dynamo arrangement that has been subjected to experimental
verification is that of Herzenberg (1958). The critical magnetic Reynolds number is
again very large, but by using solid copper rotors that are in electric contact within
a large copper block, it was possible to reach supercritical conditions (Lowes &
Wilkinson 1963, 1968). Modelling the Herzenberg dynamo numerically has been
possible by using relatively large rotors that are close together (Brandenburg, Moss
& Soward 1998). From a numerical point of view, however, it is more advantageous
to use periodic flow patterns. For example the Roberts flow I in a cubic domain
has a critical magnetic Reynolds number of approximately 5 based on the root mean
square (r.m.s.) velocity and the wavenumber of the flow. By comparison, the critical
magnetic Reynolds number for the Arnold–Beltrami–Childress (ABC) flow (Galloway
& Frisch 1986) is approximately 15.

Indeed, certain periodic flows are better than others at producing dynamos. The
optimal flow of ABC type, for example, was identified by Alexakis (2011). Other
studies (Pringle & Kerswell 2010; Pringle, Willis & Kerswell 2012) on pipe flows
led Willis (2012) to consider this as a variational problem. The optimal steady flow
to excite a kinematic dynamo is found iteratively. Due to the arbitrarily low kinetic
energy required to excite a dynamo (Proctor 2015), the magnetic Reynolds number
should be based on the r.m.s. vorticity rather than the r.m.s. speed, which we refer
to as Rω in this paper. A series of optimization studies followed. Chen, Herreman
& Jackson (2015) considered physical boundary conditions, and Chen et al. (2018)
applied the same method to a sphere. The optimal axisymmetric flow in a sphere has
also been identified in the thesis of Chen (2018). All optimal flows have lowered the
critical Rω significantly.

It is often thought that some kind of swirl or helicity in the flow is important, but
this is not generally true (Gilbert, Frisch & Pouquet 1988). Three of the four flows
studied by Roberts (1972) have no helicity and yet they can produce mean magnetic
fields, as defined by planar averaging. In fact, different types of flow geometries can
produce very different types of dynamos: small-scale dynamos, large-scale dynamos,
those with an α effect and those without, etc. Non-helical isotropic turbulence only
leads to small-scale dynamo action when the magnetic Reynolds number based on
the r.m.s. speed exceeds a critical value that is between 40 and 200, depending on
the magnetic Prandtl number – the ratio of kinematic viscosity to magnetic diffusivity
(Iskakov et al. 2007; Brandenburg 2011). Those dynamos produce magnetic fields at
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Mean-field generation in optimal dynamos 3

scales as small as the resistive scale – the smallest scale where turbulent magnetic
fields exist.

Some flows also act as large-scale dynamos, which produce magnetic fields that
can be detected even after spatial averaging over certain directions. Such dynamos
are also referred to as mean-field dynamos. Here we show that some of the optimal
dynamos do indeed produce mean fields. We also examine the nature of such mean-
field dynamo action.

2. Instructive examples of mean-field dynamos
A particularly famous example of a large-scale dynamo is the Roberts flow I, a flow

with maximum kinetic helicity. The flow is of the form U= kfψ ẑ+∇× (ψ ẑ), where
ψ = cos kx cos ky is the stream function in Cartesian (x, y, z) coordinates, k is the
wavenumber, and kf =

√
2k is the effective wavenumber (Roberts 1972). The critical

magnetic Reynolds number, based on the r.m.s. velocity and the effective wavenumber
√

2k, is 3.9 for a domain of length L = 2π/k in the z direction (Brandenburg &
Subramanian 2005). Interestingly, a flow of the form U = kfψ ẑ + ∇ × (φẑ), where
φ= sin kx sin ky is phase shifted in the x and y directions by π/2 relative to ψ (Roberts
flow II), has zero pointwise kinetic helicity. So, there is no swirl whatsoever, and
yet, it produces not only a magnetic field, but one with non-vanishing xy averages,
although it requires L > 2π/(0.64k)≈ 9.8/k (Rheinhardt et al. 2014).

In the following examples, we focus on dynamos that produce a non-vanishing mean
field obtained by averaging over the xy plane of size L2. This mean field is therefore
defined as B=

∫
B dx dy/L2. In the case of Roberts flow I, the resulting mean field

is of the form B= B0(t)(sin(kz+ ϕ), cos(kz+ ϕ), 0), where ϕ is an arbitrary phase, k
is the wavenumber and B0(t) is a time-dependent amplitude. In the case of Roberts
flow IV, the velocity has no net but still pointwise helicity. The mean magnetic field
is time dependent and its x and y components evolve independently of each other, i.e.

B(z, t)= (Bx, By, 0)= (B0x(t) cos(k(x)z+ ϕx), B0y(t) cos(k(y)z+ ϕy), 0), (2.1)

where B0x(t) and B0y(t) are time-dependent amplitudes, ϕx and ϕy are phases and k(x)
and k(y) are wavenumbers for the x and y components, respectively. In principle, the
values of Bx and By for a mean-field dynamo can be different from each other. For
example, if B0y= 0, the magnetic field can just be B= (B0x cos kz, 0, 0), i.e. with only
one component. In fact, the Robert flows II–IV all produce dynamos where Bx and By
evolve independently of each other, albeit at the same rate, i.e. d ln B0x/dt= d ln B0y/dt;
see Devlen, Brandenburg & Mitra (2013), Rheinhardt et al. (2014). We are not aware
of any earlier demonstration of a case where the growth rates of different components
are not the same.

Solutions to large-scale or mean-field dynamos can be obtained if the mean
electromotive force can be expressed in terms of the mean field. Here, the mean
electromotive force is defined as E = u× b, where overbars denote xy averaging and
lowercase symbols denote fluctuations around the mean field, i.e. u = U − U and
b = B − B are the fluctuating velocity and magnetic fields. The general relationship
between B and E is in terms of a convolution of the form

E =
∫∫

Kij(z− z′, t− t′)Bj(z′, t′) dz′ dt′, (2.2)

where K is an integral kernel. In the case of Roberts flow I, when the mean magnetic
field is marginally excited, the kernel is approximately of the form

Kij(z, z′, t, t′)≈ δ(z− z′)δ(t− t′)(αδij − ηtεi3j∂/∂z′), (2.3)
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4 A. Brandenburg and L. Chen

where α = (η + ηt)k in the marginally excited case. In the case of Roberts flow II,
the components of Kij cannot be described by an instantaneous relationship, but there
is a turbulent pumping effect with a certain time delay (Rheinhardt et al. 2014). In
this case, the x and y components evolve independently of each other. The dynamo
for Roberts flow III is similar to that for Roberts flow II, except that the x and y
components of the mean magnetic field experience pumping velocities that point in
opposite directions.

Finally, Roberts flow IV is again given by an equation similar to (2.3), but with
α=0 and ηt being negative on the length scales of interest. At smaller scales, however,
ηt is always positive, which is necessary so as to ensure stability at small length scales.
This can be accounted for by adding a magnetic hyperdiffusivity, corresponding to an
additional third-order spatial derivative term in (2.3). We return to this at the end of
the paper. With these preparations in place, we are now in a position to characterize
the dynamos driven by the aforementioned optimized flows.

In this study, we encounter examples of dynamos that share similarities with some
of the cases discussed above. In particular, we find cases that do exhibit this type
of unusual behaviour with two components evolving independently of each other. For
example, the Willis dynamo is even more bizarre than that of Roberts flow IV, because
the two horizontal components of B evolve differently, with growth rates that have
even different signs. Robert flow I, by contrast, is maximally helical and leads to an
α effect that couples the two horizontal components of B. Those dynamos are called
α2 dynamos, because the α effect is responsible for producing Bx from By and for
producing By from Bx. We talk about αΩ dynamos when shear in (say) the y direction
(Ω effect) is responsible for producing By from Bx. The flows of Willis (2012) and
Chen et al. (2015) turn out not to be of that type. Below, we present a more detailed
analysis of these optimal dynamos.

3. Essentials of dynamos driven by optimized flow
The goal of this study is to determine the nature of dynamo action driven by the

flows of Willis (2012) and Chen et al. (2015). We discuss three types of optimal flows
with distinct boundary conditions for their excited magnetic eigenmodes, referred to as
Willis, NNT and TTT cases. In Chen et al. (2015), the magnetic boundary conditions
can be either superconducting or pseudo-vacuum in each direction. In terms of
spectral representations, this means either using sine functions (T for tangential) or
cosine functions (N for normal) in the direction perpendicular to the boundary. The
corresponding magnetic eigenmodes then have four possible combinations: NNT,
NTT, NNN, and TTT in x, y, z respectively. The NNT/NTT and NNN/TTT pairs
give the same dynamo up to a symmetry transformation (Favier & Proctor 2013).
Thus, only one solution from each pair is chosen for this study. We begin by briefly
explaining the essential technique to obtaining these optimal flows, and then describe
the dominant Fourier modes of the dynamo solution, if there is any.

Basically, the optimization method belongs to the family of constrained optimiza-
tions. Given a Lagrangian as follows,

L = ln〈B2
T〉 − λ1(〈ω

2
〉 − 1)− λ2(〈B2

0〉 − 1)− 〈Π1∇ ·U〉 − 〈Π2∇ ·B0〉

−

∫ T

0
〈B†
· [∂tB−∇× (U×B)− R−1

ω ∇
2B]〉 dt, (3.1)

where ω=∇×U(x), BT =B(x, T), 〈· · ·〉 = V−1
∫
· · · dV denotes the volume average

and T is a fixed time that is long enough to filter out a transient growth. The first term
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Mean-field generation in optimal dynamos 5

in (3.1) is a proxy of the growth rate that we want to maximize, whilst the other terms
are constraints from a kinematic dynamo model (the backreaction from the magnetic
field on the flow is not considered). We search for the optimal flow U and the initial
field B0 such that all variations vanish

δL(U,B,B†,B0,BT, λ1, λ2, Π1, Π2)= 0. (3.2)

Setting δL/δB†
= 0 gives the induction equation

∂tB=∇× (U×B)+ R−1
ω ∇

2B, (3.3)

and setting δL/δB= 0 gives the adjoint induction equation,

∂tB†
=U× (∇×B†)− R−1

ω ∇
2B†. (3.4)

The optimization procedure is based on the two equations above. Starting from some
fields U and B0, we first evolve the system forward in time using (3.3) until time T ,
then backward in time using (3.4) and finally we use δL/δU and δL/δB0 as gradients
to update U and B0. A detailed optimization algorithm is described in Chen et al.
(2015).

The resulting optimal flow U and the corresponding least decaying magnetic
eigenmode show drastically different features for the three cases we are interested in.
The Willis case represents the most efficient solution (has lowest critical Rω) with
periodic boundary conditions for the flow and the magnetic eigenmode. Since the
optimization algorithm does not fix the orientation of fields, any transformation such
as shift (Tδ), rotation, or reflection (R) gives the same equivalent optimal flows,

U(x)=R−1Ũ(x̃(x)), (3.5)

where x̃(x) = Rx + Tδ gives the relation of two coordinates. Here, tildes denote
quantities in the original coordinate. The Willis flow can be approximately described
by a large-scale dominant flow (up to 1 % difference in the vorticity norm ‖ω‖2) in
the original coordinate as

Ũ
Ũrms
≈

2
√

3
(sin ỹ cos z̃, sin z̃ cos x̃, sin x̃ cos ỹ). (3.6)

For the flow we use, the actual form in the transformed coordinate is

U
Urms
≈

2
√

3
(sin(z+π/2) cos(y−π/4), sin x cos(z+π/2), sin(y−π/4) cos x). (3.7)

The two sets of coordinates are related by (x̃, ỹ, z̃) = (x, z + π/2, y − π/4). The
magnetic eigenmode of this dynamo can also be approximated by a simple field
(up to 2 % difference in energy) as

BT ≈

 0.138 cos z+ 0.810 sin z
−0.802 cos x+ 0.179 sin x
−0.538 cos y− 0.622 sin y

 , (3.8)

in the transformed coordinate. The x, y, z components of (3.8) each vary only in one
direction. If small fluctuations are added to this eigenmode, we would expect to find
a non-zero mean field when taking any of the planar averages.
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6 A. Brandenburg and L. Chen

In Chen et al. (2015), a combination of sine and cosine functions is used to mimic
physical boundary conditions in a domain of size 1. The flow satisfies non-penetrating
boundary conditions and therefore only sine functions are allowed in the direction
perpendicular to the boundary. In this study, we rescale the flows of Chen et al.
(2015) such that they become periodic in a (2π)3 domain while retaining the boundary
conditions in a π3 domain. In the extended (2π)3 domain, the general form is given
by

U=
∑

mx,my,mz∈N

ax(mx,my,mz) sin(mxx) cos(myy) cos(mzz)
ay(mx,my,mz) cos(mxx) sin(myy) cos(mzz)
az(mx,my,mz) cos(mxx) cos(myy) sin(mzz)

 , (3.9)

and ai(mx,my,mz) with i= x, y, z being the spectral coefficients. This is similar to the
Taylor–Green flow but with the sine and cosine functions swapped. The NNT magnetic
field has the general form

B′NNT =
∑

mx,my,mz∈N

ax(mx,my,mz) cos(mxx) sin(myy) cos(mzz)
ay(mx,my,mz) sin(mxx) cos(myy) cos(mzz)
az(mx,my,mz) sin(mxx) sin(myy) sin(mzz)

 , (3.10)

which corresponds to normal field boundary conditions in the x and y directions,
and perfectly conducting boundaries in the z direction; B′TTT has the same general
representation as (3.9). This is because the boundary conditions for both fields forbid
normal components across the boundary, but allow tangential components.

To distinguish the two cases, the optimal flows are named after the boundary
conditions of their corresponding magnetic eigenmodes. For up to 83 % of the
total enstrophy, 〈ω2

〉, the optimal NNT flow can be approximated by the velocity
U≈∇×ψ with ψx(x, y, z)

ψy(x, y, z)
ψz(x, y, z)

=
 0.16 sin 2y sin 2z

0.77 sin x sin z
−0.18 sin 2x sin 2y

 . (3.11)

The leading components of the magnetic eigenmode are given in Chen et al. (2015).
In particular, the most energetic Fourier mode takes 39 % of the total energy, and
varies only in one direction

B′xNNT(0, 1, 0)= 0.883 sin y, (3.12)

where (0, 1, 0) are the wavenumbers in x, y, z respectively. We expect to see some
contribution from B′x for the xz averages taken in the (2π)3 domain. The other
dominant Fourier components depend on at least two directions, hence have zero
planar averages.

The TTT case has neither a dominant flow nor a dominant magnetic field that varies
only in one direction. The optimal TTT flow is highly localized, but has approximately
equal enstrophy per direction (〈ω2

i 〉, i = x, y, z); see also Chen et al. (2015) for the
streamline plot. We do not expect to find a planar mean field near onset for this type
of dynamo.

With three types of boundary conditions, we get three optimal solutions: the Willis
and NNT dynamos both have simple large-scale flows, except the NNT dynamo
breaks the symmetry in one direction, and the TTT dynamo has a complex localized
flow. These three dynamo solutions were computed without imposing specific physical
properties of the flow a priori. While this approach allows us to remove bias and
explore the full parameter space of solutions, it leaves the question of how to interpret
the dynamo action. In the next section, we discuss how to extend the analysis of
dynamos using mean-field theories.
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Mean-field generation in optimal dynamos 7

4. Mean-field approaches to analysing the dynamos
To characterize the nature of dynamo action for the three optimized flow problems,

we use both direct numerical simulations (DNS) and the test-field method (TFM). The
DNS refer to the numerical solution of (3.3), whereas the TFM refers to solutions
of the evolution equations for the fluctuations around a given planar averaged mean
field, which is one of four test fields, BT

. The TFM allows us to extract turbulent
transport coefficients from the underlying flow fields (Schrinner et al. 2005, 2007);
see also Brandenburg et al. (2010) for a review. We use numerical representations of
the flows of Chen et al. (2015) for NNT and TTT dynamos in their original form,
i.e. the r.m.s. of velocity is unnormalized, but we extend the domain to (2π)2 to
match the periodic boundaries and also to reproduce Willis dynamo using a similar
algorithm. The corresponding data files for these three flow fields can be found in
the online material (Brandenburg & Chen 2019) for the published data sets used to
compute each of the figures of the present paper. For comparison, we also use the
original formulation of Willis (2012), denoted by Willis* (with an asterisk), which is
written as U= (2/

√
3)(sin y cos z, sin z cos x, sin x cos y) in the same coordinate as other

flows, as opposed to the transformed form in (3.7). All these flows and the resulting
magnetic fields are periodic in the (2π)3 volume, but for the NNT and TTT cases, we
also select a π3 subvolume with the appropriate boundary conditions. The flows are
represented on a 323 mesh, except for the TTT case, which is represented on a 483

mesh. For the NNT and TTT cases in π3 subvolumes, we select the first 173 and 253

mesh points, respectively, which include the points on the boundaries.

4.1. Characterizing the growth of the mean field
The growth of the mean field can be characterized through averaging. From the
kinematic model, we know the spatial distribution of the magnetic eigenmode. The
choice of averaging is then determined by the dominant magnetic field components.
We take xy averages for the Willis and TTT cases, and xz averages for the NNT
case, and denote those by an overbar. To compute r.m.s. values, we employ volume
averages, denoted by angle brackets. The r.m.s. values of the velocity, Urms ≡ 〈U2

〉
1/2,

are listed in table 1. The kinetic helicity integrated over the full domain is zero,
but its local value at arbitrary points in the domain is finite. For the NNT flow, the
kinetic helicity integrated over the π3 domain is also zero. By contrast, the TTT flow
lacks the symmetry to have a net zero helicity in the π3 domain.

To obtain B=∇×A, we solve for the magnetic vector potential A. Its evolution is
governed by the uncurled induction equation,

∂A
∂t
=U×B+ η∇2A. (4.1)

We solve this equation using the PENCIL CODE1, which is a high-order public domain
code for solving partial differential equations, including the induction equation that is
of interest here, as well as the test-field equations that are discussed in the next section.
The code uses sixth order finite differences in space and the third-order low storage
Runge–Kutta time stepping scheme of Williamson (1980).

When η is below a certain critical value, ηcrit, the value of the r.m.s. magnetic field,
Brms, grows exponentially proportional to eλt where λ is a constant. For oscillatory
fields, λ can be complex such that 2π/Im λ is the period of the oscillation, and Re λ

1https://github.com/pencil-code, DOI:10.5281/zenodo.2315093.
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8 A. Brandenburg and L. Chen

Flow Mesh urms ηcrit Rcrit
m η Rm q λ λ

(x)
mean λ

(y,z)
mean

ABC 323 1.73 0.112 15.5 0.097 17.9 0.18 0.006 0.006+ 0.62i 0.006+ 0.62i
Roberts 323 1 0.181 5.52 0.158 6.33 0.65 0.029 0.029 0.029
Willis* 323 1 0.568 1.76 0.498 2.01 0.57 0.068 −0.42+ 0.80i 0.068
Willis 323 0.705 0.403 1.75 0.350 2.01 0.57 0.052 0.052 −0.26+ 0.58i
NNT 323 0.594 0.133 4.47 0.116 5.12 0.63 0.014 0.014 −0.048
TTT 483 0.336 0.083 4.05 0.072 4.67 0.45* 0.034 0.004 0.006

TABLE 1. Summary of parameters for various flows. For the 15 % supercritical cases, the
values of q≡Brms/Brms are given along with the corresponding values of η (sixth column),
the growth rate λ of the r.m.s. magnetic field and those of the mean-field components Bx
and By (or Bz for the xz averaged NNT flow), denoted by λ(x)mean and λ(y,z)mean, respectively.
Their imaginary parts give the frequency of oscillatory field components. The asterisk
on the value 0.45 for q denotes that a columnar z average has been used in this case
(see text).

is the growth rate, which can be estimated from the logarithmic derivative of Brms or
its envelope for oscillatory fields. By experimenting with different values of η, and by
interpolation, we find the critical value ηcrit below which the dynamo is excited.

4.2. Quantitative analysis using the TFM
The averaged evolution or mean-field equation reads

∂A
∂t
=U×B+ E + η∇2A, (4.2)

where E = u× b is the electromotive force from the fluctuating velocity and magnetic
fields, b=∇× a is the small-scale magnetic field and a is a solution to the equation
that results by subtracting (4.2) from (4.1), which yields

∂a
∂t
=U× b+ u×B+ E ′ + η∇2a, (4.3)

where E ′=E −E is the fluctuation of the electromotive force. This equation contains
B, but it can also be formulated for arbitrary mean fields, which we then call test
fields, BT

. The goal is to determine solutions to this equation for sufficiently many
independent test fields so that we can assemble all eight unknowns, α̃ij and η̃ij, for
i, j= 1, 2 to the equation

ẼT
i = α̃ijB

T
j − η̃ijJ

T
j , (4.4)

where JT
= ∇ × BT

. In general, the actual mean fields are neither constant in space
nor in time, so we need to sample all Fourier modes in z and t to capture the full
dependence. (Here, and in the following, we mean y instead of z when dealing with
the NNT flow.) Fourier-transformed variables are denoted by tildes. The electromotive
force is then written in the form (Brandenburg, Rädler & Schrinner 2008)

Ẽi(z, t)=
∫
[α̃ij(z, t, k, ω)B̃j(k, ω)− η̃ij(z, t, k, ω)J̃j(k, ω)] dk dω. (4.5)
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Mean-field generation in optimal dynamos 9

The z profiles of all components of α̃ij(z, t, k, ω) and η̃ij(z, t, k, ω) are obtained
by solving the test-field equations for different values of k and ω, where k is the
wavenumber and ω is the frequency in Fourier space.

Here, B̃=
∫

e−i(kz−ωt)B dz dt is the Fourier-transformed mean field, and likewise for
J̃. For determining α̃ij and η̃ij, we solve four copies of (4.3), each with one of four
different test fields; BT

= (sin kz, 0, 0), (cos kz, 0, 0), (0, sin kz, 0) and (0, cos kz, 0). We
then solve the test-field equation forward in time. Given that U is constant in time, we
can use a relaxation method (see Rheinhardt et al. 2014, for details) and rewrite the
test field as BT

→ e−iωtB̂
T
(z;ω). This notation is not to be confused with the solutions

to the adjoint problem, B†, discussed in § 3.
We solve the Fourier-transformed complex equations for the response to each of the

test fields. Those equations are given by (Rheinhardt et al. 2014)

iωãT
+ u× B̂

T
+ (u× b̃

T
)′ + η∇2ãT

= 0, (4.6)

where b̃
T
= ∇ × ãT are the solutions, tildes denote Fourier transform in time,

ãT
(x, ω)=

∫
aT(x, t)e−iωt dt and lowercase letters and primes denote fluctuations about

the planar average. We then compute the desired transport coefficients in Fourier

space, α̃ij and η̃ij by measuring Ẽ
T
= u× b̃

T
and then solving (4.4). The diagonal

components of the sum η+ η̃ij act as an effective magnetic diffusivity, which has to
be overcome by the other inductive effects in order for mean-field dynamo action to
occur. We apply the complex TFM to the three optimal flows discussed earlier.

5. DNS results and spatial averages for the different dynamos
The critical magnetic diffusivity, ηcrit, along with the r.m.s. velocities and other

relevant parameters such as the critical magnetic Reynolds numbers,

Rcrit
m = urms/ηcritk1, (5.1)

are listed in table 1. Here k1 is an estimate of the relevant wavenumber of the
magnetic field – usually the lowest in the domain. We use k1 = 1 in all cases, and
fluctuations are periodic. We also list the ratio q≡Brms/Brms of the r.m.s. values of the
mean field, Brms, to that of the full field, Brms, for cases that are approximately 15 %
supercritical. The Karlsruhe and Riga dynamo experiments were only approximately
10 % supercritical, as measured by the magnetic Reynolds number based on the
characteristic flow speed (Gailitis et al. 2003; Dormy & Soward 2007). Testing the
near-critical response of the mean field is, therefore, a useful way of characterizing
a weakly supercritical dynamo. In table 1, we also list the growth rates λ of the
actual field |B| and λ(i)mean of the ith component of the mean field Bi. Negative values
indicate decay and an imaginary part denotes the frequency for oscillatory behaviour.

For comparison, we have included in table 1 the results for the more familiar
ABC and Roberts flows. The ABC flow (Childress 1970) is given by U =
(sin z+ cos y, sin x+ cos z, sin y+ cos x). The equation for the ABC flow is similar to
that for the Willis flow, except that the multiplications in the latter are replaced by
plus signs in the ABC flow.

5.1. Dynamo action in the Willis dynamo
For the analytically given flow Willis*, which has a r.m.s. velocity of unity, we find
mean-field dynamo action for η<ηcrit=0.568. This corresponds to Rcrit

m =1.76. For the
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10 A. Brandenburg and L. Chen

FIGURE 1. The three components of the magnetic field, Bx (red), By (blue) and Bz (green),
at an arbitrarily selected point x∗ within the domain for the Willis flow with η = 0.35,
which is supercritical. All three components begin to grow exponentially at the same rate.
Solid (dashed) lines denote positive (negative) values.

numerically optimized flow ‘Willis’ (without asterisk), which we focus on in the rest
of this paper, the r.m.s. velocity is smaller and ηcrit= 0.403. This corresponds to Rcrit

m =

1.75, so it is only slightly easier to excite than Willis*. The following considerations
apply all to the latter, numerically optimized flow. In the supercritical case, here using
η= 0.35, all three components of B are seen to grow exponentially in time at the rate
λ≈ 0.052; see figure 1.

For the Willis flow, as we will see below, equation (4.1) possesses solutions with
non-vanishing planar or xy averages. It turns out that there is a finite mean field,
B(z∗, t), where z∗ is a fixed position. In figure 2, we show its x and y components.
Note that Bz = 0 at all times owing to the fact that ∇ · B= ∂Bz/∂z= 0 and that the
mean field was vanishing initially. We see that Bx(z∗, t) grows with the same growth
rate as the actual magnetic field at any arbitrarily selected point (see figure 1), but
By(z∗, t) is seen to decay in an oscillatory fashion with frequency Im λ≈ 0.58 at a rate
Re λ(y)mean ≈ −0.26. The occurrence of different growth rates for different components
is unusual and very different from the more familiar α2 and αΩ dynamos (Krause
& Rädler 1980), where two components (poloidal and toroidal fields) always evolve
in tandem. For example, the previously mentioned Roberts flow I is of α2 type, but
the dynamos from flows II and III work with time delay, and flow IV generates a
negative diffusivity dynamo. The different behaviours between standard α2 and αΩ

dynamos on the one hand and negative turbulent diffusivity and time delay dynamos
on the other hand is illustrated in figure 3.

To understand the negative turbulent diffusivity dynamos, we emphasize that, in
view of (4.2) and (4.5), η̃xx affects the evolution of Ax and thus By= ∂Ax/∂z. Therefore,
if η + η̃xx < 0, By grows at the rate −(η + η̃xx)k2. On the other hand, η̃yy affects the
evolution of Ay and thus Bx = −∂Ay/∂z. Therefore, if η + η̃yy < 0, Bx grows at the
rate −(η+ η̃yy)k2. For the Willis flow, as we shall see below, the latter can indeed be
negative if Rm is large enough, leading to a growth of Bx, as is seen in figure 2. By
contrast, η+ η̃xx turns out to be always positive, so By can only decay.
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Mean-field generation in optimal dynamos 11

FIGURE 2. Evolution of Bx(z∗, t) (red) and By(z∗, t) (blue) for the Willis flow at a fixed
position z∗. Note that By decays in an oscillatory fashion with the frequency Im λ= 0.58.
Again, solid (dashed) lines denote positive (negative) values.

(a) (b)

FIGURE 3. Sketch illustrating the mutual feedbacks between Bx and By in α2 or αΩ
dynamos (a), and the independent evolution of the two components in negative turbulent
diffusivity and time delay dynamos (b). For negative turbulent diffusivity dynamos, the
growth rate of Bx is −(η+ η̃yy)k2 and that of By is −(η+ η̃xx)k2, and they can be different
from each other.

The magnetic field found in the present simulations can be represented as a
superposition of different eigenfunctions – each with a different eigenvalue. The
dominant eigenfunction corresponding to the aforementioned growth rate or eigenvalue
λ(x)mean≈ 0.052 of the horizontally averaged eigenfunction has a vanishing y component,
while the eigenfunction corresponding to the eigenvalue λ(y)mean ≈ −0.26 ± 0.58i has
a vanishing x component. This explains the behaviour seen in figure 2. Without
xy-averaging, one would only see the fastest growing mode, as was demonstrated in
figure 1, where all three components of the original (non-averaged) field grow at a
rate equal to the eigenvalue λ(x)mean≈ 0.052. Thus, it is only after xy-averaging that we
are able to separate the two dominant eigenfunctions from the numerically determined
magnetic field.

To investigate different planar averages in the same set-up, we have rotated the
flow in both directions, ui(x, y, z)→ ui+1(z, x, y) and → ui−1(y, z, x), and found the
same behaviour in all three cases. Below, we apply this technique to the NNT flow to
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12 A. Brandenburg and L. Chen

FIGURE 4. Comparison of the three mean flows, Willis, NTT and TTT, obtained by
averaging over the normal direction. The flow in the plane is indicated by vectors together
with the normal component colour coded.

(a) (b)

FIGURE 5. Similar to figures 1 and 2, but for the 15 % supercritical NNT dynamo, using
xz planar averages.

study xz averages as a function of y. However, to avoid confusion, we always express
the final result in the original, unrotated coordinate system.

5.2. Dynamos in the NNT and TTT flows and comparison with the Willis flow
The NNT flow varies very little in the y direction and is dominated by flow
components in the xz plane. The TTT flow, on the other hand, varies more strongly
in the xy plane, but its z average still has no significant component in the z direction.
For the Willis flow, the flow patterns in the xy, xz and yz planes look the same. In
figure 4 we visualize z averages of the Willis and TTT flows in the xy plane and y
averages of the NNT flow in the xz plane.

In figure 5(a) we show the evolution of the magnetic field components at selected
points for the NNT flow at a 15 % supercritical value, η= ηcrit/1.15= 0.116 and Rm=

5.12. This value of Rm, as defined in (5.1), is approximately 2.5 times larger than for
the 15 % supercritical case of the Willis dynamo. In figure 5(b) we show the results
for Bx and By using xz averages. The x component of the mean field grows at the
same rate as the actual field, but the z component decays.

For the TTT flow, we show the results for the marginally excited case with η =
0.083 in figure 6. For the TTT flow, we show in figure 6 the results for the marginally
excited case with η= 0.083. Here, the r.m.s. velocity is smaller than for the NNT flow,
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(a) (b)

FIGURE 6. Similar to figure 5, but for the marginally excited TTT dynamo, using xy
planar averages.

FIGURE 7. Column averages of the magnetic fields for the Willis, NTT and TTT dynamos.
Similarly to figure 4 for the mean velocity, the mean magnetic field in the plane is
indicated by vectors together with the normal component colour coded. The normal
component is normalized by the r.m.s. value of this mean field based on all three
components.

so the magnetic Reynolds number is actually slightly less (4.05 instead of 4.47 for the
NNT case). Furthermore, Bx and By now decay, both at different rates.

For the 15 % supercritical TTT flow, on the other hand, the actual magnetic field is
growing, but the xy average remains small. This does not necessarily imply that there
is no mean field. Indeed, a finite mean field is, in this case, obtained by taking column
averages just over the z direction. This is shown in figure 7, where we compare
the resulting column averages of the magnetic fields for the Willis, NTT and TTT
dynamos. We see that, even though we found a clear mean field for the Willis flow
through planar averaging, we also find a clear mean field from just averaging over the
z direction. Indeed, by computing the ratio of the r.m.s. values of the column averaged
mean field and the total field, q=Brms/Brms, we now find the value 0.81 for the Willis
dynamo, 0.08 for the NNT dynamo and 0.45 for the TTT dynamo. The latter value
was already indicated in table 1 with an asterisk. The fact that the value for the NNT
flow is small suggests that the flow does not have an important column average and
that the appropriate average is here indeed the xy average.

It is important to emphasize that the Willis dynamo is completely isotropic with
respect to the x, y and z directions. Therefore, all three planar averages give equally
strong mean fields in this linear dynamo problem. In figure 2, we plotted Bx(z∗), but
this cannot be the same mean field seen for the Willis dynamo in figure 7, which is
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14 A. Brandenburg and L. Chen

FIGURE 8. Dependence of the real and imaginary parts of η̃ij on ω for the Willis flow
in the marginally exited case with η= 0.403 and for k= 1. The off-diagonal components
vanish, Re η̃xx (blue) is always positive, Im η̃xx (black) is always negative and η̃yy (red)
changes sign from negative to positive values as ω increases. The dotted lines give
approximate fits: η̃xx ≈ 0.295/(1+ 2iω) and η̃yy ≈ 0.13[−1+ (4ω)2]/[1+ (3ω)2 + (1.6ω)4].

instead a field By(x) that is obtained through yz averaging. The third component, Bz(y),
is also excited and can be seen through xz averaging. It is only in the nonlinear
case that one of the three planar averages will survive, as has been demonstrated in
connection with helical isotropic turbulence; see figure 6 of Brandenburg (2001). The
other two planar averages begin to decay in the nonlinear regime.

Based on the analysis of the time series of the components of the magnetic field, we
find mean-field dynamo action for the NNT and TTT cases. However, we still cannot
say much more about the nature of the dynamo action. To make further progress,
we now use the TFM to determine the underlying mean-field transport coefficients.
Their knowledge would allow us to model the generation of mean magnetic fields and
thereby to characterize the nature of the dynamo process. This is discussed in the next
section.

6. Test-field results for the different dynamos
6.1. Results for the Willis flow

We begin by showing in figure 8 the dependence of η̃ij on ω for k = 1. We recall
that k= 1 corresponds to the lowest wavenumber within our domain of size 2π. We
see that η̃xx and η̃yy have non-vanishing real parts at ω = 0. Furthermore, Re η̃xx is
always positive and approaches zero monotonically. By contrast, Re η̃yy is negative,
but grows and crosses zero at ω= 0.3, reaches a maximum at ω= 0.7 and then falls
off toward zero.

For ω 6= 0, η̃xx becomes complex while η̃yy remains real. The η̃xx component
determines the evolution of Ax and correspondingly By, which is decaying even in the
marginally excited case; see figure 2. The time dependence of B leads a memory effect
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FIGURE 9. Dependence of η̃xx (red) and η̃yy (blue) on k for the Willis flow in the
marginally exited case with η = 0.403 and for ω = 0. The dashed line denotes the fit
−0.233+ 0.11k2 and will be discussed in § 7.2.

FIGURE 10. Dependence of η̃xx(z) (blue) and η̃yy(z) (red) on z for the Willis flow in the
marginally exited case with η= 0.4031, k= 1 and ω= 0.

in the evolution of Ax, i.e. to a frequency-dependent time delay in the electromotive
force (Hubbard & Brandenburg 2009). By contrast, η̃yy is real for time-independent
mean magnetic fields, but it is negative for ω→ 0 and k→ 0; see figure 9. However,
η̃yy is not sufficiently negative to overcome diffusive decay, because η + η̃yy is still
positive. This is surprising, but we have to realize that η̃yy depends also on z; see
figure 10.

In figure 11 we plot the local minima, maxima and averages of η̃xx and η̃yy versus η.
Those z averages are denoted by an overbar. We see that the onset of dynamo action
(η = ηcrit ≈ 0.403) coincides with the point where η + η̃min

yy = 0. Interestingly, it is
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16 A. Brandenburg and L. Chen

FIGURE 11. Dependence of η̃xx (blue) and η̃yy (red) on η for the Willis flow using k= 1
and ω = 0. The values of the minima and maxima of η̃xx and η̃yy are shown as dotted
lines. Their z averages are denoted by an overbar and are also plotted for comparison.
The value of −η is overplotted as a solid line to show that η+ η̃min

yy = 0 when η≈ 0.403.

apparently not the spatial average of η̃yy(z) which must become negative for instability,
but the minimum of η̃yy(z).

6.2. Results for the NNT and TTT flows
For the NNT flow, the resulting profiles for the components of the turbulent magnetic
diffusivity are shown in figure 12. We see that both η̃xx and η̃yy become negative, but
not quite as much as to make the sum of η + η̃ij negative. Nevertheless, it is still
likely that this mean-field dynamo is due to the negative turbulent magnetic diffusivity,
because the full system is more complicated due to the presence of pumping effects
and the non-locality in space, for example.

For the TTT case, mean-field dynamo action has only been obtained for column
averaged fields. Applying the TFM for xy averages, we find that the only non-
vanishing components of the eight transport coefficients are η̃xx and η̃yy. Both are
positive, so no mean-field dynamo action can be expected for xy planar averages.
As we have seen above, the appropriate average is the column average. This case is
more complicated and involves altogether 27 turbulent transport coefficients; see also
Warnecke et al. (2018) for a recent study in spherical coordinates, where longitudinal
averages were used. We will not consider this case here, but adopt instead xy and xz
averages, as was done by Andrievsky (2015) in the investigation of the Taylor–Green
flow, where mean fields were also only found through column averaging. They
confirmed the presence of negative turbulent magnetic diffusivity for this flow, which
was first found by Lanotte et al. (1999) and was not seen when using just planar
averages (Devlen et al. 2013).
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FIGURE 12. Dependence of η̃xx (blue) and η̃zz (red) on y for the NNT flow with η=0.133,
k= 1 and ω= 0.

(a) (b)

FIGURE 13. Dependence of η̃ij on (a) x (for yz averages) and on (b) y (for xz averages)
for the TTT flow with k= 1 and ω= 0 in a domain of size (2π)3 using η= 0.083.

In figures figure 13(a) and 13(b), we show the results for the TTT flow as functions
of x and y, respectively. Note that both η̃zz(x) and η̃zz(y) are negative over extended
ranges. The sum η+ η̃zz is still positive, but we have to remember that the mean-field
dynamo works in this case with z averages, so the yz and xz averages adopted here
are prone to additional cancellation. This suggests that the mean-field generation in
this case is indeed of the type of a negative turbulent diffusivity dynamo.

As we will show next, for the π3 domain, we always find a non-vanishing average,
but it may not be a mean-field dynamo, because the scales of averaging and of the
fluctuations are very similar. To get an idea about the resulting mean-field transport
coefficients, we now solve the test-field equations in a π3 domain using the standard
TFM for the NNT and TTT flows. However, given that the Reynolds rules do not
apply here, the TFM results cannot be fully reliable.

In figures 14 and 15 we show test-field results for the NNT and TTT cases in π3

domains using the appropriate lateral and vertical boundary conditions. For both flows,
we also have done calculations in domains where the extent in the y or z directions
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18 A. Brandenburg and L. Chen

FIGURE 14. Dependences of α̃ij and η̃ij on y for the NNT flow with k = 1 and ω = 0
in a π3 domain using η= 0.133. For the diagonal components, we show the sum η+ η̃ii.
The dotted lines denote the result using averaging over a (2π)2 plane.

FIGURE 15. Similar to figure 14, but for the TTT flow using η= 0.083.

for the NNT and TTT flows, respectively, is from 0 to 2π. The only difference to
the shorter domain is that all four components of α̃ij are antisymmetric around the
middle point of the [0, 2π] domain, while all four components of η̃ij are symmetric.
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Here we only show the results in the range 0 6 y 6 π for the NNT flow and in the
range 0 6 z 6π for the TTT flow.

We also compare with solutions over the full (2π)2 cross-section. The actual
solutions for the response to the test fields are then unchanged, but now the planar
averages extend over the full (2π)2 plane, so there can be complete cancellation for
certain variables – notably the two components of α̃ij for i= j, as well as for the two
components of η̃ij for i 6= j.

7. Comparison with mean-field dynamos
7.1. The absence of α effect

We now discuss in more detail the possibility of mean-field dynamo action based on
the present results. Given that the diagonal components of αij are finite, there is the
possibility of α2 dynamo action, except that the values of α appear too small in the
sense that the dynamo number, |〈α〉|/〈η+ ηt〉k1, is below the estimated critical value
of unity. Here, ηt is the average of the two diagonal components of the magnetic
diffusivity tensor. Furthermore, given that the off-diagonal components of η̃ij are finite,
there could be a Rädler effect, also known at Ω × J effect, because the off-diagonal
components of η̃ij contribute to a term in the mean electromotive force of the form
E = · · · + δ × J, where δ is often also aligned with the axis of rotation, Ω . For our
planar averages, its components are given by δi =−

1
2εijkηjk.

A well-known problem with this latter idea, however, is that the Rädler effect
alone cannot explain an increase of the magnetic energy of the mean field. It can
only work in conjunction with other effects such as shear. In the presence of an α
effect, it can also make the solutions oscillatory and cause migratory dynamo waves,
which becomes more pronounced in a periodic domain, as can be seen by solving
the corresponding eigenvalue problem.

In the present case, we need to address the questions whether, first, the α effect is
strong enough to produce α2 or α–shear (αΩ) dynamo action, depending on whether
or not the mean flow plays a role, and second, whether the Rädler effect plays a role,
possibly in conjunction with effects other than the mean flow, for example the α effect.
The first point, in fact, was already discussed by Andrievsky (2015). Assuming the
total magnetic field can be written as a series expansion

B=
∞∑

n=0

bnε
n, (7.1)

where ε is a small scaling factor that relates the slow-changing spatial variables to
the fast-changing ones. The α effect can be written as an eigenvalue problem for the
leading term b0

∇× αb0 =Λ0b0, (7.2)

where Λ0 is the eigenvalue, α is a tensor, 〈U× Si〉 is the ith column of α, U is the
flow field, Si is the solution of

ISi =−
∂U
∂xi
, (7.3)

and I is the induction operator,

Ib0 =∇× (U× b0)+ η∇
2b0. (7.4)
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20 A. Brandenburg and L. Chen

If the flow is parity invariant,

U(−x)=−U(x), (7.5)

then Si must be anti-invariant, so the operator of the α effect is α = 0. From (3.6)
and (3.9), we see that the three optimal flows are all parity invariant in the full (2π)3

domain, hence no α effect is expected at the leading order.

7.2. The negative turbulent magnetic diffusivity dynamo
To model a negative turbulent magnetic diffusivity dynamo, we must take care of the
fact that the high wavenumbers are not being destabilized at the same time. As we
have seen from figure 9, ηt is negative only for k . 1.5. A simple way of taking the
k dependence of the turbulent magnetic diffusivity into account is to expand η̃yy(k) up
to the next order in the diffusive effects (which are even in k), i.e.

η̃yy(k)= η̃(0)yy + η̃
(2)
yy k2
+ · · ·. (7.6)

Looking at figure 9 for the Willis flow, we see that in the proximity of k= 1, which
corresponds to the largest scale in the computational domain of 2π, the k-dependence
of η̃yy(k) can well be described by the parameters η̃(0)yy ≈−0.233 and η̃(2)yy ≈ 0.11. In
addition, there is still the microphysical magnetic diffusivity, which is positive (η =
0.403). The mean-field equations for the magnetic field components decouple. For the
purpose of this problem, we just need to consider the equation for Ay, which can then
be written as

∂Ay

∂t
= [η+ η̃(0)yy ]

∂2Ay

∂z2
− η̃(2)yy

∂4Ay

∂z4
. (7.7)

Note that the minus sign in front of the fourth derivative corresponds to positive
diffusion if η̃(2)yy is positive, and so does the plus sign in front of the second derivative,
unless the term in squared brackets is negative, which is the case we are considering
here.

We have seen from figure 10 that η+ η̃yy just barely approaches zero and does not
become negative. This is unexpected. To understand the problem, we now solve (7.7)
numerically with an assumed amplitude for the variation of η̃(0)yy of the form

η̃(0)yy = η
(0)
yy (1+ ε cos 2z), (7.8)

where ε quantifies the amplitude of the spatial variation around the average value,
which is η(0)yy . It turns out that, with the parameters given in figure 9, and η=0.403 for
the microphysical magnetic diffusivity, marginally excited solutions are only possible
when ε > 1.99. On the other hand, when trying to fit the functional form of η̃(0)yy in
figure 10, it turns out that it is possible with ε=1.99, but only if η(0)yy =−0.133 instead
of −0.233, as expected from the fit to the k dependence.

It is not entirely clear how to interpret these findings. We do not know enough
about such dynamos whose parameters depend both on z and k at the same time.
Nevertheless, it seems that the overall idea of a negative turbulent magnetic diffusivity
dynamo is the right one, but that the correct description is more complicated than what
is suggested by (7.7). Effects such as pumping and additional non-localities have been
ignored.
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Flow Aver Aδ = 0 1 2 5 10

NNT xz Aα = 5.00 4.87 4.77 4.58 4.63
Im λ= 0.12 0.13 0.14 0.17 0.23

TTT xy Aα = 7.06 7.18 7.55 9.23 11.68
Im λ= 0.08 0.09 0.07 0.09 0.17

TABLE 2. Critical values of Aα and the corresponding frequencies Im λ for different values
of Aδ for the NNT and TTT dynamos. The type of averaging employed for obtaining the
mean-field coefficients is listed under ‘aver’ (xy or xz). All solutions are standing waves.

7.3. Mean-field excitation conditions for the NNT and TTT cases
To address the possibility of dynamo action from the α and Rädler effects, we use the
profiles of α̃ij(z) and η̃ij(z), as obtained from the TFM. To get an idea of how close
to the dynamo onset we are, we scale the dynamo active coefficients by an amplitude
factor, i.e. α̃ij→ α̃ijAα for i= j, and η̃ij→ η̃ijAδ for i 6= j. We then choose a value of
Aδ and determine the critical values of Aα above which there is dynamo action, i.e. a
growing solution. All solutions are oscillatory and correspond to standing waves. The
result is shown in table 2.

We see that for the NNT flow, Aα decreases with increasing values of Aδ6 5, so the
dynamo becomes slightly easier to excite. For Aδ = 10, however, Aα increases again.
The oscillation frequency increases slightly as Aδ increases. For the TTT model, on
the other hand, Aα always increases with Aδ, i.e. the δ effect does not contribute to
dynamo dynamo action, but suppresses it. In both cases, the values of Aα are small
unless the scaling factor Aδ is at least O(10).

8. Discussion and conclusions
There is only a small number of successful experimental dynamos to date (Gailitis

et al. 2000; Stieglitz & Müller 2001; Monchaux et al. 2007). Several other dynamo
experiments are currently in operation; see the review by Adams et al. (2015), who
also discuss the newer Madison dynamo experiment and the Derviche–Tourneur
sodium experiment. They all work with liquid sodium, and they all involve flows
with significant swirl – in anticipation that those types of dynamos would be most
suitable for driving dynamo action most easily. Different classes of optimal dynamos
display flows largely reminiscent of those with an α effect, so it was natural to ask
whether such an effect played a role in generating the magnetic field in those cases.
It now turns out that this does not have to be the case. Instead, the optimal dynamo
of Willis (2012) is driven by a negative turbulent magnetic diffusivity. This was rather
unexpected, because such dynamos are not very common and have not been studied
much (Zheligovsky, Podvigina & Frisch 2001; Zheligovsky 2012; Devlen et al. 2013).

The concept of negative turbulent magnetic diffusivity is somewhat mysterious
and may have seemed to be more like a qualitative excuse for lack of a more
definitive term than a quantitative and rigorous statement. In fact, we are not
aware of a quantitative mean-field model employing negative magnetic diffusivity
until now. This would need to be done with sufficient care to prevent small-scale
instabilities. Here we have presented such a model that is stabilized by the inclusion
of hyperdiffusivity. In the parameter regime of interest, it turned out that the sign
of the coefficient of hyperdiffusivity is indeed such that it has a stabilizing effect.
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Among the systems with negative diffusivity and a stabilizing hyperdiffusivity is
the Kuramoto–Sivashinsky equation, which has been employed as a model of forest
fires (Hyman & Nicolaensko 1986). In that case, however, there is also an advection
term, making the system nonlinear, and also the system size was large compared
to the typical size of structures. This led to a rich spatio-temporal evolution. It is
therefore of interest to ask whether such dynamics could possibly also be realized in
an experimental or at least a numerical dynamo set-up.

Similarly to the Willis dynamo, the NNT dynamo also exhibits negative turbulent
magnetic diffusivity. However, unlike the Willis dynamo, it is not isotropic and exists
only for one of the three possible planar averages. Finally, the TTT dynamo shows no
mean field after planar averaging. Nevertheless, a mean field exists also in this case,
but it requires column averaging over only one coordinate direction. It is similar to
the Taylor–Green flow, for which Lanotte et al. (1999) also found negative turbulent
magnetic diffusivity, and the corresponding mean field can only be found through
column averaging (Andrievsky 2015). Note that both NNT and TTT flows can be
transformed into to a general Taylor–Green flow by a shift of π/2 in each direction.
The spatial averaging then depends on the specific combination of field coefficients.

To assess the possibility of α or δ effect dynamos action in π3 subdomains, we
have compared with the corresponding mean-field dynamos. It turned out that both
are strongly subcritical and would only become marginally excited when either the
α effect or the δ effect are scaled up by factors between five and ten. These factors
seem rather large, making a mean-field interpretation based on the α and δ effects in
these cases unlikely. Thus, it now seems that the class of dynamos based on negative
turbulent magnetic diffusivity is broader than previously anticipated and may include
the class of optimal dynamos as well.
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