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The East Kunlun Orogenic Belt (EKOB), which is in the northern part of the Greater Tibetan Plateau,
contains voluminous Late Triassic intermediate-felsic volcanic rocks. In the east end of the EKOB, we
identified highly differentiated peralkaline-like Xiangride rhyolites (~209 Ma) that differ from the wide-
spread andesitic-rhyolitic Elashan volcanics (~232–225 Ma) in terms of their field occurrences and min-
eral assemblages. The older, more common calc-alkaline felsic Elashan volcanics may have originated
from partial melting of the underthrust Paleo-Tethys oceanic crust under amphibolite facies conditions
associated with continental collision. The felsic Elashan volcanics and syn-collisional granitoids of the
EKOB are different products of the same magmatic event related to continental collision. The Xiangride
rhyolites are characterized by elevated abundances of high field strength elements, especially the very
high Nb and Ta contents, the very low Ba, Sr, Eu, P, and Ti contents; and the variably high 87Sr/86Sr ratios
(up to 0.96), exhibiting remarkable similarities to the characteristic peralkaline rhyolites. The primitive
magmas parental to the Xiangride rhyolites were most likely alkali basaltic magmas that underwent pro-
tracted fractional crystallization with continental crust contamination. The rock associations from the
early granitoids and calc-alkaline volcanic rocks to the late alkaline basaltic dikes and peralkaline-like
rhyolites in the Triassic provide important information about the tectonic evolution of the EKOB from
syn-collisional to post-collisional. We infer that the transition from collisional compression to post-
collisional extension occurred at about 220 Ma.

� 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The East Kunlun Orogenic belt (EKOB), located in the northern
part of the Greater Tibetan Plateau, is a giant tectono-magmatic
belt that is comparable to the Gangdese belt to the south
(Fig. 1a) (Mo et al., 2007). With the Altyn fault to the west and
the Wenquan fault to the east, the EKOB stretches for about
1500 km and exhibits N–S extension for 50–200 km. The Paleopro-
terozoic Jinshuikou Group (~2.39 Ga; high-amphibolite and gran-
ulite facies metamorphic rock series; Gong et al., 2012; Li et al.,
2021) and the Mesoproterozoic Kuhai Complex are considered to
be the basement rocks of the EKOB (Liu et al., 2016). As a com-
pound orogeny, the EKOB preserves the overprinted geological
records of the Early Paleozoic Caledonian cycles and the Late Pale-
ozoic to Early Mesozoic Variscan-Indosinian cycle. Significantly,
the petrotectonic assemblages of the East Kunlun Caledonian cycle
are comparable to those in the North Qilian orogenic belt, and the
integral Variscan-Indosinian cycle resembles the Paleo-Tethys evo-
lutionary history in the Sanjiang area, southwestern China (Liu
et al., 2013; Huang et al., 2015, 2016; Wang et al., 2018; 2019;;
Li et al., 2020; Xu et al., 2020b).

The abundant Late Paleozoic to Early Mesozoic igneous rocks
provided a good record of the long-term tectonic evolution and
orogenesis of the EKOB (Chen et al., 2019b; Dong et al., 2018; Li
et al., 2012; Xu et al., 2007). Significant volumes of Permian-
Triassic granitoid plutons and volcanic rocks outcrop throughout
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Fig. 1. (a) Tectonic framework of the Greater Tibetan Plateau (after Mo et al., 2008; Niu et al., 2013). The numbers in the yellow ellipse represent ages of magmatic rocks in
these orogenic belts. (b) Topographic image showing the sub-tectonic units of the East Kunlun Orogenic belt (EKOB) (after Shao et al., 2017). (c) Simplified geological map of
the eastern part of the EKOB (modified from 1:1,000,000, Geological Map by the Chinese Geological Survey). The boxes with stars indicate sample locations in this study with
sample details given in Supplementary data Table S1.
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the EKOB (Fig. 1c). The intrusive rocks are dominated by granites
and granodiorites containing abundant mafic magmatic enclaves
(Huang et al., 2014; Xia et al., 2014, 2015; Shao et al., 2017). The
Late Triassic volcanic rocks belong to the Elashan Formation and
the Babaoshan Formation (Xiong et al., 2014; Li et al., 2015a; Hu
et al., 2016; Ren et al., 2016; Xu et al., 2020a). The EKOB formed
2

in the Paleo-Tethys related Wilson cycle during the Late Paleozoic
to Early Mesozoic and records the history of the Anyemaqen Ocean,
which was a branch of the Paleo-Tethys Ocean (Jiang et al., 1992;
Yang et al., 1996). The timing of the seafloor subduction (Yang
et al., 1996, 2009; Liu et al., 2011; Dong et al., 2018), ocean closing
(Yan et al., 2008; Li et al., 2012), and continental collision (Chen
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et al., 2019a,b; Guo et al., 1998; Liu et al., 2015) remain controver-
sial. For example, Yang et al (2009) inferred that the Anyemaqen
Ocean opened in the Late Carboniferous (308 ± 4.9 Ma) based on
the Dur’ngio ophiolite; while Liu et al. (2011) argued for an Early
Carboniferous opening (332.8 ± 3.1 Ma). Luo et al (2014) concluded
that the transition from subduction to collision took place in the
Late Triassic, while others concluded the onset of collision occurred
in the Middle Triassic (Xia et al., 2014) or even the Early Triassic
(Yang et al., 2009). The tectonic evolution of the EKOB is important
to gaining a better understanding of the amalgamation of the
Greater Tibetan Plateau.

Ding et al. (2011) identified a suite of high Nb-Ta rhyolites
whose characteristics differ from the widespread Elashan rhyolites,
but have been mistaken for the Triassic Elashan Formation (Bureau
of geological exploration and development of Qinghai Province,
1991). Compared with the Elashan rhyolites, the high Nb-Ta rhyo-
lites have high SiO2 and K2O contents, high peralkaline index val-
ues (i.e., P.I. = molar [Na2O + K2O]/Al2O3), low Al2O3 and CaO
contents, and are enriched in high field strength elements (HFSEs)
(e.g., Nb, Ta, and Zr), resembling the typical peralkaline rhyolites in
eastern Australia (Glass House Mountains; Shao et al., 2015) and
northeastern China (Changbaishan, unpublished data). Two con-
trasting models have been proposed for the origin of these peralka-
line rhyolites: (i) the production of low-volume end products as a
result of protracted fractional crystallization from transitional to
alkali basaltic magmas (Kar et al., 1998; Peccerillo et al., 2003,
2007; Mbassa et al., 2012; White et al., 2012; Hutchison et al.,
2016; Chandler and Spandler, 2020); and (ii) partial melting of
continental crust or a mafic intrusive body (Lowenstern and
Mahood, 1991; Black et al., 1997; Bohrson and Reid, 1997; Renna
et al., 2013). The compositional and age differences between the
older calc-alkaline Elashan rhyolites (~232–225 Ma) and the
younger peralkaline-like high Nb-Ta rhyolites (~209 Ma) indicate
that they are the products of different magmatic events. Through
the comparative analysis of new high-quality data, we investigated
the petrogenesis of the Elashan rhyolites and the peralkaline-like
rhyolites. These two compositionally distinctive suites of rhyolites
with an age difference of ~15 Myr are ideal for discussing the tec-
tonic evolution of the EKOB.

In this paper, we use U-Pb zircon ages, bulk-rock major and
trace element compositions, and Sr-Nd-Pb-Hf isotope data to dis-
cuss the petrogenesis of these two suites of Late Triassic rhyolites
and their associated andesites and dacites in the context of the tec-
tonic evolution of the EKOB.
2. Geology and samples

The Late Triassic Elashan Formation is dominated by pyroclastic
rocks, with intercalated lavas and unstable sedimentary clastic
rock layers (Ding et al., 2011). The volcanism recorded in the Ela-
shan Formation was produced by a central continental eruption
with a large eruption intensity and extensive distribution (Lu
et al., 2012; Li and Liu, 2014; Li et al., 2015a; Ma et al., 2016).
The volcanic rocks of the Elashan Formation (235–212 Ma), which
vary upwards from intermediate-mafic to intermediate-felsic, are
widely distributed in the EKOB (Ni, 2010; Qi, 2015). Remarkably,
the high Nb-Ta rhyolites only outcrop near the Xiangride town,
with no contemporary mafic and intermediate volcanic rocks.

We collected 21 representative samples (Supplementary data
Table S1) from the eastern end of the EKOB, including rhyolites,
dacites, andesites, and basalts from the Elashan Formation in the
Elashan area (i.e., Elashan volcanic rocks in the figures) and
peralkaline-like high Nb-Ta rhyolites near Xiangride town
(Xiangride rhyolites). The Xiangride rhyolites display complete vol-
canic necks, columnar joints of varying diameters (~20–50 cm),
3

and flow structures that can be seen on the hand specimen scale
(Fig. 2a–c). The fresh rocks are reddish-brown and have a por-
phyritic texture and massive or fluidal structures. The phenocrysts
are mainly quartz, orthoclase, and minor plagioclase. The aphanitic
matrix exhibits a fluidal structure and vesicles filled with acicular
silicates, subhedral quartz, and feldspar. The Elashan volcanic rocks
are mainly purplish-red and greyish-green rhyolitic ignimbrite and
minor dacite and andesite. The pyroclasts are both crystal clasts
(plagioclases and quarts, 1–2 mm) and vitroclasts (2–3 mm) in
the aphanitic matrix. Secondary minerals such as chlorite, epidote
and sericite occur in the altered samples.
3. Analytical methods

We cut all of the specimens into ~1 cm thick slab to remove the
effects of weathering and markers and then broke them into 1–
2 cm fragments using a percussion mill. Then, the fragments were
crushed into smaller pieces using a crusher. In order to analyze the
whole rock matrix, which approximates the melt compositions, we
pick out only clean chips of matrix of varying size (60–80 mesh)
under the binocular microscope. Before the analyses, the selected
chips were ultrasonically cleaned in Milli-Q water and were dried
in a clean environment.

3.1. U-Pb zircon dating and bulk-rock major and trace element
analyses

We observed the morphology and internal structures of the zir-
cons using reflected-light and cathodoluminescence (CL) images.
The CL images were captured using the field emission scanning
electron microscope (TESCAN-MIRA3) at the Nanjing Hongchuang
Exploration Technology Service Co., Ltd. The U-Pb zircon dating
and trace element analyses were conducted simultaneously using
the 193 nm ArF excimer laser (Photon-Machines) and inductively
coupled plasma mass spectrometer (ICP-MS) (Agilent-7900) sys-
tem at the Institute of Oceanology, Chinese Academy of Science
(IOCAS), following the methods reported by Xiao et al. (2020).
The off-line data processing and age calculations were conducted
using the ICPMS-DataCal (Liu et al., 2010) and Isoplot/Ex-ver 4.15
(Ludwig, 2012) softwares. The bulk-rock major element (Agilent-
5100 ICP-OES) and trace element (Agilent-7900 ICP-MS) analyses
were conducted at the IOCAS, following the methods reported by
Kong et al. (2019b) and Chen et al. (2017), respectively. United
States geological Survey (USGS) rock standards AGV-2, STM-2,
and RGM-2 were analyzed along with the unknown samples to
monitor the analytical accuracy (±5%) and precision (<2%; Supple-
mentary data Table S2) of the major element analysis. USGS stan-
dards AGV-2, GSP-2, RGM-2, BCR-2, and BHVO-2 were used to
monitor the analytical accuracy and precision of the trace element
analysis (better than 5% for most elements; Supplementary data
Table S3).

3.2. Bulk-rock Sr-Nd-Pb-Hf isotopes

the bulk-rock Sr-Nd-Pb-Hf isotope analysis was conducted at
the IOCAS. First, the Sr and Pb were separated using Sr-Spec resin.
Then, AG 50 W-X8 resin was used to separate the rare earth ele-
ments (REEs) and high field strength elements (HFSEs). The Nd
and Hf were separated using specific Ln-(Nd) and Ln-(Hf) resins,
respectively. The details of the sample digestion and Sr-Nd-Pb-Hf
separation procedure have been reported by Sun et al. (2018).
The isotopic ratios were determined using a Nu Plasma II MC-
ICP-MS and were corrected for instrumental mass fractionation
using 86Sr/88Sr = 0.1194, 146Nd/144Nd = 0.7219, 203Tl/205Tl = 0.4189,
and 179Hf/177Hf = 0.7325. Repeated analysis of Sr standard NBS-



Fig. 2. (a–c) Field occurrence of the rhyolites outcrop near Xiangride Town in the EKOB, exhibiting spectacular columnar joints, intact volcanic neck and typical rhyolitic
structure. (d–f) Representative photomicrographs under crossed polarized light, showing orthoclase phenocryst with Carlsbad twin, plagioclase phenocryst and vesicles in
the aphanitic matrix with or without flow banding.
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987, Nd standard JNdi-1, and Hf standard Alfa-Hf gave 87Sr/86Sr = 0.
710246 ± 0.000005 (2r, n = 22), 143Nd/144Nd = 0.512102 ± 0.000
006 (2r, n = 11), and 176Hf/177Hf = 0.282191 ± 0.000003 (2r,
n = 15), respectively. The mean values for USGS standards AGV-2,
GSP-2, and RGM-2 were 87Sr/86Sr = 0.704136 ± 0.000005, 0.7655
34 ± 0.000004, and 0.704726 ± 0.000004 (2r, n = 3), respectively.
Repeated analysis of Pb standard NBS-981 yielded 208Pb/204Pb = 36.
676 ± 0.001, 207Pb/204Pb = 15.489 ± 0.001, and 206Pb/204Pb = 16.9
31 ± 0.001 (2r, n = 12). The Sr-Nd-Pb-Hf isotopic results of USGS
standards AGV-2, GSP-2, and RGM-2 are consistent with the rec-
ommended values (Supplementary data Table S4).

4. Results

4.1. U-Pb zircon dating

Most of the zircon grains are colorless and transparent with
euhedral to subhedral prismatic or pyramidal shapes. They vary
4

in size (100–300 lm in length, with aspect ratios of 2:1 to 4:1)
and exhibit oscillatory and fan-shaped zoning (Fig. 3). The higher
the crystallization temperature, the wider the oscillation band
because of the faster elemental diffusion (Watson and
Harrison, 1983; Pidgeon et al., 1998; Rubatto and Gebauer,
2000). The fan-shaped zoning was caused by the change in the
crystallization environment, which resulted in the inconsistent
growth rates of the different crystal planes (Vavra et al., 1996).
Some of the zircons exhibit different rim and core morphologies,
suggesting that the cores may have been inherited or captured
(Wu and Zheng, 2004).

We dated zircons from two peralkaline-like Xiangride rhyolites
and from an andesite and a rhyolitic ignimbrite from the Elashan
volcanic rocks (Fig. 3 and Supplementary data Table S5). The Xian-
gride rhyolites yielded concordia ages of 208.4 ± 1.6 Ma (QH16-19)
and 209.1 ± 0.7 Ma (QH16-31), which are identical within error.
The ages of the andesite (QH16-38, 224.6 ± 0.6 Ma) and the rhy-
olitic ignimbrite (QH16-46, 231.9 ± 1.6 Ma) indicate the magmatic



Fig. 3. U-Pb zircon concordia diagrams and cathodoluminescence images of representative zircons for the four dated samples. Yellow circles are the analyzed spots. The U-Pb
zircon ages indicate that Xiangride rhyolites are ~15–20 Myr younger than the widespread Elashan rhyolites.
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activity of the Elashan Formation started in at least the Middle
Triassic.

4.2. Major and trace elements

The Xiangride rhyolites are highly differentiated rhyolites
(SiO2 = 75.10–78.75 wt.%); while the calc-alkaline Elashan volcanic
rocks define a compositional spectrum from mafic to felsic (Fig. 4a
and Supplementary data Table S6). A series of genetically related
rocks from basalts to peralkaline rhyolites in the Glass House
Mountains (GHM; Shao et al., 2015) are also plotted for compari-
son. The peralkaline index of the Xiangride rhyolites (P.I. = 0.81–
0.96) is similar to that of alkaline A-type granites and peralkaline
rhyolites, while the Elashan rhyolites are strongly peraluminous
(P.I. < 0.80), similar to the abundant syn-collisional granites in
the EKOB (Fig. 4b) (e.g., Huang et al., 2014; Xia et al., 2014, 2015;
Shao et al., 2017). The liquid line of descent (LLD) of the Elashan
volcanic rocks (blue solid line) differs significantly from that of
the GHM rock series (blue dotted line in Figs. 4, 5); and the total
alkali contents of the Elashan volcanic rocks are much lower (and
MgO and CaO are significantly higher) than those of the Xiangride
and GHM rhyolites at a given silica content.

All of the samples are light rare earth element (LREE) enriched
(Fig. 6a). The Xiangride rhyolites have higher rare earth element
(REE) content, which are comparable with those of the peralkaline
rhyolites from the GHM, Changbaishan (Chen, 2013), and Big Bend
National Park (USA; Parker et al., 2012) (Fig. 6b). The Elashan rhy-
olites exhibit REE patterns similar to that of the bulk continental
crust (BCC) but have larger negative Eu anomalies. Compared to
5

the Elashan volcanic rocks, the Xiangride rhyolites have extremely
low abundances of Ba, Sr, Eu, P, and Ti contents (Fig. 7 and Supple-
mentary data Table S6). The remarkable negative Ba, Sr, and Eu
anomalies (Eu/Eu* = [2�Eu/(Sm + Gd)]N = 0.01–0.02), low CaO
and Al2O3, and weak peralkalinity of the Xiangride rhyolites indi-
cate significant feldspar (Ca-rich plagioclase and lesser alkaline
feldspar) crystallization (Niu and O’Hara, 2009). The P and Ti deple-
tions result from the crystallization of apatite and Ti-rich minerals
such as ilmenite and titanomagnetite.

Remarkably, the Xiangride rhyolites have significantly higher
Nb and Ta contents than the Elashan volcanic rocks and the upper
and bulk continental crust (Fig. 7b) (Rudnick and Gao, 2003) and
Nb* and Ta* values (i.e., Nb* = [Nb/Th]Sample/[Nb/Th]PM, Ta* = [Ta/
U]Sample/[Ta/U]PM; Niu and Batiza, 1997; Niu et al., 1999) (Fig. 8a)
resembling those of mantle derived magmas. The high Nb-Ta con-
tents and Nb/Ta ratios (Fig. 8b) of the Xiangride rhyolites are quite
different from those of the EKOB granitoids and felsic Elashan vol-
canic rocks. Fig. 8a shows that the Elashan rhyolites and the upper
continental crust are concentrated in the lower left corner because
of their strong Nb and Ta depletion, while the peralkaline rhyolites
plot close equal to unity due to their Nb and Ta enrichments. The
Xiangride rhyolites plot between the two, which is interpreted to
indicate that they are peralkaline rhyolites that have been affected
by crustal contamination.

4.3. Bulk-rock Sr-Nd-Pb-Hf isotopes

The Xiangride rhyolites have variably high 87Sr/86Sr ratios
(0.768896–0.957328). The samples with high 87Sr/86Sr ratios have



Fig. 4. (a) Total alkalis vs. silica diagram to show commotional variation and
evolution trend of the Triassic volcanic rocks in the EKOB in comparison with the
typical Oligocene alkaline-peralkaline rock association of Glass House Mountains,
Australia (GHM, after Shao et al., 2015). (b) Peralkalinity index (P.I. = molar [Na2-
O + K2O]/Al2O3) vs. SiO2. Peraluminous syn-collisional granitoids from the EKOB
(after Shao et al., 2017), alkaline diabasic dikes from the EKOB (after Hu et al., 2016),
and peralkaline trachytes and rhyolites from GHM were plotted for comparation.
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extremely low Sr contents (<20 ppm; Fig. 9 and Supplementary
data Table S7) and high Rb/Sr ratios. The Sr isotopic signature of
the Xiangride rhyolites is the straightforward consequence of Sr
depletion (also well as Ba and Eu depletion) due to significant pla-
gioclase (and alkali feldspar to some extent) removal during the
protracted fractional crystallization, resembling peralkaline rhyo-
lites (Shao et al., 2015). Thus, the radiogenic 87Sr is largely the
result of 87Rb decay after the volcanism occurred. The 87Sr/86Sr
ratios of the Elashan rocks (except for QH16-39) have restricted
values (0.711639–0.726506); while the basalt QH16-39 has a
mantle-derived isotopic signature (initial 87Sr/86Sr = 0.707841).

The Nd and Hf isotope data for the Xiangride rhyolites essen-
tially have similarly restricted values of eNd(t) (–3.76 to –2.64)
and eHf(t) (–1.01 to 1.10, t = 209 Ma; this study; Fig. 10c). The Nd
isotope data are consistent with those of Ding et al. (2011). The Ela-
shan volcanic rocks have enriched crustal Nd and Hf isotope values
(eNd(t) = –6.72 to –6.10, eHf(t) = –4.16 to –1.11, t = 220 Ma; this
study), except for QH16-39 (eNd(t) = –3.79, eHf(t) = 1.63). The Ela-
shan volcanic rocks have a larger range of initial 206Pb/204Pb
(17.88–18.46) and 208Pb/204Pb (35.77–38.36) values than the Xian-
gride rhyolites (206Pb/204Pb = 18.25–18.43; 208Pb/204Pb = 35.96–37.
78; Fig. 9d). The initial 207Pb/204Pb values (15.58–15.64) of the Ela-
6

shan volcanic rocks are lower than those of the Xiangride rhyolites
(15.64–15.68).
5. Discussion

The field observations and geochemical data presented above
demonstrate that there are two distinctive suits of Triassic rhyo-
lites in the EKOB. (i) The Xiangride rhyolites are ~15 Myr younger
than the Elashan volcanic rocks. (ii) The Xiangride rhyolites are
highly fractionated with high SiO2 contents and peralkaline index
values, and they are characterized by elevated abundances of most
incompatible elements, especially very high Nb (vs. Th) and Ta (vs.
U) contents. (iii) The Xiangride rhyolites have variably high 87Sr/86-
Sr ratios. These results provide convincing evidence that the Trias-
sic rhyolites near Xiangride town and in the Elashan area have
different origins.
5.1. Origin of the widespread Elashan volcanic rocks

The petrogenesis of the volcanic rocks of the Elashan Formation
is controversial. Xu et al. (2019), Xu et al. (2020a) and Tong et al.
(2004) concluded that the contemporaneous rhyolites outcropped
in the Qimantage area (215 Ma; U-Pb) and the Chachaxiangka area
(217 ± 5 Ma; K-Ar) were formed by lower crustal melting in active
continental margin and intracontinental orogenic environments,
respectively. Li et al. (2015b) argued that the Late Triassic volcanic
rocks in the EKOB originated from various depths as a result of
lithosphere delamination after continental collision although the
mechanism of this delamination is disputed (Sacks and Secor,
1990; Lee and Anderson, 2015). Hu et al. (2016) proposed that
the felsic volcanic rocks in the Reshui area (227.5 ± 1.5 Ma; U-
Pb) were generated by partial melting of juvenile crustal material
due to post-collisional extension and the related orogenic collapse.

The different LLDs and REE contents of the Elashan volcanic
rocks and the peralkaline Xiangride rhyolites (Figs. 5, 6) suggest
different petrogenetic mechanisms. The variable Ba, Sr, Eu, P, and
Ti depletion of the felsic Elashan volcanic rocks indicate that they
experienced different degrees of differentiation. Fractional crystal-
lization of the major ore-forming minerals including the pyroxene,
amphiboles and feldspar with DNb < 1 and DTa < 1 would increase
the Nb, Ta contents in the residual melts. With continuous mag-
matic differentiation, the Nb/Ta ratios of the felsic Elashan volcanic
rocks decreased, resulting in distinctive subchondritic Nb/Ta ratios
(5.8–10.4) that are even lower than that of the BCC (11.43; Rudnick
and Gao, 2003). Generally, amphibole have DNb/Ta > 1 and fractional
crystallization of amphibole from andesitic melts could lead
decrease of Nb/Ta ratios and increase of Nb-Ta contents in the
residual melts (Adam et al., 1993; Marks et al., 2004). Furthermore,
biotite also has DNb/Ta > 1 and fractional crystallization of biotite
from rhyolitic melts (DNb > 1 and DTa > 1; Mahood and Hildreth,
1983; Nash and Crecraft, 1985; Ewart and Griffin, 1994) could
decrease both the Nb/Ta ratios and the Nb-Ta contents. The combi-
nation of lower Nb* and Ta* values (Nb* < 0.1, Ta* � 0.1) and Nb/Ta
ratios of the felsic Elashan volcanic rocks illustrates that they can-
not be the products of a mantle-derived basaltic magma (Fig. 8).
The Elashan volcanic rocks exhibit restricted initial 87Sr/86Sr ratios
(0.70996 –0.71188) and slightly negative eNd(t) and eHf(t) values.
The pre-existing old crustal material beneath the EKOB, which is
represented by the lower crustal metamorphic basement com-
posed of the Paleoproterozoic granitic gneiss of the Baishahe For-
mation (~2.1 Ga; Meng et al., 2005, 2013; Chen et al., 2007; Li
et al., 2015a), exhibits high 87Sr/86Sr ratios and extremely large
negative eNd(t) and eHf(t) values (Shao et al., 2015). Thus, this lower
crustal material cannot be the main source of the Elashan volcanic
rocks.



Fig. 5. SiO2 variation diagrams for major element oxides. The solid line is the liquid line of descent defined by the Elashan volcanic association, which differs from that of the
GHM volcanic rocks (the dashed curve).
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Fig. 6. (a) Chondrite-normalized (after Sun and McDonough, 1989) REE patterns for
the Triassic volcanic rocks in the EKOB. For composition, the compositions of the
GHM rhyolites are also showed. The REE contents of Elashan volcanic rocks are
much lower than Xiangride rhyolites that is similar to the GHM rhyolites. (b) REE
patterns of average peralkaline rhyolites (CBS, BBNP, GHM-C), peraluminous
rhyolites (GHM-R) and model bulk continental crust are plotted together with
Triassic volcanic rocks in the EKOB for comparison. The globally typical peralkaline
rhyolites are BBNP (Big Bend National Park comendites, n = 4; after Parker et al.,
2012), CBS (Chang Bai Shan comendites, n = 5; after Chen, 2013), and GHM-C (GHM
comendites, n = 16; after Shao et al., 2015). Also, GHM-R (GHM peraluminous
rhyolites, n = 2; after Shao et al., 2015) and BCC (bulk continental crust; Rudnick
and Gao, 2003) are plotted for comparison.
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However, it should be noted that the P.I. (Fig. 4b) and REE pat-
terns (Fig. 6a) of the felsic Elashan volcanic rocks are similar to
those of spatially adjacent Triassic syn-collisional granitoids in
the EKOB (Fig. 1c). These widespread granitoids intruded earlier
(250–220 Ma; Huang et al., 2014; Xia et al., 2014; Shao et al.,
2017) than the Elashan volcanic rocks erupted (232–217 Ma; Hu
et al., 2016; Xu et al., 2019, 2020a). The close temporal and spatial
associations of these felsic igneous rocks offer convincing evidence
that these rocks are genetically related. Fig. 9 shows that the initial
87Sr/86Sr ratios and eNd(t) values of the Elashan volcanic rocks are
identical to those of the syn-collisional granitoids and that their
the eHf(t) values also overlap. The Sr-Nd-Hf isotopes also imply that
the source of these volcanic rocks may be the same as that of the
syn-collisional granitoids. Thus, we conclude that the felsic Elashan
volcanic rocks and the syn-collisional granitoids are different prod-
ucts of the same magmatic event, which occurred in response to
continental collision. The felsic Elashan volcanic rocks are the same
as the widespread granitoids, but they are erupted melts with
more evolved compositions. Huang et al. (2014) and Shao et al.
(2017) demonstrated that the Triassic syn-collisional granitoids
in the EKOB originated by partial melting of the last fragments of
8

the underthrust Anyemaqen oceanic upper crust under amphibo-
lite facies conditions (see details in Mo et al., 2008; Niu et al.,
2013). We infer that the underthrust Paleo-Tethys oceanic crust
is also the most probable candidate for the source of the felsic Ela-
shan volcanic rocks. Based on the research conducted on the Linz-
izong volcanic succession (~65–45 Ma) in southern Tibet, Mo et al.
(2008) and Niu et al. (2013) proposed that the oceanic crust and
sediment/mature crustal material melted during and soon after
the collision under the amphibolite facies conditions.

We conducted simple Nd-Hf mass balance calculations to esti-
mate the relative contributions of the oceanic crust and mature
crustal material to the source of the felsic Elashan volcanic rocks.
We choose two end members: (i) the Paleo-Tethys MORB from
the Jinshajiang suture (Xu and Castillo, 2004) represents the ocea-
nic upper crust, (ii) and the Paleoproterozoic granitic gneiss from
the EKOB (Shao et al., 2017) represents the mature continental
crustal materials. Fig. 9c shows that melting of source rocks equiv-
alent to ~75%–80% Paleo-Tethys MORB and ~20%–25% mature con-
tinental crustal material can explain the petrogenesis of the felsic
Elashan volcanic rocks. Upon collision, the cold Anyemaqen ocea-
nic crust was underthrust and slowly attained thermal equilibrium
with the prior hot active continental margin, thus evolving along a
high T/P geothermal path. The warm and highly hydrated oceanic
crust (along with minor terrestrial sediments) melted when they
reached the hydrous basaltic solidus under amphibolite conditions,
producing andesitic parental melts of the Triassic syn-collisional
granitoids and the felsic Elashan volcanic rocks.

Fig. 8 shows that the Nb*-Ta* anomalies and the Nb/Ta ratio
(17.22) of basalt QH16-39 are close to those of mantle-derived
magmas. The isotopic data for basalt QH16-39 (lower initial 87-
Sr/86Sr, higher 206Pb/204Pb and 208Pb/204Pb, and eHf(t) > 1) are also
consistent with a mantle origin. We speculate that basalt QH16-
39 may have been formed by decompression melting of the
asthenospheric mantle due to post-collisional extension, and we
are currently looking for further geochronologic evidence.

5.2. Petrogenesis of the Xiangride rhyolites

5.2.1. Was the high Nb-Ta characteristic inherited from the mantle
source?

The Xiangride rhyolites have significantly higher Nb-Ta con-
tents and Nb/Ta ratios than the felsic Elashan volcanic rocks,
resembling GHM peralkaline rhyolites (Figs. 7, 8b). The mantle-
derived peralkaline rhyolites from the GHM area and elsewhere
(Kar et al., 1998; Peccerillo et al., 2003, 2007; Mbassa et al.,
2012; White et al., 2012; Hutchison et al., 2016; Chandler and
Spandler, 2020) characteristically have high Nb-Ta contents.
Bailey and Macdonald (1975, 1987) suggested that the halogens,
Na, Zr, Nb, Ta, and other elements abundant in peralkaline felsic
melts can be enriched by magmatic vapors ascending from the
mantle or deep crust. The element transfer mechanism from vaper
to melt is confusing, and analysis of melt inclusions in pantellerites
have revealed that they do not have detectable elements such as
Zr, Nb, Ta, and Y contents (Lowenstern and Mahood, 1991).
Agangi et al. (2010) demensteated that accessary minerals account
for the high concentrations of some lithophile elements (REEs, Y,
and HFSEs) in rhyolites due to the postponed accessory mineral
crystallization caused by mantle-derived F-rich fluids. F-rich fluids
could transport HFSEs to some extent in the form of complexes
(e.g., K2TiF6) or could change the melt structure in magmatic
hydrothermal fluid systems and subduction zones (e.g., Bailey,
1977; Keppler, 1993; Martin, 2006; He et al., 2015; Macdonald
et al., 2019). We infer that the high Nb and Ta contents of the Xian-
gride rhyolites were probably inherited from primary magmas
from a Nb-Ta enriched source or were achieved through magmatic
evolution. Ding et al. (2011) evaluated whether the fractional crys-



Fig. 7. (a) Primitive mantle (after Sun and McDonough, 1989) normalized multi-element diagrams to show that the Xiangride rhyolites have high content of most
incompatible elements (especially high Nb and Ta inherited from their parental alkali basalt), but strong Ba, Sr, Eu, P, and Ti depletion, resembling those of peralkaline
rhyolites from the GHM area. Average OIB, E-MORB, N-MORB, and bulk continental crust (BCC) are plotted for composition (after Sun and McDonough, 1989; Rudnick and
Gao, 2003). (b) The Elashan volcanic rocks exhibit obvious Nb and Ta negative anomalies, resembling the model bulk continental crust and upper continental crust (UCC)
compositions (after Rudnick and Gao, 2003). The Xiangride rhyolites (mean, n = 13) have stronger Ba, Sr, Eu, P and Ti depletion than Elashan rhyolites and continental crust.
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tallization of mineral assemblages (amphibole, plagioclase, alkali
feldspar, quartz, ilmenite, titanomagnetite, and apatite) could sig-
nificantly reduce or increase the Nb and Ta contents of magmas.
Simple fractional crystallization calculations for an andesitic
magma (SiO2 = 60 wt.%) revealed that the effect of the fractional
crystallization of certain mineral assemblages is weak. That is, it
is difficult to achieve the high Nb and Ta contents of the Xiangtide
rhyolites through magmatic differentiation. Thus, the high Nb-Ta
contents of the Xianagride rhyolites were most likely inherited
from a Nb-Ta enriched source.

Niu and Batiza (1997) demonstrated that DNb � DTh < DTa � DU

during mantle melting and much of basaltic magma evolution (e.g.,
olivine-clinopyroxene-plagioclase crystallization), indicating that
the Nb/Th and Ta/U ratios do not change during magmatic pro-
cesses. It follows that the varying Nb/Th and Ta/U ratios (or Nb*
and Ta*) of magmatic rocks must be inherited from their sources
or source histories. Because Nb and Ta are enriched (Nb vs. Th;
9

Ta vs. U) in strictly mantle-derived basaltic magmas (e.g., OIB, E-
MORB, and N-MORB) and are depleted in subduction and collision
zone magmas (Niu and O’Hara, 2003), the mantle-derived magmas
are concentrated in the upper right quadrant, with both Nb* >1 and
Ta* >1, while the collisional granitoids and arc rhyolites plot in the
lower left quadrant, with Nb* and Ta* < 1 (Fig. 8a) (Ewart et al.,
1998; Sui et al., 2013; Chen et al., 2014; Shao et al., 2017). The
Nb-Ta depletions of subduction zone magmas are widely believed
to result from rutile (rich in Ti, Nb, and Ta) retention in the sub-
ducting slab as it undergoes dehydration and induces mantle
wedge melting. Since of the water-bearing minerals, Nb and Ta
have higher affinity to amphibole, the Nb-Ta depletions in colli-
sional granites is probably produced by residual amphibole (and
minor ilmenite) because of high KdNb and KdTa of amphibole
(Foley et al., 2002) and high amphibole modal proportion of the
magmatic sources (~66.4%; i.e., mineral mode of amphibolite of
MORB protolith; Niu and O’Hara, 2009). As Nb and Ta are strongly



Fig. 8. (a) Nb*–Ta* anomaly diagram (after Niu et al., 1999). The distinctively high
Nb (vs. Th) and Ta (vs. U) of the Xiangride rhyolites are inherited from their parental
melts with high Nb and Ta. Crustal rocks, which have too low Nb and Ta, plot in the
lower left quadrant. (b) The Nb/Ta ratios of the Xiangride rhyolites and the basalt
QH16-39 from the Elashan area are comparable with mantle derived melts, while
the Nb/Ta ratios of the felsic Elashan volcanic rocks are even lower than that of the
upper continental crust. Data for average OIB, N-MORB, E-MORB (after Niu and
O’Hara, 2003), primitive mantle (PM, after Sun and McDonough, 1989), upper
continental crust (UCC, after Rudnick and Gao, 2003), Glass House Mountains (after
Shao et al., 2015), peraluminous rhyolites from the Northern Lhasa terrane (after
Sui et al., 2013; Chen et al., 2014), Tonga are lava (after Ewart et al., 1998), and
peraluminous granites from the EKOB (after Shao et al., 2017) are plotted for
comparation.
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depleted in crustal rocks, partial melting of crustal rocks or frac-
tional crystallization of crust-derived magmas are unlikely to pro-
duce melts with the Nb*-Ta* values similar to those of the
Xiangride rhyolites. Due to the high Nb* and Ta* inherited from
the parental alkali basaltic melts, typical peralkaline rhyolites
(GHM) plot close to Nb* = 1 and Ta* = 1 (Fig. 8a). The Xiangride rhy-
olites plot between typical peralkaline rhyolites and the BCC, with
Nb* and Ta* < 1. Thus, we infer that the parental melts of the Xian-
gride rhyolites were largely basaltic melts of mantle peridotite, but
continental crust contamination (see below) resulted in Nb* and
Ta* < 1 because of the negative Nb and Ta anomalies of crustal
rocks.
5.2.2. Evidence from Sr-Nd-Pb-Hf isotopes
The pre-existing old crustal rocks in the study area are the

granitic gneiss of the Paleoproterozoic basement (i.e., the Baishahe
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Formation), which have higher Sr isotope ratios and lower Nd and
Hf isotopes (granitic gneiss, ~2.1 Ga, initial 87Sr/86Sr = 0.749253,
eNd(t) = �17.22, eHf(t) = �15.91; Shao et al., 2017) than the Xian-
gride rhyolites. Thus, these ancient crustal rocks cannot be the
main source of the Xiangride rhyolites. Because of its strong U
and Th depletions, the lower crust has very low Pb isotope ratios
(206Pb/204Pb � 14.0, 207Pb/204Pb � 14.7; Rollinson, 1993; Rudnick
and Gao, 2003), we can exclude the possibility that the Xiangride
rhyolites originated from the lower crust based on their Pb isotope
ratios (206Pb/204Pb = 18.25–18.43; 208Pb/204Pb = 35.96–37.78). The
Rb-Sr isochron age of the Xiangride rhyolites (207.4 Ma; Fig. 9b) is
essentially the same as the U-Pb zircon ages reported in this paper
(208.4 ± 1.6 Ma and 209.1 ± 0.7 Ma; Fig. 3) and by reference Ding
et al. (2011) (213 Ma). The calculated initial 87Sr/86Sr (0.70510;
Fig. 9b) indicates that the primitive magma parental to these rhy-
olites may have been derived from mantle sources with low 87-
Sr/86Sr (Sun and McDonough, 1989). Remarkably, the Nd and Hf
isotopic data also suggest that there must have contribution from
continental crust contamination (Fig. 9c).

All of the above isotopic features, together with the Nb-Ta
enrichment, indicate that the origin of the Xiangride rhyolites is
similar to that of typical peralkaline rhyolites, i.e., protracted frac-
tional crystallization of alkali-rich basaltic melts plus the effects of
continental crust contamination (Shao et al., 2015; Hutchison et al.,
2016; Chandler and Spandler, 2020). The most likely contamina-
tion mechanisms are a combination of crustal assimilation and
magmatic fractional crystallization (AFC) between basaltic magma
and the crust (Depaolo, 1981; Reiners et al., 1995; Nishimura,
2012; Deniz and Kadioglu, 2016; Burton-Johnson, et al, 2019).
Without considering the initial temperature difference and energy
variation in the magma-country-rock system, we conducted sim-
ple quantitative calculations using the AFC model established by
Depaolo (1981) to estimate the relative contributions of the crust
and mantle to the petrogenesis of the Xiangride rhyolites in terms
of several representative trace elements (Fig. 10). (i) As the Xian-
gride rhyolites have significantly characteristics resembling the
typical peralkaline rhyolites that originated form protracted frac-
tional crystallization of OIB-like alkali-rich basaltic melts, we
choose OIB as the initial magma source in AFC modeling. The mod-
eled parental magma composition was typical oceanic island basalt
(OIB; Sun and McDonough, 1989) and the assimilate composition
was that of lower continental crust (LCC; Rudnick and Gao,
2003). (ii) The ratio of the rates of assimilation and crystallization
(r) was assumed to be 0.5 (Reiners et al., 1995). (iii) The simplified
mineral modes were 15% olivine, 10% clinopyroxene, 15% horn-
blende, 35% plagioclase, 15% alkali plagioclase, 5% quartz, 2%
titanomagnetite, 2% ilmenite, and 1% apatite; and the mineral par-
tition coefficients used were those of the Geochemical Earth Refer-
ence Model (http://earthref.org/KDD/). The calculations revealed
that a basaltic magma that undergoes 20%–30% crystallization
(i.e., F = 0.8–0.7) with 10%–15% crustal assimilation can produce
a magma with Nb, Ce, Nd, Hf, Gd, Ho, and Lu contents close to those
of the Xiangride rhyolites (Fig. 10). Therefore, we infer that the best
candidate for the source magma of the Xiangride rhyolites is
asthenospheric mantle derived alkali basaltic magma that under-
went protracted fractional crystallization in a crustal magma
chamber, which gave rise to the crustal assimilation signature.

5.3. Tectonic implications for the Qinling, Qilian and Kunlun orogenic
belts

The Anyemaqen Ocean probably closed in the Late Permian to
Early Triassic (Yang et al., 2009), and then, the continental collision
of the Qaidam terrane and Songpan-Garze terrane occurred, result-
ing in the generation of the widespread syn-collisional granitoids
and felsic volcanic rocks (Fig. 11a–b). As was discussed above,
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Fig. 9. (a) 87Sr/86Sr ratios of the Xiangride rhyolites increase with decreasing Sr. Highly fractionated rhyolites with high Rb/Sr have extremely high 87Sr/86Sr ratios because
almost all of the Sr are radiogenic 87Sr resulting from 87Rb decay. 87Sr/86Sr of the Elashan volcanic rocks are compatible with Triassic granitoids of the EKOB (after Shao et al.,
2017). Data of Late Triassic diabasic dikes from the EKOB (after Hu et al., 2016) were also plotted for comparation. (b) The Xiangride rhyolites define a Rb-Sr isochron age of
207.4 Ma, which is consistent with the U-Pb zircon age (208.4 Ma and 209.1 Ma), with the initial 87Sr/86Sr of 0.7051 lower than that of the Elashan volcanic rocks (0.71062).
(c) The eNd(t) vs. eHf(t) diagram. eNd(t) and eHf(t) of the Xiangride rhyolites are similar to those of the diabasic dikes. Simple mass balance calculation shows that the source
rocks of the felsic Elashan volcanic rocks are equivalent to mixing of ~75–80% Paleo-Tethys MORB (Nd = 6.2 ppm, Hf = 1.31 ppm, eNd(t) = 5.74, eHf(t) = 10.41; after Xu and
Castillo, 2004) and ~20%–25% mature crustal material (Proterozoic granitic gneiss; Nd = 28.0 ppm, Hf = 4.7 ppm, eNd(t) = –17.22, eHf(t) = –15.91; after Shao et al., 2015). (d)
Initial 207Pb/204Pb ratios of the Xiangride rhyolites resembling the diabasic dikes are higher than that of felsic volcanic rocks from the Elashan Formation, while the basalt QH
16–39 has the highest initial 208Pb/204Pb ratio.

Fig. 10. The modeled AFC (after Depaolo,1981) path for Xiangride rhyolites in terms
of several representative trace elements. Modeled parent magma and assimilate
compositions were OIB (after Sun and McDonough, 1989) and lower continental
crust (after Rudnick and Gao, 2003) respectively. The ratio of rates of assimilation
and crystallization (r) was assumed to be 0.5 (after Reiners et al., 1995). The
simplified mineral modes were 15% olivine, 10% clinopyroxene, 15% hornblende,
35%plagioclase, 15% alkali plagioclase, 5% quartz, 2% titanomagnetite, 2% ilmenite,
and 1% apatite, and the mineral partition coefficients used were those of the
Geochemical Earth Reference Model (http://earthref.org/KDD/).
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the Triassic calc-alkaline felsic volcanic rocks and the syn-
collisional granitoids are different products of the same magmatic
event, which occurred in response to this collision. The strati-
graphic records indicate that the continental collision was basically
completed in the early stage of Late Triassic, resulting in folding
and thrusting in the EKOB (Fig. 11c–d) (Guo et al., 1998; Luo
et al., 2002; Li et al., 2012; Xu et al., 2013). However, the exact
transition time from collisional compression to post-collisional
extension is controversial. Based on geochemical characteristics
and the U-Pb zircon ages of local Triassic igneous rocks in the
EKOB, Xiong et al. (2014), Ren et al. (2016), and Zhao et al.
(2020) proposed that the tectonic transformation occurred at
223 Ma, 226 Ma, and <225 Ma, respectively. Chen et al. (2019b)
suggested that the peak formation time (230 Ma) of the Late Pale-
ozoic–Early Mesozoic metallogenic deposits in the EKOB corre-
sponds to the tectonic transition from syn-collision to post
collision. Based on evidences from ophiolitic mélanges and related
volcanic rocks, intrusive plutons, and sedimentary cover
sequences, Dong et al. (2018) proposed that the EKOB underwent
post-collisional collapse and extension and generated the A-type
granites and andesitic-rhyolitic volcanics in the upper Triassic Ela-
shan Formation at ~220–200 Ma. There are abundant alkaline dia-
basic dikes (218.1 ± 2.5 Ma; Fig. 4) intruding the A-type granitoids
in the western section of the EKOB (Hu et al., 2016). These highly
evolved alkaline basaltic rocks are very similar to the inferred
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Fig. 11. Cartoons showing the formation of the EKOB and the Elashan tectonic-
magma belt (ETMB) from the Late Paleozoic to Early Mesozoic. (a) Subduction of
Anyemaqen seafloor and related arc magmatism in the Carboniferous to Permian.
(b) Collision of the Songpan-Garze terrane with the Qaidam terrane in the Early–
Middle Triassic and the consequent magmatism for syn-collisional granitoids and
felsic volcanic rocks of the Elashan Formation. (c) The occurrence of mafic dikes and
peralkaline-like Xiangride rhyolites in the Late Triassic due to post-collisional
lithosphere extension. (d) Formation of the ETMB in the Late Triassic according to
the A-type subduction of the West Qinling-Zoige massive (after Zhang et al., 2000).
F1 is the major detachment surface and F2 (Wenquan fault/Elashan fault; Fig. 1b) is
one of the secondary thrusting faults.
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mafic parental melts of the peralkaline-like Xiangride rhyolites.
Fig. 9 shows that the Sr-Nd-Hf-Pb isotopic data of these diabasic
dikes are similar to the Xiangride rhyolites. Thus, we conclude that
the Xiangride rhyolites and the mafic dikes may be different prod-
ucts of the same thermal event and their primitive parental mag-
mas were derived from the asthenosphere mantle due to post-
collisional extension. Here, we provide petrological evidence for
tectonic transformation from a syn-collisional environment to a
post-collisional environment in the EKOB. That is, the rock types
from the early granitoids and calc-alkaline volcanic rocks (~250–
220 Ma) to the late alkaline basaltic dikes and peralkaline-like rhy-
olites (~218–209 Ma) provide important information about the
tectonic evolution of the EKOB and we infer that the transition
point from collisional compression to post-collisional extension
occurred at ~220 Ma. The Elashan tectonic-magmatic belt (ETMB;
Zhang et al., 2000), which is bounded by several left-lateral
oblique-thrust faults between West Qinling and East Kunlun
12
(Fig. 11d), lies at the triple junction of the Qinling-Qilian-Kunlun
orogenic belts (Fig. 1b), and the Elashan/Wenquan fault is often
regarded as the boundary between East Kunlun and West Qinling.
Considering that (i) the main geological records of the Qilian Oro-
gen represent the Early Paleozoic Caledonian system (Song et al.,
2013); (ii) the syn-collisional granitoids of the Qinling Orogen
(~220 Ma) are slightly younger than those of the ETMB (Li et al.,
2015c; Duan et al., 2016; Kong et al., 2017, 2019a); (iii) the
Permian-Triassic granitoids and volcanic rocks that outcropped in
the ETMB are comparable with those in the EKOB (Xia et al.,
2014; Ren et al., 2016; Kong et al., 2020; Zhao et al., 2020); and
(4) the ETMB has the same Proterozoic crystalline basement as
the EKOB (Sun, 2004; Chen, 2015), we infer that the ETMB has
the best affinity with the EKOB and should be considered to be part
of the EKOB. Fig. 11 illustrates the evolution of the ETMB. The main
body of the EKOB was formed by the northward subduction of the
Anyemaqen Ocean (Fig. 11a) (Yin and Zhang, 1998) and the subse-
quent collision between the Qaidam terrane and the Songpan-
Garze terrane (Fig. 11b), causing the EKOB to combine with the
Qaidam terrane. The easternmost part of the EKOB (i.e., the ETMB)
was also reformed by the NW-SE oblique obduction of the eastern
part of the EKOB-Qaidam massif, and the main terrestrial stress
came from the SE–NW A-type subduction of the West Qinling-
Zoige massif (Fig. 11d) (Zhang et al., 2000). Horizontally, the ETMB
exhibits left-lateral strike-slip motion due to the passive drag of
the oblique-thrusting. A series of left-lateral strike-slip faults
increased the N–S extension of the ETMB by ~100 km (Fig. 1b).
At the same time, these faults affect the distribution direction of
the collisional intrusions and extrusions, making them parallel to
the Elashan fault (Fig. 1c).
6. Conclusions

(i) The petrogenesis of the widespread Triassic calc-alkaline fel-
sic volcanic rocks (~232–225 Ma) is consistent with an origin of
partial melting of the underthrust Paleo-Tethys oceanic crust
under amphibolite facies conditions.

(ii) The peralkaline-like Xiangride rhyolites (~209 Ma) origi-
nated from an asthenospheric mantle derived alkali basaltic
magma that underwent protracted fractional crystallization and
continental crust contamination.

(iii) According to the rock types from the granitoids and calc-
alkaline volcanic rocks to alkaline basaltic dikes and peralkaline-
like rhyolites, we infer that the transition from collisional compres-
sion to post-collisional extension occurred at about 220 Ma.
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