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Abstract

The commonly used 1-step and 2-step System GMM estimators for the panel AR(1)

model are inconsistent under mean stationarity when the ratio of the variance of the indi-

vidual effects to the variance of the idiosyncratic errors is unbounded when N →∞. The
reason for their inconsistency is that their weight matrices select moment conditions that

do not identify the autoregressive parameter. This paper proposes a new 2-step System

estimator that is still consistent in this case provided that T > 3. Unlike the commonly

used 2-step System estimator, the new estimator uses an estimator of the optimal weight

matrix that remains consistent in this case. We also show that the commonly used 1-step

and 2-step Arellano-Bond GMM estimators and the Random Effects Quasi MLE remain

consistent under the same conditions. To illustrate the usefulness of our new System

estimator we revisit the growth study of Levine et al. (2000).



1 Introduction
It is well known that the GMM estimators that have been proposed by Arellano and Bond

(1991, AB) for panel autoregressive models can have poor finite sample properties when

the sum of the autoregressive parameters is close to unity due to a weak instruments

problem, i.e., low correlation between the regressors in the first-differenced model, which

are first-differences of the lagged dependent variable, and the instruments, which are

lagged levels of the dependent variable. Arellano and Bover (1995, Arbov) and Blundell

and Bond (1998) proposed the System estimator as a possible solution to this problem

when mean stationarity holds. This estimator combines the AB style moment conditions

with Arbov style moment conditions, which are based on the model in levels of the

data and use lagged differences of the dependent variable as instruments. Simulation

evidence in Blundell and Bond (1998) shows that under covariance stationarity the System

estimator has much better finite sample properties, i.e., smaller bias and root mean

squared error (rmse) than the AB GMM estimator.

The AB GMM estimator can also suffer from a weak instruments problem for a dif-

ferent reason than an autoregressive root being close to one. Considering only one AB

style moment condition for a panel AR(1) model and assuming covariance stationarity,

Blundell and Bond (1998) derived expressions for the probability limit of the estimator of

the slope parameter of the first-stage regression and the so-called concentration parame-

ter. They found that the corresponding AB GMM estimator also has a weak instruments

problem when the ratio of the variance of the individual effects and the variance of the

disturbances, henceforth the variance ratio, is large. Below we find that this is true more

generally, namely under mean stationarity. On the other hand, Hayakawa (2009) found

that when the data are not close to mean stationary and the variance ratio becomes

large, then the AB GMM estimator that uses instruments in levels performs quite well.

He argued that this is because the correlation between the lagged dependent variable and

the instruments in levels gets larger owing to the unremoved individual effects, i.e., the

instruments in levels become stronger. A high variance ratio is likely to occur in dynamic

panel data models that are used for studying economic growth.

Hayakawa (2007) and Bun and Windmeijer (2010) showed that under covariance sta-

tionarity GMM estimators for the panel AR(1) model that only exploit Arbov style mo-

ment conditions also have a weak instruments problem when the variance ratio is large

and the autoregressive parameter ρ is not close to one. As the System estimator com-

1



bines AB and Arbov style moment conditions, its properties are combinations of those of

the AB and Arbov GMM estimators. Bun and Windmeijer (2010) provide simulations

results for commonly used versions of the 1-step and 2-step System estimator for ρ under

covariance stationarity when ρ = 0.8, N = 200 and T = 6 or 15. They show that the

biases of both System estimators increase substantially, to around 0.09, when the vari-

ance ratio increases from 1 to 4. We will see that both estimators are in fact inconsistent

when the data are mean stationary and the variance ratio tends to infinity, because their

weight matrices are such that these estimators effectively exploit moment conditions that

depend on levels of the data and do not identify ρ.

In this paper we present a necessary condition for large N , fixed T consistency of

any random effects (RE) or fixed effects (FE) estimator for ρ. We use the label ‘fixed

effects’to indicate that we make minimal assumptions about the individual effects and

the initial observations. The necessary condition for consistency requires the variance of

the deviations of the initial observations from the individual effects to be finite. This

condition is also suffi cient for consistency of FE estimators for ρ, which only depend on

differences of the data. However, this condition is in general not suffi cient for consistency

of RE estimators for ρ, which also depend on levels of the data. Nonetheless, we argue

that even when the data are mean stationary and the variance ratio is infinite, RE

GMM estimators will still be consistent as long as they use a suitable weight matrix that

effectively only selects moment conditions that only depend on differences of the data,

possibly by combining moment conditions that involve levels of the data. Specifically,

we show that when T > 3, the 1-step AB GMM estimator, which is optimal under

time-series homoskedasticity, and the 2-step optimal AB GMM estimator that uses the

1-step AB GMM estimator to estimate the weight matrix remain consistent in this case.

Furthermore, when T > 3, the 2-step System estimator will still be consistent in this case

if it uses a consistent estimate of the optimal weight matrix. The RE Quasi ML estimator

for ρ is also still consistent in this case. As the REQMLE has favorable properties, also

when ρ is near or equal to unity, cf.Kruiniger (2013), we propose using the REQMLE

to estimate the optimal weight matrix of the System estimator. In this way we obtain a

new, more robust version of the System estimator. When ρ is not close to unity, one could

also use the AB GMM estimator to estimate the optimal weight matrix of the System

estimator leading to yet another version of the System estimator.

We also derive local asymptotic approximations to the finite sample distributions of
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AB GMM estimators when the data are mean stationary and the variance ratio is large,

and give conditions for redundancy of moment conditions that involve levels of the data.

The outline of the paper is as follows. Section 2 presents the necessary condition for

the consistency of RE and FE estimators for the panel AR(1) model. It also derives the

asymptotic properties of various GMM estimators when the variance ratio is large and

the local asymptotic distributions for the RE AB GMM estimator when in addition the

data are mean stationary, discusses conditions for redundancy of the additional moment

conditions that are exploited by certain RE GMM estimators relative to those exploited

by the corresponding optimal FE GMM estimators, and presents the new versions of the

2-step System estimator. Section 3 conducts a Monte Carlo study of the finite sample

properties of the 2-step optimal RE AB GMM estimator, three versions of the 2-step

System estimator and the RE and FE Quasi ML counterparts of a GMM estimator of

Ahn and Schmidt (1995, AS) and conventional and Windmeijer (2005) corrected versions

of asymptotic standard errors and confidence intervals related to the GMM estimators.

It also investigates the properties of various tests for weak or underidentification due to

Montiel Olea and Pflueger (2013) and Windmeijer (2018), respectively, and discusses how

the former can be used to select a version of the System estimator that is (most) suitable

for a particular application. Section 4 provides a real data application and section 5

concludes. An appendix contains all the proofs, some of the Monte Carlo results and

some additional results related to the application.

2 Asymptotic properties of random and fixed effects
GMM estimators for the panel AR(1) model

2.1 A necessary condition for consistency: the fixed effects as-
sumption

The panel AR(1) model with arbitrary initial conditions is given by 1

yi = ρyi,−1 + (1− ρ)µiι+ εi, −1 < ρ ≤ 1, (1)

where yi = (yi,2 ... yi,T )′, yi,−1 = (yi,1 ... yi,T−1)
′, ι is a vector of ones, µi is the individual

effect and εi is the vector of (idiosyncratic) errors for all i ∈ I = {1, 2, ..., N}. For
1Extending the analysis to models with strictly exogenous regressors, a constant and/or time

dummies is straightforward.
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each individual unit we have T ≥ 3 observations on y, including the initial observation

yi,1. When considering the asymptotic properties of the estimators for this model we will

assume that N → ∞ while T is fixed. Note that in the unit root case the individual

effects disappear. The panel AR(1) model can be rewritten as

yi − µiι = ρ(yi,−1 − µiι) + εi, −1 < ρ ≤ 1. (1′)

Let µi ≡ σµµ̃i. Furthermore, let vi,1 ≡ yi,1 − µi, ṽi,1 ≡ (ρ− 1)vi,1 and T = {2, ..., T}.
We make the following assumptions.

Standard Assumptions (SA):

i) εi i = 1, ..., N are independently distributed;

ii) E(εi) = 0 and E(εiε
′
i) = σ2i IT−1 ∀ i ∈ I;

iii) E(|εi,t|2+δ) < ∆1 <∞ for some δ > 0, some ∆1 > 0, ∀ i ∈ I and ∀ t ∈ T ;

iv) E(|µ̃i|
2+δ) < ∆1 <∞ for some δ,∆1 > 0 and ∀ i ∈ I; plimN→∞N

−1∑N
i=1 µ̃

2
i = 1;

v) E(ṽi,1) = 0 and yi,1 and µi are uncorrelated with the elements of εj ∀ i, j ∈ I;

vi) ṽi,1εi,t and ṽj,1εj,t are uncorrelated ∀ i, j ∈ I with i 6= j and ∀ t ∈ T ;

vii) In case of a 2-step GMM estimator, 4+δ moments of the data exist for some δ > 0.

SA(ii) assumes unconditional homoskedasticity over time for presentational ease only;

this assumption can be relaxed. We define σ2 ≡ limN→∞N
−1∑N

i=1 σ
2
i for later use.

SA(iv) implies plimN→∞N
−1∑N

i=1 µ
2
i = σ2µ. SA(v) allows for conditional heteroskedasti-

city over time and for cross-sectional dependence of the yi,1 and µi. W.l.o.g. it also assumes

E(ṽi,1) = 0 and hence E(yi,t − yi,t−1) = 0 for all t ∈ T . This assumption is equivalent to
adding a constant to the model in (1) if necessary. SA(vi) is not required for the main

results but affords a simplification if the data are not normally distributed (see the end of

next paragraph) and is almost always satisfied. We will also use the following assumption.

Fixed Effects Assumption (FEA): σ̃2v ≡ plimN→∞N
−1∑N

i=1 ṽ
2
i,1 <∞.

The assumption that plimN→∞N
−1∑N

i=1 ṽ
2
i,1 < ∞ is weaker than the assumption

that plimN→∞N
−1∑N

i=1 µ
2
i < ∞ and plimN→∞N

−1∑N
i=1 y

2
i,1 < ∞, which is habitually
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made in papers that study random effects estimators for the panel AR(1) model, see

e.g. Ahn and Schmidt (1995, 1997); it can still hold even if limi→∞E(y2i,1) = ∞ and

limi→∞E(µ2i ) =∞ when {E(y2i,1)} and {E(µ2i )} are non-decreasing. Furthermore, under
SA(ii) and covariance stationarity of {yi,t} we have limρ↑1E((yi,1−µi)2) = limρ↑1(σ

2
i /(1−

ρ2)) =∞ but limρ↑1E(ṽ2i,1) = 0 so that if in addition ṽi,1 i = 1, ..., N are i.i.d., then FEA

is satisfied when ρ ↑ 1. FEA also allows for cross-sectional independence of the ṽi,1. In

the appendix we show that SA and FEA imply that plimN→∞N
−1∑N

i=1 ṽi,1εi,t = 0 for all

t ∈T . The proof relies on SA(vi) in case the data are not normally distributed.
Below we will see that, given assumption SA, assumption FEA is, practically speaking,

necessary for the consistency of any GMM or ML type estimator for ρ and also suffi cient

for the consistency of GMM and ML type estimators for ρ that only depend on differences

of the data. For this reason the latter can be regarded as fixed effects estimators, where

the label ‘fixed effects’indicates that minimal assumptions are made about the individual

effects and the initial observations.

An assumption that implies FEA when it is combined with SA and, like FEA, does

not require that E(y2i,1) <∞ and E(µ2i ) <∞ for all i ∈ I is the following one.

Fixed Effects Assumption∗ (FEA∗):

ṽi,1 i = 1, ..., N are i.h.d. and E(|ṽi,1|2+δ) < ∆1 <∞ for some δ,∆1 > 0 and ∀ i ∈ I.

Unlike FEA, FEA∗ requires cross-sectional independence of the ṽi,1. When {yi,t} is
stationary up to order 3 (or strictly stationary) for all i ∈ I, E(εi,rεi,sεi,t) = 0 and

E(εi,sε
2
i,t) = 0 for any r ≤ s < t ∈ T and for all i ∈ I, we have limρ↑1E(|ṽi,1|3) = 0 for all

i ∈ I so that if in addition ṽi,1 i = 1, ..., N are i.h.d., then FEA∗ is satisfied when ρ ↑ 1.

It is useful to rewrite the panel AR(1) model in (1) as

∆yi,2 = (ρ− 1)(yi,1 − µi) + εi,2 (2)

∆yi,t = ρ∆yi,t−1 + ∆εi,t t = 3, ..., T.

where ∆yi,t = yi,t− yi,t−1. Notice that the differences of the data only depend on ṽi,1 and
εi,t, t = 2, ..., T . In the appendix we prove the following lemma:

Lemma 1 Given SA, FEA holds iff plimN→∞

∣∣∣N−1∑N
i=1(∆yi,s∆yi,t)

∣∣∣ <∞ ∀ s, t ∈ T .
5



Maximum Likelihood estimators for ρ in (1) as well as any reasonable GMM estimator

for ρ depend on second-order sample moments. These estimators will be root-N consistent

only if these sample moments converge in probability (possibly after scaling) and if the

probability limits of these sample moments allow for identification of ρ. 2 3 The second-

order sample moments can take the form of cross-sectional averages of products of levels of

the data, cross-sectional averages of products of differences of the data or cross-sectional

averages of products of levels and differences of the data. Lemma 1 implies that given

assumption SA, assumption FEA about the ṽi,1 is suffi cient and, practically speaking, also

necessary for convergence in probability of the cross-sectional averages of the products of

differences of the data. The reason for these results is that the differences of the data only

depend on the ṽi,1 and the εi,t. To guarantee convergence in probability of second-order

sample moments that involve levels of the data or consistency of estimators that depend

on them, one also needs to add assumptions about the µi, e.g. plimN→∞N
−1∑N

i=1 µ
2
i <∞

and plimN→∞N
−1∑N

i=1 µiεi,t = 0, ∀t ∈ T or, given FEA equivalently, assumptions about
the yi,1, e.g. plimN→∞N

−1∑N
i=1 y

2
i,1 <∞ and plimN→∞N

−1∑N
i=1 yi,1εi,t = 0, ∀t ∈ T .

We conclude that a fixed effects GMM or ML estimator for (1) should only depend on

(first) differences of the data. Furthermore, a fixed effects GMM or ML estimator for (1)

that is consistent for any sequences {yi,1} and {µi} does not exists. However, consistent
fixed effects GMM and ML estimators for models that include assumption FEA do exist.

We note that FEA or plimN→∞N
−1∑N

i=1(∆yi,2)
2 < ∞ is a reasonable assumption

that is met in most applications, possibly after rescaling the data.

2.2 Asymptotic properties of RE and FE GMM estimators

Under SA and FEA we can derive expressions for the probability limits of the

following second-order sample moments: plimN→∞N
−1∑N

i=1(∆yi,2)
2 =

2Convergence in probability of these (scaled) sample moments is required in order to prove
uniform convergence of the criterion function (see e.g. Newey and McFadden (1994)). Identifi-
cation of ρ requires that at least some of the probability limits of these (scaled) sample moments
are different from zero.

3Under non-normality of the data, one may wish to consider GMM estimators for ρ that
also exploit information contained in third and higher order sample moments, cf Hahn (1997).
In that case, issues similar to those discussed in this paper will arise. In particular, such an
estimator is a consistent fixed effects estimator only if {ṽi,1} satisfies a generalized version of
FEA. Here we confine our attention to estimators that only exploit second moments of the data.
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(1 − ρ)2σ2v + σ2, plimN→∞N
−1∑N

i=1(yi,1)
2 = σ2v + 2σµσvcorr(µ, v1) + σ2µ, and

plimN→∞N
−1∑N

i=1(yi,1∆yi,2) = (ρ − 1)(σ2v + σµσvcorr(µ, v1)) + σvσcorr(v1, ε2) +

σµσcorr(µ, ε2), where σ2v ≡ plimN→∞N
−1∑N

i=1 v
2
i,1, and corr(X, Y ) ≡

plimN→∞N
−1∑N

i=1(XiYi)/(σXσY ). When σµ →∞, we need to scale the levels of the data
(e.g. yi,1) by σµ for the sample moments that contain them to converge. Note that SA

implies that corr(µ, ε2) = 0 and that under mean stationarity we also have corr(µ, v1) = 0

so in the latter case plimN→∞N
−1∑N

i=1(yi,1∆yi,2)/σµ = 0 when σµ → ∞. This result
implies that yi,1 is a weak instrument for ∆yi,2 when corr(µ, v1) = 0 and σµ/σ and σµ/σv

are large. Furthermore, when {yi,t} is covariance stationary, then σ2v = σ2/(1− ρ2), and
if in addition ρ ↑ 1, then σ2v → ∞. In that case, plimN→∞N

−1∑N
i=1(yi,1∆yi,2) may not

exist and plimN→∞N
−1∑N

i=1(yi,1)
2 does not exist.

Below we assume that σ2v and σ
2 are finite and of a similar order of magnitude and

do not study what happens when ρ ↑ 1 as this case has been studied in other papers,

e.g. Kruiniger (2009) and Bun and Kleibergen (2017). Then the properties of the RE

estimators for the panel AR(1) model – which involve levels of the data – depend

crucially on the ratio of σ2µ and σ
2 (or σ2µ/σ

2
v) and on the value of corr(µ, v1).

2.2.1 Arellano-Bond GMM estimators

The RE Arellano-Bond (AB) GMM estimator, ρ̂ABlev, exploits the following m ≡ (T −
1)(T − 2)/2 moment conditions:

E[yi,s(∆yi,t − ρ∆yi,t−1)] = 0, 1 ≤ s ≤ t− 2, t = 3, ..., T. (3)

This estimator uses lagged levels of the dependent variable as instruments.

In the appendix we prove the following result: 4 5

Theorem 1 Assume that SA and FEA∗ hold, T = 3, |ρ| < 1 and σ2µ →∞. Then ρ̂ABlev
is
√
N-consistent if and only if corr(µ, v1) 6= 0.

4σ2µ →∞ signifies that σ2µ approaches∞ independently of N.Moreover, when deriving these
asymptotic results, σ2µ →∞ first and then N →∞. Below we will also derive asymptotic results
for ρ̂ABlev using the parameter sequence σ

2
µ/σ

2
v = k1N

p.
5When T = 3 and σ2µ <∞, ρ̂ABlev is inconsistent if E(yi,1∆yi,2) = 0 ∀ i ∈ I. E(yi,1∆yi,2) =

(ρ − 1)[E(yi,1(yi,1 − µi))] = (ρ − 1)[E(v2i,1) + E(µivi,1)]. When {yi,t} is covariance stationary,
E(µivi,1) = 0 and E(yi,1(yi,1 − µi)) = σ2i /(1− ρ2) ≥ 0. In general, E(yi,1(yi,1 − µi)) = 0 ∀ i ∈ I
is not very plausible unless yi,1 = µi or yi,1 = 0 ∀ i ∈ I.
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The reason for this result is that plimN→∞ limσµ→∞(N−1
∑

i yi,1∆yi,2)/σµ = (ρ− 1)×
corr(µ, v1)σv, that is, when corr(µ, v1) 6= 0, the scaled instrument y1/σµ is correlated

with the lagged dependent variable ∆y2, whereas when corr(µ, v1) = 0, yi,1/σµ is an

invalid instrument for ∆yi,2.
6 In the latter case ρ is not identified and the estimator

ρ̂ABlev converges to ρ plus a ratio of correlated normal random variables that have zero

mean, X1/X2, which is defined in Theorem 3 below.

We will now extend the result in Theorem 1 to T > 3. Let yti = [yi,1 ... yi,t] and

let Zi = diag(y1i , ..., y
T−2
i ) be a (T − 2) × m block-diagonal matrix. Then we can also

write the set of AB moment conditions in (3) as E(Z ′i∆εi) = 0 where ∆εi ≡ εi − εi,−1
with εi ≡ [εi,3 ... εi,T ]′. Under our assumptions, E(∆εi∆ε

′
i) = σ2iH, where H = HT−2 is a

(T − 2) band-diagonal matrix with 2’s on the main diagonal, −1’s on the first sub- and

superdiagonal and zeros elsewhere. It follows that the RE AB GMM estimator which uses

WN,AB1 = (N−1
∑N

i=1 Z
′
iHZi)

−1 as weight matrix is an optimal one-step GMM estimator.

This estimator will be denoted as ρ̂AB1lev. Let wi,t = (1− ρ)µi + εi,t, wi = (1− ρ)µiι+ εi

and y
i

= [yi,3 ... yi,T ]′. The two-step optimal RE AB GMM estimator uses WN,AB2 =

(N−1
∑N

i=1 Z
′
i∆ŵi∆ŵ

′
iZi)

−1 as weight matrix, where ∆ŵi = ∆y
i
− ρ̂AB1lev∆yi,−1, and will

be denoted as ρ̂AB2lev. Finally, let {WN} denote an arbitrary sequence of PD weight

matrices with plimN→∞WN = W, where W is PD. An RE AB GMM estimator that uses

WN as weight matrix will be denoted as ρ̂ABlev.

Let the (T − 2) × (T − t − 2) matrix dt be given by dt = [0 IT−t−2]
′. Furthermore,

let ZAB
i = [ZI

i Z
D
i ], where ZI

i = yi,1IT−2 and ZD
i = [d1∆yi,2 d2∆yi,3 ... dT−3∆yi,T−2] is a

(T − 2) × [m − (T − 2)] matrix. There exists a nonsingular constant matrix KAB such

that Z ′i = KABZAB′
i . Thus we can restate E(Z ′i∆εi) = 0 as E(ZAB′

i ∆εi) = 0.

We can extend Theorem 1 to T > 3 by using Lemma 2 from the appendix.

Theorem 2 Assume that SA and FEA∗ hold, T > 3, |ρ| < 1 and σ2µ →∞. Then:
(i) ρ̂AB1lev and ρ̂AB2lev are

√
N-consistent.

Furthermore, if ρ̂ABlev exploits E(ZAB′
i ∆εi) = 0 in lieu of E(Z ′i∆εi) = 0, then

(ii) ρ̂ABlev is
√
N-consistent if and only if corr(µ, v1) 6= 0, and

(iii) if corr(µ, v1) = 0, ρ̂ABlev − ρ
d→ (X ′61W11X61)

−1X ′61W11X51 where X51 and X61

are Gaussian random vectors that are defined in Lemma 2.

6When corr(µ, v1) = 0 and σ2µ → ∞, then the value of the first stage regression coeffi cient
is zero: plimN→∞ limσµ→∞(

∑
i(yi,1∆yi,2)/(

∑
i y
2
i,1)) = 0.
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The proofs of Lemma 2 and Theorem 2 are similar to that of Theorem 1. According to

Theorem 2, when T > 3 and corr(µ, v1) = 0 an RE AB GMM estimator can be consistent

as long as it uses a suitable weight matrix. In particular, because the instruments in

levels need to be scaled by σµ in order to achieve convergence of the averages of their

cross products with the dependent variable and its lag, the blocks of its weight matrix

that correspond to E(ZI′
i ∆εi/σµ) = 0 should provide this scaling in order to obtain a

consistent estimator when corr(µ, v1) = 0. The weight matrix WN,AB1 has this property

but an arbitrary weight matrix WN does not. An RE AB GMM estimator that uses an

arbitrary weight matrix WN will effectively only exploit the (scaled) moment conditions

that involve an instrument in levels when σ2µ →∞, i.e., E(ZI′
i ∆εi/σµ) = 0, which do not

identify ρ when corr(µ, v1) = 0 (because plimN→∞ limσµ→∞N
−1∑N

i=1 Z
I′
i ∆yi,−1/σµ = 0),

and hence will be inconsistent. In contrast, the RE AB GMM estimator that usesWN,AB1

will continue to exploit both E(ZI′
i ∆εi/σµ) = 0 and E(ZD′

i ∆εi) = 0 when σ2µ →∞, and
the latter will still identify ρ when corr(µ, v1) = 0. Of course, E(ZD′

i ∆εi) = 0 will only

weakly identify ρ when ρ is near unity and corr(µ, v1) is (near) zero, cf. Kruiniger (2009).

When corr(µ, v1) 6= 0, plimN→∞ limσµ→∞N
−1∑N

i=1 Z
I′
i ∆yi,−1/σµ 6= 0 and an RE AB

GMM estimator that uses an arbitrary weight matrix WN will remain consistent when

σ2µ → ∞. Hayakawa (2009) found that when the data are not close to mean stationary
and the variance of the individual effects becomes large as compared to that of the

disturbances, then the RE Arellano-Bond GMM estimator in fact performs quite well.

He argued that this is because the correlation between the lagged dependent variable and

the instruments in levels gets larger owing to the unremoved individual effects, i.e., the

instruments in levels become strong. In contrast, we find that when the data are (close

to) mean stationary and the variance of the individual effects becomes large relative to

that of the disturbances, the instruments in levels become weaker.

When T = 3, corr(µ, v1) = 0 and the ratio of σ2µ and σ
2
v is large relative to the sample

size N , y1 will be a weak instrument for ∆y2 and the standard fixed parameter first-order

asymptotic approximation to the distribution of ρ̂ABlev will be poor. We may be able to

obtain a better approximation by employing local asymptotics where the ratio σ2µ/σ
2
v is

reparametrized as a non-decreasing function of the sample size, i.e. σ2µ/σ
2
v = k1N

p with

p ≥ 0. The theorem below, which is proven in the appendix, describes how the limiting

distribution of ρ̂ABlev changes as we vary the value of parameter p, which determines the

quality of the instrument yi,1:

9



Theorem 3 Let assumptions SA and FEA∗ hold, T = 3 and |ρ| < 1.

Furthermore, let σ2µ/σ
2
v = k1N

p with p ≥ 0, let corr(µ, v1) = 0,

and let limN→∞N
−1−p∑N

i=1E(µiεi,t)
2 = ζ1, t = 2, 3 and

limN→∞N
−1−p∑N

i=1E(µivi,1)
2 = ζ2 with 0 < ζ1, ζ2 <∞.

If p = 0, 0 < limN→∞N
−1∑N

i=1E(yi,1∆εi,3)
2 = ζ0 <∞ and {yi,1∆εi,3} satisfies

the Lindeberg condition, then N0.5 (ρ̂ABlev − ρ)
d→ N(0, [(ρ− 1)σ2v]

−2ζ0).

If 0 < p < 1 and {µi∆εi,3/N0.5p} satisfies the Lindeberg condition, then

N0.5(1−p) (ρ̂ABlev − ρ)
d→ N(0, [(ρ− 1)σ2v]

−22ζ1).

If p ≥ 1, {µiεi,t/N0.5p}, t = 2, 3, and {µivi,1/N0.5p} satisfy the Lindeberg condition,

and

 X1

X2

 ∼ N

 0

0

 ,
 2ζ1 −ζ1
−ζ1 ζ1 + (ρ− 1)2ζ2

 , then

if p = 1, ρ̂ABlev − ρ
d→ X1

(ρ−1)σ2v+X2
, while if p > 1, ρ̂ABlev − ρ

d→ X1
X2
.

Generalizing this result to T > 3 is straightforward.

Under conditional homoskedasticity of the µi and the εi,t and uncorrelatedness of µ
2
i

and v2i,1 ∀ i ∈ I, we find that ζ0 = 2(σ2µ + σ2v)σ
2, ζ1 = k1σ

2
vσ

2, and ζ2 = k1(σ
2
v)
2.

For p = 0, one obtains the standard fixed parameter first-order limiting distribution

of ρ̂ABlev; when 0 < p < 1, one obtains essentially the same limiting distribution because

if N → ∞, then σ2µ/σ2v → ∞ and E(yi,1∆εi,3/σµ)2 → E(µi∆εi,3/σµ)2; and when p ≥ 1,

ρ̂ABlev − ρ converges to a ratio of correlated normal r.v.’s, where p = 1 is a special case

because in this case the mean of the denominator is different from zero. The limiting

distribution for p > 1 is in fact equal to the sequential limiting distribution of ρ̂ABlev
when corr(µ, v1) = 0 and first σ2µ →∞ and then N →∞. 7 8

7Alternatively, we may consider local asymptotics based on the sequence corr(µ, v1) =
cN−q, while σ2µ/σ

2
v → ∞. Let us assume homoskedasticity of µ, v1 and εt and let Z̃1 =

N−0.5
∑

i yi,1∆εi,3/σµ. It follows that Z̃1
d→ Z1 ∼ N(0, 2σ2). Then for 0 ≤ q < 0.5, we

obtain N0.5−q (ρ̂ABlev − ρ)
d→ N(0, [(ρ − 1)cσv]

−22σ2). If q > 0, limN→∞E(µv1/σµ) = 0.
Let limN→∞Var(µv1/σµ) = σ2µv and let Z̃2 = N−0.5

∑
i yi,1∆yi,2/σµ. Then if q = 0.5,

Z̃2
d→ Z2 ∼ N((ρ− 1)c, (ρ− 1)2σ2µv +σ2), while if q > 0.5, Z̃2

d→ Z2 ∼ N(0, (ρ− 1)2σ2µv +σ2). It

follows that if q ≥ 0.5, (ρ̂ABlev − ρ)
d→ Z1/Z2 where Cov(Z1, Z2) = −σ2. We can also consider

combined local asymptotics based on the sequences σ2µ/σ
2
v = k1N

p and corr(µ, v1) = cN−q.

Then if p = 1 and q = 0.5, (ρ̂ABlev − ρ)
d→ Z1/((ρ − 1)σv/k

−0.5
1 + Z2), while if 0 < p < 1 and

q = 0.5p, N0.5(1−p) (ρ̂ABlev − ρ)
d→ N(0, [(ρ− 1)σv/k

−0.5
1 + (ρ− 1)cσv]

−22σ2).

10



The parameters of the limiting distribution of ρ̂ABlev can be consistently estimated

regardless of the value of p : one only needs to know whether p < 1, p = 1, or p > 1. Note

that the distribution of X1/X2 depends only on ζ1/ζ̃2, where ζ̃2 = ζ1 + (ρ − 1)2ζ2.

When p > 1, the ratio ζ1/ζ̃2 can be consistently estimated by 0.5
∑N

i=1(yi,1[∆yi,3 −
ρ̂ABdif∆yi,2])

2/
∑N

i=1(yi,1∆yi,2)
2, where ρ̂ABdif is a consistent FE estimator that is de-

fined below. When p = 1, one can estimate ζ1 by 0.5N−2
∑N

i=1(yi,1[∆yi,3− ρ̂ABdif∆yi,2])
2,

ζ̃2 by N−2
∑N

i=1(yi,1∆yi,2)
2, and (1 − ρ)σ2v by [N−1

∑N
i=1(∆yi,t)

2 − 0.5N−1×∑N
i=1([∆yi,3 − ρ̂ABdif∆yi,2])

2]/(1 − ρ̂ABdif ) and when p < 1, one can estimate ζ1 by

0.5N−1−p
∑N

i=1(yi,1[∆yi,3 − ρ̂ABdif∆yi,2])2.
The Arellano-Bond differences GMM estimator, ρ̂ABdif , uses lagged differences of

yi,t−1 as instruments instead of levels, that is, it exploits the following moment conditions

E[∆yi,s(∆yi,t − ρ∆yi,t−1)] = 0, 2 ≤ s ≤ t− 2, t = 4, ..., T. (4)

This estimator, which uses an arbitrary PD weight matrix WN (with plimN→∞WN = W,

where W is PD) and only involves differences of the data, will be consistent for any

sequence of individual effects as long as FEA (or FEA∗) holds.

Theorem 4 Assume that SA and FEA hold and |ρ| < 1. Then ρ̂ABdif is
√
N-consistent.

The proof of this theorem is trivial. Recall that the first-differences of the data ∆yi,t,

t = 2, ..., T , only depend on yi,1 and µi through vi,1.

The asymptotic distribution of ρ̂ABdif is easily derived. We make the following as-

sumptions:

Moment Assumption 1 (MA1): 0 < σ4 = limN→∞N
−1∑N

i=1 σ
4
i <∞.

Moment Assumption 2 (MA2): σ2v,ε = limN→∞N
−1∑N

i=1E(v2i,1ε
2
i,t) <∞ ∀t ∈ T .

Then it is straightforward to prove the following result:

8The lagged values yi,s, s = 1, ..., t− 2, are also weak instruments for ∆yi,t−1 when ρ is close
to one. Kruiniger (2009) obtains local limiting distributions for ρ̂ABlev both under covariance
stationarity and for the model with fixed initial conditions using the parameter sequences ρ =
1− (λ/N) and ρ = 1− (λ/N)0.5, respectively. These local limiting distributions depend on the
localizing parameter λ which cannot be consistently estimated when T is fixed. Using parameter
sequences for ρ that tend to one at a faster rate would result in the standard (fixed parameter
first-order) limiting distribution for ρ = 1 just as taking p > 1 results in the standard limiting
distribution for σ2µ →∞ and corr(µ, v1) = 0.
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Theorem 5 Let assumptions SA, FEA∗, MA1, and MA2 hold, T = 4, and |ρ| < 1.

Moreover, let {∆yi,2∆εi,4} satisfy the Lindeberg condition.

Then
√
N
(
ρ̂ABdif − ρ

) d→ N(0, [(ρ− 1)2ρσ2v + (ρ− 1)σ2]−2[2(ρ− 1)2σ2v,ε + 2σ4]).

Under conditional homoskedasticity of the εi,t, σ2v,ε = σ2vσ
2 and σ4 = σ4. Notice

that the limiting distribution of ρ̂ABdif does not depend on σ
2
µ unlike the standard first-

order fixed parameter limiting distribution of ρ̂ABlev. It follows that V ar(ρ̂ABdif, T=4) <

V ar(ρ̂ABlev, T=3) when corr(µ, v1) = 0 and σ2µ is large relative to σ
2
v and σ

2.

2.2.2 Ahn-Schmidt GMM estimators and Quasi ML estimators

Just like the RE AB GMM estimator for ρ does not exhaust the set of all the second

moment conditions, the AB differences GMM estimator for ρ does not exhaust the set of

all the second moment conditions that follow from assumptions SA and FEA∗ and involve

only differences of the data. The complete set of second moment conditions implied by

the panel AR(1) model corresponds to

E

  yi,1
∆yi,2
Dεi

 (
yi,1 ∆yi,2 (Dεi)

′ )  ,
where D is the (T − 2)× (T − 1) first difference matrix with Dk,k = −1 and Dk,k+1 = 1,

k = 1, ..., T − 2, and zeros elsewhere. The RE HOmoskedastic Conditional (HOC) GMM

estimator for ρ exploits all these second moment conditions, or equivalently, the following

moment conditions (cf Ahn and Schmidt, 1997):

E(yi,1(∆yi,t − ρ∆yi,t−1)) = 0, t = 3, ..., T, (5)

E((yi,t − ρyi,t−1)2 − (yi,2 − ρyi,1)2) = 0, t = 3, ..., T, and

E((yi,t − ρyi,t−1)(yi,s − ρyi,s−1)− (yi,3 − ρyi,2)(yi,2 − ρyi,1)) = 0,

2 ≤ s < t, t = 4, ..., T.

Kruiniger (2013) has shown that when −1 < ρ ≤ 1 and T ≥ 3, then ρ is uniquely

identified by them and the RE HOCGMM estimator for ρ is consistent. The moment

conditions in the second line of (5) depend on homoskedasticity over time. The RE

Conditional GMM estimator for ρ allows for heteroskedasticity over time and exploits
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the moment conditions in the first and third line of (5), cf. Ahn and Schmidt (1997).

As we have seen above, GMM estimators for ρ that exploit moment conditions involv-

ing levels of the data, e.g. yi,1, are not consistent for all sequences of fixed effects that

satisfy FEA. On the other hand, Fixed Effects GMM estimators – which are consistent

for any sequence of fixed effects that satisfies FEA – only exploit moment conditions

that only involve differences of the observations. Noting that ∆yi,2 = εi,2 − (1 − ρ)vi,1

and Dεi = Dyi − ρDyi,−1, SA and FEA imply

plimN→∞
1

N

N∑
i=1

[ (
∆yi,2

Dyi − ρDyi,−1

) (
∆yi,2 (Dyi − ρDyi,−1)′

) ]
= (6) σ2 + (1− ρ)2σ2v −σ2 0′

−σ2
0

σ2H

 ,
where H = DD′.9

We will call the GMM estimator for ρ in the panel AR(1) model that exploits all the

‘moment conditions’in (6) the Fixed Effects HOCGMM estimator. This GMM estimator

is the solution of a third-order polynomial in ρ just like the Random Effects HOCGMM

estimator for ρ.

The ‘moment condition’plimN→∞N
−1∑N

i=1(∆yi,2)
2 = σ2 + (1 − ρ)2σ2v is redundant

for estimating ρ, because it is the only ‘moment condition’ in (6) that involves σ2v.
10

Cross-sectional heteroskedasticity of the εi,t does not pose a problem for estimating ρ,

since the 2 + δ-th moments of the εi,t, E(|εi,t|2+δ), are bounded ∀ i ∈ I, and ∀ t ∈ T , and
the cross-sectional average of the σ2i converges.

Compared with the (Optimal) FE HOCGMM estimator for ρ, the (Optimal)

RE HOCGMM estimator for ρ exploits T − 2 additional moment conditions, which in-

volve levels of the data: E(yi,1(∆yi,t − ρ∆yi,t−1)) = 0, t = 3, ..., T. 11 In the appendix we

prove the following result:

9We can extend these results to the panel AR(1) model with strictly exogenous regressors:
yi = ρyi,−1 + ιµi(1 − ρ) + Xiβ + εi. In this case we define vi,1 ≡ yi,1 − µi − x′iβ/(1 − ρ) where
xi = X ′iι/(T − 1). Then we obtain ∆yi,2 = (xi,2 − xi)′β + (ρ− 1)vi,1 + εi,2.
10See Breusch et al. (1999) for a definiton of redundancy of moment conditions.
11E(yi,1∆yi,2) = (ρ−1)(σ2v+σµ,v) and E(y2i,1) = σ2v+2σµ,v+σ2µ are redundant for estimating

ρ because only they can be used to identify and estimate σµ,v and σ2µ.
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Theorem 6 Assume that SA and FEA∗ hold, T ≥ 3, |ρ| < 1 and that 4 + δ-th moments

of the data exist for some δ > 0.

(i) If σ2µ → ∞ and corr(µ, v1) 6= 0, then the Optimal Random Effects HOCGMM

estimator for ρ, which exploits (5), is asymptotically more effi cient than the Optimal

Fixed Effects HOCGMM estimator for ρ, which exploits (6).

(ii) If σ2µ → ∞ and corr(µ, v1) = 0 and when optimal weighting is used, then all

moment conditions involving levels of the data are redundant for estimating ρ relative to

the moment conditions in (6).

Corollary 1 Assume that SA and FEA∗ hold, T ≥ 4, |ρ| < 1 and that 4+δ-th moments of

the data exist for some δ > 0. If σ2µ →∞ and corr(µ, v1) = 0 and when optimal weighting

is used, then E(yi,1(∆yi,t − ρ∆yi,t−1)) = 0, t = 3, ..., T are redundant for estimating ρ

relative to the Arellano-Bond moment conditions based on only differenced data that are

given in (4).

The proof of Corollary 1 is similar to the proof of Theorem 6.

The use of redundant moment conditions by the 2-step Optimal RE HOCGMM and

Optimal RE Arellano-Bond GMM estimators does not affect their first-order asymptotic

properties but does adversely affect their finite sample properties, cf e.g. Newey and

Smith (2004).

When the data are i.i.d. and normal and |ρ| < 1, the Optimal RE HOCGMM estima-

tor is asymptotically equivalent to the (correlated) RE ML estimator due to Chamberlain

(1980) and Anderson and Hsiao (1982), and the Optimal FE HOCGMM estimator is as-

ymptotically equivalent to the Transformed Maximum Likelihood (TML) estimator that

has been proposed by Hsiao et al. (2002), see Kruiniger (2001, 2013). This TML es-

timator can also be viewed as the FE counterpart of (correlated) RE ML estimator.

Furthermore, when ρ = 1, the REMLE and the FEMLE (i.e., the TMLE) are also aymp-

totically equivalent, cf Kruiniger (2013). When ρ = 1, ρ is only second-order identified

by (5) and (6), respectively, and the RE and FE HOCGMM estimators converge at rate

N1/4 and have a non-standard limiting distribution, cf Kruiniger (2013wp, 2017). We

have the following counterpart of Theorem 6 for the MLEs:
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Theorem 7 Assume that SA and FEA∗ hold, T ≥ 3, |ρ| < 1 and that 2 + δ-th moments

of the data exist.

(i) If σ2µ → ∞ and corr(µ, v1) 6= 0, then (a) the RE Quasi MLE for ρ is consistent

and (b) under normality of the data the REMLE for ρ is asymptotically more effi cient

than the FEMLE for ρ.

(ii) If σ2µ → ∞ and corr(µ, v1) = 0, then (a) the RE Quasi MLE for ρ is consistent

and (b) under normality of the data the REMLE for ρ is asymptotically equivalent to the

FEMLE for ρ.

If the errors are heteroskedastic over time, then Theorem 7 only holds for T > 3.

2.2.3 Old and new Arellano-Bover and System GMM estimators

We will now consider the asymptotic properties of some other well-known GMM estima-

tors for the panel AR(1) model when σ2µ → ∞. Arellano and Bover (1995) noted that
if mean stationarity holds as well, i.e., if E(vi,1) = 0 and corr(µ, v1) = 0 also hold, then

one can add T − 2 moment conditions to those in (3):

E[(yi,t − ρyi,t−1)∆yi,t−1] = 0 for t = 3, ..., T. (7)

A GMM estimator that exploits the moment conditions in (3) and (7) is known as a

System (SYS) estimator.

The set of moment conditions in (3) and (7) is equivalent to a set that contains T − 2

Arellano-Bond and m Arellano-Bover type moment conditions:

E[yi,1(∆yi,t − ρ∆yi,t−1)] = 0 for t = 3, ..., T, (8)

and

E[(yi,t − ρyi,t−1)∆yi,s] = 0 for s = 2, ..., t− 1 and t = 3, ..., T. (9)

A GMM estimator that only exploits the latter m = (T −1)(T −2)/2 moment conditions

will be referred to as an Arellano-Bover (Arbov) estimator.

There exist no feasible optimal one-step weight matrices for the Arbov and SYS esti-

mators, except when σ2µ = 0. Let∆yti = [∆yi,2 ... ∆yi,t], let ZII
i = diag(∆y2i , ...,∆y

T−1
i ) be

a (T−2)×m block-diagonal matrix and let ZS
i = diag(ZII

i , Z
I
i ) be a 2(T−2) ×(m+T−2)
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block-diagonal matrix. The Arbov estimator exploits E(ZII′
i wi) = 0, whereas the System

estimator exploits E(ZS′
i [w′i ∆w′i]

′
) = 0. When σ2µ = 0, optimal one-step weight matrices

for the Arbov and SYS estimators are given by WN,Arbov1 = (N−1
∑N

i=1 Z
II′
i ZII

i )−1 and

WN,SY S1 = (N−1
∑N

i=1 Z
S′
i AZ

S
i )−1, respectively, where A is given by

A =

[
IT−2 C
C ′ H

]
,

where C = CT−2 = E(εi∆ε
′
i)/σ

2
i is a (T − 2) × (T − 2) matrix with ones on the main

diagonal, −1’s on the first superdiagonal and zeros elsewhere. The one-step Arbov and

SYS GMM estimators that use WN,Arbov1 and WN,SY S1, respectively, will be referred to

as ρ̂Arbov1 and ρ̂SY S1, respectively. The two-step optimal Arbov and SYS estimators

will be denoted as ρ̂Arbov2 and ρ̂SY S2, respectively. The Arbov and SYS estimators that

use an arbitrary PD matrix WN as weight matrix will be denoted as ρ̂Arbov and ρ̂SY S,

respectively. In the appendix we prove the following result:

Theorem 8 Assume that SA and FEA∗ hold, E(vi,1) = 0, corr(µ, v1) = 0, T = 3, |ρ| < 1

and σ2µ →∞. Then ρ̂Arbov, ρ̂SY S and ρ̂SY S1 are inconsistent.

One can derive local asymptotic distributions of ρ̂Arbov, ρ̂SY S and ρ̂SY S1 similarly to

those of ρ̂ABlev.

We will now extend the results in Theorem 8 to T > 3. The set of m Arbov moment

conditions in E(ZII′
i wi) = 0 can be restated as E(Z̃II′

i [w′i ∆w′i]
′) = 0 where Z̃II

i =

diag(ZL
i , Z

D
i ) is a 2(T −2)×m matrix with ZL

i = diag(∆yi,2, ...,∆yi,T−1). We can extend

the results given in Theorem 8 to T > 3 by using Lemma 3 from the appendix.

Theorem 9 Assume that SA and FEA∗ hold, E(vi,1) = 0, corr(µ, v1) = 0, T > 3, |ρ| < 1

and σ2µ → ∞. Assuming that ρ̂Arbov1 and ρ̂Arbov exploit E(Z̃II′
i [w′i ∆w′i]

′) = 0 in lieu of

E(ZII′
i wi) = 0, then:

(i) plimN→∞ ρ̂Arbov1 = 1 and plimN→∞ ρ̂Arbov2 = ρ; (ii) plimN→∞ ρ̂Arbov = 1.

The proofs of Lemma 3 and Theorem 9 are similar to that of Theorem 8. The com-

posite errors, wi, and the lagged dependent variables, yi,t−1, need to be scaled by σµ

to achieve convergence of the averages of their cross products with the instruments.

However, the blocks of the weight matrices of ρ̂Arbov1 and ρ̂Arbov that correspond to
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E(ZL′
i wi/σµ) = 0 do not provide this scaling. These estimators will effectively only

exploit the (scaled) moment conditions in E(ZL′
i wi/σµ) = 0, which do not identify ρ

(because plimN→∞ limσµ→∞(N−1
∑N

i=1 Z
L′
i yi,−1/σµ) = 0), and hence will be inconsistent.

When T > 3 and σ2µ →∞, the moment conditions in E(ZD′
i ∆εi) = 0 still identify ρ and a

truly optimal Arbov estimator, e.g. ρ̂Arbov2, is consistent and asymptotically equivalent to

an optimal AB GMM estimator but, as noted above, no optimal 1-step Arbov estimator

is available unless σ2µ = 0.

The 2-step optimal Arbov estimator, ρ̂Arbov2, requires that the elements of the optimal

weight matrix are consistently estimated. Any FE estimator can be used for this purpose,

e.g. ρ̂ABdif or the Transformed ML estimator of Hsiao et al. (2002), but also ρ̂AB1lev,

ρ̂AB2lev or the RE Quasi ML estimator of Kruiniger (2013): when T > 3, the REQMLE

for ρ remains consistent when σ2µ/σ
2 ↑ ∞ and under normality of the data the REMLE

for ρ is asymptotically equivalent to the Transformed MLE for ρ when corr(µ, v1) = 0,

σ2µ/σ
2 ↑ ∞ and N →∞, see Theorem 7.

Note that the set of m + T − 2 moment conditions in E(ZS′
i [w′i ∆w′i]

′
) = 0 can be

rewritten as E(Z̃S′
i [w′i ∆w′i]

′
) = 0, where Z̃S

i = diag(ZL
i , Z

AB
i ) is a 2(T −2)× (T −2 +m)

matrix. Using Lemmas 2, 3 and 4 from the appendix we obtain the following results

related to System estimators:

Theorem 10 Assume that SA and FEA∗ hold, E(vi,1) = 0, corr(µ, v1) = 0, T > 3,

|ρ| < 1 and σ2µ → ∞. Let X9 = ((1 − ρ)X ′71 X
′
51)
′ and X10 = (X ′71 X

′
61)
′ where X51,

X61 and X71 are Gaussian r.v.’s that are defined in Lemmas 2 and 3. Assuming that

ρ̂SY S1 and ρ̂SY S exploit E(Z̃S′
i [w′i ∆w′i]

′
) = 0 in lieu of E(ZS′

i [w′i ∆w′i]
′
) = 0, then:

(i) plimN→∞ ρ̂SY S1 = 1 and plimN→∞ ρ̂SY S2 = ρ;

(ii) ρ̂SY S − ρ
d→ (X ′10W11X10)

−1X ′10W11X9.

The proofs of Lemma 4 and Theorem 10 are similar to that of Theorem 8. The

SYS1 (the SYS) estimator will effectively only exploit the (scaled) moment conditions in

E(ZL′
i wi/σµ) = 0 (and E(ZI′

i ∆εi/σµ) = 0), which do not identify ρ (when corr(µ, v1) =

0), and hence will be inconsistent. Let Zas
i = diag(zasi,4, z

as
i,5, ..., z

as
i,T , 0) with zasi,t = ∆yi,2 +∑t

s=3 ∆wi,s.Note thatE(Z̃S′
i [w′i ∆w′i]

′
) = 0 is equivalent toE(ZAB′

i ∆εi) = 0, E(Zas′
i ∆εi) =

0 and E(wi,3∆yi,2) = 0. When T > 3 and σ2µ →∞, E(ZD′
i ∆εi) = 0 and E(Zas′

i ∆εi) = 0

still identify ρ and a truly optimal SYS estimator, e.g. ρ̂SY S2, is consistent and asymp-

totically equivalent to the optimal FE GMM estimator for ρ that exploits these moment
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conditions and also to the optimal FE GMM estimator for ρ that exploits a version of the

set of moment conditions in (6) that allows for heteroskedasticity over time. However, no

optimal 1-step SYS estimator is available unless σ2µ = 0 and the 2-step ‘optimal’System

estimator that uses ρ̂SY S1 to obtain an estimate of its weight matrix and is commonly

used in the literature is inconsistent and asymptotically biased upwards. The 2-step op-

timal System estimator, ρ̂SY S2, requires that the elements of the optimal weight matrix

are consistently estimated. As the REQMLE remains consistent when σ2µ/σ
2 ↑ ∞ and

has favorable properties, also when ρ is near or equal to unity, cf. Kruiniger (2013), we

propose a new System estimator that uses the REQMLE to estimate the optimal weight

matrix. When ρ is not close to unity, one could also use ρ̂AB2lev to estimate the opti-

mal weight matrix of the System estimator leading to yet another version of the System

estimator.

3 The finite sample performance of the estimators

Using Monte Carlo simulation, we study the finite sample properties of the 2-step optimal

RE AB GMM estimator (AB2), the commonly used version of the 2-step ‘optimal’System

estimator (CSYS2; C for Conventional) of Arellano and Bover (1995) and Blundell and

Bond (1998), and the RE and FE Quasi MLEs for ρ in the model given in (1). The 2-step

estimators AB2 and CSYS2 use the 1-step estimators ρ̂AB1 and ρ̂SY S1, respectively, to

obtain an estimate of their weight matrix. We also consider the finite sample properties

of the 2-step optimal System estimators that use the REQMLE or the AB2 estimator

to obtain an estimate of the optimal weight matrix. These estimators are denoted as

RSYS2 and ASYS2, respectively. Like the AB2 and SYS2 GMM estimators, the RE and

FE Quasi MLEs that we consider allow for heteroskedasticity over time (and by doing so

they actually allow for arbitrary heteroskedasticity).

In all simulation experiments the values of the error components, the µi and the εi,t,

have been drawn from normal distributions with zero means and the εi,t are homoskedastic

and do not exhibit autocorrelation, i.e. E(εiε
′
i) = σ2I.

We study how the properties of the estimators are affected if we change (1) the condi-

tional distributions of the differences between the initial observations and the individual

effects (the vi,1) given the individual effects (the µi), (2) the value of N , (3) the value of

ρ, (4) the value of σ2v/σ
2 and/or (5) the value of σ2µ/σ

2. W.l.o.g. we set σ2 = 1.
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We conducted the simulation experiments for T = 6, N ∈ {100, 500}, ρ ∈ {0.5, 0.9},
σ2v ∈ {43 , 5 5

19
} and σ2µ ∈ {0, 1, 4, 10, 25}. Note that if ρ = 0.5, then σ2/(1 − ρ2) = 4

3
,

while if ρ = 0.9, then σ2/(1− ρ2) = 5 5
19
.

In order to assess how the conditional distribution of the vi,1 = yi,1 − µi, i = 1, ..., N,

affects the properties of the estimators, we conducted two types of experiments, which

are identified by a capital letter: for one type of experiments the initial observations are

drawn from ‘mean stationary’distributions, (MS), (yi,1 − µi)|µi ∼ N(0, σ2v), whereas for

the other type the initial observations are drawn from ‘mean nonstationary’distributions,

(MNS), (yi,1 − (1 +
√

0.2)µi)|µi ∼ N(0, σ2v − 0.2σ2µ).

Under design MS, {yi,t} is mean stationary and {yi,t} is even strictly stationary if σ2v
is chosen equal to σ2/(1− ρ2). Under design MNS, {yi,t} is nonstationary due to the fact
that E(µi(yi,1− µi)) 6= 0, although if σ2v is chosen equal to σ

2/(1− ρ2), then (yi,t− µi) ∼
N(0, σ2/(1− ρ2)) as is the case under design MS. In both designs E(yi,t − yi,t−1) = 0.

The AB GMM estimators and the QML estimators suffer from a weak moment con-

ditions problem when ρ is close to one.

When we ran the simulations, we did not impose homoskedasticity on the likelihood

functions. However, we did maximize the likelihood functions subject to the restrictions

σ2t > 0 and (T − 1)σ̃2v + σ2t > 0, t = 2, ..., T, on the variance parameters to ensure that

the estimates of the covariance matrix of the composite errors were positive definite. We

allowed for time effects by subtracting cross-sectional averages from the data.

Tables 1-4 report some of the simulation results on the properties of the estimators

for N = 100 (and T = 6) in terms of the biases and mean squared errors (MSEs). These

numbers have been multiplied by 100. The tables differ with respect to the assumptions

made about the conditional distribution of the vi,1 (design MS or MNS), the value of ρ

(0.5 or 0.9) and that of σ2v (4/3 or 5 5
19
). Appendix B reports further results. Inspection

of the results in tables 1-4 and those in appendix B leads to the following conclusions:

1. The bias and the variance of the AB2 estimator depend on the conditional distri-

bution of the vi,1: they increase in σ2µ/σ
2 under design MS (due to instruments

becoming weaker) but decrease in σ2µ/σ
2 under design MNS (due to instruments

becoming stronger, cf. Hayakawa, 2009). The bias is larger when ρ is closer to 1.

2. Similar to the bias and the variance of the AB2 estimator, those of the REQMLE

increase in σ2µ/σ
2 under design MS, but they decrease in σ2µ/σ

2 under design MNS.
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Table 1: MC results for estimators of ρ; N = 100, design MS, ρ = 0.5 & σ2v/σ
2 = 4/3.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
σ2µ bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
0 -1.85 0.76 0.16 0.62 0.86 1.10 -0.45 0.46 -0.37 0.49 -0.98 0.53
1 -3.37 1.23 0.32 0.78 0.90 1.15 0.45 0.56 -0.03 0.58 -1.28 0.67
4 -5.38 2.09 0.71 1.00 0.95 1.15 3.22 0.85 0.87 0.74 -1.60 0.93
10 -6.53 2.64 1.01 1.14 1.02 1.16 7.64 1.68 1.20 0.89 -2.28 1.22
25 -7.26 3.17 1.32 1.24 1.23 1.19 17.6 5.01 1.62 1.11 -3.26 1.84

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 2: MC results for estimators of ρ; N = 100, design MS, ρ = 0.9 & σ2v/σ
2 = 5 5

19
.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
σ2µ bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
0 -8.94 3.44 2.65 1.81 2.70 2.18 -1.22 0.55 -0.24 0.75 -4.80 1.36
1 -10.8 4.23 3.69 2.00 3.17 2.22 -1.04 0.58 0.16 0.80 -5.73 1.60
4 -16.1 7.74 4.97 2.23 3.22 2.14 -0.59 0.60 0.89 0.96 -8.89 2.91
10 -25.4 14.7 5.66 2.45 3.13 2.20 -0.08 0.64 1.39 1.12 -15.0 5.91
25 -37.8 26.9 5.68 2.50 3.48 2.20 1.87 0.66 2.43 1.41 -25.2 13.2

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 3: MC results for estimators of ρ; N = 100, design MNS, ρ = 0.5 & σ2v/σ
2 = 4/3.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
σ2µ bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
1 -3.11 1.22 0.64 1.04 1.01 1.25 -9.15 1.26 -7.15 0.97 -8.08 1.11
4 -2.08 0.92 0.42 0.73 1.43 1.31 46.0 22.19 7.78 1.82 5.74 1.59

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 4: MC results for estimators of ρ; N = 100, design MNS, ρ = 0.9 & σ2v/σ
2 = 5 5

19
.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
σ2µ bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
1 -36.9 24.2 4.30 2.41 3.54 2.33 -0.41 0.19 0.34 0.36 -14.9 5.02
4 -28.7 16.5 4.43 2.31 3.56 2.29 -2.66 0.45 -1.15 0.70 -16.2 5.55
10 -18.8 9.12 4.22 2.23 3.80 2.28 -2.86 0.91 -0.97 1.26 -14.3 4.88
25 -9.68 3.74 2.89 1.81 3.23 2.17 11.1 1.68 5.71 1.64 -4.02 2.48

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.
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The bias and the variance of the FEQMLE hardly change with σ2µ/σ
2 under either

design. Note that under design MS Avar(ρ̂REML)/Avar(ρ̂FEML) ↑ 1 as σ2µ/σ
2 ↑ ∞,

where Avar(ρ̂) is the limiting variance of ρ̂ for N →∞, cf. Theorem 7. This result
can be a bit ‘misleading’when ρ is not close to 1 but σ2v/σ

2 is large. In this case,

when σ2µ/σ
2 increases, the bias and the variance of the REQMLE first ‘explode’and

then decrease, whereas the FEQMLE, which is a restricted version of the REQMLE,

is unaffected. Note that ρ̂REML is asy. equivalent to a GMM estimator that uses

AB and AS moment conditions. Under design MS, if ρ � 1 and σ2v/σ
2 increases,

then the former become stronger but are given (relatively) less weight while the

latter become weaker. Nonetheless, once σ2v/σ
2 is fixed, if σ2µ/σ

2 ↑ ∞, both kinds
of moment conditions become weaker and ρ̂REML eventually still tends to ρ̂FEML.

3. The CSYS2 estimator performs better than the QMLEs when all the moment con-

ditions that are exploited by the former estimator are valid and not weak (so the

value of σ2µ/σ
2 is not high) or when the value of ρ is close to 1. However, if the

value of ρ is not close to 1 (so that (the effects of) the µi are not neutralized) and if

mean stationarity is violated (as in design MNS) or the value of σ2µ/σ
2 is high (so

that some of the moment conditions exploited by the SYS estimators are weak and

the ‘optimal’weight matrix of the CSYS2 estimator is poorly estimated as a re-

sult of using ρ̂SY S1), then the CSYS2 estimator is seriously biased (Bun and Wind-

meijer (2010) report similar findings when the value of σ2µ/σ
2 is high), whereas the

FEQMLE and often also the REQMLE (but see 2.) perform well.

4. When the value of ρ is close to 1 (i.e., 0.9), both the CSYS2 estimator and the

RSYS2 estimator usually perform well although the former performs (somewhat)

better than the latter. The exception is when mean stationarity is violated, σ2v/σ
2

is high and σ2µ/σ
2 is high. In this case, both estimators are biased and the RSYS2

estimator perform somewhat better than the CSYS2 estimator. When ρ is close

to 1, the ASYS2 estimator performs (much) worse than the CSYS2 and RSYS2

estimators, especially under design MS if σ2µ/σ
2 is high and under design MNS

(unless σ2µ/σ
2 is very high) due to the poor performance of the AB2 estimator.

5. Unlike the CSYS2 estimator, the RSYS2 and ASYS2 estimators perform well under

design MS when the value of ρ is not close to 1 (e.g., 0.5) and the value of σ2µ/σ
2 is

high if the value of σ2v/σ
2 is moderate (e.g., 4/3). However, if the value of σ2v/σ

2
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is high (e.g., 5 5
19
), then, like the CSYS2 estimator, the RSYS2 estimator performs

poorly under design MS when ρ = 0.5 and the value of σ2µ/σ
2 is high due to the

poor performance of the REQMLE. In this case the ASYS2 estimator still performs

well.

6. When mean stationarity is violated, the value of ρ is not close to 1 and the value

of σ2µ/σ
2 is not low, then the RSYS2 estimator and especially the ASYS2 estimator

perform (much) better than the CSYS2 estimator, although the REQMLE is the

preferred estimator in this case (because all the SYS estimators are inconsistent

and hence biased in this case).

The reason for the last finding is that when instead of ρ̂SY S1 a consistent estimator,

such as ρ̂AB2 or ρ̂REML, is used to obtain an estimate of the ‘optimal’weight matrix, then

the weight given to the invalid Arbov moment conditions E(ZL′
i wi) = 0 drops relative to

the weight given to the other, valid moment conditions that are exploited by an ‘optimal’

System estimator, i.e., E(ZD′
i ∆εi) = 0 and E(ZI′

i ∆εi) = 0. When a consistent estimator,

e.g. ρ̂AB2 or ρ̂REML, is used to obtain an estimate of the ‘optimal’weight matrix, an

increase in the value of σ2µ/σ
2 also leads to a drop in the relative weight given to the

invalid Arbov moment conditions E(ZL′
i wi) = 0.

We also considered the usefulness of two versions of a test for weak instruments

due to Montiel Olea and Pflueger (2013), and one test of underidentification due to

Windmeijer (2018). The first two tests make use of cluster-robust F-test-statistics, FD

and FL, which are based on the first-stage regressions∆yi,t−1 = πDyi,t−2+ωDi,t and yi,t−1 =

πL∆yi,t−1+ω
L
i,t, respectively. FD (FL) indicates weakness of the instruments for the model

in differences (levels) when FD < 10 (FL < 10). As the models usually contain time

dummies, we replace the observations yi,s by cross-sectionally demeaned versions ỹi,s =

yi,s−N−1
∑N

j=1 yj,s when computing the values of FD and FL. The underidentification test

is only carried out for the model in differences and is based on Hansen’s J-test-statistic for

testing the validity of the ‘orthogonality conditions’E(ỹi,1∆ỹi,t−1) = 0, t = 3, ..., T, where

∆ỹi,t−1 are the ‘errors’and ỹi,1 are the instruments. This test rejects underidentification

in the model at the 5% level when J > χ20.95(T − 2).

Tables 5-8 report some of the simulation results on the properties of the tests for

N = 100 (and T = 6) in terms of the average values of the test-statistics and the p-value

of the J-test, pJ , as well as the relative frequency that some condition, e.g. non-rejection,
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is met. Appendix B again reports additional results.

Let EN(.) denote a sample average, e.g. EN(X) = N−1
∑N

i=1Xi. Inspection of the

results in tables 5-8 and those in appendix B leads to the following conclusions:

1. When using the rejection rules pJ > 0.05 and FD < 10, the J and the FD tests often

lead to the same conclusion in the sense that EN(1(pJ > 0.05)1(FD < 10)) is close

to min{EN(1(pJ > 0.05)), EN(1(FD < 10))}. Note also that usually EN(1(FD <

10)) < EN(1(pJ > 0.05)). We focus below ‘conservatively’only on the FD test.

2. Under design MS, EN(1(FD < 10)) increases in the value of σ2µ/σ
2, and for a given

value of σ2µ/σ
2, EN(1(FD < 10)) is highest when ρ is high (ρ = 0.9) and σ2v/σ

2 is

low (σ2v/σ
2 = 4/3), while EN(1(FD < 10)) is lowest when ρ is low (ρ = 0.5) and

σ2v/σ
2 is high (σ2v/σ

2 = 5 5
19
).

3. Under design MNS, if ρ is low (ρ = 0.5), then EN(1(FD < 10)) = 0.00, while if ρ is

high (ρ = 0.9), then EN(1(FD < 10)) decreases in the value of σ2µ/σ
2 from 0.87 for

σ2µ/σ
2 = 1 to 0.14 for σ2µ/σ

2 = 25.

4. EN(1(FD < 10)) is positively correlated with the bias of ρ̂AB2 and when ρ is high

(ρ = 0.9), also with the bias of ρ̂ASY S2.

5. Under design MS, EN(1(FL < 10)) increases in the value of σ2µ/σ
2, and for a given

value of σ2µ/σ
2, EN(1(FL < 10)) is highest when ρ is low (ρ = 0.5) and σ2v/σ

2 is

high (σ2v/σ
2 = 5 5

19
), while EN(1(FL < 10)) is lowest when ρ is high (ρ = 0.9) and

σ2v/σ
2 is low (σ2v/σ

2 = 4/3).

6. Under design MNS, if ρ is low (ρ = 0.5), then EN(1(FL < 10)) is very high when

σ2µ/σ
2 = 4 or 10 but EN(1(FL < 10)) = 0.00 when σ2µ/σ

2 = 1 or 25, while if ρ

is high (ρ = 0.9), then EN(1(FL < 10)) is very high when σ2µ/σ
2 = 10 or 25 but

EN(1(FL < 10)) ≤ 0.06 when σ2µ/σ
2 = 1 or 4.

A combination of the FD and FL tests can also be used to choose among ρ̂CSY S2,

ρ̂RSY S2 and ρ̂ASY S2 : if ρ (e.g. ρ̂FEQML) is high, then choose ρ̂CSY S2 unless FD > 10 and

FL < 10, in which case choose ρ̂RSY S2, while if ρ is not high and mean stationarity holds,

then choose ρ̂RSY S2 unless FD > 10 and FL < 10, in which case choose ρ̂ASY S2.

We also investigated the quality of two estimators for the standard errors (SEs) of the

GMM estimators for ρ, and for the bounds of 90% confidence intervals (CIs) for ρ. That is,

23



we considered SEs based on first-order asymptotics and corrected SEs based on equation

(2.6) in Windmeijer (2005).12 The latter depend on the SE of the first-step estimator,

which is given by another Windmeijer SE in the case of ρ̂AB2 (the first-step estimator for

ρ̂ASY S2) and by a very simple non-parametric bootstrap estimate based on 100 replications

in the case of ρ̂REQML (the first-step estimator for ρ̂RSY S2).

Table 5: MC results for identification tests; N = 100, design MS, ρ = 0.5 & σ2v/σ
2 = 4/3.

σ2µ J pJ pJ> 0.05 pJ> 0.01 FD FD< 10 FL FL< 10 pJ>0.05
&FD<10

FD>10
&FL<10

0 29.4 0.00 0.00 0.00 137 0.00 136 0.00 0.00 0.00
1 22.5 0.00 0.00 0.00 69.5 0.00 69.0 0.00 0.00 0.00
4 14.0 0.03 0.17 0.46 28.1 0.01 28.1 0.01 0.01 0.01
10 9.12 0.14 0.57 0.84 13.0 0.31 13.0 0.32 0.27 0.30
25 6.45 0.29 0.80 0.95 5.75 0.88 5.82 0.88 0.77 0.12

Notes: 5000 replications; J, FD, FL tests are described in text; pJ is p-value of J test.

Table 6: MC results for identification tests; N = 100, design MS, ρ = 0.9 & σ2v/σ
2 = 5 5

19
.

σ2µ J pJ pJ> 0.05 pJ> 0.01 FD FD< 10 FL FL< 10 pJ>0.05
&FD<10

FD>10
&FL<10

0 15.7 0.02 0.08 0.31 22.7 0.05 22.4 0.06 0.04 0.06
1 14.0 0.03 0.16 0.46 18.9 0.13 18.9 0.13 0.09 0.13
4 11.2 0.08 0.38 0.69 12.8 0.38 13.0 0.38 0.29 0.36
10 8.66 0.17 0.61 0.87 8.14 0.69 8.18 0.69 0.56 0.30
25 6.43 0.28 0.82 0.95 4.47 0.91 4.48 0.91 0.80 0.09

Notes: 5000 replications; J, FD, FL tests are described in text; pJ is p-value of J test.

Table 7: MC results for identification tests; N=100, design MNS, ρ = 0.5 & σ2v/σ
2 = 4/3.

σ2µ J pJ pJ> 0.05 pJ> 0.01 FD FD< 10 FL FL< 10 pJ>0.05
&FD<10

FD>10
&FL<10

1 15.2 0.02 0.10 0.35 53.5 0.00 67.9 0.00 0.00 0.00
4 26.3 0.00 0.00 0.00 53.2 0.00 5.14 0.90 0.00 0.90

Notes: 5000 replications; J, FD, FL tests are described in text; pJ is p-value of J test.

Table 8: MC results for identification tests; N=100, design MNS, ρ = 0.9 & σ2v/σ
2 = 5 5

19
.

σ2µ J pJ pJ> 0.05 pJ> 0.01 FD FD< 10 FL FL< 10 pJ>0.05
&FD<10

FD>10
&FL<10

1 4.72 0.42 0.92 0.99 5.37 0.87 86.8 0.00 0.83 0.00
4 6.59 0.28 0.80 0.95 6.28 0.82 21.3 0.06 0.74 0.05
10 9.74 0.12 0.51 0.80 9.70 0.59 3.43 0.96 0.45 0.41
25 15.1 0.02 0.11 0.36 18.3 0.14 2.23 0.98 0.08 0.84

Notes: 5000 replications; J, FD, FL tests are described in text; pJ is p-value of J test.

12The derivation of the Windmeijer corrected SEs for the RSYS2 estimator and the ASYS2
estimator is provided in the appendix.
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In the case of the CIs we report the number of times that the true value of ρ was

outside the CIs, that is, we report the rejection probabilities (RPs).

Tables 9 and 10 report the simulation results for design S with ρ = 0.5 and ρ = 0.9,

respectively. For both tables, σ2v = σ2/(1− ρ2). Furthermore, N = 100 (and T = 6). The

findings can be summarized as follows:

1. The conventional asymptotic SEs always seriously underestimate the standard devi-

ations of the GMM estimators and are (much) lower than the Windmeijer corrected

SEs. The latter are often close to the standard deviations of the AB2 estimator

although they somewhat underestimate them when ρ = 0.9 and σ2µ/σ
2 is high.

2. When ρ = 0.5, the Windmeijer corrected SEs somewhat underestimate the standard

deviations of the RSYS2 and ASYS2 estimators and, when σ2µ/σ
2 is not high, the

CSYS2 estimator, but the Windmeijer corrected SE clearly underestimates the

standard deviation of the CSYS2 estimator when σ2µ/σ
2 is very high.

3. When ρ = 0.9, the Windmeijer corrected SEs somewhat underestimate the standard

deviations of the CSYS2 and RSYS2 estimators and, when σ2µ/σ
2 is not high, the

ASYS2 estimator, but the Windmeijer corrected SE clearly underestimates the

standard deviation of the ASYS2 estimator when σ2µ/σ
2 is high.

4. When ρ = 0.5, the RPs of the CIs based on the RSYS2, the AB2 and the ASYS2

estimators, respectively, and a Windmeijer corrected SE are (much) closer to the

nominal value of 10% than the RP of a similar CI based on the CSYS2 estimator

and/or on a conventional SE, especially when σ2µ/σ
2 is high.

5. When ρ = 0.9, the RP of the CI based on the CSYS2 estimator and the Windmeijer

corrected SE is (much) closer to the nominal value of 10% than the RP of a similar

CI based on any of the RSYS2, the AB2 and the ASYS2 estimators and/or on a

conventional SE, which is always (much) too high, although the RP of the first CI

is still somewhat high when σ2µ/σ
2 = 25, namely about 0.17.

We conclude that under design MS with σ2v = σ2/(1 − ρ2) the Windmeijer corrected
SE corresponding to the preferred SYS2 estimator (RSYS2 when ρ = 0.5 and CSYS2

when ρ = 0.9) and the CI based on this estimator and this SE are close to being correct.
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Table 9: MC results for st. errors and size; N=100, design MS, ρ = 0.5 & σ2v/σ
2 = 4/3.

AB2 CSYS2 RSYS2 ASYS2
σ2µ type SE RP SE RP SE RP SE RP
0 E 0.085 0.068 0.070 0.072

A 0.069 0.20 0.052 0.21 0.052 0.22 0.052 0.24
W 0.083 0.12 0.065 0.13 0.066 0.13 0.067 0.14

1 E 0.106 0.074 0.076 0.081
A 0.087 0.20 0.057 0.22 0.057 0.22 0.057 0.25
W 0.104 0.12 0.072 0.12 0.074 0.13 0.077 0.13

4 E 0.134 0.086 0.085 0.095
A 0.110 0.22 0.059 0.30 0.059 0.25 0.061 0.30
W 0.133 0.14 0.083 0.16 0.082 0.14 0.090 0.15

10 E 0.149 0.105 0.094 0.108
A 0.124 0.23 0.057 0.46 0.058 0.31 0.060 0.38
W 0.151 0.14 0.095 0.25 0.090 0.13 0.105 0.15

25 E 0.163 0.138 0.104 0.132
A 0.133 0.23 0.050 0.74 0.052 0.38 0.054 0.51
W 0.163 0.15 0.103 0.50 0.099 0.12 0.124 0.14

Notes: 5000 Monte Carlo replications; E: based on empirical distribution; A: based on
first-order asymptotic distribution; W: based on Windmeijer’s corrected asymptotic standard

errors; SE: standard deviation/error; RP: rejection probability (nominal size is 10%).

Table 10: MC results for st. errors and size; N=100, design MNS, ρ = 0.9 & σ2v/σ
2 = 5 5

19
.

AB2 CSYS2 RSYS2 ASYS2
σ2µ type SE RP SE RP SE RP SE RP
0 E 0.163 0.073 0.086 0.106

A 0.130 0.26 0.052 0.23 0.053 0.31 0.058 0.36
W 0.160 0.16 0.070 0.12 0.080 0.17 0.098 0.15

1 E 0.175 0.075 0.089 0.113
A 0.142 0.26 0.053 0.24 0.053 0.34 0.060 0.39
W 0.176 0.16 0.071 0.12 0.082 0.18 0.107 0.16

4 E 0.227 0.077 0.098 0.146
A 0.168 0.32 0.053 0.26 0.052 0.40 0.063 0.49
W 0.216 0.19 0.074 0.12 0.088 0.20 0.129 0.18

10 E 0.287 0.080 0.105 0.191
A 0.198 0.39 0.052 0.30 0.052 0.46 0.066 0.59
W 0.263 0.23 0.076 0.14 0.094 0.22 0.163 0.23

25 E 0.355 0.079 0.116 0.261
A 0.233 0.48 0.047 0.37 0.049 0.53 0.066 0.75
W 0.325 0.29 0.075 0.17 0.111 0.23 0.219 0.31

Notes: 5000 Monte Carlo replications; E: based on empirical distribution; A: based on
first-order asymptotic distribution; W: based on Windmeijer’s corrected asymptotic standard

errors; SE: standard deviation/error; RP: rejection probability (nominal size is 10%).
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4 Empirical example

To illustrate the importance of using a consistent estimator for the optimal weight matrix

of the System estimator when the variance ratio is large, we revisit the economic growth

study of Levine et al. (2000). They investigated the influence of financial intermediary

development (fid) on growth while controlling for other possibly endogenous factors using

a dynamic panel data model with time effects (see also Bazzi and Clemens (2013)):

∆ ln yi,t = (fidi,t)β + (ln yi,t−1)(ρ− 1) + x′i,tγ + δt + ηi + εi,t,

where yi,t is GDP per capita. They used three alternative measures of fid : the ratio of

Liquid Liabilities to GDP (LLY), the ratio of Commercial bank assets to commercial bank

plus Central Bank Assets (CCBA) and the ratio of Credit issued to the Private sector to

GDP (PRICR). The regressors they included in xi,t are: government size (GOV), openness

to trade (TRADE), inflation (INFL), average years of secondary schooling (SEC) and

black market premium (BMP), see Levine et al. (2000) for details.

We use an unbalanced panel dataset of Levine et al. (2000): it contains data for 74

countries and up to 7 five-year periods so that in total 437 observations are available.

As themodel contains a lag, 363 observations are available for the model.However, each

moment condition exploited by the AB and SYS estimators involves observations from

three periods so these estimators effectively exploit 289 observations. When the model

is estimated with the Within estimator using the 363 (289) observations, the estimated

variance ratio σ2η/V ar(εi,t) is about 4.5 (25). Hence the variance ratio is fairly high.

In tables 11-13 we report estimation results based on the full dataset. In tables 30-32

in appendix C we report results based on a smaller dataset (of 253 observations) that

contains data for at least three lags. In all tables we also report results for (Difference-in-)

Hansen (J) tests of overidentifying restrictions, a heteroskedasticity and cluster robust

Cragg-Donald (CD) underidentification test that is based on CU-GMM and discussed in

Windmeijer (2018), and individual (i.e., per endogenous regressor) two-step GMM J tests

of underidentification in the spirit of Sanderson and Windmeijer (2016). In the tables

LINIT denotes ln yi,t−1. We have excluded INFL and BMP from the models because

the CD tests for the SYS estimators for the models that include them do not reject

underidentification. The “AB”(SYS) estimators use time dummies, E(Z ′i,1∆wi) = 0 and

E(Z ′i,2wi) = 0 (E(Z ′i,1∆wi) = 0 and E(Z ′i,3wi) = 0) with Zi,1, Zi,2 and Zi,3 defined below

and wi = ηi + εi. Note that the “AB estimator” is in reality also a System estimator;
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it uses E(Z ′i,2wi) = 0 to avoid underidentification due to poor predictability of ∆seci,t.

However, it does not rely on mean-stationarity of {ln yi,t}. Note also that Zi,1, Zi,2 and
Zi,3 are (partly) collapsed to avoid the problem of “too many instruments”. The “ASYS2

estimator”uses the “AB2 estimator”to obtain an estimate of the optimal weight matrix.

Zi,1 =


zi,1 0 z̃i,1 0 0 0
zi,2 ∆zi,2 0 z̃i,2 0 0
zi,3 ∆zi,3 0 0 z̃i,3 0
zi,4 ∆zi,4 0 0 0 z̃i,4
zi,5 ∆zi,5 0 0 0 0

 , Zi,2 =


∆seci,3
∆seci,4
∆seci,5
∆seci,6
∆seci,7

 and Zi,3 =


∆zi,2
∆zi,3
∆zi,4
∆zi,5
∆zi,6


with zi,t = (fidi,t, ln yi,t, govi,t, tradei,t, seci,t+1) and z̃i,t = (fidi,t, ln yi,t).

The results in the tables show that the CD tests of underidentification reject at the

5% or 10% level with one exception in table 31. The results for the individual J tests

suggest that the moment conditions have good predictive power for the regressors with

one exception for trade in table 13 and another exception for sec in table 31. Furthermore,

the J tests of overidentifying restrictions and the J difference tests of mean-stationarity

do not reject. Therefore, we will focus on the CSYS2 and “ASYS2” estimates. These

estimates have the expected sign in most cases except for a few insignificant ones, notably

the estimates of the coeffi cients of trade when fid is measured by CCBA. The magnitude

of the CSYS2 and ASYS2 estimates for the coeffi cient of ln yi,t−1 is also plausible: for the

full sample these estimates lie in the interval (−0.50,−0.34), while for the smaller sample

they lie in the interval (−0.54,−0.19) with one insignificant exception in table 30. The

implied estimates for ρ are well below unity. The main difference between the CSYS2 and

ASYS2 estimation results is that all CSYS2 estimates of the effects of various measures of

fid on growth are positive and significant at the one-sided 5% level, whereas 50% of the

ASYS2 estimates of these effects are insignificant. In addition, the ASYS2 estimates of the

effect of sec on growth tend to be significant unlike the CSYS2 estimates of that effect.

Summarizing, the CSYS2 estimation results may be unreliable as the variance ratio

is high. In this situation the ASYS2 results may be more reliable. Although in some

cases the ASYS2 estimates of the effects of fid on growth are positive and significant and

not very different from the CSYS2 estimates of these effects, in other cases the ASYS2

estimates of these effects are not significant unlike the CSYS2 estimates. In the latter

cases, the ASYS2 estimates of the effect of sec on growth are (positive and) significant,

whereas the CSYS2 estimates of that effect are not significant. Overall, we conclude that

the evidence for an effect of financial intermediary development on growth is mixed.
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Table 11: Growth and Financial intermediation proxied by CCBA
“AB2” CSYS2 “ASYS2”

estim. st. err. pun estim. st. err. pun estim. st. err.
CCBA 3.17 1.62 0.00 3.88 1.49 0.00 3.76 1.45
LINIT -0.05 0.58 0.00 -0.43 0.37 0.00 -0.34 0.37
GOV -1.90 1.21 0.00 -1.93 1.49 0.01 -1.83 1.35
TRADE -1.35 1.53 0.00 -1.19 1.61 0.00 -1.27 1.52
SEC 0.99 0.45 0.00 1.24 0.51 0.02 1.07 0.52
CD test 25.91 (0.04) 34.24 (0.02)
J test 14.50 (0.41) 20.24 (0.32) 19.68 (0.35)
J-diff test 0.47 (0.49) 5.74 (0.22) 5.18 (0.27)

Notes: N=74; number of obs. = 289; time dummies are included; the estimators are defined in
the text; apart from time dummies, the “AB”(SYS) estimators use 19 (23) instruments;
Windmeijer robust standard errors are reported; pun is p-value of individual J test of

underidentification; the STATA command underid of Schaffer and Windmeijer (2020) was
used to perform the underidentification tests; p-values are in parentheses; first J-diff test tests

E(Z ′i,2wi) = 0; second & third J-diff tests test E(Z ′i,3wi) = 0 excluding E(Z ′i,2wi) = 0.

Table 12: Growth and Financial intermediation proxied by LLY
“AB2” CSYS2 “ASYS2”

estim. st. err. pun estim. st. err. pun estim. st. err.
LLY 0.63 1.54 0.00 1.72 0.85 0.00 1.21 1.25
LINIT -0.40 0.65 0.00 -0.33 0.32 0.01 -0.43 0.46
GOV -1.32 2.10 0.01 -1.33 1.88 0.03 -1.55 1.93
TRADE 1.86 1.88 0.05 0.81 1.03 0.08 1.53 1.43
SEC 1.30 0.58 0.01 0.91 0.56 0.01 1.11 0.50
CD test 24.89 (0.05) 30.44 (0.05)
J test 19.87 (0.13) 25.67 (0.11) 23.94 (0.16)
J-diff test 0.12 (0.73) 5.80 (0.21) 4.07 (0.40)

Notes: see table 11.

Table 13: Growth and Financial intermediation proxied by PRICR
“AB2” CSYS2 “ASYS2”

estim. st. err. pun estim. st. err. pun estim. st. err.
PRICR 1.58 0.91 0.02 1.60 0.52 0.00 1.60 0.53
LINIT -0.61 0.62 0.00 -0.34 0.32 0.02 -0.50 0.42
GOV 0.27 2.30 0.00 -0.38 1.46 0.01 -0.14 1.58
TRADE 0.54 1.67 0.11 0.62 0.94 0.07 0.68 0.97
SEC 0.68 0.67 0.01 0.57 0.66 0.02 0.63 0.71
CD test 25.44 (0.04) 32.32 (0.03)
J test 16.74 (0.27) 21.90 (0.24) 20.90 (0.28)
J-diff test 2.55 (0.11) 5.16 (0.27) 4.16 (0.38)

Notes: see table 11.
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5 Conclusions

In this paper we have studied estimation of the panel AR(1) model with arbitrary initial

conditions and possibly heteroskedasticity in the time dimension. We have discussed

necessary and suffi cient conditions for consistency of FE and RE GMM estimators for

this model, respectively. We found that a necessary condition for consistency of any

GMM estimator for this model is that the average of the squared differences between the

initial observations and the individual effects converges in probability. This condition

can allow for cross-sectional dependence and heterogeneity of the data. A related but

perhaps not very surprising result is that any consistent fixed effects estimator for the

panel AR(1) model involves only differences of the data. In contrast, a random effects

estimator also depends on levels of the data. When the data is mean stationary and

the variance of the individual effects is infinite, then only moment conditions that only

depend on differences of the data and moment conditions that can be combined to form

such moment conditions help to identify the autoregressive parameter and a RE GMM

estimator that exploits such moment conditions will be consistent provided that a suitable

(e.g. optimal) weight matrix is used. In this situation the remaining moment conditions

that involve levels of the data will be redundant. For instance, all the moment conditions

that are exploited by the SYS estimator but not by the FE AB GMM estimator will

be redundant. Furthermore, the 1-step System estimator does not use a suitable weight

matrix and will be inconsistent, which in turn leads to inconsistency of the 2-step ‘optimal’

System estimator when the latter uses the former estimator to obtain an estimate of its

weight matrix.

It follows that under heteroskedasticty over time and mean stationarity, for any RE

GMM estimator to remain consistent when σ2µ/σ
2 ↑ ∞, one needs T > 3 and one needs

to use (a consistent estimator of) a suitable (e.g. optimal) weight matrix such that the

RE estimator converges to a FE estimator when σ2µ/σ
2 ↑ ∞ and N → ∞. If T > 3

and corr(µ, v1) = 0, the REQMLE for ρ is still consistent when σ2µ/σ
2 ↑ ∞ and, under

the additional assumption of normality of the data, the RE MLE for ρ is asymptotically

equivalent to the FE MLE for ρ when σ2µ/σ
2 ↑ ∞ and N →∞. If T = 3, corr(µ, v1) = 0

and the errors are heteroskedastic over time, then GMM and ML estimators for ρ become

inconsistent when σ2µ/σ
2 ↑ ∞.

When the data are mean stationary, ρ is close to one and σ2µ/σ
2 is not large, then
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the Arbov moment conditions E(ZL′
i wi) = 0 strongly identify ρ but the AB moment

conditions E(ZI′
i ∆εi) = 0 and E(ZD′

i ∆εi) = 0 weakly identify ρ, cf. Arellano and

Bover (1995). However, when the data are mean stationary, ρ is close to one and σ2µ/σ
2

becomes large, then not only the (scaled) moment conditions in E(ZI′
i ∆εi/σµ) = 0 and

E(ZD′
i ∆εi) = 0 but also those in E(ZL′

i wi/σµ) = 0 become weak, that is, in this case all

moment conditions exploited by a SYS estimator seem to become weak. Nevertheless,

even in this case the RSYS2 estimator, which uses a consistent estimator of the optimal

weight matrix, and also the ‘conventional’(C)SYS2 estimator, which uses the inconsistent

and slightly upward biased SYS1 estimator to estimate the ‘optimal’weight matrix, will

still have a relatively small bias. This can be explained as follows. The set of moment

conditions exploited by a SYS estimator contains/implies the set of moment conditions

exploited by the non-linear GMM estimator of Ahn and Schmidt (1995, AS), i.e. those

in lines one and three of (5), and a set of similar AS moment conditions that only involve

differences of the data. Under normality of the data the optimal GMM estimators that

exploit these sets of Ahn-Schmidt type moment conditions are asymptotically equivalent

to the RE and FE MLE for ρ, respectively, which are consistent and have a convergence

rate of N1/4 close to and at the unit root, see Kruiniger (2013). Interestingly, the RSYS2

estimator also seems relatively robust to violations of mean stationarity.

Concluding, when (T > 3, σ2µ/σ
2 may be large and) ρ is close to unity, the preferred

estimator is the ‘conventional’ (C)SYS2 estimator (unless FD > 10 and FL < 10, in

which case it is the RSYS2 estimator) but if ρ is not close to unity, e.g. around 0.5,

then under mean stationarity the preferred estimator is the RSYS2 estimator (unless

FD > 10 and FL < 10, in which case the FEQMLE is preferable) while under mean non-

stationarity the preferred estimator is the REQMLE or perhaps its GMM counterpart,

i.e., the non-linear (optimal) GMM estimator of Ahn and Schmidt (1995) if the data are

very ‘non-normal’. 13
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A Proofs

Proof of a claim in the text

We will show that SA and FEA imply that plimN→∞N
−1∑N

i=1 ṽi,1εi,t = 0 ∀ t ∈ T .
FEA requires that for at most a finite number of individuals (indexed by i) in I it is
true that V ar(ṽi,1) = O(N) but not V ar(ṽi,1) = O(1), and that for all other individ-

uals in I it is true that V ar(ṽi,1) = O(1). SA implies that E(ṽi,1εi,t) = 0 ∀ i ∈ I.
Furthermore, SA and FEA imply that the correlation between ṽi,1εi,t and ṽj,1εj,t is zero

∀ i, j ∈ I with i 6= j and
∑N

i=1 V ar(ṽi,1εi,t) = o(N2) (Note that SA(vi) is redundant when

the ṽi,1 and εi,t are normally distributed). Then it follows from Chebyshev’s LLN that

plimN→∞N
−1∑N

i=1 ṽi,1εi,t = 0 ∀ t ∈ T . �

Proof of Lemma 1

We will first show that SA and FEA imply that
∣∣∣plimN→∞N

−1∑N
i=1 ṽi,1εi,t

∣∣∣ <∞ ∀ t ∈ T .
Using SA and Markov’s LLN we obtain that plimN→∞N

−1∑N
i=1 ε

2
i,t = σ2 < ∞ ∀ t ∈ T .

It follows from this result, FEA and the Cauchy-Schwarz inequality that∣∣∣plimN→∞N
−1∑N

i=1 ṽi,1εi,t

∣∣∣ <∞ ∀ t ∈ T .
“=⇒”From (2) we obtain ∆yi,t = ρt−2ṽi,1 + ρt−2εi,2 +

∑t
s=3 ρ

t−s∆εi,s, ∀ t ∈ T . Using
these equalities, Markov’s LLN and the Cauchy-Schwarz inequality, it follows from SA

and FEA that plimN→∞

∣∣∣N−1∑N
i=1(∆yi,s∆yi,t)

∣∣∣ <∞, ∀ s, t ∈ T .
“⇐=”Using∆yi,2 = ṽi,1+εi,2, Markov’s LLN and SA gives plimN→∞N

−1∑N
i=1 ṽi,1(ṽi,1+

2εi,2) = plimN→∞N
−1∑N

i=1(∆yi,2)
2− plimN→∞N

−1∑N
i=1 ε

2
i,2 < ∞. It follows from this

result that plimN→∞N
−1∑N

i=1 ṽ
2
i,1 < ∞ and plimN→∞N

−1∑N
i=1 ṽi,1εi,2 < ∞ and hence

FEA. �
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Proof of Theorem 1

Recall that vi,1 = yi,1 − µi. W.l.o.g. we have assumed that T = 3. Then the RE

Arellano and Bond GMM estimator exploits only one moment condition,

E[yi,1∆εi,3] = 0, where ∆εi,3 = ∆yi,3 − ρ∆yi,2 :

ρ̂ABlev = [
∑N

i=1 yi,1∆yi,2]
−1[
∑N

i=1 yi,1∆yi,3] = ρ+ [
∑N

i=1 yi,1∆yi,2]
−1[
∑N

i=1 yi,1∆εi,3].

We can rewrite the numerator as
∑N

i=1 yi,1∆εi,3 =
∑N

i=1 µi∆εi,3 +
∑N

i=1 vi,1∆εi,3

and the denominator as
∑N

i=1 yi,1∆yi,2 =
∑N

i=1 yi,1[(ρ− 1)(yi,1 − µi) + εi,2] =∑N
i=1[(ρ− 1)v2i,1 + vi,1εi,2] +

∑N
i=1 µi[(ρ− 1)vi,1 + εi,2].

Let us first consider the sums N−0.5
∑N

i=1 yi,1εi,t , t = 2, 3. Note that yi,1 = vi,1 + µi.

Hence V ar(N−0.5
∑N

i=1 yi,1εi,t) = O(N−1
∑N

i=1E(µ2i )). However, since σ
2
µ →∞, we

have N−1
∑N

i=1E(µ2i )→∞. As limN→∞ limσµ→∞N
−1∑N

i=1E(µ2i )/σ
2
µ = 1, we

will rescale the numerator and denominator of ρ̂ABlev by σµ in order to guarantee

that they converge N →∞. Since limσµ→∞E(yi,1∆εi,3/σµ) = 0 ∀ i ∈ I and

limN→∞ limσµ→∞ V ar(N
−1∑N

i=1 yi,1∆εi,3/σµ) = 0,

we obtain plimN→∞ limσµ→∞N
−1∑N

i=1 yi,1∆εi,3/σµ = 0.

After scaling by σµ, the denominator becomes
∑N

i=1 yi,1∆yi,2/σµ. It is easily seen

that plimN→∞ limσµ→∞N
−1∑N

i=1[(ρ− 1)v2i,1 + vi,1εi,2]/σµ = 0 and that

plimN→∞ limσµ→∞N
−1∑N

i=1 µi[(ρ− 1)vi,1 + εi,2]/σµ = (ρ− 1)corr(µ, v1)σv.

If corr(µ, v1) 6= 0, then corr(µ, v1)σv 6= 0 and it follows that ρ̂ABlev is consistent.

If corr(µ, v1) = 0, (limσµ→∞N
−0.5∑N

i=1 µi[(ρ− 1)vi,1 + εi,2]/σµ)
d→ X2,

plimN→∞ limσµ→∞N
−0.5∑N

i=1[(ρ− 1)v2i,1 + vi,1εi,2]/σµ = 0, and

(limσµ→∞N
−0.5∑N

i=1 yi,1∆εi,3/σµ)
d→ X1, where[

X1

X2

]
∼ N

([
0
0

]
,

[
2ζ1 −ζ1
−ζ1 ζ1 + (ρ− 1)2ζ2

])
, with 0 < ζ1, ζ2 <∞.

Thus if corr(µ, v1) = 0, ρ̂ABlev
d→ X1/X2 which implies that ρ̂ABlev is inconsistent. �

Lemma 2 Assume that SA and FEA∗ hold, T > 3, |ρ| < 1 and σ2µ →∞. Then:

N−1/2
∑N

i=1 Z
I′
i ∆εi/σµ

d→ X51;

if corr(µ, v1) 6= 0, plimN→∞N
−1∑N

i=1 Z
I′
i ∆yi,−1/σµ 6= 0;

if corr(µ, v1) = 0, N−1/2
∑N

i=1 Z
I′
i ∆yi,−1/σµ

d→ X61;
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N−1/2
∑N

i=1 Z
D′
i ∆εi

d→ X52 and plimN→∞N
−1∑N

i=1 Z
D′
i ∆yi,−1 6= 0 with

(X ′51 X
′
61)
′ ∼ N(0,Σ56,11) and X52 ∼ N(0,Σ5,2).

Furthermore, plimN→∞N
−1∑N

i=1 Z
I′
i HZ

I
i /σ

2
µ = W̃ 11

AB1;

if corr(µ, v1) 6= 0, plimN→∞N
−1∑N

i=1 Z
I′
i HZ

D
i /σµ = W̃ 12

AB1 6= 0;

if corr(µ, v1) = 0, plimN→∞N
−1∑N

i=1 Z
I′
i HZ

D
i /σµ = W̃ 12

AB1 = 0;

plimN→∞N
−1∑N

i=1 Z
D′
i HZ

D
i = W̃ 22

AB1 and W̃AB1 is nonsingular.

Proof of Theorem 3

Recall that σ2v = plimN→∞N
−1∑N

i=1 v
2
i,1 <∞,

limN→∞N
−1−p∑N

i=1E(µiεi,t)
2 = ζ1, t = 2, 3 with 0 < ζ1 <∞ and

limN→∞N
−1−p∑N

i=1E(µivi,1)
2 = ζ2 with 0 < ζ2 <∞.

Then the following results can easily be verified:

If p > 0, plimN→∞N
−0.5(1+p)∑ vi,1∆εi,3 = 0.

If p > 1, plimN→∞N
−p∑[(ρ− 1)v2i,1 + vi,1εi,2] = 0.

If 0 ≤ p < 1, plimN→∞N
−1∑µi[(ρ− 1)vi,1 + εi,2] = 0.

If 0 < ζ0 = limN→∞N
−1∑N

i=1E(yi,1∆εi,3)
2 <∞, and {yi,1∆εi,3} satisfies

the Lindeberg condition, then N−0.5
∑N

i=1 yi,1∆εi,3
d→ N(0, ζ0).

If 0 ≤ p < 1, then plimN→∞N
−1∑N

i=1 yi,1∆yi,2 = p limN→∞N
−1∑[(ρ− 1)v2i,1

+ vi,1εi,2]+plimN→∞N
−1∑N

i=1 µi[(ρ− 1)vi,1 + εi,2] = (ρ− 1)σ2v.

So, if p = 0, 0 < ζ0 = limN→∞N
−1∑N

i=1E(yi,1∆εi,3)
2 <∞, and {yi,1∆εi,3}

satisfies the Lindeberg condition, then N0.5 (ρ̂ABlev − ρ)
d→ N(0, [(ρ− 1)σ2v]

−2ζ0).

If p > 0 and {µi∆εi,3/N0.5p} satisfies the Lindeberg condition, then

N−0.5(1+p)
∑N

i=1 yi,1∆εi,3 = N−0.5(1+p)
∑N

i=1 vi,1∆εi,3 +N−0.5(1+p)
∑N

i=1 µi∆εi,3
d→

X1 ∼ N(0, 2ζ1); so, if 0 < p < 1, N0.5(1−p) (ρ̂ABlev − ρ)
d→ N(0, [(ρ− 1)σ2v]

−22ζ1);

Finally, if p ≥ 1, and both {µiεi,2/N0.5p} and {µivi,1/N0.5p} satisfy the Lindeberg

condition, then

if p = 1, N−0.5(1+p)
∑N

i=1 yi,1∆yi,2
d→ (ρ− 1)σ2v +X2 with X2 ∼ N(0, ζ1 + (ρ− 1)2ζ2);

if p > 1, N−0.5(1+p)
∑N

i=1 yi,1∆yi,2
d→ X2. Furthermore, if p ≥ 0, Cov(X1, X2) = −ζ1.

So, if {µiεi,t/N0.5p}, t = 2, 3, and {µivi,1/N0.5p} satisfy the Lindeberg condition,
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then if p = 1, (ρ̂ABlev − ρ)
d→ X1

(ρ−1)σ2v+X2
, while if p > 1, (ρ̂ABlev − ρ)

d→ X1
X2
. �

Proof of Theorem 6

Below we assume that the data are i.i.d. but the proof is similar for i.h.d. data.

The OREHOCGMM estimator for ρ exploits all the moment conditions that are

exploited by the OFEHOCGMM estimator for ρ, e.g. (6), plus the following moment

conditions: E(yi,1∆εi,t) = E(yi,1(∆yi,t − ρ∆yi,t−1)) = 0, t = 3, ..., T, E(yi,1∆yi,2) =

(ρ − 1)(σ2v + σµ,v) and E(y2i,1) = σ2v + 2σµ,v + σ2µ, where we have used E(yi,1∆yi,2) =

E((vi,1+µi)((ρ−1)vi,1+εi,2)). The moment conditions corresponding to E(yi,1∆yi,2) and

E(y2i,1) are redundant for estimating ρ because only they can be used to identify σµ,v and

σ2µ.

The 0.5(T − 1)T moment conditions in (6) involve ρ, σ2 and σ2v.

E((∆yi,2)
2) = σ2 + (1 − ρ)2σ2v is the only moment condition that involves σ

2
v and is

therefore redundant for estimating ρ. E(∆yi,2∆εi,3) = −σ2 can be used to remove σ2 from
the other moment conditions in (6). Thus the OFEHOCGMM estimator for ρ is equal to

a GMM estimator that optimally exploits 0.5(T −1)T −2 moment conditions which only

involve ρ. Let us collect these moment conditions in the vector E(m2(ρ)) = 0. Let D2 =

E(dm2(ρ)
dρ

) and let Ω22 = E(m2(ρ)m2(ρ)′). Then Avar(ρ̂OFEHOCGMM) = (D′2Ω
−1
22D2)

−1.

We will prove the first part of the theorem by showing that E(yi,1∆εi,3) = 0 is not

redundant relative to the moment conditions that are optimally exploited by the FE-

HOCGMM estimator when σ2µ →∞ and corr(µ, v1) 6= 0.

Consider the estimator ρ̂OHOCGMM+ which optimally exploits the moment con-

ditions E(m⊥(ρ)) = 0 and E(m2(ρ)) = 0 where m⊥(r) = yi,1(∆yi,3 − r∆yi,2) −m′2(r) ×
Ω−122 E(m2(ρ)yi,1∆εi,3). Note that E(m⊥(ρ)) = 0 and E(m2(ρ)) = 0 are equivalent to

E(yi,1(∆yi,3−ρ∆yi,2)) = 0 andE(m2(ρ)) = 0. It is easily seen that E(m2(ρ)m⊥(ρ)) = 0 so

the optimal weighting matrix used by ρ̂OHOCGMM+ is block-diagonal, i.e.,

diag(w−111 ,Ω
−1
22 ) with w11 = E(m⊥(ρ)m⊥(ρ)′) and [Avar(ρ̂OHOCGMM+)]−1 = D2Ω

−1
22D2 +

[E(dm⊥(ρ)
dρ

)]2w−111 . It follows that E(yi,1∆εi,3) = 0 is not redundant relative to E(m2(ρ)) =

0 if and only if [E(dm⊥(ρ)
dρ

)]2w−111 > 0.

Now E(dm⊥(ρ)
dρ

) = −E(yi,1∆yi,2) − E(
dm′

2(ρ)

dρ
)Ω−122 E(m2(ρ)yi,1∆εi,3),

E(m2(ρ)yi,1∆εi,3) = E(yi,1∆yi,2∆εi,3∆εi,4, 0, 0, ..., 0, yi,1∆yi,2(∆εi,3)
2vech(H)′)′,

E(yi,1∆yi,2∆εi,3∆εi,4) = −σ2E(yi,1∆yi,2) and E(yi,1∆yi,2(∆εi,3)
2) = 2σ2E(yi,1∆yi,2).

Note also that ∆yi,2 = (ρ− 1)(y1 − µ) + ε2.
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When σ2µ → ∞ and corr(µ, v1) 6= 0, then limσµ→∞([E(yi,1∆yi,2)/σµ]2σ2µw
−1
11 ) =

[(ρ − 1)corr(µ, v1)σv]
2 limσµ→∞(σ2µw

−1
11 ) > 0 and hence limσµ→∞([E(dm⊥(ρ)

dρ
)]2w−111 ) > 0.

This concludes the proof of the first part of the theorem.

We will now prove the second part of the theorem, where we assume σ2µ → ∞ and

corr(µ, v1) = 0.

Let m1(ρ) = [yi,1(∆yi,3 − ρ∆yi,2), yi,1(∆yi,4 − ρ∆yi,3), ..., yi,1(∆yi,T − ρ∆yi,T−1)]
′

and let m(ρ) = [m′1(ρ) m′2(ρ)]′. The OREHOCGMM estimator for ρ optimally exploits

E(m(ρ)) = 0.

Let D = [D
′
1 D

′
2]
′
with Di = E(dmi(ρ)

dρ
), and let Ω =

[
Ω11 Ω12

Ω21 Ω22

]
with Ωij =

E(mi(ρ)mj(ρ)′). Moreover, let S1 = σ−1µ IT−2 and S = diag(S1, I(T−1)2−2). Then

Avar(ρ̂OREHOCGMM) = (D′Ω−1D)−1 = ((SD)′(SΩS)−1SD)−1.

We can easily verify the following: D1,k = E( d
dρ

(yi,1(∆yi,k+2 − ρ∆yi,k+1))) =

−E(yi,1∆yi,k+1), k = 1, ..., T − 2. Note that ∆yi,t = ρt−2∆yi,2 +
∑t

s=3 ρ
t−s∆εi,s and

∆yi,2 = (ρ− 1)vi,1 + εi,2. Since corr(µ, v1) = 0, limσµ→∞E(yi,1∆yi,2/σµ) = limσµ→∞(ρ−
1)(σ2v/σµ + corr(µ, v1)σv) = 0. Moreover, limσµ→∞[E(yi,1∆εi,t/σµ)] = 0, t = 3, ..., T. It

follows that limσµ→∞ S1D1 = 0.

We also have limσµ→∞ S1Ω11S1 = Ω̃11, where Ω̃11,st =

limσµ→∞E(y2i,1∆εi,s+2∆εi,s+2/σ
2
µ), s, t = 1, ..., T − 2, that is Ω̃11,st = 2σ2 if s = t;

Ω̃11,st = −σ2 if |s− t| = 1, and Ω̃11,st = 0 if |s− t| ≥ 2. It follows that Ω̃11 is a fi-

nite PDS matrix.

We will now consider limσµ→∞ S1Ω12. We note that m2(ρ) only depends on squares

and products of the differences of the data, ∆yi,t, t = 2, ..., T and that∆yi,t can be written

as sums of vi,1 and εi,s, s = 2, ..., t, for all t = 2, ..., T.

Moreover, limσµ→∞E(yi,1εi,t/σµ) = 0, t = 2, ..., T , and limσµ→∞E(yi,1vi,1/σµ) =

corr(µ, v1)σv = 0 since corr(µ, v1) = 0. It follows that limσµ→∞ S1Ω12 = Ω̃12 = 0.

It also follows that limσµ→∞ SΩS = Ω̃ is a finite PDS matrix.

Finally, limσµ→∞[Avar(ρ̂OREHOCGMM)]−1 = limσµ→∞((SD)′(SΩS)−1SD) =

[limσµ→∞(SD)′] × [limσµ→∞(SΩS)−1] × [limσµ→∞ SD] = [0 D′2](Ω̃)−1[0 D′2]
′ =

(D′2Ω
−1
22D2) = [Avar(ρ̂OFEHOCGMM)]−1.

We conclude that if σ2µ → ∞ and corr(µ, v1) = 0, then E(m1(ρ)) = 0 is

redundant relative to E(m2(ρ)) = 0 when the elements of the latter are optimally

weighted by Ω−122 . �
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Proof of Theorem 7

We only prove parts (i-a) and (ii). Part (i-b) follows from asymptotic equivalence of

the MLEs to Optimal HOCGMM estimators and Theorem 6(i).

The RE (Quasi) MLE for θ0 = (π, ρ, σ2, σ̃2v) in the AR(1) panel model is based on

the (quasi) likelihood function corresponding to the following augmented model

∆̃yi = ρ∆̃yi,−1 + πyi,1ι+ ui, (10)

with ui = ṽi,1ι + εi ∼ N(0,Σ), where ∆̃yi = yi − yi,1ι, ∆̃yi,−1 = yi,−1 − yi,1ι and Σ =

E(uiu
′
i) = σ̃2vιι

′+σ2IT−1. The FE (Quasi) MLE for (ρ, σ2, σ̃2v) is based on the same model

but without the term πyi,1ι. After dividing by N and scaling yi,1 by 1/σµ whenever it is

useful the (quasi) log-likelihood function is given by

logL = −1

2
(T − 1) log 2π − 1

2
log |S| (11)

−1

2

1

N

N∑
i=1

(∆̃yi − r∆̃yi,−1 − pσµ(
yi,1
σµ

)ι)′S−1(∆̃yi − r∆̃yi,−1 − pσµ(
yi,1
σµ

)ι).

Note that S = s2Q + (s2 + (T − 1)s̃2v)
1

T−1ιι
′, where Q = IT−1 − 1

T−1ιι
′. It follows that

S−1 = 1
s2
Q+ 1

s2+(T−1)s̃2v
1

T−1ιι
′ and |S| = s2(T−2)(s2 + (T − 1)s̃2v).

The RE (Quasi) ML estimator is defined as the global maximizer of the (quasi) log-

likelihood function. It is also a solution of the likelihood equations for π, ρ, σ2 and σ̃2v
which are given by:

∂ logL

∂p
=

1

N

N∑
i=1

[yi,1ι
′S−1(∆̃yi − r∆̃yi,−1 − pyi,1ι)] = 0, (12)

∂ logL

∂r
=

1

N

N∑
i=1

[∆̃y′i,−1S
−1(∆̃yi − r∆̃yi,−1 − pyi,1ι)] = 0, (13)

∂ logL

∂s2
= −(T − 2)

2s2
− 1

2s̃2
+

1

2s4
1

N

N∑
i=1

[(∆̃yi − r∆̃yi,−1)′Q(∆̃yi − r∆̃yi,−1)]

+
1

2s̃4
1

T − 1

1

N

N∑
i=1

[ι′(∆̃yi − r∆̃yi,−1 − pyi,1ι)]2 = 0, (14)
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and
∂ logL

∂s̃2v
= −(T − 1)

2s̃2
+

1

2s̃4
1

N

N∑
i=1

[ι′(∆̃yi − r∆̃yi,−1 − pyi,1ι)]2 = 0, (15)

where s̃2 = s2 + (T − 1)s̃2v.

Let π̃ = πσµ, θ̃0 = (π̃, ρ, σ2, σ̃2v) and p̃ = pσµ. By taking probability limits of the

likelihood equations and replacing ∆̃yi in (12)-(15) by the RHS of (10) or ρ∆̃yi,−1 +

πσµ(
yi,1
σµ

)ι + ui, we can find the probability limit of the RE(Q)MLE for θ0. If σ2µ → ∞
and corr(µ, v1) 6= 0, we get plimN→∞ limσµ→∞N

−1∑N
i=1(yi,1∆̃yt/σµ) 6= 0, t = 2, ..., T ,

plimN→∞ limσµ→∞
̂̃
θREQML = θ̃0 and plimN→∞ limσµ→∞ π̂REQML = 0. Finally, if σ2µ →

∞ and corr(µ, v1) = 0, we have plimN→∞ limσµ→∞N
−1∑N

i=1(yi,1∆̃yt/σµ) = 0, t =

2, ..., T, plimN→∞ limσµ→∞
̂̃
θREQML = θ̃0 with plimN→∞ limσµ→∞

̂̃πREQML = 0 and hence

plimN→∞ limσµ→∞ π̂REQML = 0. If we also assume that the data are normally distributed,

we find that limσµ→∞E(∂ logL
∂θ̃

∂ logL

∂θ̃
′ |θ̃0) = − limσµ→∞E(∂

2 logL

∂θ̃∂θ̃
′ |θ̃0) is block-diagonal with

a block corresponding to π̃ and that ρ̂REML is asymptotically equivalent to ρ̂FEML. Here

we considered the asymptotic distribution of ̂̃θ (̂̃π) rather than that of θ̂ (π̂) only becausễπ does not have a degenerate asymptotic distribution unlike π̂. Note that the asymptotic
distribution of θ̂ (π̂) can easily be obtained from that of ̂̃θ (̂̃π): it only requires scaling of
the asymptotic variance of ̂̃π by 1/σ2µ. �

Proof of Theorem 8

We first prove that ρ̂Arbov is inconsistent.

ρ̂Arbov = [
∑N

i=1(yi,2∆yi,2)]
−1∑N

i=1(yi,3∆yi,2) = ρ+ [
∑N

i=1(yi,2∆yi,2)]
−1 ×∑N

i=1(∆yi,2((1− ρ)µi + εi,3)). Recall that yi,1 = vi,1 + µi and µi ≡ σµµ̃i. Note that

σ2µ →∞ implies N−1
∑N

i=1E(µ2i )→∞. We will rescale the numerator and

the denominator of ρ̂Arbov by σµ to guarantee that they converge when N →∞.

Since limσµ→∞E(∆yi,2((1− ρ)µi + εi,3)/σµ) = 0, ∀ i ∈ I,

limσµ→∞ V ar(∆yi,2((1− ρ)µi + εi,3)/σµ) <∞, ∀ i ∈ I,

limσµ→∞E(yi,2∆yi,2/σµ) = (ρ− 1)corr(µ, v1)σv = 0, ∀ i ∈ I and

limσµ→∞ V ar(yi,2∆yi,2/σµ) <∞, ∀ i ∈ I, we obtain

(limσµ→∞N
−0.5∑N

i=1 yi,2∆yi,2/σµ)
d→ X71 and

(limσµ→∞N
−0.5∑N

i=1 ∆yi,2((1− ρ)µi + εi,3)/σµ)
d→ (1− ρ)X71, where

X71 ∼ N(0,Σ7,1) with 0 < Σ7,1 <∞. It follows that plimN→∞ limσµ→∞ ρ̂Arbov =
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ρ+ (1− ρ) = 1 so that ρ̂Arbov is inconsistent.

Using the above results and the results in the proof of Theorem 1 for the RE

AB GMM estimator we can similarly show that ρ̂SY S and ρ̂SY S1 are inconsistent. �

Lemma 3 Assume that SA and FEA∗ hold, E(vi,1) = 0, corr(µ, v1) = 0, T > 3, |ρ| < 1

and σ2µ →∞. Then:

N−1/2
∑N

i=1 Z
L′
i wi/σµ

d→ (1− ρ)X71 and

N−1/2
∑N

i=1 Z
L′
i yi,−1/σµ

d→ X71 with X71 ∼ N(0,Σ7,1).

Furthermore, plimN→∞N
−1∑N

i=1 Z
L′
i Z

L
i = W̃ 11

Arbov1;

plimN→∞N
−1∑N

i=1 Z
L′
i CZ

D
i = W̃ 12

Arbov1;

plimN→∞N
−1∑N

i=1 Z
D′
i HZ

D
i = W̃ 22

Arbov1 and W̃Arbov1 is nonsingular.

Lemma 4 Assume that SA and FEA∗ hold, E(vi,1) = 0, corr(µ, v1) = 0, T > 3, |ρ| < 1

and σ2µ →∞. Then:

(X ′51 X
′
61 X

′
71)
′ ∼ N(0,Σ567,111).

Furthermore, plimN→∞N
−1∑N

i=1 Z
L′
i Z

L
i = W̃ 11

SY S1;

plimN→∞N
−1∑N

i=1 Z
L′
i CZ

I
i /σµ = W̃ 12

SY S1 = 0;

plimN→∞N
−1∑N

i=1 Z
I′
i HZ

I
i /σ

2
µ = W̃ 22

SY S1;

plimN→∞N
−1∑N

i=1 Z
L′
i CZ

D
i = W̃ 13

SY S1;

plimN→∞N
−1∑N

i=1 Z
I′
i HZ

D
i /σµ = W̃ 23

SY S1 = 0;

plimN→∞N
−1∑N

i=1 Z
D′
i HZ

D
i = W̃ 33

SY S1 and W̃SY S1 is nonsingular.

Derivation of Windmeijer (2005) corrected standard errors for the RSYS2

estimator and the ASYS2 estimator

We adopt the notation of Windmeijer (2005). Let θ̂2 be an effi cient 2-step GMM es-

timator for θ0, e.g. a 2-step System estimator, based on the vector of linear moment

conditions E(gi(θ0)) = 0, and let θ̂1 be an initial consistent GMM estimator for θ0 that

is based on a subset of E(gi(θ0)) = 0 and used in an estimate of the optimal weight

matrix, viz. W−1
N (θ̂1), where WN(θ) = N−1

∑N
i=1 gi(θ)gi(θ)

′. Let g(θ) = N−1
∑N

i=1 gi(θ)
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and C(θ) = ∂g(θ)/∂θ′. From the bottom of p. 29 in Windmeijer (2005), we have

θ̂2 − θ0 = −(C ′W−1
N (θ̂1)C)−1C ′W−1

N (θ̂1)g(θ0)

= −(C ′W−1
N (θ0)C)−1C ′W−1

N (θ0)g(θ0) +Dθ0,WN (θ0)(θ̂1 − θ0) + op(N
−1), (16)

where the matrix Dθ0,WN (θ0) is defined at the top of p. 30 in Windmeijer (2005). We note

that Dθ0,WN (θ0)(θ̂1− θ0) = Op(N
−1), cf. p. 29 in Windmeijer (2005). The variance of the

first term in (16) can be estimated by 1
N

(C ′W−1
N (θ̂1)C)−1. The covariance between the

first and the second term in (16) can be approximated by Cov(θ̂2− θ0, θ̂1− θ0)D′θ̂2,WN (θ̂1)
,

where we have used that

−(C ′W−1
N (θ0)C)−1C ′W−1

N (θ0)g(θ0) = θ̂2 − θ0 +Op(N
−1)

and θ̂2 − θ0 = Op(N
−1/2). As θ̂1 is less effi cient than θ̂2, it follows from a well known

result in Hausman (1978) that Cov(θ̂2 − θ0, θ̂1 − θ0) = V ar(θ̂2). The latter can also be

estimated by 1
N

(C ′W−1
N (θ̂1)C)−1. Noting that the variance of the second term in (16) is

given by Dθ0,WN (θ0)V ar(θ̂1)D
′
θ0,WN (θ0)

, we obtain that the corrected asymptotic variance

of θ̂2 is given by equation (2.6) in Windmeijer (2005).

Next we note that the moment conditions exploited by the System estimator for ρ

imply those exploited by the Optimal RE Conditional GMM estimator for ρ (i.e., those

in lines one and three of (5)) and that the latter is at least as effi cient as ρ̂REQML. As

the first-step estimators used by the RSYS2 estimator and the ASYS2 estimator for ρ,

namely ρ̂REQML and ρ̂AB2, respectively, exploit less information than the corresponding

second-step estimators and hence are less effi cient than them, we can conclude that we

can use equation (2.6) in Windmeijer (2005) to compute the Windmeijer corrected SEs

for the RSYS2 estimator and the ASYS2 estimator. �

B SOME OF THE MONTE CARLO RESULTS.
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Table 14: MC results for estimators of ρ; N = 100, design MS, ρ = 0.5 & σ2v/σ
2 = 5 5

19
.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
σ2µ bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
0 -0.76 0.31 -0.06 0.25 0.20 0.43 -0.05 0.27 0.01 0.27 -0.19 0.29
1 -1.13 0.40 -0.06 0.27 0.19 0.44 0.69 0.31 0.26 0.31 -0.07 0.34
4 -1.74 0.65 1.31 0.99 0.15 0.39 2.96 0.51 1.30 0.53 0.04 0.41
10 -3.29 1.18 14.1 8.36 0.23 0.44 7.59 1.51 7.95 2.82 -0.57 0.58
25 -6.33 2.44 7.91 4.90 0.26 0.42 18.6 5.57 6.49 2.97 -1.91 1.03
100 -13.7 6.57 1.08 0.90 0.34 0.45 37.8 16.2 1.57 0.94 -7.93 3.79

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 15: MC results for estimators of ρ; N = 100, design MS, ρ = 0.9 & σ2v/σ
2 = 4/3.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
σ2µ bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
0 -23.2 12.2 4.33 2.25 3.52 2.28 0.14 0.19 0.93 0.35 -8.36 2.27
1 -30.9 18.49 3.99 2.32 3.63 2.28 0.05 0.21 0.71 0.40 -12.2 3.75
4 -37.9 25.8 4.71 2.44 3.69 2.34 0.10 0.23 0.81 0.49 -17.5 6.67
10 -42.5 30.1 4.08 2.38 3.39 2.30 -0.08 0.30 0.23 0.65 -23.1 10.18
25 -44.7 33.0 4.54 2.41 3.98 2.32 0.66 0.36 0.63 0.97 -29.9 15.94

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 16: MC results for estimators of ρ; N=100, design MNS, ρ = 0.5 & σ2v/σ
2 = 5 5

19
.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
σ2µ bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
1 -2.96 1.22 0.75 1.08 1.04 1.25 -9.21 1.28 -7.11 0.97 -8.03 1.11
4 -2.14 0.89 0.48 0.73 1.56 1.38 46.0 22.2 7.84 1.79 5.73 1.53
10 -1.50 0.59 0.10 0.48 0.71 0.85 51.6 26.7 5.34 1.06 3.90 0.98
25 -0.76 0.33 -0.05 0.27 0.12 0.40 46.2 21.4 1.67 0.38 1.00 0.39

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 17: MC results for estimators of ρ; N=100, design MNS, ρ = 0.9 & σ2v/σ
2 = 4/3.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
σ2µ bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
1 -37.4 24.2 3.99 2.41 3.61 2.33 -0.41 0.18 0.32 0.36 -14.9 4.96
4 -29.1 17.0 4.24 2.30 3.63 2.28 -2.55 0.45 -1.08 0.70 -16.3 5.70

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.
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Table 18: MC results for identification tests; N = 100, design MS, ρ = 0.5 & σ2v/σ
2 = 5 5

19
.

σ2µ J pJ pJ> 0.05 pJ> 0.01 FD FD< 10 FL FL< 10 pJ>0.05
&FD<10

FD>10
&FL<10

0 34.4 0.00 0.00 0.00 273 0.00 16.0 0.28 0.00 0.28
1 32.3 0.00 0.00 0.00 163 0.00 10.8 0.53 0.00 0.53
4 27.1 0.00 0.00 0.00 73.6 0.00 5.85 0.83 0.00 0.83
10 21.1 0.00 0.00 0.04 36.2 0.00 3.43 0.95 0.00 0.95
25 14.2 0.03 0.15 0.43 16.7 0.20 2.02 0.98 0.12 0.80
100 8.05 0.20 0.67 0.88 5.04 0.88 1.24 0.99 0.66 0.12

Notes: 5000 replications; J, FD, FL tests are described in text; pJ is p-value of J test.

Table 19: MC results for identification tests; N = 100, design MS, ρ = 0.9 & σ2v/σ
2 = 4/3.

σ2µ J pJ pJ> 0.05 pJ> 0.01 FD FD< 10 FL FL< 10 pJ>0.05
&FD<10

FD>10
&FL<10

0 8.05 0.19 0.67 0.89 10.5 0.53 110 0.00 0.45 0.00
1 6.35 0.29 0.82 0.95 7.67 0.73 77.3 0.00 0.67 0.00
4 5.08 0.39 0.90 0.98 4.37 0.92 40.6 0.00 0.86 0.00
10 4.51 0.44 0.94 0.99 2.68 0.97 20.9 0.08 0.92 0.02
25 4.25 0.47 0.95 0.99 1.63 0.99 10.0 0.56 0.94 0.01

Notes: 5000 replications; J, FD, FL tests are described in text; pJ is p-value of J test.

Table 20: MC results for identification tests; N=100, design MNS, ρ = 0.5& σ2v/σ
2 = 5 5

19
.

σ2µ J pJ pJ> 0.05 pJ> 0.01 FD FD< 10 FL FL< 10 pJ>0.05
&FD<10

FD>10
&FL<10

1 15.3 0.02 0.11 0.34 53.7 0.00 67.9 0.00 0.00 0.00
4 26.3 0.00 0.00 0.01 53.0 0.00 5.10 0.91 0.00 0.91
10 31.5 0.00 0.00 0.00 73.2 0.00 4.55 0.92 0.00 0.92
25 34.2 0.00 0.00 0.00 120 0.00 40.4 0.00 0.00 0.00

Notes: 5000 replications; J, FD, FL tests are described in text; pJ is p-value of J test.

Table 21: MC results for identification tests; N=100, designMNS, ρ = 0.9& σ2v/σ
2 = 4/3.

σ2µ J pJ pJ> 0.05 pJ> 0.01 FD FD< 10 FL FL< 10 pJ>0.05
&FD<10

FD>10
&FL<10

1 4.70 0.42 0.93 0.99 5.27 0.87 86.9 0.00 0.83 0.00
4 6.46 0.28 0.81 0.95 6.17 0.83 21.4 0.06 0.75 0.05

Notes: 5000 replications; J, FD, FL tests are described in text; pJ is p-value of J test.
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Table 22: MC results for estimators of ρ; N = 500, design MS, ρ = 0.5 & σ2v/σ
2 = 4/3.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
σ2µ bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
0 -0.30 0.13 0.01 0.11 0.05 0.14 -0.07 0.08 -0.10 0.08 -0.11 0.08
1 -0.62 0.21 0.01 0.12 0.03 0.13 0.11 0.10 0.01 0.10 -0.06 0.10
4 -0.98 0.34 0.00 0.13 0.02 0.14 0.43 0.13 0.18 0.12 -0.00 0.13
10 -1.33 0.44 -0.05 0.13 -0.05 0.13 0.82 0.16 0.22 0.13 -0.09 0.14
25 -1.55 0.54 0.04 0.13 0.04 0.13 2.58 0.35 0.33 0.16 -0.08 0.19

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 23: MC results for estimators of ρ; N = 500, design MS, ρ = 0.9 & σ2v/σ
2 = 5 5

19
.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
σ2µ bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
0 -1.89 0.49 0.42 0.45 1.31 0.81 -0.24 0.09 -0.24 0.10 -0.49 0.11
1 -2.10 0.60 0.87 0.54 1.26 0.80 -0.20 0.10 -0.17 0.11 -0.55 0.12
4 -2.98 0.88 2.15 0.74 1.62 0.81 -0.14 0.10 -0.00 0.13 -0.83 0.16
10 -5.01 1.56 3.89 1.01 1.60 0.84 -0.18 0.13 0.20 0.18 -1.71 0.28
25 -9.35 3.28 5.21 1.22 1.69 0.84 -0.03 0.15 0.54 0.25 -3.92 0.67

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 24: MC results for estimators of ρ; N = 500, design MNS, ρ = 0.5 & σ2v/σ
2 = 4/3.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
σ2µ bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
1 -0.48 0.22 0.18 0.16 0.23 0.18 -8.68 0.82 -9.60 0.98 -9.58 0.98
4 -0.45 0.16 -0.01 0.12 0.07 0.16 51.5 26.7 9.04 1.07 8.72 1.01

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 25: MC results for estimators of ρ; N = 500, design MNS, ρ = 0.9 & σ2v/σ
2 = 5 5

19
.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
σ2µ bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
1 -9.54 3.23 3.02 1.00 2.82 0.99 -0.46 0.03 -0.27 0.04 -1.29 0.08
4 -6.14 1.93 2.77 0.93 3.13 1.01 -2.70 0.13 -2.28 0.13 -3.42 0.24
10 -3.62 1.08 1.80 0.77 3.02 1.03 -6.93 0.66 -6.94 0.72 -7.76 0.84
25 -1.67 0.53 0.70 0.48 1.61 0.83 15.7 2.56 9.96 1.43 8.44 1.23

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.
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Table 26: MC results for identification tests; N = 500, design MS, ρ = 0.5 & σ2v/σ
2 = 4/3.

σ2µ J pJ pJ> 0.05 pJ> 0.01 FD FD< 10 FL FL< 10 pJ>0.05
&FD<10

FD>10
&FL<10

0 136 0.00 0.00 0.00 670 0.00 670 0.00 0.00 0.00
1 102 0.00 0.00 0.00 336 0.00 335 0.00 0.00 0.00
4 58.1 0.00 0.00 0.00 134 0.00 135 0.00 0.00 0.00
10 32.8 0.00 0.00 0.01 61.4 0.00 61.4 0.00 0.00 0.00
25 17.2 0.03 0.12 0.31 26.3 0.00 26.2 0.00 0.00 0.00

Notes: 5000 replications; J, FD, FL tests are described in text; pJ is p-value of J test.

Table 27: MC results for identification tests; N = 500, design MS, ρ = 0.9 & σ2v/σ
2 = 5 5

19
.

σ2µ J pJ pJ> 0.05 pJ> 0.01 FD FD< 10 FL FL< 10 pJ>0.05
&FD<10

FD>10
&FL<10

0 67.6 0.00 0.00 0.00 107 0.00 106 0.00 0.00 0.00
1 59.5 0.00 0.00 0.00 89.1 0.00 89.0 0.00 0.00 0.00
4 44.3 0.00 0.00 0.00 59.6 0.00 59.8 0.00 0.00 0.00
10 30.0 0.00 0.00 0.01 36.1 0.00 36.3 0.00 0.00 0.00
25 17.8 0.02 0.11 0.28 18.6 0.13 18.4 0.13 0.09 0.13

Notes: 5000 replications; J, FD, FL tests are described in text; pJ is p-value of J test.

Table 28: MC results for identification tests; N=500, designMNS, ρ = 0.5& σ2v/σ
2 = 4/3.

σ2µ J pJ pJ> 0.05 pJ> 0.01 FD FD< 10 FL FL< 10 pJ>0.05
&FD<10

FD>10
&FL<10

1 65.3 0.00 0.00 0.00 260 0.00 329 0.00 0.00 0.00
4 121 0.00 0.00 0.00 259 0.00 22.4 0.03 0.00 0.03

Notes: 5000 replications; J, FD, FL tests are described in text; pJ is p-value of J test.

Table 29: MC results for identification tests; N=500, design MNS, ρ = 0.9& σ2v/σ
2 = 5 5

19
.

σ2µ J pJ pJ> 0.05 pJ> 0.01 FD FD< 10 FL FL< 10 pJ>0.05
&FD<10

FD>10
&FL<10

1 7.65 0.24 0.71 0.89 22.1 0.06 424 0.00 0.06 0.00
4 18.2 0.02 0.11 0.26 27.5 0.01 101 0.00 0.01 0.00
10 35.4 0.00 0.00 0.00 44.1 0.00 13.6 0.32 0.00 0.32
25 65.2 0.00 0.00 0.00 87.9 0.00 7.86 0.70 0.00 0.70

Notes: 5000 replications; J, FD, FL tests are described in text; pJ is p-value of J test.
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C SOME ADDITIONAL RESULTS RELATED TO THE APPLICATION.
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Table 30: Growth and Financial intermediation proxied by CCBA
“AB2” CSYS2 “ASYS2”

estim. st. err. pun estim. st. err. pun estim. st. err.
CCBA 2.96 1.29 0.01 3.42 1.36 0.00 3.30 1.41
LINIT 0.07 0.45 0.00 -0.19 0.34 0.00 -0.05 0.33
GOV -3.68 1.52 0.01 -3.16 1.53 0.00 -3.57 1.62
TRADE 0.03 1.68 0.01 -0.38 1.70 0.03 -0.11 1.91
SEC 0.88 0.54 0.03 0.96 0.62 0.03 0.88 0.60
CD test 22.59 (0.09) 30.49 (0.05)
J test 12.71 (0.55) 18.23 (0.44) 16.52 (0.56)
J-diff test 0.09 (0.77) 5.52 (0.24) 3.81 (0.43)

Notes: N=74; number of obs. = 253; time dummies are included; the estimators are defined in
section 4; apart from time dummies, the “AB”(SYS) estimators use 19 (23) instruments;
Windmeijer robust standard errors are reported; pun is p-value of individual J test of

underidentification; the STATA command underid of Schaffer and Windmeijer (2020) was
used to perform the underidentification tests; p-values are in parentheses; first J-diff test tests

E(Z ′i,2wi) = 0; second & third J-diff tests test E(Z ′i,3wi) = 0 excluding E(Z ′i,2wi) = 0.

Table 31: Growth and Financial intermediation proxied by LLY
“AB2” CSYS2 “ASYS2”

estim. st. err. pun estim. st. err. pun estim. st. err.
LLY -0.32 1.36 0.01 2.20 0.66 0.00 0.95 1.28
LINIT 0.25 0.60 0.00 -0.42 0.34 0.01 -0.22 0.44
GOV -2.98 2.24 0.06 -1.96 1.81 0.04 -2.15 1.70
TRADE 2.56 1.83 0.06 1.02 1.02 0.08 1.77 1.41
SEC 1.31 0.52 0.18 0.82 0.58 0.06 1.12 0.56
CD test 19.21 (0.20) 29.67 (0.06)
J test 14.44 (0.42) 21.53 (0.25) 20.39 (0.31)
J-diff test 0.70 (0.40) 7.09 (0.13) 5.95 (0.20)

Notes: see table 30.

Table 32: Growth and Financial intermediation proxied by PRICR
“AB2” CSYS2 “ASYS2”

estim. st. err. pun estim. st. err. pun estim. st. err.
PRICR 0.72 0.95 0.01 1.60 0.54 0.01 1.24 0.80
LINIT -0.10 0.45 0.00 -0.54 0.28 0.00 -0.46 0.32
GOV -2.07 2.50 0.05 -0.55 1.52 0.05 -0.61 1.74
TRADE 1.92 1.99 0.03 1.27 1.21 0.05 1.28 1.35
SEC 0.92 0.54 0.03 0.84 0.61 0.06 1.07 0.62
CD test 23.65 (0.07) 28.48 (0.07)
J test 15.26 (0.36) 19.18 (0.38) 20.47 (0.31)
J-diff test 0.74 (0.39) 3.92 (0.42) 5.21 (0.27)

Notes: see table 30.
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