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Abstract

The commonly used 1-step and 2-step System GMM estimators for the panel AR(1)
model are inconsistent under mean stationarity when the ratio of the variance of the indi-
vidual effects to the variance of the idiosyncratic errors is unbounded when N — oo. The
reason for their inconsistency is that their weight matrices select moment conditions that
do not identify the autoregressive parameter. This paper proposes a new 2-step System
estimator that is still consistent in this case provided that 7" > 3. Unlike the commonly
used 2-step System estimator, the new estimator uses an estimator of the optimal weight
matrix that remains consistent in this case. We also show that the commonly used 1-step
and 2-step Arellano-Bond GMM estimators and the Random Effects Quasi MLE remain
consistent under the same conditions. To illustrate the usefulness of our new System

estimator we revisit the growth study of Levine et al. (2000).



1 Introduction

It is well known that the GMM estimators that have been proposed by Arellano and Bond
(1991, AB) for panel autoregressive models can have poor finite sample properties when
the sum of the autoregressive parameters is close to unity due to a weak instruments
problem, i.e., low correlation between the regressors in the first-differenced model, which
are first-differences of the lagged dependent variable, and the instruments, which are
lagged levels of the dependent variable. Arellano and Bover (1995, Arbov) and Blundell
and Bond (1998) proposed the System estimator as a possible solution to this problem
when mean stationarity holds. This estimator combines the AB style moment conditions
with Arbov style moment conditions, which are based on the model in levels of the
data and use lagged differences of the dependent variable as instruments. Simulation
evidence in Blundell and Bond (1998) shows that under covariance stationarity the System
estimator has much better finite sample properties, i.e., smaller bias and root mean
squared error (rmse) than the AB GMM estimator.

The AB GMM estimator can also suffer from a weak instruments problem for a dif-
ferent reason than an autoregressive root being close to one. Considering only one AB
style moment condition for a panel AR(1) model and assuming covariance stationarity,
Blundell and Bond (1998) derived expressions for the probability limit of the estimator of
the slope parameter of the first-stage regression and the so-called concentration parame-
ter. They found that the corresponding AB GMM estimator also has a weak instruments
problem when the ratio of the variance of the individual effects and the variance of the
disturbances, henceforth the variance ratio, is large. Below we find that this is true more
generally, namely under mean stationarity. On the other hand, Hayakawa (2009) found
that when the data are not close to mean stationary and the variance ratio becomes
large, then the AB GMM estimator that uses instruments in levels performs quite well.
He argued that this is because the correlation between the lagged dependent variable and
the instruments in levels gets larger owing to the unremoved individual effects, i.e., the
instruments in levels become stronger. A high variance ratio is likely to occur in dynamic
panel data models that are used for studying economic growth.

Hayakawa (2007) and Bun and Windmeijer (2010) showed that under covariance sta-
tionarity GMM estimators for the panel AR(1) model that only exploit Arbov style mo-
ment conditions also have a weak instruments problem when the variance ratio is large

and the autoregressive parameter p is not close to one. As the System estimator com-



bines AB and Arbov style moment conditions, its properties are combinations of those of
the AB and Arbov GMM estimators. Bun and Windmeijer (2010) provide simulations
results for commonly used versions of the 1-step and 2-step System estimator for p under
covariance stationarity when p = 0.8, N = 200 and 7" = 6 or 15. They show that the
biases of both System estimators increase substantially, to around 0.09, when the vari-
ance ratio increases from 1 to 4. We will see that both estimators are in fact inconsistent
when the data are mean stationary and the variance ratio tends to infinity, because their
weight matrices are such that these estimators effectively exploit moment conditions that
depend on levels of the data and do not identify p.

In this paper we present a necessary condition for large NNV, fixed T' consistency of
any random effects (RE) or fixed effects (FE) estimator for p. We use the label ‘fixed
effects’ to indicate that we make minimal assumptions about the individual effects and
the initial observations. The necessary condition for consistency requires the variance of
the deviations of the initial observations from the individual effects to be finite. This
condition is also sufficient for consistency of FE estimators for p, which only depend on
differences of the data. However, this condition is in general not sufficient for consistency
of RE estimators for p, which also depend on levels of the data. Nonetheless, we argue
that even when the data are mean stationary and the variance ratio is infinite, RE
GMM estimators will still be consistent as long as they use a suitable weight matrix that
effectively only selects moment conditions that only depend on differences of the data,
possibly by combining moment conditions that involve levels of the data. Specifically,
we show that when T > 3, the 1-step AB GMM estimator, which is optimal under
time-series homoskedasticity, and the 2-step optimal AB GMM estimator that uses the
1-step AB GMM estimator to estimate the weight matrix remain consistent in this case.
Furthermore, when T" > 3, the 2-step System estimator will still be consistent in this case
if it uses a consistent estimate of the optimal weight matrix. The RE Quasi ML estimator
for p is also still consistent in this case. As the REQMLE has favorable properties, also
when p is near or equal to unity, cf. Kruiniger (2013), we propose using the REQMLE
to estimate the optimal weight matrix of the System estimator. In this way we obtain a
new, more robust version of the System estimator. When p is not close to unity, one could
also use the AB GMM estimator to estimate the optimal weight matrix of the System
estimator leading to yet another version of the System estimator.

We also derive local asymptotic approximations to the finite sample distributions of



AB GMM estimators when the data are mean stationary and the variance ratio is large,
and give conditions for redundancy of moment conditions that involve levels of the data.

The outline of the paper is as follows. Section 2 presents the necessary condition for
the consistency of RE and FE estimators for the panel AR(1) model. It also derives the
asymptotic properties of various GMM estimators when the variance ratio is large and
the local asymptotic distributions for the RE AB GMM estimator when in addition the
data are mean stationary, discusses conditions for redundancy of the additional moment
conditions that are exploited by certain RE GMM estimators relative to those exploited
by the corresponding optimal FE GMM estimators, and presents the new versions of the
2-step System estimator. Section 3 conducts a Monte Carlo study of the finite sample
properties of the 2-step optimal RE AB GMM estimator, three versions of the 2-step
System estimator and the RE and FE Quasi ML counterparts of a GMM estimator of
Ahn and Schmidt (1995, AS) and conventional and Windmeijer (2005) corrected versions
of asymptotic standard errors and confidence intervals related to the GMM estimators.
It also investigates the properties of various tests for weak or underidentification due to
Montiel Olea and Pflueger (2013) and Windmeijer (2018), respectively, and discusses how
the former can be used to select a version of the System estimator that is (most) suitable
for a particular application. Section 4 provides a real data application and section 5
concludes. An appendix contains all the proofs, some of the Monte Carlo results and

some additional results related to the application.

2 Asymptotic properties of random and fixed effects
GMM estimators for the panel AR(1) model

2.1 A necessary condition for consistency: the fixed effects as-
sumption

The panel AR(1) model with arbitrary initial conditions is given by !
yi=pyi—1+ (L= ppt+e, —-1<p<l, (1)

where y; = (Yi2 - Yir)', Yi—1 = (i1 - Yir—1)’, ¢ is a vector of ones, y; is the individual

effect and ¢; is the vector of (idiosyncratic) errors for all i € 7 = {1,2,..., N}. For

'Extending the analysis to models with strictly exogenous regressors, a constant and/or time
dummies is straightforward.



each individual unit we have T" > 3 observations on y, including the initial observation
yi,1. When considering the asymptotic properties of the estimators for this model we will
assume that N — oo while 7" is fixed. Note that in the unit root case the individual

effects disappear. The panel AR(1) model can be rewritten as

Yi — pit = p(Yi—1 — pit) T &, —1<p<1L (1)

Let p; = o,/1;. Furthermore, let v;; = y;1 — p;, Vi1 = (p — )v;p and 7 = {2,...,T}.

We make the following assumptions.

Standard Assumptions (SA):
i)e; i =1,...,N are independently distributed;
ii) E(g;) =0 and E(eg;e}) = o2Ir_ Vi € T;
iii) E(|5i7t|2+5) < Ay < oo for some d >0, some Ay >0,VieZ andVteT;
i) B(Jfu*"°) < Ay < oo for some 8§, >0 and ¥V i € T; plimy_ooN"' SN 712 = 1;
v) E(V;1) =0 and y;1 and p1; are uncorrelated with the elements of ¢; ¥V i, j € I;
vi) Uiagie and vjq1€;4+ are uncorrelated V i,j € T with i # j andV t € T;
vii) In case of a 2-step GMM estimator, 4+ moments of the data exist for some 6 > 0.

SA(ii) assumes unconditional homoskedasticity over time for presentational ease only;

this assumption can be relaxed. We define o2

= limy oo N3N 02 for later use.
SA(iv) implies plimy o N2 SN 2 = 0%. SA(v) allows for conditional heteroskedasti-
city over time and for cross-sectional dependence of the y; ; and ;. W.l.o.g. it also assumes
E(v;1) = 0 and hence E(y;; — y;.—1) = 0 for all t € 7. This assumption is equivalent to
adding a constant to the model in (1) if necessary. SA(vi) is not required for the main
results but affords a simplification if the data are not normally distributed (see the end of

next paragraph) and is almost always satisfied. We will also use the following assumption.
Fixed Effects Assumption (FEA): 5> = plimy ..o N' SN, U7 < oo.

The assumption that plimy_./N* Zfil?ffl < o0 is weaker than the assumption

that plimy_o /N1 Zi\;l p? < oo and plimy . N* Zfil Y71 < oo, which is habitually

4



made in papers that study random effects estimators for the panel AR(1) model, see
e.g. Ahn and Schmidt (1995, 1997); it can still hold even if lim,; ..o E(y;,) = oo and
lim; oo E(p7) = 0o when {E(y?,)} and {E(x7)} are non-decreasing. Furthermore, under
SA(ii) and covariance stationarity of {y;,} we have lim 1 E((yi1 — p;)?) = lim,p1 (07 /(1 —
p?)) = oo but lim,; E(v7,) = 0 so that if in addition ©;; i = 1,..., N are i.i.d., then FEA
is satisfied when p T 1. FEA also allows for cross-sectional independence of the v; ;. In
the appendix we show that SA and FEA imply that plimy_,oo/N ! Zf\il U184 = 0 for all
t €T. The proof relies on SA(vi) in case the data are not normally distributed.

Below we will see that, given assumption SA, assumption FEA is, practically speaking,
necessary for the consistency of any GMM or ML type estimator for p and also sufficient
for the consistency of GMM and ML type estimators for p that only depend on differences
of the data. For this reason the latter can be regarded as fixed effects estimators, where
the label ‘fixed effects’ indicates that minimal assumptions are made about the individual
effects and the initial observations.

An assumption that implies FEA when it is combined with SA and, like FEA, does
not require that E(y;,) < oo and E(u) < oo for all i € Z is the following one.

Fixed Effects Assumption* (FEA*):

Uipi=1,...,N are i.h.d. and E(Jv;1)**°) < Ay < oo for some §,A; >0 andV i € L.

Unlike FEA, FEA* requires cross-sectional independence of the v; 1. When {y; .} is
stationary up to order 3 (or strictly stationary) for all i € Z, E(g;,&;,.::) = 0 and
E(g;se?,) =0 for any r < s <t €T and for all i € Z, we have lim,, E(|7;1]*) = 0 for all
¢ € 7 so that if in addition v;; ¢ = 1, ..., N are i.h.d., then FEA* is satisfied when p T 1.

It is useful to rewrite the panel AR(1) model in (1) as

Ayi,Q = (p — 1)(yz’1 — /,(,,L) —+ 5@’,2 (2)
Ayis = pAyiy1 + Aeyy t=3,...,T.

where Ay, ; = y;+ — ¥i1—1. Notice that the differences of the data only depend on v;; and

git, t =2,...,T. In the appendix we prove the following lemma:

Lemma 1 Given SA, FEA holds iff plimy_—s [N 71 vazl(Ayi,sAyi,t) <ooVs,teT.



Maximum Likelihood estimators for p in (1) as well as any reasonable GMM estimator
for p depend on second-order sample moments. These estimators will be root-/N consistent
only if these sample moments converge in probability (possibly after scaling) and if the
probability limits of these sample moments allow for identification of p. 2 > The second-
order sample moments can take the form of cross-sectional averages of products of levels of
the data, cross-sectional averages of products of differences of the data or cross-sectional
averages of products of levels and differences of the data. Lemma 1 implies that given
assumption SA, assumption FEA about the v; ; is sufficient and, practically speaking, also
necessary for convergence in probability of the cross-sectional averages of the products of
differences of the data. The reason for these results is that the differences of the data only
depend on the v;; and the €;;. To guarantee convergence in probability of second-order
sample moments that involve levels of the data or consistency of estimators that depend
on them, one also needs to add assumptions about the y,, e.g. plimy . N ! Zf\il p2 < oo
and plimy_,oo N ! Efil pieir =0,Vt € T or, given FEA equivalently, assumptions about
the y; 1, e.g. plimy_ oo N * Zf\il yil < 00 and plimy_,oo N 7! Zfil Yir€ir =0,V €T.

We conclude that a fixed effects GMM or ML estimator for (1) should only depend on
(first) differences of the data. Furthermore, a fixed effects GMM or ML estimator for (1)
that is consistent for any sequences {y;1} and {y,} does not exists. However, consistent
fixed effects GMM and ML estimators for models that include assumption FEA do exist.

We note that FEA or plimy_. N * Zf\;l(AymV < 00 is a reasonable assumption

that is met in most applications, possibly after rescaling the data.

2.2 Asymptotic properties of RE and FE GMM estimators

Under SA and FEA we can derive expressions for the probability limits of the

following  second-order sample moments: plimy oo N} Zfil (Ay;2)? =

2Convergence in probability of these (scaled) sample moments is required in order to prove
uniform convergence of the criterion function (see e.g. Newey and McFadden (1994)). Identifi-
cation of p requires that at least some of the probability limits of these (scaled) sample moments
are different from zero.

3Under non-normality of the data, one may wish to consider GMM estimators for p that
also exploit information contained in third and higher order sample moments, cf Hahn (1997).
In that case, issues similar to those discussed in this paper will arise. In particular, such an
estimator is a consistent fixed effects estimator only if {v;1} satisfies a generalized version of
FEA. Here we confine our attention to estimators that only exploit second moments of the data.



(1 — p)202 + 0% plimy_ o N'SN (1:1)? = 02 + 20,0,c0r(p,v1) + 0%, and
plimy oo N 2N (i1 Ayiz) = (p — 1)(02 + au0.c0rr(p,v1)) + auocorr(vy,ey) +
ouocorr(p,e2), where o2 = plimy_ N ! ZZ]\LI v7, and corr(X)Y) =
plimy N ™* Zﬁl(XiE)/(axay). When 0, — o0, we need to scale the levels of the data
(e.g. vi1) by o, for the sample moments that contain them to converge. Note that SA
implies that corr(u, e2) = 0 and that under mean stationarity we also have corr(u,v1) =0
so in the latter case plimy_,o,/N ! ZiNzl(yi,lAyi,g)/au = 0 when 0, — oo. This result
implies that y;; is a weak instrument for Ay, » when corr(p,v1) =0 and 0, /0 and 0, /0,
are large. Furthermore, when {y;,} is covariance stationary, then o2 = 02/(1 — p?), and
if in addition p T 1, then 02 — oo. In that case, plimy_ N~ Zi]il(?JLlAym) may not

exist and plimy o N ! Zﬁil(yi,l)z does not exist.

2
v

2

Below we assume that o and ¢° are finite and of a similar order of magnitude and

do not study what happens when p T 1 as this case has been studied in other papers,
e.g. Kruiniger (2009) and Bun and Kleibergen (2017). Then the properties of the RE
estimators for the panel AR(1) model — which involve levels of the data — depend

crucially on the ratio of 07 and ¢* (or 07 /02) and on the value of corr (s, vy).

2.2.1 Arellano-Bond GMM estimators

The RE Arellano-Bond (AB) GMM estimator, p4pg..,, €xploits the following m = (T —
1)(T — 2)/2 moment conditions:

Elyis(Ayir — pAyiz—1)] =0, 1<s<t—-2, t=3..,T. (3)

This estimator uses lagged levels of the dependent variable as instruments.

In the appendix we prove the following result: * °

Theorem 1 Assume that SA and FEA* hold, T = 3, |p| < 1 and 0}, — co. Then pap.,
is /N -consistent if and only if corr(p,vy) # 0.

40/% — 00 signifies that O'Z approaches co independently of N. Moreover, when deriving these
asymptotic results, ai
for P 4p;e, using the parameter sequence O'z /o2 = k1 NP.

When T = 3 and O'i < 00, PABley 18 inconsistent if E(y; 1Ay;2) =0V i€ Z. E(y;1Ayi2) =
(p = DIE(ir(yi1 — )] = (p — D[E(;,) + E(p;vin)].- When {y;;} is covariance stationary,
B(pvin) = 0 and B(yi1(yi1 — p)) = 07/(1 = p?) > 0. In general, E(yi1(yi1 — ;) =0V i€l

is not very plausible unless y; 1 = p; or y;1 =0V ieZ.

— oo first and then N — oo. Below we will also derive asymptotic results
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The reason for this result is that plimy_.co limy, oo (N1 D", 451AYi2) /0, = (p— 1) %
corr(p,v1)o,, that is, when corr(u,v1) # 0, the scaled instrument y; /0, is correlated
with the lagged dependent variable Ays, whereas when corr(u,v1) = 0, y;1/0, is an
invalid instrument for Ay;».% In the latter case p is not identified and the estimator
Dapien converges to p plus a ratio of correlated normal random variables that have zero
mean, X;/X,, which is defined in Theorem 3 below.

We will now extend the result in Theorem 1 to T > 3. Let y! = [yi1 ... yix] and
let Z; = diag(y},...,yl %) be a (T — 2) x m block-diagonal matrix. Then we can also
write the set of AB moment conditions in (3) as F(Z;Ag;) = 0 where Ag;, = ¢, —¢; 4
with g; = [g;3 ... i7" Under our assumptions, F(Ag;,Ag}) = 07H, where H = Hr_5 is a
(T' — 2) band-diagonal matrix with 2’s on the main diagonal, —1’s on the first sub- and
superdiagonal and zeros elsewhere. It follows that the RE AB GMM estimator which uses
Wxoapr = (N1 Zf\;l Z!HZ;)™! as weight matrix is an optimal one-step GMM estimator.
This estimator will be denoted as p4pije,- Let wiy = (1 — p)p; +€ir, wi = (1 — p)pit +€;
and Y. = [Yi3 ... yir). The two-step optimal RE AB GMM estimator uses Wy aps =
(N! Zf\;l ZIANW AW Z;)~! as weight matrix, where Aw; = Ay. —ﬁABUevAgi’il, and will
be denoted as pypo,- Finally, let {Wx} denote an arbitrary sequence of PD weight
matrices with plimy_. Wy = W, where W is PD. An RE AB GMM estimator that uses
Wy as weight matrix will be denoted as p 45, -

Let the (T'— 2) x (T — t — 2) matrix d; be given by d; = [0 Ir_;_5]'. Furthermore,
let ZAB = [ZI ZP], where Z! = y; 117 o and ZP = [d1Ay;z doAyis ... dr_3Ay;r o) is a
(T —2) x [m — (T — 2)] matrix. There exists a nonsingular constant matrix K“4# such
that Z! = KAPZAB' Thus we can restate E(Z/Ag;) = 0 as E(ZAP'Ag;) = 0.

We can extend Theorem 1 to T' > 3 by using Lemma 2 from the appendix.

Theorem 2 Assume that SA and FEA* hold, T > 3, |p| < 1 and 0%, — co. Then:
(1) Daniies 1A P apstes 0T V' N-consistent.
Furthermore, if D g, erploits E(ZAP' Ag,) = 0 in lieu of E(Z|Ag;) = 0, then
(1) D apies 15 V' N -consistent if and only if corr(p,vy) # 0, and
(1) if corr(p,v1) = 0, Daples — P <, (Xt Wh1Xe1) X5 Wh1 X1 where X51 and Xg

are Gaussian random vectors that are defined in Lemma 2.

When corr(u,v1) = 0 and ai — 00, then the value of the first stage regression coefficient
is zero: Pmy oo iy, —oo(D; (4i18%i2)/ (3 471)) = 0.



The proofs of Lemma 2 and Theorem 2 are similar to that of Theorem 1. According to
Theorem 2, when T' > 3 and corr(p, v1) = 0 an RE AB GMM estimator can be consistent
as long as it uses a suitable weight matrix. In particular, because the instruments in
levels need to be scaled by o, in order to achieve convergence of the averages of their
cross products with the dependent variable and its lag, the blocks of its weight matrix
that correspond to F(Z!'Ag;/o,) = 0 should provide this scaling in order to obtain a
consistent estimator when corr(u,v;) = 0. The weight matrix Wy ap has this property
but an arbitrary weight matrix Wy does not. An RE AB GMM estimator that uses an
arbitrary weight matrix Wy will effectively only exploit the (scaled) moment conditions
that involve an instrument in levels when o2 — oo, i.e., E(Z/'Ag;/0,) = 0, which do not
identify p when corr(p,v1) = 0 (because plimy_.o limg, o0 N1t Zf\il ZUAy; 1/0, =0),
and hence will be inconsistent. In contrast, the RE AB GMM estimator that uses Wx ap1
will continue to exploit both E(Z/'Ag;/0,,) = 0 and E(Z'Ag;) = 0 when o2 — co, and
the latter will still identify p when corr(u,v;) = 0. Of course, E(ZP'Ag,) = 0 will only
weakly identify p when p is near unity and corr(u, v1) is (near) zero, cf. Kruiniger (2009).

When corr(p, vy) # 0, plimpy oo limg, o N1 Zf\;l ZVAy; 1/, # 0 and an RE AB
GMM estimator that uses an arbitrary weight matrix Wy will remain consistent when
ai — oo. Hayakawa (2009) found that when the data are not close to mean stationary
and the variance of the individual effects becomes large as compared to that of the
disturbances, then the RE Arellano-Bond GMM estimator in fact performs quite well.
He argued that this is because the correlation between the lagged dependent variable and
the instruments in levels gets larger owing to the unremoved individual effects, i.e., the
instruments in levels become strong. In contrast, we find that when the data are (close
to) mean stationary and the variance of the individual effects becomes large relative to
that of the disturbances, the instruments in levels become weaker.

When T' = 3, corr(p, v1) = 0 and the ratio of ai and o2 is large relative to the sample
size N, y; will be a weak instrument for Ay, and the standard fixed parameter first-order
asymptotic approximation to the distribution of p 4., Will be poor. We may be able to
obtain a better approximation by employing local asymptotics where the ratio ai /o2 is
reparametrized as a non-decreasing function of the sample size, i.e. ai /o2 = ki NP with
p > 0. The theorem below, which is proven in the appendix, describes how the limiting
distribution of p 4., changes as we vary the value of parameter p, which determines the

quality of the instrument y; 1:



Theorem 3 Let assumptions SA and FEA* hold, T = 3 and |p| < 1.
Furthermore, let ai/o% = ks NP with p > 0, let corr(p,v;) =0,

and let limpy_,oo N17P Zfil E(peis)? = ¢, t=2,3 and

By oo N75P SN E(pvi1)% = o with 0 < ¢, ¢y < 0.

If p=10,0 < limy_o N ! Zfil E(yi1Ae;3)? = ¢y < 0o and {y;1A¢; 3} satisfies
the Lindeberg condition, then N*° (D 4pien — P) <, N(0,[(p — 1)a?]72¢,).

If0 < p <1 and {p;Ae;3/NP} satisfies the Lindeberg condition, then

NOSD) (G, = p) 5 N(O,[(p — 1)0?]722¢,).

If p > 1, {peir/ NP} t = 2,3, and {p;v;1/N*P} satisfy the Lindeberg condition,

X 0 2 —
and AN , G G , then

Xy 0 —C G+ (p— 1)2C2

. ~ d . . -~ d
=1, Daglev — P — (p—l))f%’ while i p > 1, Papies =P = %

Generalizing this result to 7' > 3 is straightforward.

Under conditional homoskedasticity of the g, and the €;; and uncorrelatedness of 2
and v}, Vi € Z, we find that ¢, = 2(0? + 02)0?, ¢; = k1020%, and ¢, = k1(07)*.

For p = 0, one obtains the standard fixed parameter first-order limiting distribution
of Papier; When 0 < p < 1, one obtains essentially the same limiting distribution because
if N — oo, then 02 /07 — oo and E(yi1Ag;3/0,)* — E(p;Aci3/0,)% and when p > 1,
DaBles — P converges to a ratio of correlated normal r.v.’s; where p = 1 is a special case
because in this case the mean of the denominator is different from zero. The limiting
distribution for p > 1 is in fact equal to the sequential limiting distribution of p4p;.,

when corr(p,v1) = 0 and first o7, — oo and then N — co. 7 ®

T Alternatively, we may consider local asymptotics based on the sequence corr(p,vy) =
cN™4, while 03/012, — 00. Let us assume homoskedasticity of p, v; and ¢; and let Z; =

N=05%" yi1Ae;3/0,. It follows that 7L 7~ N(0,202%). Then for 0 < ¢ < 0.5, we
obtain N9~ (D 4p1e0 — P) <, N(0,[(p — 1)ecoy]72202). If ¢ > 0, limy_eoE(uv1/0,) = 0.
Let limy_,oVar(pvi/o,) =

Efw and let Zy = N705 > Yi1Ayi2/o,. Then if ¢ = 0.5,
Zy % Zy ~ N((p—1)e, (p—1)25%, +02), while if ¢ > 0.5, Zy % Zy ~ N(0, (p— 1)%52, + 02). It

follows that if ¢ > 0.5, (PaBles — P) <, Z1/Zy where Cov(Zy, Z3) = —o?. We can also consider
combined local asymptotics based on the sequences Ui Jo? = kiNP and corr(p,v1) = cN 7.

Then if p =1 and ¢ = 0.5, (PaBler — P) < Z1/((p — D)oy k7 %5 + Z3), while if 0 < p < 1 and
) [~ d _ _
2= 05p, NSO (B — ) 4 N(O,[(p— Dok + (o — 1] 2207).

10



The parameters of the limiting distribution of p,p,., can be consistently estimated
regardless of the value of p : one only needs to know whether p < 1, p =1, or p > 1. Note
that the distribution of X;/X, depends only on ¢;/C,, where C, = (; + (p — 1)2C,.
When p > 1, the ratio Cl/EQ can be consistently estimated by 0.5 Zij\il(yi,l[Ayis —
/,O\ABdifAyLz])z/Z£1<yi,lAyi72)2, where pypgp is a consistent FE estimator that is de-
fined below. When p = 1, one can estimate ¢; by 0.5N 23"~ (y:1[Ayis —PapaifAyiz))?,
G by N72XY (i1Agip)?, and (1 — p)o? by [N'EL (Ayig)? — 05N
Zﬁil([Ayi,B - ﬁABdifAyi,2])2]/(1 — Papais) and when p < 1, one can estimate ¢; by
0.5N—17 Zz]il(yll [Ayiz — /p\ABdifAyi,Q])2'

The Arellano-Bond differences GMM estimator, p4p,;r, uses lagged differences of

¥it—1 as instruments instead of levels, that is, it exploits the following moment conditions
E[Ayi,S(Ayi,t - PAyi,t—l)] = 07 2 S S S l— 2a t= 47 a3 T. (4)

This estimator, which uses an arbitrary PD weight matrix Wy (with plimy Wy = W,
where W is PD) and only involves differences of the data, will be consistent for any

sequence of individual effects as long as FEA (or FEA*) holds.

Theorem 4 Assume that SA and FEA hold and |p| < 1. Then ppg;; i VN -consistent.

The proof of this theorem is trivial. Recall that the first-differences of the data Ay, ,,
t=2,..,T, only depend on y;; and p; through v; ;.
The asymptotic distribution of p,p,,;, is easily derived. We make the following as-

sumptions:
Moment Assumption 1 (MA1): 0 <% =limy_ N!0V 0t < 0.
Moment Assumption 2 (MA2): 02, =limy o N"' SN E(v? ) < 0o Wt € T.

Then it is straightforward to prove the following result:

8The lagged values Yis, s = 1,...,t — 2, are also weak instruments for Ay, ;1 when p is close
to one. Kruiniger (2009) obtains local limiting distributions for p4p;., both under covariance
stationarity and for the model with fixed initial conditions using the parameter sequences p =
1—(A/N)and p=1— ()\/N)%5 respectively. These local limiting distributions depend on the
localizing parameter A which cannot be consistently estimated when T is fixed. Using parameter
sequences for p that tend to one at a faster rate would result in the standard (fixed parameter
first-order) limiting distribution for p = 1 just as taking p > 1 results in the standard limiting

distribution for 03 — o0 and corr(p,vy) = 0.
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Theorem 5 Let assumptions SA, FEA*, MA1, and MA2 hold, T = 4, and |p| < 1.
Moreover, let {Ay; 2Ac; 4} satisfy the Lindeberg condition.
Then VN (Bapas — p) = N(0,[(p = 1)?002 + (p — 1)0?~2[2(p — 1)%02 . + 25Y)).

= 020? and o' = o' Notice

Under conditional homoskedasticity of the ¢;,, ‘712;,5
that the limiting distribution of p,p4; does not depend on ai unlike the standard first-
order fixed parameter limiting distribution of p, g, It follows that Var(papas 7-4) <

Var(papies, r=3) when corr(p,v1) = 0 and o2 is large relative to o2 and 0.

2.2.2 Ahn-Schmidt GMM estimators and Quasi ML estimators

Just like the RE AB GMM estimator for p does not exhaust the set of all the second
moment conditions, the AB differences GMM estimator for p does not exhaust the set of
all the second moment conditions that follow from assumptions SA and FEA* and involve
only differences of the data. The complete set of second moment conditions implied by

the panel AR(1) model corresponds to

Yi ( Yix Ayiz (De;) )
E Ayi,2 )
Dé?i

where D is the (T'— 2) x (7" — 1) first difference matrix with Dy, = —1 and Dy 441 = 1,
k=1,..,T —2, and zeros elsewhere. The RE HOmoskedastic Conditional (HOC) GMM
estimator for p exploits all these second moment conditions, or equivalently, the following

moment conditions (cf Ahn and Schmidt, 1997):

E(yi1(Ayis — pAyi—1)) =0, t=3,...7T, (5)
E((yie — pyiz-1)* — Wiz — pyin)®) =0, t=3,.,T, and
E((Wir — pYir—1)Wis — pYis—1) — Wiz — pyi2) Wiz — pyin)) = 0,

2<s<t, t=4,..,T.

Kruiniger (2013) has shown that when —1 < p < 1 and T > 3, then p is uniquely
identified by them and the RE HOCGMM estimator for p is consistent. The moment
conditions in the second line of (5) depend on homoskedasticity over time. The RE

Conditional GMM estimator for p allows for heteroskedasticity over time and exploits
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the moment conditions in the first and third line of (5), c¢f. Ahn and Schmidt (1997).
As we have seen above, GMM estimators for p that exploit moment conditions involv-
ing levels of the data, e.g. y;1, are not consistent for all sequences of fixed effects that
satisfy FEA. On the other hand, Fixed Effects GMM estimators — which are consistent
for any sequence of fixed effects that satisfies FEA — only exploit moment conditions

that only involve differences of the observations. Noting that Ay, o = €;2 — (1 — p)vis
and De; = Dy; — pDy; 1, SA and FEA imply

N
. 1 Ayia ( Ayip (Dyi — pDy; 1))
iy 00— : ’ ’ = 6
PHIN NE;{ ( Dy; — pDy; 1 ) ©
0?4+ (1—p)?c2 -0 (
0 g

where H = DD'.°

We will call the GMM estimator for p in the panel AR(1) model that exploits all the
‘moment conditions’ in (6) the Fixed Effects HOCGMM estimator. This GMM estimator
is the solution of a third-order polynomial in p just like the Random Effects HOCGMM
estimator for p.

The ‘moment condition’ plimy e N2 32N (Ay;2)? = 02 4 (1 — p)?0? is redundant

2 10

for estimating p, because it is the only ‘moment condition’ in (6) that involves o7.
Cross-sectional heteroskedasticity of the ¢;; does not pose a problem for estimating p,
since the 2+ 6-th moments of the ;,, E(|e;,|*"®), are bounded Vi € Z, and V ¢ € T, and
the cross-sectional average of the o? converges.

Compared with the (Optimal) FE HOCGMM estimator for p, the (Optimal)
RE HOCGMM estimator for p exploits T' — 2 additional moment conditions, which in-
volve levels of the data: F(y;1(Ayi; — pAyie—1)) =0, t =3,...,T. ' In the appendix we

prove the following result:

9We can extend these results to the panel AR(1) model with strictly exogenous regressors:
Vi = pYi—1 + (1 — p) + Xi5 + ;. In this case we define v;1 = y;1 — p; — Z;5/(1 — p) where
T; = X{L/(T — 1). Then we obtain Aym = (iL‘Z‘,Q — fl)’ﬁ + (p — 1)’1)1'71 + ;2.

19See Breusch et al. (1999) for a definiton of redundancy of moment conditions.

U E(yi1Ayi2) = (p—1)(0%240,,) and E(%QJ) = 02+20,,,+ 07}, are redundant for estimating
p because only they can be used to identify and estimate o, and O'Z.
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Theorem 6 Assume that SA and FEA* hold, T > 3, |p| < 1 and that 4+ 6-th moments
of the data exist for some § > 0.

(i) If 0}, — oo and corr(p,v1) # 0, then the Optimal Random Effects HOCGMM
estimator for p, which exploits (5), is asymptotically more efficient than the Optimal
Fized Effects HOCGMM estimator for p, which exploits (6).

(i) If 02 — oo and corr(p,v) = 0 and when optimal weighting is used, then all
moment conditions involving levels of the data are redundant for estimating p relative to

the moment conditions in (6).

Corollary 1 Assume that SA and FEA* hold, T > 4, |p| < 1 and that 4+§-th moments of
the data exist for some d > 0. Ifai — 00 and corr(p, v1) = 0 and when optimal weighting
is used, then E(y;1(Ayi: — pAyir—1)) = 0, t = 3,...,T are redundant for estimating p
relative to the Arellano-Bond moment conditions based on only differenced data that are

given in (4).

The proof of Corollary 1 is similar to the proof of Theorem 6.

The use of redundant moment conditions by the 2-step Optimal RE HOCGMM and
Optimal RE Arellano-Bond GMM estimators does not affect their first-order asymptotic
properties but does adversely affect their finite sample properties, cf e.g. Newey and
Smith (2004).

When the data are i.i.d. and normal and |p| < 1, the Optimal RE HOCGMM estima-
tor is asymptotically equivalent to the (correlated) RE ML estimator due to Chamberlain
(1980) and Anderson and Hsiao (1982), and the Optimal FE HOCGMM estimator is as-
ymptotically equivalent to the Transformed Maximum Likelihood (TML) estimator that
has been proposed by Hsiao et al. (2002), see Kruiniger (2001, 2013). This TML es-
timator can also be viewed as the FE counterpart of (correlated) RE ML estimator.
Furthermore, when p = 1, the REMLE and the FEMLE (i.e., the TMLE) are also aymp-
totically equivalent, cf Kruiniger (2013). When p = 1, p is only second-order identified
by (5) and (6), respectively, and the RE and FE HOCGMM estimators converge at rate
N'/* and have a non-standard limiting distribution, cf Kruiniger (2013wp, 2017). We
have the following counterpart of Theorem 6 for the MLEs:
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Theorem 7 Assume that SA and FEA* hold, T > 3, |p| < 1 and that 2+ §-th moments
of the data exist.

(i) If 07, — oo and corr(p,v1) # 0, then (a) the RE Quasi MLE for p is consistent
and (b) under normality of the data the REMLE for p is asymptotically more efficient
than the FEMLE for p.

(i) If o2, — oo and corr(u,v1) = 0, then (a) the RE Quasi MLE for p is consistent
and (b) under normality of the data the REMLE for p is asymptotically equivalent to the
FEMLE for p.

If the errors are heteroskedastic over time, then Theorem 7 only holds for 7' > 3.

2.2.3 Old and new Arellano-Bover and System GMM estimators

We will now consider the asymptotic properties of some other well-known GMM estima-
tors for the panel AR(1) model when o2 — oco. Arellano and Bover (1995) noted that
if mean stationarity holds as well, i.e., if E(v;1) = 0 and corr(p,v1) = 0 also hold, then

one can add 7" — 2 moment conditions to those in (3):
El(Yit — pYit—1)AYiz—1] =0 for t =3,...,T. (7)

A GMM estimator that exploits the moment conditions in (3) and (7) is known as a
System (SYS) estimator.
The set of moment conditions in (3) and (7) is equivalent to a set that contains 7" — 2

Arellano-Bond and m Arellano-Bover type moment conditions:
Elyii(Ayiy — pAy;—1)) =0 for t = 3,..., T, (8)

and
El(yit — pyir—1)Ay;is) =0for s=2,..,t —land t =3,...,T. (9)

A GMM estimator that only exploits the latter m = (T'—1)(7 —2)/2 moment conditions
will be referred to as an Arellano-Bover (Arbov) estimator.

There exist no feasible optimal one-step weight matrices for the Arbov and SYS esti-
mators, except when 02 = 0. Let Ay! = [Ay; 5 ... Ay;q], let ZT = diag(Ay?, ..., Ay] ') be
a (T'—2) x m block-diagonal matrix and let Z° = diag(Z!*, ZI) be a 2(T—2) x(m+T—2)
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block-diagonal matrix. The Arbov estimator exploits F(Z!!"w;) = 0, whereas the System
estimator exploits F(Z'[w, Aw!]") = 0. When 0% = 0, optimal one-step weight matrices
for the Arbov and SYS estimators are given by Wy arpop1 = (N le\il ZH' 711 and
Wxsys1 = (N1 sz\il Z9'AZP)7L respectively, where A is given by

. IT,Q C
=lerh]

where C' = Cr_y = F(g;Ael)/o? is a (T — 2) x (T — 2) matrix with ones on the main
diagonal, —1’s on the first superdiagonal and zeros elsewhere. The one-step Arbov and
SYS GMM estimators that use Wiy arbop1 and Wi sys1, respectively, will be referred to
as Parport ANd Pgy gy, respectively. The two-step optimal Arbov and SYS estimators
will be denoted as P 4,p0p2 @0d Pgy g, respectively. The Arbov and SYS estimators that
use an arbitrary PD matrix Wy as weight matrix will be denoted as p 4,40, and pgy g,

respectively. In the appendix we prove the following result:

Theorem 8 Assume that SA and FEA* hold, E(v;1) = 0, corr(u,v;) =0, T =3, |p| < 1

and 0% — 00. Then P apoy, Psys and Pgyg, are inconsistent.

One can derive local asymptotic distributions of p 4,4, Psys and pgyg; similarly to
those of P4 pier-

We will now extend the results in Theorem 8 to 7' > 3. The set of m Arbov moment
conditions in E(Z!"w;) = 0 can be restated as E(Z!"[w, Aw!)]') = 0 where Z!! =
diag(ZF, ZP) is a 2(T — 2) x m matrix with Z} = diag(Ay; 2, ..., Ay;r—1). We can extend

the results given in Theorem 8 to T > 3 by using Lemma 3 from the appendix.

Theorem 9 Assume that SA and FEA* hold, E(v;1) =0, corr(p,v1) =0, T > 3, |p| < 1
and 0% — 0o. Assuming that D aype and Pape, eaploit E(ZH'[w) Awl]') = 0 in liew of
E(ZMw;) = 0, then:

(Z) pth*OO /ﬁArbovl =1 and pth—>oo ﬁArbov2 =0 (“) pth—>OO /IO\Arbov =1

The proofs of Lemma 3 and Theorem 9 are similar to that of Theorem 8. The com-
posite errors, w;, and the lagged dependent variables, v;; 1, need to be scaled by o,

to achieve convergence of the averages of their cross products with the instruments.

However, the blocks of the weight matrices of 04,401 a0d D440, that correspond to
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E(ZFw;/o,) = 0 do not provide this scaling. These estimators will effectively only
exploit the (scaled) moment conditions in F(ZFw;/0,) = 0, which do not identify p
(because plimy oo lim,, o0 (N Zfil Z¥y; _1/o,) = 0), and hence will be inconsistent.
When T > 3 and 07, — oo, the moment conditions in E(Z”'Ag;) = 0 still identify p and a
truly optimal Arbov estimator, e.g. 04,4002, IS consistent and asymptotically equivalent to
an optimal AB GMM estimator but, as noted above, no optimal 1-step Arbov estimator
is available unless o2 = 0.

The 2-step optimal Arbov estimator, p 4,409, requires that the elements of the optimal
weight matrix are consistently estimated. Any FE estimator can be used for this purpose,
e.g. Papaiy Or the Transformed ML estimator of Hsiao et al. (2002), but also p4p1e,,
DPapaes OF the RE Quasi ML estimator of Kruiniger (2013): when 7" > 3, the REQMLE
for p remains consistent when ai /0?1 oo and under normality of the data the REMLE
for p is asymptotically equivalent to the Transformed MLE for p when corr(u,v;) = 0,
0%/0* 1 0o and N — oo, see Theorem 7.

Note that the set of m + T — 2 moment conditions in E(Z%[w], Aw]]') = 0 can be
rewritten as E(Z5'[w) Aw]]) = 0, where Z° = diag(ZF, ZAP) is a 2(T —2)x (T —2+m)
matrix. Using Lemmas 2, 3 and 4 from the appendix we obtain the following results

related to System estimators:

Theorem 10 Assume that SA and FEA* hold, E(v;1) = 0, corr(p,v1) = 0, T > 3,
lp| <1 and 07, — oo. Let Xo = ((1 — p)X7;, X&) and X10 = (X7, Xg;)" where X,
Xg1 and X7 are Gaussian r.v.’s that are defined in Lemmas 2 and 3. Assuming that
Doy s1 and Pgys exploit E(Z5'[w) Awl]) = 0 in lieu of E(Z%'[w) Aw)]') = 0, then:

(Z) pth—)oo /P\Sy51 =1 and pth—>oo /p\SYSQ = p;

(i3) Dsys — P t (X1oWi1X10) 1 X0 Wi1 Xo.

The proofs of Lemma 4 and Theorem 10 are similar to that of Theorem 8. The
SYS1 (the SYS) estimator will effectively only exploit the (scaled) moment conditions in
E(ZFw;/o,) =0 (and E(Z]'Ag;/a,) = 0), which do not identify p (when corr(u,v,) =
0), and hence will be inconsistent. Let Z* = diag(z{3, 23, ..., 207, 0) with 2] = Ay; +
S, Aw .. Note that E(Z5'[w] Awl]') = 0is equivalent to E(ZAP' Ag,) = 0, E(Z8' Ag;) =
0 and E(w;3Ay;2) = 0. When T > 3 and 02, — oo, E(Z'Ag;) = 0 and E(Z{*'Ag;) =0
still identify p and a truly optimal SYS estimator, e.g. pgygo, iS consistent and asymp-

totically equivalent to the optimal FE GMM estimator for p that exploits these moment
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conditions and also to the optimal FEE GMM estimator for p that exploits a version of the
set of moment conditions in (6) that allows for heteroskedasticity over time. However, no
optimal 1-step SYS estimator is available unless O'i = (0 and the 2-step ‘optimal’ System
estimator that uses pgy g; to obtain an estimate of its weight matrix and is commonly
used in the literature is inconsistent and asymptotically biased upwards. The 2-step op-
timal System estimator, pgy g9, requires that the elements of the optimal weight matrix
are consistently estimated. As the REQMLE remains consistent when ai /o? 1 oo and
has favorable properties, also when p is near or equal to unity, cf. Kruiniger (2013), we
propose a new System estimator that uses the REQMLE to estimate the optimal weight
matrix. When p is not close to unity, one could also use p g9, t0 estimate the opti-
mal weight matrix of the System estimator leading to yet another version of the System

estimator.

3 The finite sample performance of the estimators

Using Monte Carlo simulation, we study the finite sample properties of the 2-step optimal
RE AB GMM estimator (AB2), the commonly used version of the 2-step ‘optimal’ System
estimator (CSYS2; C for Conventional) of Arellano and Bover (1995) and Blundell and
Bond (1998), and the RE and FE Quasi MLEs for p in the model given in (1). The 2-step
estimators AB2 and CSYS2 use the 1-step estimators p, 5, and pgyg;, respectively, to
obtain an estimate of their weight matrix. We also consider the finite sample properties
of the 2-step optimal System estimators that use the REQMLE or the AB2 estimator
to obtain an estimate of the optimal weight matrix. These estimators are denoted as
RSYS2 and ASYS2, respectively. Like the AB2 and SYS2 GMM estimators, the RE and
FE Quasi MLEs that we consider allow for heteroskedasticity over time (and by doing so
they actually allow for arbitrary heteroskedasticity).

In all simulation experiments the values of the error components, the y,; and the ¢; 4,
have been drawn from normal distributions with zero means and the ¢, ; are homoskedastic
and do not exhibit autocorrelation, i.e. E(g;e}) = o?1.

We study how the properties of the estimators are affected if we change (1) the condi-
tional distributions of the differences between the initial observations and the individual
effects (the v;1) given the individual effects (the 1,), (2) the value of N, (3) the value of
p, (4) the value of 03 /0* and/or (5) the value of 07 /0*. W.lLo.g. we set 0> = 1.
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We conducted the simulation experiments for 7' = 6, N € {100, 500}, p € {0.5, 0.9},
02 € {3, 55} and 02 € {0, 1, 4, 10, 25}. Note that if p = 0.5, then 02/(1 — p?) = 3,
while if p = 0.9, then 02/(1 — p?) = 53.

In order to assess how the conditional distribution of the v; 1 = ;1 — p;, 2 =1, ..., N,
affects the properties of the estimators, we conducted two types of experiments, which
are identified by a capital letter: for one type of experiments the initial observations are
drawn from ‘mean stationary’ distributions, (MS), (y;1 — p;)|1; ~ N(0,02), whereas for
the other type the initial observations are drawn from ‘mean nonstationary’ distributions,
(MNS), (531 — (1+ VO2)p1,) |, ~ N(0,02 — 0.202).

Under design MS, {y;,} is mean stationary and {y;,} is even strictly stationary if o2
is chosen equal to 02/(1 — p?). Under design MNS, {y;,} is nonstationary due to the fact
that E(u;(yi1 — p;)) # 0, although if o2 is chosen equal to 02/(1 — p?), then (y;; — p1;) ~
N(0,0%/(1 — p?)) as is the case under design MS. In both designs F(y;; — y;;—1) = 0.

The AB GMM estimators and the QML estimators suffer from a weak moment con-
ditions problem when p is close to one.

When we ran the simulations, we did not impose homoskedasticity on the likelihood
functions. However, we did maximize the likelihood functions subject to the restrictions
02> 0and (T —1)5> + 02 >0, t = 2,..., T, on the variance parameters to ensure that
the estimates of the covariance matrix of the composite errors were positive definite. We
allowed for time effects by subtracting cross-sectional averages from the data.

Tables 1-4 report some of the simulation results on the properties of the estimators
for N =100 (and 7' = 6) in terms of the biases and mean squared errors (MSEs). These
numbers have been multiplied by 100. The tables differ with respect to the assumptions
made about the conditional distribution of the v;; (design MS or MNS), the value of p
(0.5 or 0.9) and that of 62 (4/3 or 535). Appendix B reports further results. Inspection

of the results in tables 1-4 and those in appendix B leads to the following conclusions:

1. The bias and the variance of the AB2 estimator depend on the conditional distri-
bution of the v;;: they increase in ai /02 under design MS (due to instruments
becoming weaker) but decrease in ai /o? under design MNS (due to instruments

becoming stronger, cf. Hayakawa, 2009). The bias is larger when p is closer to 1.

2. Similar to the bias and the variance of the AB2 estimator, those of the REQMLE

increase in 07 /o® under design MS, but they decrease in 07, /0 under design MNS.
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Table 1: MC results for estimators of p; N = 100, design MS, p = 0.5 & 02 /0% = 4/3.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
o bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
0 -1.8 0.7 0.16 062 086 1.10 -0.45 046 -0.37 049 -0.98 0.53
1 -337 123 032 078 090 1.15 045 056 -0.03 0.58 -1.28 0.67
4 538 209 071 100 095 1.15 322 085 0.87 0.74 -1.60 0.93
10 -653 264 101 1.14 1.02 116 7.64 1.68 1.20 089 -2.28 1.22
25 -726 317 132 124 123 1.19 176 5.01 1.62 1.11 -3.26 1.84

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 2: MC results for estimators of p; N = 100, design MS, p = 0.9 & 02/0? = 5.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
0? Dbias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
0 -894 344 265 1.81 270 218 -1.22 0.55 -024 0.75 -480 1.36
1 -10.8 423 369 200 317 222 -1.04 058 0.16 080 -5.73 1.60
4 -16.1 7.74 497 223 322 214 -059 060 0.89 0.96 -8.89 291
10 -25.4 147 566 245 3.13 220 -008 064 139 1.12 -15.0 5.91
25 -37.8 269 5.68 250 348 220 1.87 0.66 2.43 1.41 -25.2 13.2

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 3: MC results for estimators of p; N = 100, design MNS, p = 0.5 & 02 /0% = 4/3.
AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
Ui bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
1 -3.11 122 064 1.04 101 125 -9.15 1.26 -7.15 0.97 -8.08 1.11
4 -2.08 092 042 073 143 131 46.0 2219 7.78 182 574 1.59

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 4: MC results for estimators of p; N = 100, design MNS, p = 0.9 & 02/0? = 5.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
O'i bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
1 -36.9 242 430 241 354 233 -041 0.19 034 036 -14.9 5.02
4 287 16.5 4.43 231 356 229 -266 045 -1.15 0.70 -16.2 5.55
10 -18.8 9.12 422 223 380 228 -286 091 -097 126 -14.3 4.88

25 -9.68 374 289 181 323 217 11.1 1.68 571 1.64 -4.02 248
Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.
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The bias and the variance of the FEQMLE hardly change with ai /o? under either
design. Note that under design MS Avar(Drpyp)/Avar(Drgay) 11 as 05 /0* T oo,
where Avar(p) is the limiting variance of p for N — oo, cf. Theorem 7. This result
can be a bit ‘misleading’ when p is not close to 1 but ¢2/0? is large. In this case,
when ai /o? increases, the bias and the variance of the REQMLE first ‘explode’ and
then decrease, whereas the FEQMLE, which is a restricted version of the REQMLE,
is unaffected. Note that ppp,, . is asy. equivalent to a GMM estimator that uses
AB and AS moment conditions. Under design MS, if p < 1 and 02 /c? increases,
then the former become stronger but are given (relatively) less weight while the
latter become weaker. Nonetheless, once o7 /0 is fixed, if 07 /0% 1 oo, both kinds

of moment conditions become weaker and ppp,, . eventually still tends to ppgasr-

. The CSYS2 estimator performs better than the QMLEs when all the moment con-
ditions that are exploited by the former estimator are valid and not weak (so the
value of O'Z /o? is not high) or when the value of p is close to 1. However, if the
value of p is not close to 1 (so that (the effects of) the p, are not neutralized) and if
mean stationarity is violated (as in design MNS) or the value of O'i /o? is high (so
that some of the moment conditions exploited by the SYS estimators are weak and
the ‘optimal’ weight matrix of the CSYS2 estimator is poorly estimated as a re-
sult of using pgy g1 ), then the CSYS2 estimator is seriously biased (Bun and Wind-
meijer (2010) report similar findings when the value of 7, /® is high), whereas the

FEQMLE and often also the REQMLE (but see 2.) perform well.

. When the value of p is close to 1 (i.e., 0.9), both the CSYS2 estimator and the
RSYS2 estimator usually perform well although the former performs (somewhat)
better than the latter. The exception is when mean stationarity is violated, o2 /o2
is high and o7 /0 is high. In this case, both estimators are biased and the RSYS2
estimator perform somewhat better than the CSYS2 estimator. When p is close
to 1, the ASYS2 estimator performs (much) worse than the CSYS2 and RSYS2
estimators, especially under design MS if o2 /0® is high and under design MNS

(unless ai /o? is very high) due to the poor performance of the AB2 estimator.

. Unlike the CSYS2 estimator, the RSYS2 and ASYS2 estimators perform well under
design MS when the value of p is not close to 1 (e.g., 0.5) and the value of 02/02 is

high if the value of 02/0? is moderate (e.g., 4/3). However, if the value of 02 /5>
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is high (e.g., 5%), then, like the CSYS2 estimator, the RSYS2 estimator performs
poorly under design MS when p = 0.5 and the value of ai /o? is high due to the
poor performance of the REQMLE. In this case the ASYS2 estimator still performs

well.

6. When mean stationarity is violated, the value of p is not close to 1 and the value
of ai /o? is not low, then the RSYS2 estimator and especially the ASYS2 estimator
perform (much) better than the CSYS2 estimator, although the REQMLE is the
preferred estimator in this case (because all the SYS estimators are inconsistent

and hence biased in this case).

The reason for the last finding is that when instead of pgy¢; a consistent estimator,
such as Py gy OF PrEur, 1S used to obtain an estimate of the ‘optimal” weight matrix, then
the weight given to the invalid Arbov moment conditions F(ZFw;) = 0 drops relative to
the weight given to the other, valid moment conditions that are exploited by an ‘optimal’
System estimator, i.e., F(ZP'Ag;) = 0 and E(Z!'Ag;) = 0. When a consistent estimator,
€.8. Paps OF PrEmr, 1S used to obtain an estimate of the ‘optimal’ weight matrix, an
increase in the value of ai /o? also leads to a drop in the relative weight given to the
invalid Arbov moment conditions E(ZFw;) = 0.

We also considered the usefulness of two versions of a test for weak instruments
due to Montiel Olea and Pflueger (2013), and one test of underidentification due to
Windmeijer (2018). The first two tests make use of cluster-robust F-test-statistics, Fp
and F,, which are based on the first-stage regressions Ay 1 = 7 Dyz‘,t—2 —i—wft and y; ;1 =
TF Ay -1 +wly, respectively. Fpp (FL) indicates weakness of the instruments for the model
in differences (levels) when Fp, < 10 (F < 10). As the models usually contain time
dummies, we replace the observations y; ; by cross-sectionally demeaned versions y; s =
Yis— Nt Zjvzl yj.s when computing the values of Fip and F7,. The underidentification test
is only carried out for the model in differences and is based on Hansen’s .J-test-statistic for
testing the validity of the ‘orthogonality conditions’ E(y;1Ay;—1) = 0,t =3, ..., T, where
Ay, 1 are the ‘errors’ and y; ; are the instruments. This test rejects underidentification
in the model at the 5% level when J > x3 4-(7T — 2).

Tables 5-8 report some of the simulation results on the properties of the tests for
N =100 (and T' = 6) in terms of the average values of the test-statistics and the p-value

of the J-test, ps, as well as the relative frequency that some condition, e.g. non-rejection,

22



is met. Appendix B again reports additional results.

Let Ey(.) denote a sample average, e.g. En(X) = N~! le\il X;. Inspection of the

results in tables 5-8 and those in appendix B leads to the following conclusions:

1.

When using the rejection rules p; > 0.05 and Fp < 10, the J and the Fp tests often
lead to the same conclusion in the sense that En(1(p; > 0.05)1(Fp < 10)) is close
to min{Ex(1(p; > 0.05)), Ex(1(Fp < 10))}. Note also that usually Enx(1(Fp <
10)) < En(1(ps > 0.05)). We focus below ‘conservatively’ only on the F)p test.

. Under design MS, Ey(1(Fp < 10)) increases in the value of 07 /¢*, and for a given

value of 02 /0%, En(1(Fp < 10)) is highest when p is high (p = 0.9) and 02/0” is
low (02/0% = 4/3), while Ex(1(Fp < 10)) is lowest when p is low (p = 0.5) and
02/0? is high (02/0® = 53).

Under design MNS, if p is low (p = 0.5), then En(1(Fp < 10)) = 0.00, while if p is
high (p = 0.9), then Ex(1(Fp < 10)) decreases in the value of o2 /0* from 0.87 for
0%/0* =1 to 0.14 for o2, /0* = 25.

En(1(Fp < 10)) is positively correlated with the bias of p 45, and when p is high
(p = 0.9), also with the bias of p 4y go-

. Under design MS, Ey(1(Fy, < 10)) increases in the value of 02 /0%, and for a given

value of o2 /0, En(1(Fy < 10)) is highest when p is low (p = 0.5) and 07 /0 is
high (02/0? = 53), while Ex(1(Fy, < 10)) is lowest when p is high (p = 0.9) and

o2/a? is low (02 /0% = 4/3).

Under design MNS; if p is low (p = 0.5), then En(1(Fy < 10)) is very high when
0%/0* = 4 or 10 but Eyx(1(FL < 10)) = 0.00 when o2 /0* = 1 or 25, while if p
is high (p = 0.9), then Ey(1(Fy < 10)) is very high when o7/ = 10 or 25 but
En(1(FL < 10)) < 0.06 when 07, /0% = 1 or 4.

A combination of the Fp and F} tests can also be used to choose among prgy g2,

Prsysz and Pagyss : if p (e.g. Prpgasr) is high, then choose prgy g, unless Fp > 10 and

Fr, < 10, in which case choose prgy g9, While if p is not high and mean stationarity holds,

then choose prgygo unless Fp > 10 and Fy, < 10, in which case choose p 4gy go-

We also investigated the quality of two estimators for the standard errors (SEs) of the
GMM estimators for p, and for the bounds of 90% confidence intervals (CIs) for p. That is,
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we considered SEs based on first-order asymptotics and corrected SEs based on equation
(2.6) in Windmeijer (2005).'* The latter depend on the SE of the first-step estimator,
which is given by another Windmeijer SE in the case of p g, (the first-step estimator for
Pasyse) and by a very simple non-parametric bootstrap estimate based on 100 replications

in the case of Prpoyrr (the first-step estimator for Prgy-g0)-

Table 5: MC results for identification tests; N = 100, design MS, p = 0.5 & 02 /02 = 4/3.

o2 J p; p;>005 p;>001 Fp Fp<1l0 F, Fy<10 P00 Fp>10

Iz &Fp<10  &Fp<10
0 29.4 0.00 0.00 0.00 137 0.00 136 0.00 0.00 0.00
1 22.5 0.00 0.00 0.00 69.5 0.00 69.0 0.00 0.00 0.00
4 14.0 0.03 0.17 0.46 28.1 0.01 28.1 0.01 0.01 0.01
10 9.12 0.14 0.57 0.84 13.0 0.31 13.0 0.32 0.27 0.30
25 6.45 0.29 0.80 0.95 5.75 0.88 5.82 0.88 0.77 0.12

Notes: 5000 replications; J, Fp, I, tests are described in text; p; is p-value of J test.

Table 6: MC results for identification tests; N = 100, design MS, p = 0.9 & 02 /0% =52

o> J p; p;>005 p;>001 Fp Fp<10 F, Fp<10 2200  Ip>10

10 &Fp<10  &F;<10
0 15.7  0.02 0.08 0.31 22.7 0.05 224 0.06 0.04 0.06
1 14.0 0.03 0.16 0.46 18.9 0.13 18.9 0.13 0.09 0.13
4 112 0.08 0.38 0.69 12.8 0.38 13.0 0.38 0.29 0.36
10 8.66 0.17 0.61 0.87 8.14 0.69 8.18 0.69 0.56 0.30
25 643 0.28 0.82 0.95 4.47 0.91 4.48 0.91 0.80 0.09

Notes: 5000 replications; J, Fp, I, tests are described in text; p; is p-value of J test.

Table 7: MC results for identification tests; N=100, design MNS, p = 0.5 & 02 /0% = 4/3.

o2 J p; p;>005 p;>001 Fp, Fp<l1l0 F, Fr<10 Pp>00 Fp>10

12 &Fp<10 &F, <10
1 15.2  0.02 0.10 0.35 53.5 0.00 67.9 0.00 0.00 0.00
4 26.3 0.00 0.00 0.00 53.2 0.00 5.14 0.90 0.00 0.90

Notes: 5000 replications; J, Fp, I, tests are described in text; p; is p-value of J test.
Table 8: MC results for identification tests; N=100, design MNS, p = 0.9 & 02 /0? = 5.

o> J p; p;>005 p;>001 Fp Fp<10 F, Fp<10 P720%  Ip=10

I &Fp<10  &F<10
1 472 0.42 0.92 0.99 5.37 0.87 86.8 0.00 0.83 0.00
4 659 0.28 0.80 0.95 6.28 0.82 21.3 0.06 0.74 0.05
10 9.74 0.12 0.51 0.80 9.70 0.59 3.43 0.96 0.45 0.41
25 15.1 0.02 0.11 0.36 18.3 0.14 2.23 0.98 0.08 0.84

Notes: 5000 replications; J, Fp, I, tests are described in text; p; is p-value of J test.

12The derivation of the Windmeijer corrected SEs for the RSYS2 estimator and the ASYS2
estimator is provided in the appendix.
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In the case of the CIs we report the number of times that the true value of p was
outside the Cls, that is, we report the rejection probabilities (RPs).

Tables 9 and 10 report the simulation results for design S with p = 0.5 and p = 0.9,
respectively. For both tables, 02 = ¢%/(1 — p?). Furthermore, N = 100 (and T' = 6). The

findings can be summarized as follows:

1. The conventional asymptotic SEs always seriously underestimate the standard devi-
ations of the GMM estimators and are (much) lower than the Windmeijer corrected
SEs. The latter are often close to the standard deviations of the AB2 estimator

although they somewhat underestimate them when p = 0.9 and 02 /0? is high.

2. When p = 0.5, the Windmeijer corrected SEs somewhat underestimate the standard
deviations of the RSYS2 and ASYS2 estimators and, when o7 /0 is not high, the
CSYS2 estimator, but the Windmeijer corrected SE clearly underestimates the
standard deviation of the CSYS2 estimator when o2 /o® is very high.

3. When p = 0.9, the Windmeijer corrected SEs somewhat underestimate the standard
deviations of the CSYS2 and RSYS2 estimators and, when o7 /0? is not high, the
ASYS2 estimator, but the Windmeijer corrected SE clearly underestimates the
standard deviation of the ASYS2 estimator when o7, /0 is high.

4. When p = 0.5, the RPs of the CIs based on the RSYS2, the AB2 and the ASYS2
estimators, respectively, and a Windmeijer corrected SE are (much) closer to the
nominal value of 10% than the RP of a similar CI based on the CSYS2 estimator

and/or on a conventional SE, especially when o7 /0? is high.

5. When p = 0.9, the RP of the CI based on the CSYS2 estimator and the Windmeijer
corrected SE is (much) closer to the nominal value of 10% than the RP of a similar

CI based on any of the RSYS2, the AB2 and the ASYS2 estimators and/or on a
conventional SE, which is always (much) too high, although the RP of the first CI

is still somewhat high when o7 /0* = 25, namely about 0.17.

We conclude that under design MS with 02 = 02/(1 — p?) the Windmeijer corrected
SE corresponding to the preferred SYS2 estimator (RSYS2 when p = 0.5 and CSYS2

when p = 0.9) and the CI based on this estimator and this SE are close to being correct.
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Table 9: MC results for st. errors and size; N=100, design MS, p = 0.5 & 02/0* = 4/3.

AB2 CSYS2 RSYS2 ASYS2
o2 type SE RP SE RP SE RP SE RP
0 E  0.085 0.068 0.070 0.072
A 0069 020 0.052 021 0052 022 0.052 0.24
W 0.08 0.12 0.065 0.13 0.066 0.13 0.067 0.14
1 E 0.106 0.074 0.076 0.081
A 0.087 020 0.057 022 0.057 0.22 0.057 0.25
W 0.104 0.12 0.072 0.12 0.074 0.13 0.077 0.13
4 E 0.134 0.086 0.085 0.095
A 0110 022 0.059 030 0.059 0.25 0.061 0.30
W 0.133 0.14 0.083 0.16 0.082 0.14 0.090 0.15
10 E 0.149 0.105 0.094 0.108
A 0124 023 0057 046 0.058 0.31 0.060 0.38
W 0.151 0.14 0.095 0.25 0.090 0.13 0.105 0.15
25 E  0.163 0.138 0.104 0.132
A 0133 023 0050 074 0.052 0.38 0.054 0.51
W 0.163 0.15 0.103 0.50 0.099 0.12 0.124 0.14

Notes: 5000 Monte Carlo replications; E: based on empirical distribution; A: based on
first-order asymptotic distribution; W: based on Windmeijer’s corrected asymptotic standard
errors; SE: standard deviation/error; RP: rejection probability (nominal size is 10%).

Table 10: MC results for st. errors and size; N=100, design MNS, p = 0.9 & 02/0* = 5.

AB2 CSYS2 RSYS2 ASYS2
o» type SE RP SE RP SE RP SE RP
0 E  0.163 0.073 0.086 0.106
A 0130 026 0052 023 0.053 0.31 0.058 0.36
W 0.160 0.16 0.070 0.12 0.080 0.17 0.098 0.15
1 E  0.175 0.075 0.089 0.113
A 0142 026 0.053 024 0.053 0.34 0.060 0.39
W 0176 0.16 0.071 0.12 0.082 0.18 0.107 0.16
4 E 0.227 0.077 0.098 0.146
A 0168 032 0053 026 0.052 0.40 0.063 0.49
W 0216 0.19 0.074 0.12 0.088 0.20 0.129 0.18
10 E 0.287 0.080 0.105 0.191
A 0198 039 0.052 030 0.052 046 0.066 0.59
W 0263 0.23 0076 0.14 0.094 022 0.163 0.23
25 E  0.355 0.079 0.116 0.261
A 0233 048 0.047 037 0.049 0.53 0.066 0.75
W 0325 0.29 0.075 0.17 0.111 023 0219 0.31

Notes: 5000 Monte Carlo replications; E: based on empirical distribution; A: based on
first-order asymptotic distribution; W: based on Windmeijer’s corrected asymptotic standard
errors; SE: standard deviation/error; RP: rejection probability (nominal size is 10%).
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4 Empirical example

To illustrate the importance of using a consistent estimator for the optimal weight matrix
of the System estimator when the variance ratio is large, we revisit the economic growth
study of Levine et al. (2000). They investigated the influence of financial intermediary
development (fid) on growth while controlling for other possibly endogenous factors using

a dynamic panel data model with time effects (see also Bazzi and Clemens (2013)):
Alny;y = (fidig)B + (Inyi1)(p — 1) + 25,7 + 0 +1; + €3,

where y;; is GDP per capita. They used three alternative measures of fid: the ratio of
Liquid Liabilities to GDP (LLY), the ratio of Commercial bank assets to commercial bank
plus Central Bank Assets (CCBA) and the ratio of Credit issued to the Private sector to
GDP (PRICR). The regressors they included in xz; ; are: government size (GOV), openness
to trade (TRADE), inflation (INFL), average years of secondary schooling (SEC) and
black market premium (BMP), see Levine et al. (2000) for details.

We use an unbalanced panel dataset of Levine et al. (2000): it contains data for 74
countries and up to 7 five-year periods so that in total 437 observations are available.
As themodel contains a lag, 363 observations are available for the model. However, each
moment condition exploited by the AB and SYS estimators involves observations from
three periods so these estimators effectively exploit 289 observations. When the model
is estimated with the Within estimator using the 363 (289) observations, the estimated
variance ratio o7 /Var(e;;) is about 4.5 (25). Hence the variance ratio is fairly high.

In tables 11-13 we report estimation results based on the full dataset. In tables 30-32
in appendix C we report results based on a smaller dataset (of 253 observations) that
contains data for at least three lags. In all tables we also report results for (Difference-in-)
Hansen (J) tests of overidentifying restrictions, a heteroskedasticity and cluster robust
Cragg-Donald (C'D) underidentification test that is based on CU-GMM and discussed in
Windmeijer (2018), and individual (i.e., per endogenous regressor) two-step GMM J tests
of underidentification in the spirit of Sanderson and Windmeijer (2016). In the tables
LINIT denotes Iny;;—1. We have excluded INFL and BMP from the models because
the C'D tests for the SYS estimators for the models that include them do not reject
underidentification. The “AB” (SYS) estimators use time dummies, £(Z; ; Aw;) = 0 and
E(Z] yw;) =0 (BE(Z] ;Aw;) = 0 and E(Z; 3w;) = 0) with Z;;, Z;» and Z; 3 defined below

and w; = n,; + ;. Note that the “AB estimator” is in reality also a System estimator;
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it uses F(Z;,w;) = 0 to avoid underidentification due to poor predictability of Asec; ;.
However, it does not rely on mean-stationarity of {Iny;,}. Note also that Z;, Z; » and
Z; 5 are (partly) collapsed to avoid the problem of “too many instruments”. The “ASYS2

estimator” uses the “AB2 estimator” to obtain an estimate of the optimal weight matrix.

2l 0 NZ‘71 0 0 0 AS€CZ'73 AZ,‘yg
2i2 AZZ‘72 0 51‘72 0 0 A860i74 AZ,‘73
Zi71 = 2i3 AZZ'73 0 0 2@',3 0 s Zi,Z = AS@Ci75 and Zi’3 = AZiA
ZiA AZiA 0 0 0 21'74 AS@CZ‘,@, Azi’g,
Zi,5 AZZ' 5 0 0 0 0 AS€CZ"7 Azz 6

with 2z, = (fid; s, Iny; s, goviy, trade; s, sec; 1) and Z;; = (fid; s, Iny; ).

The results in the tables show that the C'D tests of underidentification reject at the
5% or 10% level with one exception in table 31. The results for the individual J tests
suggest that the moment conditions have good predictive power for the regressors with
one exception for trade in table 13 and another exception for sec in table 31. Furthermore,
the J tests of overidentifying restrictions and the J difference tests of mean-stationarity
do not reject. Therefore, we will focus on the CSYS2 and “ASYS2” estimates. These
estimates have the expected sign in most cases except for a few insignificant ones, notably
the estimates of the coefficients of trade when fid is measured by CCBA. The magnitude
of the CSYS2 and ASYS2 estimates for the coefficient of Iny, ;_ is also plausible: for the
full sample these estimates lie in the interval (—0.50, —0.34), while for the smaller sample
they lie in the interval (—0.54, —0.19) with one insignificant exception in table 30. The
implied estimates for p are well below unity. The main difference between the CSYS2 and
ASYS2 estimation results is that all CSYS2 estimates of the effects of various measures of
fid on growth are positive and significant at the one-sided 5% level, whereas 50% of the
ASYS2 estimates of these effects are insignificant. In addition, the ASYS2 estimates of the
effect of sec on growth tend to be significant unlike the CSYS2 estimates of that effect.

Summarizing, the CSYS2 estimation results may be unreliable as the variance ratio
is high. In this situation the ASYS2 results may be more reliable. Although in some
cases the ASYS2 estimates of the effects of fid on growth are positive and significant and
not very different from the CSYS2 estimates of these effects, in other cases the ASYS2
estimates of these effects are not significant unlike the CSYS2 estimates. In the latter
cases, the ASYS2 estimates of the effect of sec on growth are (positive and) significant,
whereas the CSYS2 estimates of that effect are not significant. Overall, we conclude that

the evidence for an effect of financial intermediary development on growth is mixed.
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Table 11: Growth and Financial intermediation proxied by CCBA

“AB2” CSYS2 “ASYS2”

estim. st.err. py, estim. st.err. p,, estim. st.err.
CCBA 3.17 1.62 0.00 3.88 1.49 0.00 3.76 1.45
LINIT -0.05 0.58 0.00 -0.43 0.37 0.00 -0.34 0.37
GOV -1.90 1.21 0.00 -1.93 1.49 0.01 -1.83 1.35
TRADE -1.35 1.53 0.00 -1.19 1.61 0.00 -1.27 1.52
SEC 0.99 0.45 0.00 1.24 0.51 0.02 1.07 0.52
CD test 25.91 (0.04) 34.24 (0.02)
J test 14.50 (0.41) 20.24 (0.32) 19.68 (0.35)
J-diff test 0.47 (0.49) 5.74 (0.22) 5.18 (0.27)

Notes: N=74; number of obs. = 289; time dummies are included; the estimators are defined in
the text; apart from time dummies, the “AB” (SYS) estimators use 19 (23) instruments;
Windmeijer robust standard errors are reported; py, is p-value of individual J test of
underidentification; the STATA command underid of Schaffer and Windmeijer (2020) was
used to perform the underidentification tests; p-values are in parentheses; first .J-diff test tests

E(Z; ywi) = 0; second & third J-diff tests test E(

)

Z; gw;) = 0 excluding E(

Z{72wi) =0.

1

Table 12: Growth and Financial intermediation proxied by LLY

“AB2” CSYS2 “ASYS2”

estim. st.err. py, estim. st.err. p,, estim. st.err.
LLY 0.63 1.54 0.00 1.72 0.85 0.00 1.21 1.25
LINIT -0.40 0.65 0.00 -0.33 0.32 0.01 -0.43 0.46
GOV -1.32 2.10 0.01 -1.33 1.88 0.03 -1.55 1.93
TRADE 1.86 1.88 0.05 0.81 1.03 0.08 1.53 1.43
SEC 1.30 0.58 0.01 0.91 0.56 0.01 1.11 0.50
CD test 24.89 (0.05) 30.44 (0.05)
J test 19.87 (0.13) 25.67 (0.11) 23.94 (0.16)
J-diff test 0.12 (0.73) 5.80 (0.21) 4.07 (0.40)

Notes: see table 11.

Table 13: Growth and Financial intermediation proxied by PRICR

“AB2” CSYS2 “ASYS2”

estim. st.err. p,, estim. st.err. p,, estim. st.err.
PRICR 1.58 0.91 0.02 1.60 0.52 0.00 1.60 0.53
LINIT -0.61 0.62 0.00 -0.34 0.32 0.02 -0.50 0.42
GOV 0.27 2.30 0.00 -0.38 146 0.01 -0.14 1.58
TRADE 0.54 1.67 0.11 0.62 0.94 0.07 0.68 0.97
SEC 0.68 0.67 0.01 0.57 0.66 0.02 0.63 0.71
CD test 25.44 (0.04) 32.32 (0.03)
J test 16.74 (0.27) 21.90 (0.24) 20.90 (0.28)
J-diff test 2.55 (0.11) 5.16 (0.27) 4.16 (0.38)
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5 Conclusions

In this paper we have studied estimation of the panel AR(1) model with arbitrary initial
conditions and possibly heteroskedasticity in the time dimension. We have discussed
necessary and sufficient conditions for consistency of FE and RE GMM estimators for
this model, respectively. We found that a necessary condition for consistency of any
GMM estimator for this model is that the average of the squared differences between the
initial observations and the individual effects converges in probability. This condition
can allow for cross-sectional dependence and heterogeneity of the data. A related but
perhaps not very surprising result is that any consistent fixed effects estimator for the
panel AR(1) model involves only differences of the data. In contrast, a random effects
estimator also depends on levels of the data. When the data is mean stationary and
the variance of the individual effects is infinite, then only moment conditions that only
depend on differences of the data and moment conditions that can be combined to form
such moment conditions help to identify the autoregressive parameter and a RE GMM
estimator that exploits such moment conditions will be consistent provided that a suitable
(e.g. optimal) weight matrix is used. In this situation the remaining moment conditions
that involve levels of the data will be redundant. For instance, all the moment conditions
that are exploited by the SYS estimator but not by the FE AB GMM estimator will
be redundant. Furthermore, the 1-step System estimator does not use a suitable weight
matrix and will be inconsistent, which in turn leads to inconsistency of the 2-step ‘optimal’
System estimator when the latter uses the former estimator to obtain an estimate of its
weight matrix.

It follows that under heteroskedasticty over time and mean stationarity, for any RE
GMM estimator to remain consistent when o2/ 1 oo, one needs 7' > 3 and one needs
to use (a consistent estimator of) a suitable (e.g. optimal) weight matrix such that the
RE estimator converges to a FE estimator when o2/6® 1 oo and N — oco. If T > 3
and corr(p,v;) = 0, the REQMLE for p is still consistent when O'i /o? 1 oo and, under
the additional assumption of normality of the data, the RE MLE for p is asymptotically
equivalent to the FE MLE for p when 02 /0* T 0o and N — oo. If T' = 3, corr(u,v;) = 0
and the errors are heteroskedastic over time, then GMM and ML estimators for p become
inconsistent when o7 /0* 1 co.

When the data are mean stationary, p is close to one and ai /o? is not large, then
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the Arbov moment conditions E(Zw;) = 0 strongly identify p but the AB moment
conditions E(Z!'Ag;) = 0 and E(ZP'Ag;) = 0 weakly identify p, cf. Arellano and
Bover (1995). However, when the data are mean stationary, p is close to one and O'i /o?
becomes large, then not only the (scaled) moment conditions in F(Z!'Ag;/o,) = 0 and
E(ZP'Ag;) = 0 but also those in E(Zw;/c,) = 0 become weak, that is, in this case all
moment conditions exploited by a SYS estimator seem to become weak. Nevertheless,
even in this case the RSYS2 estimator, which uses a consistent estimator of the optimal
weight matrix, and also the ‘conventional’ (C)SYS2 estimator, which uses the inconsistent
and slightly upward biased SYS1 estimator to estimate the ‘optimal’ weight matrix, will
still have a relatively small bias. This can be explained as follows. The set of moment
conditions exploited by a SYS estimator contains/implies the set of moment conditions
exploited by the non-linear GMM estimator of Ahn and Schmidt (1995, AS), i.e. those
in lines one and three of (5), and a set of similar AS moment conditions that only involve
differences of the data. Under normality of the data the optimal GMM estimators that
exploit these sets of Ahn-Schmidt type moment conditions are asymptotically equivalent
to the RE and FE MLE for p, respectively, which are consistent and have a convergence
rate of N'/* close to and at the unit root, see Kruiniger (2013). Interestingly, the RSYS2
estimator also seems relatively robust to violations of mean stationarity.

Concluding, when (T > 3, ai /o? may be large and) p is close to unity, the preferred
estimator is the ‘conventional’ (C)SYS2 estimator (unless Fp > 10 and Fj, < 10, in
which case it is the RSYS2 estimator) but if p is not close to unity, e.g. around 0.5,
then under mean stationarity the preferred estimator is the RSYS2 estimator (unless
Fp > 10 and F, < 10, in which case the FEQMLE is preferable) while under mean non-
stationarity the preferred estimator is the REQMLE or perhaps its GMM counterpart,
i.e., the non-linear (optimal) GMM estimator of Ahn and Schmidt (1995) if the data are

very ‘non-normal’. '3
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A Proofs

PROOF OF A CLAIM IN THE TEXT

We will show that SA and FEA imply that plimy_./N* Zfilﬁi,ﬁi,t =0Vt e T.
FEA requires that for at most a finite number of individuals (indexed by ¢) in Z it is
true that Var(v;;) = O(N) but not Var(v;;) = O(1), and that for all other individ-
uals in Z it is true that Var(v;;) = O(1). SA implies that E(v;16,;) = 0 Vi € T.
Furthermore, SA and FEA imply that the correlation between v;1¢;, and v;¢;, is zero
Vi, j € T withi# jand S, Var(s;,6:,) = o(N?) (Note that SA(vi) is redundant when
the v;; and ¢;; are normally distributed). Then it follows from Chebyshev’s LLN that
plimy oo N* 2N Tiie, =0Vt e T. O

PROOF OF LEMMA 1

We will first show that SA and FEA imply that [plimy_, . N ! Zfil Viagir| <ooVteT.
Using SA and Markov’s LLN we obtain that plimy_ N1 3~ €2, = 02 < co Vit € 7.
It follows from this result, FEA and the Cauchy-Schwarz inequality that

plimN_)ooNfl Z'f\il ,17@‘7151'775 <ooVteT.
“=" From (2) we obtain Ay, ; = p' 201 + p' 2ei0 + 3.4 p*Ae;,, YVt € T. Using

these equalities, Markov’s LLN and the Cauchy-Schwarz inequality, it follows from SA
and FEA that plimy_. ‘Nfl Zﬁil(Ayi,sA%,t) < oo, Vs, teT.

“<=" Using Ay, 2 = v;1+¢€;2, Markov’s LLN and SA gives plimy oo Nt ZZN:1 U1 (Vin+
2i2) = plimy oo N3N (Ay;0)?— plimy oo N1 N 7, < oo. It follows from this
result that plimy_. N1 Zfil @Zl < 00 and plimy_,oo N1 le\il U;1€5,2 < 0o and hence

FEA. O
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PROOF OF THEOREM 1

Recall that v;; = ;1 — p;. W.lo.g. we have assumed that 7' = 3. Then the RE
Arellano and Bond GMM estimator exploits only one moment condition,
Ely;1A¢c; 3] =0, where Ag; 3 = Ay 3 — pAy; o :

Dapien = [ Yin Ays o) " [0 vin Avia] = p+ [0 41Dl [0, vinAess).

We can rewrite the numerator as Zf\il Yi1Ae; g = Zfll w;Ag; 3+ ZzNzl vi1Ae;3

and the denominator as S~ i1 Ayio = Son yin[(p — 1) (yin — 1) + €i2) =

Sillp = Doy 4+ vingsa] + i willp — Dvia + €],

Let us first consider the sums N 92 Zi\il Yi1€it » t = 2,3. Note that y;; = v, 1 + p,.
Hence Var(N—0 SNy, 16,) = O(N"' SN E(1i2)). However, since 0% — 00, We
have N1 Zfil E(u?) — oo. As limy_.o limg, oo Nt Zfil E(u?)/gi =1, we

will rescale the numerator and denominator of p 4., by 0, in order to guarantee

that they converge N — oo. Since lim,, .o E(y;1A¢;3/0,) =0V i € Z and

im0 limy,, o0 Var(N ™1 Zf\il yi1Aeisz/o,) =0,

we obtain plimy_. limg, o N1 Zfil yi1Ae;3/o, = 0.

After scaling by o, the denominator becomes sz\; Yi1Ayi2/0,. It is easily seen

that plimy e limy, oo N7 Zfil[(p — l)vi1 + v;1€2] /0, = 0 and that

plimpy o0 limy, oo NN 11:[(p — 1)vin + €i2) /0, = (p — Dcorr(p, v1)o,.

If corr(u,v1) # 0, then corr(u,vi)o, # 0 and it follows that p 4z, is consistent.

If corr(p,v1) =0, (limy, oo N7 SN wl(p = Vi + is]/o,) 2 X,

pimy oo limy, oo N™33°N [(p — 1)v2; + v;,18:2] /0, = 0, and

(limg“_,oo N_0'5 Zi\il yi,lAgiB/O—p) i Xl, where

Xy 0 2¢ —C .
{Xg ] NN(|:0:|’|:_C11 C1+(p_11)2§2D,w1tho<cl,§2<oo.

Thus if corr(p,v1) =0, Papres <4 X, /X5 which implies that p4p,., is inconsistent. [

Lemma 2 Assume that SA and FEA* hold, T > 3, |p| <1 and 07, — co. Then:
N2 2511 Zz‘I/Aéi/Uu - Xs1;
if corr(p,v1) # 0, plimy oo N"VSIN . Z1 Ay, 1 )0, # 0
if corr(p,vy) = 0, N~1/2 ZZ]\; ZVAy; 1/, < Xer;
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N7V2 Ei\il Zz‘D/AQ‘ . Xs2 and plimy_oo N7 27{\;1 Zz'D,AZ/i,q # 0 with
(X5, Xg1)' ~ N(0,%56,11) and Xsp ~ N(0,35).
Furthermore, plimpy_,oo N1 Zf\;l ZI'HZ] 0% = Wik,
if corr(p,vy) # 0, plimy o N1 Zf\il ZI'HZP Jo, = W}fBl £ 0;
if corr(p,v1) = 0, plimy_o N1 Zf\il ZV'HZP jo, = Wik, = 0;

plimpy o N1 ZZ]\LI ZPHZP = W3, and Wap, is nonsingular.

PROOF OF THEOREM 3

Recall that 02 = plimy_ N7' 3N 02 < o0,

lmy oo NP SN E(pei)? = ¢, t = 2,3 with 0 < ¢; < oo and

My oo NP SN E(p051)% = ¢y with 0 < ¢, < o0,

Then the following results can easily be verified:

If p > 0, plimy oo N2 S0, 1 Ag; 5 = 0.

If p > 1, plimy_o N7 [(p — 1)v7, 4 vingio] = 0.

IfO<p<1,plimy_.c N> i;[(p — 1vi1 + €i2] = 0.

If 0 < ¢y = limy_ oo N1 le\il E(yi1A¢,3)* < 0o, and {y;1A¢; 3} satisfies

the Lindeberg condition, then N 9% Zfil Yi1Ac; 3 N N(0,¢,)-

If 0 < p < 1, then plimy oo N2 3N 41 Ayio = plimy oo N2 3 [(p — L7,
+ v 2] HPimy oo N7V 1](p — Dvig + €1 = (p— 102,

So, if p=0,0< ¢y = limy oo N' 3N E(yi1Ac:3)% < 00, and {yi1A;3}
satisfies the Lindeberg condition, then N° (D450, — p) KR N(O, [(p — 1)a?]72¢,).
If p > 0 and {y;Ag;3/N%5P} satisfies the Lindeberg condition, then

N-05) SN 4 Agyy = NS0+ SN 0 Agy o 4 N-0SW) SN ) Ag o 4,

Xy ~ N(0,2¢,); s0,if 0 < p < 1, N**U=P) (5,0, — p) - N0, [(p — 1)o?]722¢,);
Finally, if p > 1, and both {y,;e;2/N%?} and {u,v;1/N%°P} satisfy the Lindeberg
condition, then

if p=1, N-050 TV 1 Ayin 5 (p— 1)o? + Xy with Xp ~ N(0,¢; + (p — 1)2,);
if p>1, N7050+0) SN 0 Ay %, X,. Furthermore, if p > 0, Cov(X1,X3) = —(;.
So, if {peis/N®?P}, t = 2,3, and {u,v;1/N%P} satisfy the Lindeberg condition,
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. ~ d - ~ d
then if p =1, (Dapier — P) — w—lffw’ while if p > 1, (Dapier — p) — % O

PROOF OF THEOREM 6

Below we assume that the data are i.i.d. but the proof is similar for i.h.d. data.

The OREHOCGMM estimator for p exploits all the moment conditions that are
exploited by the OFEHOCGMM estimator for p, e.g. (6), plus the following moment
conditions: E(y;1Ae;1) = E(yi1(Ayir — pAyiz—1)) = 0, t = 3,...,T, E(y;1Qy;2) =
(p = 1)(02 + 0,) and E(y7)) = 02 4 20,, + 05, where we have used E(y;1Ay;2) =
E((vi1+p;)((p—1)vi1 +€i2)). The moment conditions corresponding to E(y; 1Ay; ) and
E (yf 1) are redundant for estimating p because only they can be used to identify o, , and
o7

The 0.5(7 — 1)T moment conditions in (6) involve p, 02 and o2.

2

2 and is

E((Ay;2)?) = 0% + (1 — p)?0? is the only moment condition that involves o
therefore redundant for estimating p. F(Ay; 2A¢e;3) = —0? can be used to remove o2 from
the other moment conditions in (6). Thus the OFEHOCGMM estimator for p is equal to
a GMM estimator that optimally exploits 0.5(7" —1)T" — 2 moment conditions which only
involve p. Let us collect these moment conditions in the vector E(ma(p)) = 0. Let Dy =
E(dmd—zp(p)) and let Qo = E(ma(p)ma(p)’). Then Avar(Porprocenn) = (Do D2) ™"

We will prove the first part of the theorem by showing that E(y;1Ae;3) = 0 is not
redundant relative to the moment conditions that are optimally exploited by the FE-
HOCGMM estimator when o2 — oo and corr(u,v1) # 0.

Consider the estimator ppyocama+ Which optimally exploits the moment con-
ditions E(m,(p)) = 0 and E(msa(p)) = 0 where m (1) = y;1(Ayiz — 7Ay;2) — mh(r) X
Qo E(my(p)yi1Acis). Note that E(my(p)) = 0 and E(my(p)) = 0 are equivalent to
E(yi1(Ay;3—pAy;2)) = 0 and E(ma(p)) = 0. It is easily seen that E(ma(p)m(p)) = 0so
the optimal weighting matrix used by Ppomocemm+ is block-diagonal, i.e.,
diag(wy', Q) with w = E(my(p)mi(p)') and [Avar(Pogocea+)) ™ = D2 D +
[B(4mele) )2, Tt follows that E(y;1A¢g;3) = 0 is not redundant relative to E(ms(p)) =

d
0 if ang only if [E(4LE) )2yt > 0.

Now E(dmd—Lp(p)) = —E(yi1Ayia) — E(%Qp(p))92—21E(m2(p)yi71A5,-73),
E(may(p)yinQeiz) = E(yiilyipleizAeiy, 0, 0, ..., 0, yz}lAyi’Q(Agiﬂi”)%eCh(H)/)l’
E(yi1Ayi2AcizAcis) = —0°E(yinAyia) and E(yi1Ayiz(Aciz)?) = 20°E(yi1Ay; ).

Note also that Ay = (p — 1)(y1 — p) + €.
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When 02 — oo and corr(p,v1) # 0, then lim,, oo ([E(yi1Ayi2)/0u0twiy) =
[(p — D)corr(p, v1)oy]* limy,, oo (02wi;') > 0 and hence limau_,oo([E(md;p(p))]Zwﬁl) > 0.
This concludes the proof of the first part of the theorem.

2

H—>ooand

We will now prove the second part of the theorem, where we assume o
corr(u,vy) = 0.

Let mi(p) = [Wi1(Avis — pAYi2), Yi1(AYia — pAYi3), ..., Yir(Ayir — pAyir_1))
and let m(p) = [m)(p) m,y(p)]. The OREHOCGMM estimator for p optimally exploits
E(m(p)) = 0.

Let D = [Dy Dy with D; = E(*2), and let Q = {&1 gg] with Q;; =
E(mi(p)m;(p)’). Moreover, let Sy = o, 'Ir_y and S = diag(S1, I;r—1)2—2). Then
Avar(borsrocemn) = (D'Q7'D)~H = ((SD)'(SQS)~HSD) ™.

We can easily verify the following: D;; = E(d%(yi,1(Ayi,k+2 — pAYik1))) =
—E(yi1Ayiri1), k = 1,..,T — 2. Note that Ay;; = p'2Ay; 5 + 2213 p'*Ag; s and
Ay = (p — 1)vi1 + €i2. Since corr(p,v1) = 0, lim,, oo E(yi1AYi2/0,) = limg, oo (p —
1)(02/o, + corr(p,v1)o,) = 0. Moreover, limy, o0 [E(y;106;:/0,)] = 0, t = 3,...,T. It
follows that lim,, .. S1D1 = 0.

We also have limaﬂ_m SlQuSl = 611, where ﬁll,st =
limg, oo B(y;1 A8 51208 542/07), 5,6 = 1,...,T — 2, that is (NZH,St = 202 if s = t;
Qo = —02if |s—t] = 1, and Q. = 0 if [s —¢| > 2. It follows that Qy; is a fi-

nite PDS matrix.

We will now consider lim,, o, S1€212. We note that ms(p) only depends on squares
and products of the differences of the data, Ay, t = 2,...,T and that Ay, ; can be written
as sums of v;; and €;5, s = 2,...,¢, forall t =2, ..., T.

Moreover, limy, oo E(yii€i¢/0,) = 0, t = 2,..,T, and lim,, oo E(yi1vi1/0,) =
corr(p, v1)o, = 0 since corr(p,v1) = 0. It follows that lim,, . 5112 = 5212 =0.

It also follows that lim,, . SE2S = Q is a finite PDS matrix.

Finally, lim,,o[Avar(Porprocomar)]™t = limg,oo((SD)(SQS)"'SD) =
limy, 0o (SD)] X [lim,, .o (SQS)7!] % [limy, 0o SD] = [0 D’Q](Q)*I[O D" =
(D55 D) = [Avar (Poperocann))”

We conclude that if 07, — oo and corr(u,v1) = 0, then E(my(p)) = 0 is
redundant relative to F(ms(p)) = 0 when the elements of the latter are optimally

weighted by Q. O
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PROOF OF THEOREM 7

We only prove parts (i-a) and (ii). Part (i-b) follows from asymptotic equivalence of
the MLEs to Optimal HOCGMM estimators and Theorem 6(i).
The RE (Quasi) MLE for 6y = (7, p, 0%, ) in the AR(1) panel model is based on

the (quasi) likelihood function correspondlng to the following augmented model
Ay = pAyi_1 + Tyire + us, (10)

with u; = v; 10 +¢; ~ N(0,X), where ﬁyz = Ui — Yi1l, ﬁyz 1 = Yi—1 — Yiat and X =
E(usu)) = 620/ +02Ip_1. The FE (Quasi) MLE for (p, 02, 52) is based on the same model
but without the term my;1¢. After dividing by N and scaling y; 1 by 1/0,, whenever it is
useful the (quasi) log-likelihood function is given by

1
logL = — (T—1)10g27r—§log]5\ (11)

[\3|,_. DN | —

N
Z Ay —rAy; - pou(‘lﬁl) 0)'STHAY: — rAy; —p%(gﬁ’l)b)'

2 Jz

Note that S = s*Q + (s*> + (T — 1)32) 75w, where Q = Iy — 7=/, It follows that
S = 5Q+ mrgmm e and [S] = 207+ (T - 1)3).

The RE (Quasi) ML estimator is defined as the global maximizer of the (quasi) log-

likelihood function. It is also a solution of the likelihood equations for m, p, 0 and 53
which are given by:
Olog L al
8}% Z Yinl'S™ (Ayz - TA.% 1 = pyiat)] =0, (12)
JlogL 1 N S a1 ~
TN > Ay ST Ay — rAy; — pyia)] =0, (13)
" i=1
Jlog L (T —2) 1 11 ~ P ~
92 9e o= t5a 25 NV - [(Ayz rAy; 1) Q(Ay; — rAy; 1))
N
1 1 1
2_§4T—NZ Ayz—TA,% -1 p?/ub)] =0, (14)
=1
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and

dlogL  (T—-1) 1 1, +~ =«
95z 932 24N Z[L/(Ayi —rAy; 1 — pyz‘,lb)]Q =0, (15)
v i=1

where 52 = s + (T — 1)52.

2
v

likelihood equations and replacing Ay; in (12)-(15) by the RHS of (10) or pAy; 1 +
WU“(%’:)L + u;, we can find the probability limit of the RE(Q)MLE for 6. If 02, — oo

and corr(p,v1) # 0, we get plimy_,o0 lim,, oo N7} Zi]il(ymzyt/au) #0,t=2,..T,

plimy_o limg, oo OrEQML = 0o and plimy_ o lim,, oo TrEQrL = 0. Finally, if O'i —

Let 7 = 7o, 0y = (7, p, 02, 0;) and p = po,. By taking probability limits of the

oo and corr(p,v1) = 0, we have plimy_.olim,, oo N1 Zi]\il(yi,lﬁyt/au) =0,t =

2,..., T, plimy_ lim,, o0 5REQML = 50 with plimy o limg, oo TrEQML = 0 and hence
plimy o limg, oo Treomr = 0. If we also assume that the data are normally distributed,

we find that lim,, . E (%—%La?—;ﬂ%) = —limy, oo & (a;g;%L [5,) is block-diagonal with

a block corresponding to 7 and that pgp,, ;. is asymptotically equivalent to ppp,,. . Here

we considered the asymptotic distribution of 6 (%) rather than that of 6 (7) only because
7 does not have a degenerate asymptotic distribution unlike 7. Note that the asymptotic
distribution of 6 (7) can easily be obtained from that of 0 (%) it only requires scaling of

the asymptotic variance of T by 1/ ai. U

ProOOF Or THEOREM 8

We first prove that p4,,,, is inconsistent.

P Arbor = [Zfi1(yi,2Ayi,2)]_l EL(%,?)A%Q) =p+ [ZL(yz’szm)]_l X
Zf;l(Aym((l — p)it; + €i3)). Recall that y; 1 = v;1 + p; and p; = 0,71, Note that
ai — oo implies N 7! Zfil E(u?) — oo. We will rescale the numerator and

the denominator of p 4,4,, by 0, to guarantee that they converge when N — oo.
Since limy, oo E(Ayi2((1 — p)p; +€i3)/0,) =0, Vi€ L,

lim,, oo Var(Ay2((1 — p)p; +eiz)/ou) < oo, Viel,

lim,, oo E(Yi2AYi2/04) = (p — 1)corr(p, v1)o, =0,V i € Z and

lim,, oo Var(yi2Ayi2/o,) < 00, Vi € I, we obtain

(limy, oo N—05 ZZ]\; Yi2AYia/0,) 4, X7 and

(limmﬁoo N79° Zf\il Ayio((1 = p)p; +€i3)/ou) - (1 — p)X71, where

X7~ N(0,%7;) with 0 < ¥7; < oo. It follows that plimy_. limy, 0 Parpey =
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p+ (1 —p) =1 so that Py, 1S inconsistent.
Using the above results and the results in the proof of Theorem 1 for the RE

AB GMM estimator we can similarly show that pgy g and pgy g, are inconsistent. [

Lemma 3 Assume that SA and FEA* hold, E(v;1) =0, corr(u,v1) =0, T > 3, |p| <1
and o7 — oo. Then:

N2 ZL’wl/au (1 — p) X7 and

NNz o, S Xoy with Xoy ~ N(0, 574).
Furthermore, plimy o, N"' SN ZV 70 = WL, -

plimy oo N7U30, ZHOZP = Wik

: 1N = . .
plimy oo NN ZDHZP = W32, and Wansew is nonsingular.

Lemma 4 Assume that SA and FEA* hold, E(v;1) =0, corr(u,v1) =0, T > 3, |p| <1
and o7 — oo. Then:

(X5 Xg1 X71) ~ N(O, Y567, 111)-
Furthermore, plimy_ o, N1 ZZ TP ZE =W ;

plimpy_ oo N1 ZZ ZFCZl o, = Wi =0;

plimy oo N2 300, ZI'HZ] o} = W

plimy o N3N ZHCZP = W 1

plimy o N30, ZVHZP [0, = Wiy = 0;

. _ N 4 T . .
plimy oo NS0 ZPPHZP = W3 o and Weys: is nonsingular.

DERIVATION OF WINDMEIJER (2005) CORRECTED STANDARD ERRORS FOR THE RSYS2

ESTIMATOR AND THE ASYS2 ESTIMATOR

We adopt the notation of Windmeijer (2005). Let 52 be an efficient 2-step GMM es-
timator for 0y, e.g. a 2-step System estimator, based on the vector of linear moment
conditions E(g;(0p)) = 0, and let 6, be an initial consistent GMM estimator for 6, that

is based on a subset of F(g;(fp)) = 0 and used in an estimate of the optimal weight
matrix, viz. W&l(@\l), where Wy (0) = N} Zf\il gi(0)g:(0). Let g(f) = N! ZZ 19:(0)
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and C(6) = dg(#)/00'. From the bottom of p. 29 in Windmeijer (2005), we have

6, — 0 = —(C'Wy6,)C) ' C'Wi(61)3(6o)
= —(C'Wx(00)C) C"Wi (805 (00) + Dayw(o0) (@1 — 60) + 0,(N7),  (16)

where the matrix Dy, w, (9,) is defined at the top of p. 30 in Windmeijer (2005). We note
that D907WN(90)(§1 —0p) = O,(N71), cf. p. 29 in Windmeijer (2005). The variance of the
first term in (16) can be estimated by +(C’ Wﬁl(@\l)C)*l. The covariance between the
first and the second term in (16) can be approximated by C’ov(/@ — 0,0, — HO)D'g% "

Wi (01)’
where we have used that

—(C'WH00)C)TC'W R (00)7(60) = Gy — 0o+ O,(N71)

and 0y — 0 = O,(N72). As 0, is less efficient than 0, it follows from a well known
result in Hausman (1978) that C’ov(@z — 09,0, — 0o) = Var(/ﬁ\g). The latter can also be
estimated by +(C’ ng(gl)C’)_l. Noting that the variance of the second term in (16) is
given by D@O’WN(QO)V(IT(/H\l)DIQmWN (6y)> We obtain that the corrected asymptotic variance
of 0, is given by equation (2.6) in Windmeijer (2005).

Next we note that the moment conditions exploited by the System estimator for p
imply those exploited by the Optimal RE Conditional GMM estimator for p (i.e., those
in lines one and three of (5)) and that the latter is at least as efficient as prpopr- As
the first-step estimators used by the RSYS2 estimator and the ASYS2 estimator for p,
namely prponr and paps, respectively, exploit less information than the corresponding
second-step estimators and hence are less efficient than them, we can conclude that we
can use equation (2.6) in Windmeijer (2005) to compute the Windmeijer corrected SEs

for the RSYS2 estimator and the ASYS2 estimator. O

B SOME OF THE MONTE CARLO RESULTS.
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Table 14: MC results for estimators of p; N = 100, design MS, p = 0.5 & 02/0® = 52.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2

bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE

-1.13 040 -0.06 027 019 044 069 031 026 031 -0.07 0.34
-1.74 065 131 099 0.15 039 296 051 130 053 0.04 041
10 -329 118 141 836 023 044 759 151 795 282 -0.57 0.58
25 -6.33 244 791 490 0.26 042 18.6 5.57 6.49 297 -1.91 1.03
100 -13.7 6.57 1.08 090 034 045 378 162 157 094 -793 3.79

2
g
m
0 -0.76 0.31 -0.06 0.25 0.20 043 -0.05 0.27 0.01 0.27 -0.19 0.29
1
4

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 15: MC results for estimators of p; N = 100, design MS, p = 0.9 & ¢%/0? = 4/3.
AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2

o4 bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE

0 -23.2 122 433 225 352 228 014 019 093 035 -836 2.27

1

4

-30.9 1849 399 232 363 228 005 021 0.71 040 -12.2 3.75
-379 258 471 244 369 234 010 023 081 049 -175 6.67
10 -425 30.1 4.08 238 339 230 -0.08 0.30 0.23 0.65 -23.1 10.18
25 -44.7 33.0 454 241 398 232 0.66 036 0.63 097 -299 1594

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 16: MC results for estimators of p; N=100, design MNS, p = 0.5 & 02/0® = 53,.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2

JZ bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE

1 -29 122 0.7 1.08 1.04 125 -9.21 1.28 -7.11 097 -8.03 1.11
4 -214 089 048 073 156 1.38 46.0 222 784 1.79 573 1.53
10 -150 0.59 0.10 048 0.71 085 51.6 26.7 534 1.06 390 0.98
25 -0.76 033 -0.05 0.27 0.12 040 462 214 167 038 1.00 0.39

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 17: MC results for estimators of p; N=100, design MNS, p = 0.9 & 02/0? = 4/3.
AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
Ui bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
1 374 242 399 241 361 233 -041 0.18 032 036 -14.9 4.96
4 -29.1 17.0 424 230 3.63 2.28 -255 045 -1.08 0.70 -16.3 5.70

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.
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Table 18: MC results for identification tests; N = 100, design MS, p = 0.5 & 02/0? = 51%.

of J p; p;>005 p,>001 Fp Fp<10 Fy, Fy<10 2770 T2

0 34.4 0.00 0.00 0.00 273 0.00 16.0 0.28 0.00 0.28
1 32.3 0.00 0.00 0.00 163 0.00 10.8 0.53 0.00 0.53
4 27.1 0.00 0.00 0.00 73.6 0.00 5.85 0.83 0.00 0.83
10 21.1 0.00 0.00 0.04 36.2 0.00 3.43 0.95 0.00 0.95
25 14.2 0.03 0.15 0.43 16.7 0.20 2.02 0.98 0.12 0.80
100 8.05 0.20 0.67 0.88 5.04 0.88 1.24 0.99 0.66 0.12

Notes: 5000 replications; J, Fp, I, tests are described in text; p; is p-value of J test.

Table 19: MC results for identification tests; N = 100, design MS, p = 0.9 & 02 /0% = 4/3.

ol J p; p;>005 p;>001 Fp Fp<10 Fyp F,<10 Ppr%0  "22l0

0 805 0.19 0.67 0.89 10.5 0.53 110 0.00 0.45 0.00
1 635 0.29 0.82 0.95 7.67 0.73 7.3 0.00 0.67 0.00
4 5.08 0.39 0.90 0.98 4.37 0.92 40.6 0.00 0.86 0.00
10 451 0.44 0.94 0.99 2.68 0.97 20.9 0.08 0.92 0.02
25 4.25 047 0.95 0.99 1.63 0.99 10.0 0.56 0.94 0.01

Notes: 5000 replications; .J, Fip, I}, tests are described in text; p; is p-value of J test.

Table 20: MC results for identification tests; N=100, design MNS, p = 0.5 & 02/0? = 53.

ol J p; p;>005 p;>001 Fp Fp<10 Fp F<10 Pp%0  ooif

1 15.3 0.02 0.11 0.34 53.7 0.00 67.9 0.00 0.00 0.00
4 263 0.00 0.00 0.01 53.0 0.00 5.10 0.91 0.00 0.91
10 31.5 0.00 0.00 0.00 73.2 0.00 4.55 0.92 0.00 0.92
25 342 0.00 0.00 0.00 120 0.00 40.4 0.00 0.00 0.00

Notes: 5000 replications; J, Fp, I, tests are described in text; p; is p-value of J test.

Table 21: MC results for identification tests; N=100, design MNS, p = 0.9 & 02 /0% = 4/3.
op J p; ps;>005 p,>001 Fp Fp<10 Fp F<10 Pp%0 "2oif
1 4.70 0.42 0.93 0.99 5.27 0.87 86.9 0.00 0.83 0.00

4 6.46 0.28 0.81 0.95 6.17 0.83 21.4 0.06 0.75 0.05
Notes: 5000 replications; J, Fp, I, tests are described in text; p; is p-value of J test.
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Table 22: MC results for estimators of p; N = 500, design MS, p = 0.5 & 02/0? = 4/3.
AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2

o, bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
0 -0.30 0.13 0.01 0.11 0.05 0.14 -0.07r 0.08 -0.10 0.08 -0.11 0.08
1 -0.62 0.21 0.01 0.12 0.03 0.13 0.11 0.10 0.01 0.10 -0.06 0.10
4 -098 034 0.00 013 0.02 014 043 0.13 0.18 0.12 -0.00 0.13
10 -1.33 0.44 -0.05 0.13 -0.05 0.13 082 0.16 022 0.13 -0.09 0.14
25 -1.55 054 004 013 004 013 258 035 033 0.16 -0.08 0.19

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 23: MC results for estimators of p; N = 500, design MS, p = 0.9 & 02 /0% = 52.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
0? Dbias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
0 -1.8 0.49 042 045 1.31 0.81 -0.24 0.09 -0.24 0.10 -0.49 0.11
1 -210 060 087 054 126 080 -020 0.10 -0.17 0.11 -0.55 0.12
4 -298 0.88 215 0.74 162 081 -0.14 0.10 -0.00 0.13 -0.83 0.16
10 -5.01 156 3.89 101 160 0.84 -0.18 0.13 020 0.18 -1.71 0.28
25 -935 328 521 1.22 1.69 0.84 -0.03 0.15 0.54 025 -3.92 0.67

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 24: MC results for estimators of p; N = 500, design MNS, p = 0.5 & 02 /0% = 4/3.
AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
Ui bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
1 -048 0.22 0.18 0.16 0.23 0.18 -868 0.82 -9.60 0.98 -9.58 0.98
4 -0.45 0.16 -0.01 0.12 0.07 0.16 515 26.7 9.04 1.07 872 1.01

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.

Table 25: MC results for estimators of p; N = 500, design MNS, p = 0.9 & 02/0? = 5.

AB2 REQMLE FEQMLE CSYS2 RSYS2 ASYS2
O'i bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
1 -954 323 3.02 1.00 282 099 -046 0.03 -0.27 0.04 -1.29 0.08
4 -6.14 193 277 093 3.13 1.01 -270 0.13 -228 0.13 -3.42 0.24
10 -3.62 1.08 1.80 0.77 3.02 1.03 -693 0.66 -6.94 0.72 -7.76 0.84
25 -1.67 053 070 048 161 0.83 157 256 996 143 8.44 1.23

Notes: 5000 replications; actual bias = bias/100 and actual MSE = MSE/100.
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Table 26: MC results for identification tests; N = 500, design MS, p = 0.5 & 02 /02 = 4/3.

ol J p; p;>005 p;>001 Fp Fp<10 F, Fp<10 P20 Jooh
0 136 0.00 0.00 0.00 670 0.00 670 0.00 0.00 0.00
1 102 0.00 0.00 0.00 336 0.00 335 0.00 0.00 0.00
4 581 0.00 0.00 0.00 134 0.00 135 0.00 0.00 0.00
10 328 0.00  0.00 0.0l  6L4 000 614 000 000 0.0
25 17.2 0.03  0.12 031 263 000 262 000 000  0.00

Notes: 5000 replications; J, Fp, F, tests are described in text; p; is p-value of J test.

Table 27: MC results for identification tests; N = 500, design MS, p = 0.9 & 02/0* = 53.

ol J p; ps;>005 p;>001 Fp Fp<10 Fp F,<10 P "0
0 67.6 0.00 0.00 0.00 107 0.00 106 0.00 0.00 0.00
1 59.5 0.00 0.00 0.00 89.1 0.00 89.0 0.00 0.00 0.00
4 443 0.00 0.00 0.00 59.6 0.00 59.8 0.00 0.00 0.00
10 300 0.00 0.0 001 361 000 363 000 000 0.0
25 17.8 0.02 0.11 0.28 18.6 0.13 18.4 0.13 0.09 0.13

Notes: 5000 replications; J, Fp, I, tests are described in text; p; is p-value of J test.

Table 28: MC results for identification tests; N=500, design MNS, p = 0.5 & 02 /0% = 4/3.

op J  p; ps;>005 p;>001 Fp Fp<10 Fp Fy<10 P20 =00
1 653 000  0.00 0.00 260 000 320 000 000  0.00
4 121 0.00 0.00 0.00 259 0.00 224 0.03 0.00 0.03

Notes: 5000 replications; J, Fp, I, tests are described in text; p; is p-value of J test.

Table 29: MC results for identification tests; N=500, design MNS, p = 0.9 & 02 /0 = 52

or J p; ps/>005 p;>001 Fp Fp<l10 F, F<10 2200 200
1 765 024 071 0.89 221 006 424 000 006  0.00
4 182 0.02 0.11 0.26 27.5 0.01 101 0.00 0.01 0.00
10 354 0.00 0.00 0.00 44.1 0.00 13.6 0.32 0.00 0.32
25 65.2 0.00 0.00 0.00 87.9 0.00 7.86 0.70 0.00 0.70

Notes: 5000 replications; J, Fp, I, tests are described in text; p; is p-value of J test.
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C SOME ADDITIONAL RESULTS RELATED TO THE APPLICATION.
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Table 30: Growth and Financial intermediation proxied by CCBA

“AB2” CSYS2 “ASYS2”

estim. st.err. py, estim. st.err. p,, estim. st.err.
CCBA 2.96 1.29 0.01 3.42 1.36  0.00 3.30 1.41
LINIT 0.07 0.45 0.00 -0.19 0.34 0.00 -0.05 0.33
GOV -3.68 1.52 0.01 -3.16 1.53 0.00 -3.57 1.62
TRADE 0.03 1.68 0.01 -0.38 1.70 0.03 -0.11 1.91
SEC 0.88 0.54 0.03 0.96 0.62 0.03 0.88 0.60
CD test 22.59 (0.09) 30.49 (0.05)
J test 12.71 (0.55) 18.23 (0.44) 16.52 (0.56)
J-diff test 0.09 (0.77) 5.52 (0.24) 3.81 (0.43)

Notes: N=74; number of obs. = 253; time dummies are included; the estimators are defined in
section 4; apart from time dummies, the “AB” (SYS) estimators use 19 (23) instruments;
Windmeijer robust standard errors are reported; py, is p-value of individual J test of
underidentification; the STATA command underid of Schaffer and Windmeijer (2020) was
used to perform the underidentification tests; p-values are in parentheses; first .J-diff test tests
E(Z; ywi) = 0; second & third J-diff tests test F(Z] yw;) = 0 excluding E(Z] yw;) = 0.

)

1

Table 31: Growth and Financial intermediation proxied by LLY

“AB2” CSYS2 “ASYS2”

estim. st.err. py, estim. st.err. p,, estim. st.err.
LLY -0.32 1.36 0.01 2.20 0.66 0.00 0.95 1.28
LINIT 0.25 0.60 0.00 -0.42 0.34 0.01 -0.22 0.44
GOV -2.98 224 0.06 -1.96 1.81 0.04 -2.15 1.70
TRADE 2.56 1.83 0.06 1.02 1.02 0.08 1.77 1.41
SEC 1.31 0.52 0.18 0.82 0.58 0.06 1.12 0.56
CD test 19.21 (0.20) 29.67 (0.06)
J test 14.44 (0.42) 21.53 (0.25) 20.39 (0.31)
J-diff test 0.70 (0.40) 7.09 (0.13) 5.95 (0.20)

Notes: see table 30.

Table 32: Growth and Financial intermediation proxied by PRICR

“AB2” CSYS2 “ASYS2”

estim. st.err. p,, estim. st.err. p,, estim. st.err.
PRICR 0.72 0.95 0.01 1.60 0.54 0.01 1.24 0.80
LINIT -0.10 0.45 0.00 -0.54 0.28 0.00 -0.46 0.32
GOV -2.07 2.50 0.05 -0.55 1.52 0.05 -0.61 1.74
TRADE 1.92 1.99 0.03 1.27 1.21 0.05 1.28 1.35
SEC 0.92 0.54 0.03 0.84 0.61 0.06 1.07 0.62
CD test 23.65 (0.07) 28.48 (0.07)
J test 15.26 (0.36) 19.18 (0.38) 20.47 (0.31)
J-diff test 0.74 (0.39) 3.92 (0.42) 5.21 (0.27)

Notes: see table 30.
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