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Abstract 17 

1. The accurate identification of conservation units is central to effective management 18 

strategies.  However, marine environment populations often have large census sizes 19 

and few obvious boundaries to gene flow.  Poorly understood species in the deep sea 20 

are especially at risk of being erroneously managed as a single interbreeding stock 21 

(panmictic).  However, mistaking cryptic structure for panmixia can have important 22 

consequences leading to ineffective management and population decline.  23 

Furthermore, characteristics of populations essential for their survival may reflect 24 

local adaptation, not evident from surveys using neutral genetic markers. 25 

2. We use genomic methodologies to test hypotheses about potential drivers of cryptic 26 

population structure among marine fish populations in the deep sea.  In particular, we 27 

consider the possibility of isolation by distance (IBD) along habitat corridors for a 28 

species dependent on a specific depth range, and test for differentiation at functional 29 

loci across potential ecological habitat boundaries. 30 

3. For a species previously understood to be panmictic in the North Atlantic we reveal 31 

neutral genetic differentiation among regional populations isolated by distance along 32 

deep-water channels.  We also reveal a distinct pattern of cryptic genetic structure for 33 

putative functional loci, despite apparently high levels of gene flow. 34 

4. Synthesis and applications. This example reflects the life history and ecology of a 35 

broad range of deep-sea species currently exploited in intensive fisheries or as by-36 

catch.  In many cases where these populations are managed as a single stock, more 37 

effective management could be achieved using the methods we describe to identify 38 

relevant eco-evolutionary processes, facilitated by genomic methods, permitting the 39 

recognition of cryptic stock structure.  This approach also allows managers to more 40 

directly promote the essential but elusive conservation of adaptive potential. 41 

42 
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1  |  INTRODUCTION 43 

Understanding the process of evolution in the context of ecological and biogeographic 44 

factors is fundamental for the effective, predictive identification of appropriate units of 45 

conservation and management.  In support of these objectives, we are now able to generate 46 

vast quantities of genomic data. The initial reactions to this flood of data were that it would be 47 

transformative, in particular for the management of commercially-exploited species, or those 48 

under considerable threat of extinction (e.g. Allendorf et al. 2010). More recently, some 49 

skepticism has been expressed, questioning the necessity of genomic data for basic 50 

applications in conservation biology, and noting that our ability to interpret aspects of those 51 

data (especially the role of natural selection) remains in an early stage of development (Shafer 52 

et al. 2015). However, exceptions were soon noted (see Garner et al. 2016; Shafer et al. 53 

2016). 54 

 One clear advantage for genomic methods compared to the earlier methods using 55 

allozymes, short sequences of DNA or microsatellite DNA genotypes (see Waples 1998; 56 

Hauser & Carvalho 2008) is the increase in power. This power can potentially reveal very low 57 

levels of gene flow, which raises questions about the conservation relevance.  In cases where 58 

life history, demography or phenotype suggest a need for separate stock  management, but 59 

even thousands of neutral loci derived from genome sampling methods show little or no 60 

structure (e.g., Gonçalves da Silva et al. 2015a) there may need to be a change in paradigm 61 

for how genetic data are used in conservation and management (Hauser & Carvalho 2008; 62 

Ovenden et al. 2015). One suggestion has been to focus on the demographic independence of 63 

stocks (Palsbøll et al. 2007), and simulations show that correlated demography can require 64 

quite high migration rates (in the range of 0.1-0.3), high enough to result in very small values 65 

of structure based on FST (White et al. 2011).  In this context, the high resolution is important 66 
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because it permits the detection of independence to a level of resolution consistent with these 67 

high levels of gene flow.   68 

Another approach focuses on identifying what we previously called evolutionarily 69 

compatible stocks (Gonçalves da Silva et al. 2015a). These are stocks for which individuals 70 

are exchangeable, by which we mean there are reasonable expectations that a translocated 71 

individual would exhibit similar growth rates to local individuals, as is often assumed (Hauser 72 

& Carvalho 2008). This might occur because the environment is relatively uniform across 73 

stocks, or when selective pressure reflecting environmental differences is not sufficient to 74 

overcome the homogenizing effects of high levels of gene flow.  However, cryptic 75 

environmental structures or local adaptation may generate evolutionarily incompatible stocks 76 

that will require identification and management as separate conservation units. 77 

 We chose orange roughy for this study because of earlier data indicating panmixia 78 

(White et al. 2009), its habitat dependences and its history of exploitation (characteristics 79 

shared by many species of conservation concern). Genetic data currently available suggested 80 

effective panmixia across ocean basins (Oke et al. 2002; White et al. 2009; Gonçalves da 81 

Silva et al. 2015a).  Attempts to delimit stocks off Australia using parasites, morphology, 82 

otolith biochemistry, and numerous genetic markers sometimes suggested structure, but did 83 

not always produce consistent and reproducible boundaries (see review in Gonçalves da Silva 84 

et al. 2015a). This species dwells in the deep sea at depths that range from ~500 to 1,800 m, 85 

breeds on sea mounts, and can live for over 100 years (see review in White et al. 2009).  It has 86 

been heavily exploited with stocks reduced by an estimated 80% in some regions (e.g. Clark 87 

et al. 2000).   88 

Orange roughy populations span diverse habitats and environmental conditions (for 89 

example across the thermal boundary at the sub-polar front). As for other species in the 90 

pelagic and deep sea environments, rather than being continuously distributed across the 91 
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North Atlantic, they could instead be a collection of highly interconnected populations, 92 

distinguished by locally adapted loci. An example of such a situation can be found in the cod 93 

(Gadus morhua) populations of the Baltic and North seas (Nielsen et al. 2009). These 94 

populations are indistinguishable at neutral loci, but show distinct signatures of local 95 

adaptation that are presumed to be related to the gradients of temperature and salinity 96 

observed between the two seas. Genome sequencing has also revealed a clear example of 97 

local adaptation in Atlantic herring (Clupea harengus) which differ in their reproductive 98 

timing and adaptation to salinity (Martinez-Barrio et al., 2016), and American lobster 99 

(Homarus americanus) showing variation correlated to sea surface temperature (Benestan et 100 

al. 2016). 101 

 Here we apply population genomic analyses using SNP (single nucleotide 102 

polymorphic) loci and uncover population structure relevant to the management of this and 103 

potentially for other widely dispersed species in the deep sea.   We focus on ecological 104 

differences among putative populations, and the biogeographic patterns that emerge when we 105 

track genetic differentiation along habitat contours.  First, we test the hypothesis that habitat 106 

use in a complex environment (which may be based on factors such as preference or 107 

dependence) has led to cryptic patterns of dispersion and isolation by distance.  Second, we 108 

test the hypothesis that environmental discontinuities are associated with differential patterns 109 

of local adaptation, despite apparently high levels of gene flow.  The latter analysis addresses 110 

questions about the feasibility of identifying diversity relevant to adaptive potential (see 111 

Shafer et al. 2015), a key, long-standing objective of conservation genetics, rarely fulfilled.  112 

Together these analyses provide consequential inference in support of the more effective 113 

management of this and similar species in the deep sea. 114 

 115 

2  |  MATERIAL AND METHODS 116 
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2.1   |  Sample collection and DNA extraction 117 

Tissue and blood samples were collected as described by White et al. (2009) and 118 

Gonçalves da Silva et al. (2015b). Sampled locations included two in the South Atlantic (off 119 

the west coast of Namibia and South Africa) , and six in the North Atlantic (two on the mid-120 

Atlantic Ridge, and four along the west coast of UK and Europe; Fig 1; Table 1). Total DNA 121 

was isolated using a phenol:chloroform-based protocol described by Hoelzel & Green (1998) 122 

for samples described in White et al. (2009). Additional samples obtained later were extracted 123 

using a modified QIAGEN DNeasy protocol described in Gonçalves da Silva et al. (2015a).  124 

All samples were collected post-mortem from fish taken in fisheries or during independent 125 

fisheries research activities.  No permits were required. 126 

 127 

2.2  |  DNA analysis and quality control 128 

Genetic variation was assessed using 4723 variable SNPs described by Gonçalves da 129 

Silva et al. (2015b) using an Illumina HD Infinium® custom array (Illumina, Inc., USA) 130 

following the manufacturer’s recommended protocol. We used 4 µl of DNA with a 131 

concentration between 20 and 400 ng/µl for each genotyping assay. Arrays were scanned on a 132 

HiScanSQ (Illumina, Inc., USA).  133 

 Sample and locus quality were first assessed using Illumina software (Illumina 134 

GenomeStudio, v.2011.1; Illumina, Inc., USA). Subsequently, we removed monomorphic 135 

loci, and determined a set of loci considered to be in Linkage Equilibrium (LE) and Hardy-136 

Weinberg Equilibrium (HWE) across the sampled locations (Populations). Details can be 137 

found in Gonçalves da Silva et al. (2015b) and in Supporting Information (Figs S1-S5, Tables 138 

S1-S2). 139 

 140 

2.3  |  Identifying outlier loci 141 
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 We employed four methods to identify outlier loci: PCAdapt (Duforet-Frebourg et al. 142 

2014), BayesEnv2 (Günther & Coop 2013), Lositan (Antao et al. 2008) and BayeScan (Foll & 143 

Gaggiotti 2008). The methods employ different approaches, and make distinct assumptions 144 

about the processes that generate the data (see supplementary methods). Results were 145 

compared across methods in order to minimize issues related to our poor knowledge of the 146 

species’ demographic history and spatial distribution of genetic variation (Lotterhos & 147 

Whitlock 2014).   148 

 149 

2.4  |  Identifying outlier loci potential functional context 150 

We used the relatively small and strict sample of outliers detected in BayeScan to 151 

further explore possible functions associated with local selection.  We began by compiling a 152 

database of teleost protein sequences from NCBI RefSeq database. We then used blastx to 153 

search this database using the contigs where the single nucleotide polymorphisms (SNPs) 154 

were identified as a query. We performed three searches, each with a different amino acid 155 

substitution matrix: BLOSUM45, 62 and 80. This allowed for both divergent and closely 156 

related proteins to be mapped to our contigs. The output of the blast search was converted to a 157 

GFF file, which included the SNP location, and visualized in Geneious. 158 

 159 

2.5  |  Describing population structure 160 

We report results for two sets of loci used to describe the population structure of our 161 

orange roughy samples: (1) loci that were found to be outliers in at least one of the four 162 

methods; and (2) loci found to be neutral in all four methods. We calculated global and 163 

pairwise Weir and Cockerham’s (1984) FST values for each dataset using GENETIX version 164 

4.05 (Belkhir et al. 1996). Significance was assessed by permuting genotypes 10,000 times. 165 

In addition, we produced a low-dimensional graphical representations of the population 166 
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structure using factorial correspondence analysis (FCA) in GENETIX, and discriminant 167 

analysis of principal components (DAPC; Jombart et al. 2010) using adegenet version 2.03 168 

(Jombart & Ahmed 2011) in R (R Core Team 2016). For the FCA we examined the top three 169 

factors. For DAPC, we used the optim.a.score function to identify an optimal number of 170 

principal components to keep in order to avoid overfitting (Jombart et al. 2010). We visually 171 

inspected all 2D combinations of the DAPCs. Sampling locations were used as the prior 172 

groupings for DAPC. 173 

 Both FCA and DAPC analyses of neutral loci suggested the possibility of isolation-174 

by-distance within North Atlantic (NA) populations. We generated pairwise geographic 175 

distances for three possible scenarios: (1) minimum pairwise distance between sampling 176 

locations taking into account only the Earth’s curvature; (2) minimum pairwise distance 177 

between sampling locations such that paths had to be at least 10m in depth, thus avoiding land 178 

masses; and (3) minimum pairwise distance between sampling locations such that paths were 179 

constrained to follow bathymetric contours between 500 and 2500m in depth, thus limiting to 180 

paths thought to be within biologically reasonable depths for the species. We then calculated 181 

pairwise genetic distances between locations using the centroid for each sampled location 182 

along the second DAPC (which differentiated NA sampling locations). Pearson’s correlation 183 

coefficient (r) was calculated between the genetic distance matrix and each geographic 184 

distance matrix, and its significance estimated by 10,000 permutations of the genetic distance 185 

matrix (Legendre & Fortin 2010). Minimum geographic distances were obtained using 186 

marmap package (Pante & Simon Bouhet 2013) in R (R Core Team 2016). 187 

 188 

2.6  |  Geogenetic distances 189 

Using neutral loci, we ran SpaceMix (version 0.12) as described in Bradburg et al. 190 

(2016).  SpaceMix produces geogenetic coordinates, which are geographic coordinates 191 
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distorted by, or corrected for, gene flow (i.e., the greater the gene flow, the closer locations 192 

will appear in the geogenetic map). To facilitate pattern detection we used the “target” model 193 

(mapping from the source of admixture to its target on the inferred map; see 194 

https://github.com/gbradburd/SpaceMix/blob/master/vignettes/spacemix_vignette.Rmd) to 195 

estimate the geogenetic coordinates of our North Atlantic samples. We ran 50 fast replicates 196 

to train the MCMC, each with 1 million steps, and then a single long chain with 10 million 197 

steps. We performed the suggested posterior checks, assessing concordance and MCMC 198 

convergence.   199 

To examine different geogenetic distance hypotheses, we calculated the pairwise 200 

distance from Bay of Biscay to each of the other five sampling locations in the North Atlantic 201 

for each posterior sample from the MCMC. Under a hypothesis of isolation-by-distance along 202 

the continental shelf towards Iceland, and then across to the mid-Atlantic ridge, we expect the 203 

geogenetic distances to increase from Bay of Biscay in the following order: Porcupine Bank, 204 

Scotland, Hebrides, Faraday Seamount, and then Sedlo Bank. In other words, the geogenetic 205 

distance between Bay of Biscay and Porcupine Bank would be the smallest, then the distance 206 

between Bay of Biscay and Scotland, and so forth. Under a hypothesis that the Gulf Stream 207 

has an appreciable effect in determining gene flow in orange roughy, however, we might 208 

expect that Sedlo Bank and Faraday Seamount would be closer to continental shelf locations 209 

than they would be to each other. 210 

 There are 120 possible permutations of the order in which the pairwise geogenetic 211 

distance can increase from a focal population. We chose Bay of Biscay as our focal 212 

population because it is at one extreme of the distribution of sampling locations. For each of 213 

the 120 permutations, we counted the number of times that order appeared in the posterior 214 

sample.  When normalized by the total number of posterior samples, this provides us with a 215 

measure of the relative plausibility of any particular order given our data. 216 
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 217 

3  |  RESULTS 218 

3.1  |  Detecting outliers 219 

Based on our assessment of genotype quality, linkage and Hardy-Weinberg 220 

Equilibrium, and signatures of ascertainment bias we identified 4,179 loci that were variable 221 

in our dataset, and met all quality criteria (see Supplementary methods). 222 

Across all four employed outlier detection methods we identified 420 outlier loci 223 

when considering the most inclusive criteria for defining outliers (Table 2). Detailed 224 

illustrations for each method are provided in the supplementary file (Figs S6-S13).  Of these 225 

420 outliers 232 were identified by at least two methods; 131 by at least three methods; and 226 

52 were identified by all four methods (Fig S14). Bayescan had the fewest number of 227 

identified outlier loci (Fig S8), even when the prior odds of a neutral model over a selection 228 

model was only 10:1. The other three methods identified over 200 loci each (209, 281, and 229 

281, respectively for BayEnv2, Lositan, and PCAdapt).  Congruence was up to 91%, but 230 

generally lower (Fig S14). See Supplementary Information for detailed results of comparative 231 

analyses. 232 

 The posterior distribution of FST (the probability that two alleles taken at random from 233 

a population have an ancestor in that population), suggests structure between South and North 234 

Atlantic, as well as within the North Atlantic (Fig 2). The two populations from the South 235 

Atlantic are clear outliers (mean FST ~ 0.025 for Namibia and South Africa, compared to an 236 

overall mean across all populations of 0.007). Within the North Atlantic, we see an increase in 237 

FST along the coastal margin populations from Hebrides in the North to Bay of Biscay in the 238 

South (the posterior mean increases from 0.0010 to 0.0016). Finally, the two mid-Atlantic 239 

ridge populations have mean FST of 0.0025 and 0.0056 for Sedlo Bank and Faraday 240 

Seamount, respectively.  241 
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 242 

3.2  |  Outlier loci function 243 

Among the eight strongest outliers identified from the BayeScan analysis, three of 244 

those SNPs were on contigs that contained regions matching fish protein sequences.  None of 245 

the SNPs were found within coding regions. Using the BLOSUM80 matrix against the fish 246 

protein database, one SNP was found in a putative intronic region (SNP: 1405747-4_245) of a 247 

gene (ARR2) described as being part of a sensory transduction biological pathway in rainbow 248 

trout (Oncorhynchus mykiss; GO:0050896; UniProt:P51467). Another (SNP: 808350-0_624) 249 

was found 1750bp upstream of a protein (EXT1C) characterized as part of the biosynthesis 250 

pathway of heparan sulfate in zebrafish (Danio rerio; GO:0015012; UniProt: Q5IGR6). 251 

Finally, one SNP (SNP: ID: 1108376-13_704) was found 14,192 bp downstream of a protein 252 

(PSPC1) involved in regulating biological rythyms (GO:0042752; UniProt: Q1JPY8) in 253 

Danio rerio. 254 

 255 

3.3  |  Population structure 256 

 Measures of population diversity and comparisons against Hardy Weinberg 257 

expectations are given in Table 1.  As suggested by Narum (2006), we applied the Benjamini 258 

& Yekutieli (2001) correction for multiple testing to all tests of the null hypothesis that 259 

pairwise FST = 0, resulting in a corrected p-value of 0.0127 (0.05/(∑
𝑖

28

28
𝑖=1 )). Pairwise FST 260 

using loci found to be neutral across all four outlier detection methods (Table 3) was 261 

significantly larger than zero for all pairwise comparisons between North and South Atlantic 262 

(mean FST = 0.0103, sd = 0.00061). The within South Atlantic (SA) pairwise FST was not 263 

different from zero (FST = 0.00004). The mean pairwise FST across NA sampling locations 264 

was 0.00063 (sd 0.00067), and three pairwise comparisons were significant (Table 3).  265 

Pairwise FST using loci found to be outliers in at least one of the outlier detection methods 266 
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(Table 3) were also significantly larger than zero for all comparisons between NA and SA 267 

(mean FST = 0.077, and sd = 0.00064). FST  for outlier loci between the SA sampling sites was 268 

not different from zero, while in the NA most comparisons were significant (Table 3). 269 

        When running DAPC we found that keeping 19 PCs was optimal in order to avoid 270 

overfitting. Both FCA and DAPC resulted in similar representations of the population 271 

structure for both neutral and outlier loci (Fig 3). Across all four panels, the differentiation 272 

between NA and SA is captured along the first dimension. The second dimensions of the 273 

neutral loci panels suggest differentiation among the NA sampling locations. In the outlier 274 

panels, the second dimension singles out Faraday Seamount as divergent from all other NA 275 

sampling locations (Fig 3).  This pattern was also detected when only the outlier loci from a 276 

single method were included (see Fig S15).  Tests of smaller subsamples from the 420 277 

combined outlier loci show that 50 loci are too few for strong inference (see Fig S16), and so 278 

we could not gain useful interpretation from analyses of the 52 outlier loci shared among all 279 

four methods (see Fig S14). 280 

 281 

3.4  |  Isolation-by-distance 282 

 Our tests for isolation-by-distance (IBD) found a strong relationship between 283 

pairwise distances along paths constrained to bathymetric contours between 500m and 2500m 284 

in depth and pairwise genetic distances as measured by the second DAPC (R
2
 = 0.43; p-value 285 

= 0.0051; Fig 4). The other comparisons were not significant, and no significant relationships 286 

were identified with outlier loci (data not shown).  287 

        Of the 120 possible permutations of order analyzed for geogenetic distances, only 30 288 

were observed in our posterior sample of 999. The 95% credible interval included 10 possible 289 

orders, with four comprising over 80% of the posterior mass. The 95% credible interval 290 

supports a hypothesis of isolation-by-distance along the continental shelf, as seen above using 291 
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the Mantel test (Fig 4). There is some uncertainty about the ultimate order of the sampling 292 

locations, in particular between Hebrides and Scotland, and between Faraday Seamount and 293 

Sedlo Bank. Nevertheless, either Faraday Seamount or Sedlo Bank were always the furthest 294 

on the geogenetic scale from Bay of Biscay in the 95% credible set. 295 

 296 

4  |  DISCUSSION 297 

A key objective of conservation is to preserve the potential for species to survive and 298 

retain their natural diversity into the future, facilitating adaptation to a changing world.  The 299 

spectrum of essential conservation work is broad, including crisis issues associated with 300 

endangered species, but also including established populations where the risk is less known or 301 

cryptic.  Exploited marine fish species commonly show low levels of population structure and 302 

have large census numbers (with many thousands of tons of fish taken for some species 303 

annually), but they also often have small Ne/Nc ratios (Hare et al. 2011).   The effective 304 

population size (Ne) is the size of an idealized population that would show the same rate of 305 

loss of diversity as the observed population, while Nc is the census number.  Therefore, Ne is 306 

the evolutionarily relevant population size, and associated with the rate at which diversity is 307 

lost.  Furthermore, even very low levels of differentiation among populations may provide 308 

information important to effective management (White et al. 2010), especially when 309 

populations are demographically independent (Waples et al. 2008) or differentiated by local 310 

adaptation.  In this study we reveal evolutionarily incompatible populations for a species 311 

previously understood to be panmictic in the North Atlantic (White et al. 2009) by deploying 312 

methods that provide high resolution and permit the assessment of adaptive diversity.  We 313 

furthermore propose an association with two environmental characteristics potentially 314 

generating population structure in this system: a thermal transition at the sub-polar front, 315 

south of which we find evidence for local adaptation (in the Faraday Seamount population), 316 
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and a pattern of depth contours across the eastern North Atlantic associated with genetic 317 

isolation by distance (IBD).   318 

 Our comparisons between Namibia and South Africa showed little structure, with only 319 

FCA able to differentiate among the two sampling locations.  However, in the North Atlantic 320 

neutral markers showed genetic differentiation as a pattern of IBD increasing along a path that 321 

follows 500m to 2500m depth contours (which encompasses the ~900-1800m core habitat 322 

range of the species; Fig 4). Although we did not quantify ocean current trajectories for this 323 

model, the general pattern of current flow at depth is broadly coincident with but not identical 324 

to the path we identified (Reid 1994; Marzocchi et al. 2015).   325 

Modelling by Spies et al. (2015) demonstrated that IBD should not be ignored when 326 

there is spatial variation in hunting pressure, and the spatial scale of management is larger 327 

than the mean lifetime dispersal distance (i.e., the scale at which genetic drift becomes 328 

stronger than gene flow; Hutchison & Templeton 1999). In that case they recommended that 329 

the management area be subdivided to the scale of each deme.  Fishing areas in the North 330 

Atlantic are designated into FAO (food and agriculture organization of the United Nations) 331 

fishing zones (FAO 2017), which are managed by the North East Atlantic Fisheries 332 

Commission (NEAFC).  NEAFC groups deep-sea fisheries together and defines a 333 

management area that encompasses the broader geographic region investigated in our study 334 

(see https://www.neafc.org/managing_fisheries/measures/current).  Species-specific 335 

management can be developed “pending ICES [International Council for the Exploration of 336 

the Sea] advice facilitating stock specific measures”.  However, if there is an IBD structure 337 

within a designated stock, this would risk the economic viability of the fishery and long-term 338 

conservation under the modelling of Spies et al. (2015).   339 

For the orange roughy the most recent ICES report (ICES WGDEEP Report 2018, 340 

document 09; see https://www.ices.dk/sites/pub/) states that “There is no information to 341 

https://www.neafc.org/managing_fisheries/measures/current
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determine the existence of separate populations of orange roughy in the North Atlantic.”  342 

However, they designate subareas 6 and 7 (where there have been documented declines for 343 

this species since the early 1990s) together with the ‘rest of the region’ as the current 344 

assessment units.  Our data are consistent with the designation of subareas 6 (our North 345 

Rockall and Hebrides samples) and 7 (our Porcupine Bank sample) given the separate genetic 346 

clusters identified from our analyses (see Fig. 3).  However the ‘rest of the region’ together 347 

with subareas 6&7 show an IBD pattern of diversity (see Fig. 4).  The putative population at 348 

Faraday Seamount, where we found evidence for local adaptation, is outside the NEAFC 349 

management region, but within the mid-Atlantic ridge marine protected area (see O’Leary et 350 

al. 2012).  In general, management strategies often define spatial stock boundaries as the units 351 

of conservation.  We show that high resolution genomic methods can identify more complex, 352 

previously unrecognized, patterns of demographic and genetic structure, relevant to effective 353 

conservation. 354 

 The most likely models for IBD patterns will depend on whether dispersal is primarily 355 

at the larval or adult stage.  For example, in a species with an extended larval phase and 356 

buoyant eggs, dispersal may follow major current patterns (e.g. as for Greenland halibut; 357 

Reinhardtius hippoglossoides in the North Atlantic, Knutsen et al. 2007).  Adult dispersal was 358 

proposed for orange roughy by White et al. (2009), and would fit with inferred spawning 359 

migrations for orange roughy in New Zealand (Clark et al. 1998) and Australia (Upston & 360 

Wayte 2012).  From our data the supported IBD model was along a path that reflected the 361 

adult habitat depth range, and so was consistent with adult dispersal.  An association between 362 

dispersal pattern and bathymetry was also reported for cusk (Brosme brosme) across a similar 363 

geographic range (Knutsen et al. 2007).  However, the current patterns follow a similar route 364 

(Reid 1994; Marzocchi et al. 2015; see Fig 4) and orange roughy eggs last up to 30 days, so 365 

both adult and larval (Dunn et al. 2009) dispersal could be consistent with our data. 366 
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 Some preliminary data suggest that juvenile orange roughy may have a distribution 367 

that is more mesopelagic than the adults in the North Atlantic, based on stable isotope data 368 

from 11 samples (Shephard et al. 2007).  Our data reflecting local adaptation in adults may 369 

therefore represent populations of individuals that had a broader or distinct distribution at 370 

earlier life history stages.  An interesting parallel example may be the depth distribution of the 371 

roundnose grenadier (Coryphaenoides rupestris) in the eastern North Atlantic, where 372 

sympatric juveniles of distinct genotypes at specific functional loci (with fixed non-373 

synonymous variants) segregate to different depths as adults depending on their genotype 374 

(Gaither et al. 2018).  Carlsson et al. (2011) also suggest subtle genetic differentiation (FST = 375 

0.004-0.01) from the Porcupine Bank area comparing samples from ‘flat’ and ‘mound’ 376 

habitats during spawning periods based on 8 microsatellite DNA loci.  However, there was 377 

just one flat site compared to 6 mound sites, and some mound sites were also differentiated 378 

from each other with FST values of a similar magnitude.  In our dataset the differentiated 379 

samples comparing the Hebrides and the Bay of Biscay were both sampled from mound sites 380 

during spawning periods (see White et al. 2009). 381 

 Central to the concept of evolutionarily compatible populations is the idea that 382 

populations that share the same adaptations would be interchangeable, and that 383 

overexploitation in one area could be compensated for by immigration from another area.  384 

However, as illustrated by our results for the North Atlantic orange roughy populations, the 385 

pattern of apparent connectivity can differ for neutral compared to putative functional loci 386 

(see Fig 3).  The population at Faraday Seamounts stands out in ordination analyses based on 387 

putative functional loci, and so a precautionary approach should assume that interchange with 388 

this population is not evolutionarily compatible due to local adaptation.  We identify several 389 

outlier SNPs that showed proximity to coding loci with potentially relevant GO terms, 390 

however further data will be needed to identify specific relevant functional changes.  A 391 
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significant environmental boundary separates this population, the sub-polar front reflecting a 392 

thermal transition and associated environmental differences (potentially relevant for other 393 

species of conservation concern as well).  Although we cannot yet demonstrate a causative 394 

relationship between this thermal transition and adaptive genetic differentiation for this 395 

species, the association suggests a need for further assessment in support of effective 396 

conservation, and similar associations with thermal habitats have been reported for other 397 

marine systems (e.g. Benestan et al. 2016).   398 

Distinct inference from neutral and adaptive markers have suggested important 399 

boundaries for conservation in a few other studies (e.g. Nielsen et al. 2009, Benestan et al. 400 

2016), but these data are still relatively rare.  At the same time, we expect that further high 401 

resolution research will reveal many more examples, and propose that the identification of a 402 

distinct pattern of connectivity for putative functional diversity compared to that seen at 403 

neutral loci should be sufficient to indicate cryptic genetic diversity in support of genetic 404 

stock management designation and further assessment.  This would involve the consideration 405 

of stock designations for the preservation of local adaptive characteristics independent of the 406 

level of movement, since selection can maintain the difference despite ongoing gene flow 407 

through dispersal (e.g. Gaither et al. 2018). 408 

 Conservation genetics has focused on demographic inference and neutral models 409 

essentially since its inception.  However, a major objective has always been the conservation 410 

of adaptive potential, more recently referred to as ‘evolutionary conservation’ (see Eizaguirre 411 

& Baltazar-Soares 2014).  Inference about population structure and demography based on 412 

neutral loci has provided an important contribution to more effective conservation (e.g. 413 

Hauser & Carvalho 2008), potentially extended by high-resolution testing of eco-evolutionary 414 

hypotheses, as illustrated by our results reported here on cryptic IBD.  However, relatively 415 

few studies have addressed the question of adaptive potential, an increasingly critical issue in 416 
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the face of anthropogenic environmental change.  A number of studies have considered 417 

phenotypic variation and additive variance, recognizing the importance of large Ne (e.g. 418 

Hoffman et al. 2017), but the identification of loci critical to the conservation of local 419 

adaptation has lagged behind, largely due to limitations in technology (see Shafer et al. 2015).  420 

Here we illustrate the potential for relatively low-cost genomics to provide useful inference 421 

about local adaptation, even without knowing specific gene function.  The synthesis of eco-422 

evolutionary theory, high resolution population genomics, and contrasting population 423 

structure at neutral and functional loci will reveal cryptic patterns of structure that need to be 424 

conserved if evolutionary potential is to be maintained in managed populations. 425 

   426 
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Table 1. Summary data table, including sampling locations, number of samples per location (n), number of polymorphic loci per location (l), 595 

observed and expected heterozygosity (Ho and He, with the inter-quartile range), and inbreeding coefficient (f). Source refers to where samples 596 

were obtained.  597 

 598 

 599 

Region Location Long Lat n l Ho (IQR) He (IQR) f (95% bootstrap CI) Source 

North 

Atlantic 

Bay of 

Biscay -2.39 44.66 43 4249 

0.3023 

(0.1163,0.4419) 

0.3212 

(0.1312,0.4585) 0.0047 (-0.0019,0.0086) White et al. 2009 

 

Faraday 

Seamount -28.49 49.48 16 3977 

0.2667 

(0.1250,0.4375) 

0.3167 

(0.1208,0.4646) 0.0064 (-0.0004,0.0178) White et al. 2009 

 

North 

Rockall -9.61 56.17 47 4258 

0.3191 

(0.1277,0.4468) 

0.3256 

(0.1312,0.4602) 0.0036 (-0.0014,0.0083) 

Francis Neat 

(Scotland 

Fisheries) 

 

Hebrides 

Seamount -10.36 56.47 48 4265 

0.3125 

(0.1250,0.4375) 

0.3214 

(0.1365,0.4561) 0.0034 (-0.0016,0.0081) White et al. 2009 

 

Namibia 13.77 -24.47 58 4423 

0.3276 

(0.1404,0.4483) 

0.3312 

(0.1446,0.4561) 0.0064 (0.0001,0.0089) White et al. 2009 

 

Porcupine 

Bank -14.41 53.79 35 4225 

0.3143 

(0.1143,0.4571) 

0.3244 

(0.1345,0.4580) -0.0013 (-0.0081,0.0034) White et al. 2009 

South 

Atlantic Sedlo Bank -26.91 40.4 50 4248 

0.3200 

(0.1200,0.4400) 

0.3233 

(0.1314,0.4592) 0.0025 (-0.0021,0.0073) White et al. 2009 

 

South Africa 16.07 -32.93 68 4440 

0.3235 

(0.1471,0.4412) 

0.3295 

(0.1497,0.4561) 0.0068 (0.0019,0.0100) 

Rob Leslie, David 

Japp, Melanie 

Smith (DAFF 

South Africa, and 

CapFish) 
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Table 2. Comparison of outliers detect by all four employed methods. Above diagonal: 

number of loci for which both methods identified as outliers; below diagonal: number of loci 

for which both methods identified as neutral; diagonal: number of loci detected as outlier by 

method. 

 

 BayEnv2 Bayescan Lositan PCAdapt 

BayEnv2 209 54 174 153 

Bayescan 3960 64 58 54 

Lositan 3863 3892 281 157 

PCAdapt 3842 3888 3774 281 
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Table 3: Pairwise FST using only the union of neutral loci across all four methods of outlier 

detection (above diagonal), and using only the union of outlier loci across all four methods of 

outlier detection (below diagonal). The hypothesis that observed FST is different from zero 

was tested with 10,000 bootstraps in Genetix. Significance threshold was corrected for 

multiple testing to 0.0127. Values highlighted in bold and italics were significantly different 

from zero.  HB – Hebrides; NR – North Rockall; PB – Porcupine Bank; BB – Bay of Biscay; 

FS – Faraday Seamount; SB – Sedlo Bank; NM – Namibia; SA – South Africa. 
 

 HB NR PB BB FS SB NM SA 

HB  -0.00018 0.00046 0.00062 0.00089 0.0007 0.01037 0.01054 

NR 0.00131   0.00016 0.00059 0.00034 -0.00008 0.01042 0.0104 

PB 0.00378 0.00371  -0.00027 0.00116 0.00112 0.00957 0.01031 

BB 0.0005 0.00214 0.00281   0.00184 0.00197 0.00978 0.00973 

FS 0.01546 0.01788 0.0195 0.01601   0.00022 0.00966 0.01006 

SB 0.00244 0.003 0.00518 0.00443 0.01424   0.01143 0.01136 

NM 0.07289 0.07759 0.07507 0.07224 0.09111 0.0797   0.00004 

SA 0.06989 0.07575 0.07391 0.07135 0.08743 0.07755 0.0008  
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Figure Legends: 

 

Figure 1. Sample distribution across the Atlantic Ocean. NR = North Rockall, HB = 

Hebrides, PB = Porcupine Bight, FS = Faraday Seamounts, SB = Sedlo Bank, NM = 

Namibia, SA = South Africa. 

 

Figure 2. BayesScan posterior distribution of FST relative to a common ancestral population 

 

Figure 3. FCA and DAPC results for both outlier and neutral loci. For outlier loci, we used 

the union of outlier loci across all four outlier detection methods (420). For neutral loci, we 

used the union of neutral loci across all four methods. 

 

Figure 4. Regression of genetic distance measured by Euclidean distance between pairwise 

LD2 DAPC scores to pairwise minimum geographic distance measured along depths between 

500 and 2500m.  Orange line in part A indicates path within defined depth range. 
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Supplementary Information 
 

Quality control of SNP data 

 

Genotyping in GenomeStudio 

 

Using GenomeStudio, we removed all low-quality samples (samples with less than 

0.99 genotype calls), we then reclustered the data before filtering out poorly performing loci. 

Locus quality control followed the manufacturer’s recommendations (e.g. removing all loci 

with a call frequency <0.9993, all loci with repeatability errors, and all monomorphic loci). 

We then checked individual clusters of SNPs with heterozygote excess or deficiency for 

abnormal clustering patterns as described in Tindall et al. (2010). 

 

Checking LE and HWE, and signatures of ascertainment bias 

The resulting 4,567 variable loci across our sample were then tested for linkage 

equilibrium (LE) and Hardy-Weinberg equilibrium (HWE). For LE, we used the 

Bioconductor package chopsticks (Leung 2012) in R (R Core Team 2016) to calculate both 

D’ and LOD score (log odds ratio of being linked vs. unlinked) for all locus pairs within each 

sampled location. From the linkage analysis, we identified locus pairs on contigs in linkage 

disequilibrium and from these created a set of loci with only one randomly chosen locus per 

contig, yielding 4,179 SNPs. These data have been submitted to the NCBI short read database 

under accession number XXXXX. 

 To double check the quality of the set of 4,179 SNPs deemed in LE, we checked for 

and found no association between call rate and heterozygosity (Figure S1), suggesting that 

the quality of the samples kept for analyses were largely comparable, and results should 

reflect true biological differences rather than genotyping artifacts. Finally, the site frequency 

spectrum across populations and for individual populations did not suggest significant 
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ascertainment bias, with a roughly ‘L’-shaped distribution for loci across populations and 

within populations (Figures S2 and S3). 

Individual locus measures of HWE without regard to population structure were 

performed and transformed to z-scores (with mean 0 and standard deviation 1). Values above 

the mean suggest heterozygote excess, while values below zero suggest heterozygote 

deficiency. The distribution has a heavy left tail (Figure S4), which is highlighted in the 

quantile plot. This suggests a larger number of loci showing heterozygote deficit than 

expected by the Normal distribution. This is to be expected because: (1) we did not take into 

account the population structure, which if present, should lead to greater apparent 

homozygosity; and (2) the SNP site-frequency spectrum is biased towards loci with rare 

alleles (defined as minor allele frequency < 0.05). A high proportion of such loci have of one 

allele, which means we should expect to see fewer heterozygotes in the population. These 

would be harder to sample, and thus to obtain a good estimate of the frequency of 

heterozygote genotype. In particular, such a frequency bias in the alleles is expected to cause 

higher sampling variance of the rarer genotypes. An examination of the allele frequency of 

loci with a z-score < -5 corroborates this assessment (Table S1). Examining the distribution 

of z-scores within populations suggests a similar skew to that observed across populations 

(Figure S5). Similarly, the majority of loci showing signs of heterozygote deficiency are loci 

with rare alleles (Table S2). Thus, for the purposes of the analyses presented here, we 

consider the set of 4,179 loci proposed to be in LE to also be in HWE.  

 

Identifying outlier loci 

 

Lositan 

 Outliers were detected in Lositan by running the high-capacity version with 50,000 

simulations. We selected the options for “neutral” mean FST and forced mean FST. 

Simulations were set to have an expected number of populations of 50, sub-sample size of 50, 
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and we assumed the infinite alleles mutation model. We then calculated adjusted p-values 

using the Benjamini and Hochberg method (Benjamini & Hochberg 1995), and controlled for 

a false discovery rate of 0.05. We ran three analyses: (1) with all eight sampled locations, 

spanning North and South Atlantic; (2) with only the six North Atlantic sampled locations; 

and (3) with only the two South Atlantic sampled locations. The loci table and the neutral 

evolution confidence intervals were saved to text files, and plotted in R (R Core Team 2016). 

Based on p-values corrected using the Benjamini and Hochberg method (Benjamini & 

Hochberg 1995), we identified: 

 281 outlier loci across the eight sampling locations (Figure S6A) 

 170 outlier loci across the six sampling locations in the North Atlantic (Figure S6B) 

 47 outlier loci across the two sampling locations in the South Atlantic (Figure S6C) 

 

BayesScan: Convergence 

In BayeScan 2.1 outliers were detected using the default MCMC parameters across 

three separate analyses with distinct prior-odds of the neutral model relative to the selection 

model: 10, 100, and 1000. To assess convergence to the posterior distribution, we plotted 

individual sample locations chains for the FST parameter. MCMC was considered to have 

converged if the chain looked like it was mixing well, as indicated by the characteristic 

‘caterpillar’ look. Loci were deemed outliers if their q-value was < 0.01. In each analysis, the 

prior odds for a model without selection compared to a model with selection was increased 

by a factor of 10 (range 10 to 1000). The goal was to test prior sensitivity of the results. 

Otherwise, run conditions were as default. We plotted MCMC chains to visually inspect for 

convergence to the posterior distribution, and checked the distribution of FST values (Figure 

S7). 
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BayesScan: Identifying outlier loci 

We saw an eight-fold decrease in number of identified outlier loci when going from a 

prior odds of 10 to a prior odds of 1000 (64 vs 8 outlier loci; Figure S8). The median 

posterior probability of a locus identified as an outlier being a true outlier increased from 

0.79 to 0.85 across the different priors (Figure S9). 

 

PCAdapt: Determining the number of factor, K 

 

PCAdapt (version 1.5) attempts to jointly estimate population structure and identify 

loci that are disproportionately associated with structure (outliers) (Duforet-Frebourg et al. 

2014).  The number of factors, K, is an unknown parameter of the PCAdapt model. The 

authors discuss different heuristics in order to determine the optimal K (Duforet-Frebourg et 

al. 2014). In our analysis, we determined K by first exploring the decay of MSE with 

increasing K, with K ranging from 1 to 12. To obtain MSE estimates, the model was run 10 

times for each K. To check for convergence of the MCMC, we followed the authors 

suggestion to calculate the correlation among independent runs of the MCMC for each K 

(where high correlation is suggestive of convergence and good results) We found high 

correlation for K = 1 (R
2
 ~ 1), and low correlation for subsequent K values. We ran both 

available models with the raw count matrix as input, and a random start to the MCMC, and 

with a singular value decomposition (SVD) of the input matrix. The results for each model 

both suggested that the optimal K = 1. In Figure S10, we show results for the model not 

initialized with SVD and without a scaled Y input vector. 

 

PCAdapt: Choosing outlier loci 

 

For each locus PCAdapt calculates an approximation of the log10 (Bayes Factor), 

which indicates how much more likely the locus data fits a model in which the locus is an 

outlier relative to a model where it is not an outlier (Figure S11). For convenience of 
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comparison to traditional log Bayes Factor scales, we have transformed the values into 

natural log scale, which henceforth we refer to as lnBF. There is no simple heuristic that we 

can specify a priori that allows us to be certain of the FDR given a lnBF threshold of 

significance (Duforet-Frebourg et al. 2014). We therefore took a multiple approach in order 

to classify loci as outliers. First, based on the scale of Kass and Raftery (1995) we identified 

all loci that had a 2 x lnBF ≥ 6 (considered to be strong evidence against the null model that 

the locus is not an outlier). Here, lnBF was taken as the mean lnBF across 10 replicate runs. 

For these loci, we examined the strength of association between the loci and the factor to 

satisfy ourselves that there is indeed an appreciable effect.  In total, we identified 281 outlier 

loci with PCAdapt. 

 

BayEnv2: Checking for convergence 

 

Using BayEnv2 (Günther & Coop 2013) we estimated the degree of association 

between each of the 4,179 SNPs to North or South Atlantic across each of 50 random 

posterior covariance matrices (five from each of the replicate chains). The estimate of 

association for each SNP x covariance matrix pair was performed with an MCMC of 500,000 

steps. Thus, for each SNP, we had 50 estimates of Bayes Factor of association, and 50 

estimates of Spearman’s  and Pearson’s rs. We first ran 50 replicate MCMC to estimate the 

among population SNP covariance matrix. From each replicate run we drew 1000 samples, 

recorded every 500
th

 step, and discarded the first 500 as burn-in. To examine convergence, 

we plotted the chain for each element of the 8 x 8 covariance matrix (Figure S12). 

 

BayEnv2: Identifying outlier loci 

As noted by Coop et al. (2010), there can be large variation in estimates of Bayes 

Factors for single loci with different priors and across loci, and a large Bayes Factor is no 

guarantee of an association between a SNP and an environmental variable. The authors 
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recommend building an empirical distribution of Bayes Factors from control SNPs in order to 

identify significant Bayes Factors. In lieu of control SNPs, we used the distribution of 

minimum Bayes Factors across the 50 estimates for each locus, and set the threshold of 

minimum Bayes Factor at the top 5% of Bayes Factors observed. The identified threshold 

was 4.52. To ensure our heuristic was working, we searched for associations between Bayes 

Factors and Spearman’s  and Pearson’s rs in order to identify outlier loci (Figure S13).  In 

total, we identified 209 outlier loci with BayEnv2.  The numbers of outliers identified by the 

various methods is illustrated in a Venn diagram in Figure 2. 

 

Outlier loci detected 

Using Lositan we identified 281 outlier loci out of the 4179 loci included in the 

analysis across all eight sampling locations after adjusting for false discovery.  This was 

reduced to 170 when considering only the sampling locations in the North Atlantic, and 47 

when examining only the South Atlantic sampling locations (Figure S6). To quantify the 

difference between outlier and neutral loci, we compared the FST values between both sets of 

loci. We found a strong effect distinguishing outlier from neutral loci when all populations 

were included, with mean FST of outlier loci being an order of magnitude greater than that of 

neutral loci (mean outlier  FST = 0.049; mean neutral FST = 0.0059; Student’s t-test: t = 

47.281, df = 298.65, p-value < 2.2e-16).   Mean heterozygosity of outlier loci was also 

significantly greater than that of the neutral loci (mean outlier heterozygosity = 0.337; mean 

neutral heterozygosity = 0.301; Student’s t-test: t = 3.99, df  = 333.58, p-value = 7.8e-5). A 

similar pattern was observed for the analysis including only samples from the North Atlantic 

(mean outlier FST = 0.035; mean neutral FST = 0.0077; Student’s t-test: t = 30.91, df = 179.19, 

p-value < 2.2e-16; mean outlier heterozygosity = 0.338; mean neutral heterozygosity = 

0.297; Student’s t-test: t = 3.56, df  = 216.33, p-value < 0.0005). Given the expectation (and 
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empirical record) of marine species (including orange roughy) having high connectivity and 

low FST, this difference supports the interpretation of selection, but is not conclusive. 

For BayesScan, visual inspection of the MCMC for the FST parameter suggested 

convergence to the posterior distribution in all three analyses (Figures S7 & S9). Our analysis 

identified 64, 19, and 8 outlier loci when setting the prior odds of a neutral model in relation 

to a model with selection to 10, 100, and 1000, respectively (Figure S8), and using a q-value 

of 0.05, which sets the FDR to 5%. 

 The locus effect in BayesScan () reflects selection and locus specific mutation rates 

(Beaumont & Balding 2004). The median  across the three prior treatments was close to 

zero for loci classified as outliers, and 1.37, 1.55, and 1.72 for prior odds of 10, 100, and 

1000, respectively. This suggests that, at least in terms of locus specific effects, at neutral loci 

the probability that two alleles taken at random from a population are just as likely to have a 

common ancestor within the sampled population as they are to not have a common ancestor 

in the population. For outlier loci the probability increases to 0.80, 0.82, and 0.84 for the each 

of the three prior treatments, respectively.  

For PCAdapt, the most likely number of splits (K) was one. We inspected both the 

decay of MSE and the correlation among runs of the association of loci to factors across 

multiple MCMC strategies. We did not observe the expected plateau in MSE unless we 

started the MCMC with an SVD input matrix. The correlation between loci and assigned 

factors between runs across all approaches had
 
r

2
 >0.95 only for K = 1. Plots of K = 1 

separate samples from North and South Atlantic (Figure S10), while K ≥ 2 do not indicate 

any clear structure.  

 A total of 281 loci were found to be outliers with our criteria of 2 x lnBF ≥ 6. The 

lnBF ranged from 0.91 to 18.49 across all loci and 10 replicate runs. Mean values across 
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replicate runs for individual loci ranged from 1.25 to 18.30. The standard deviation across 

replicates was only slightly associated with mean lnBF (R
2
 = 0.25; Supplementary material). 

 The effect size, measured by correlation between loci and factors, was generally 

small. A negative association means that the most common allele in the North Atlantic was 

the minor allele in the South Atlantic, and the converse applies to a positive association 

(Figure S11). The strength of association between loci and factors ranged from -0.11 to 0.08, 

with mean = 0 (±0.02). The range of correlation values for non-outlier loci was between -

0.036 to 0.036, with mean = 0 (±0.015). 

 The number of outlier loci was reduced to 48 (18 with a positive r, and 30 with a 

negative r) by focusing only on the loci that had an r value at least 1.5X larger than the 

minimum or maximum r value observed for those loci deemed neutral. The value of 1.5X 

was arbitrarily chosen to be about half the maximum fold difference in r value between 

neutral and outlier loci observed across the dataset (3.12X). 

For BayEnv2 the length of the individual MCMC for estimation of the posterior 

distribution of covariance matrices was suitable, as suggested by the plot of the individual 

element chains (Figure S12). A plot of the mean covariance matrix suggests significant 

differences between the North and South Atlantic. Within each ocean, population allele 

frequencies have positive covariances. However, Faraday Seamount seems to show allele 

frequencies that are distinct from those of other sampled locations in the North Atlantic. 

 Estimates of Bayes Factors (BF) ranged from 7.12 x 10
-2

 to 7.83 x 10
5
. Taking just the 

minimum BF for each SNP across the 50 posterior samples, the values ranged from 7.12 x 

10
-2

 to 3.17 x 10
3
. The 95

th
 quantile of the minimum BF values was ~4.53, and all loci with 

minimum BF value equal to or above the 95
th

 quantile were labelled as outliers, resulting in 

209 outlier loci. The distribution of absolute values of Pearson’s rs coefficient and 

Spearman’s  were similar for outlier and neutral loci (results for Pearson’s rs for neutral loci 
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were median = 0.18 with 2.5% and 97.5% quantiles equal to 0.008 and 0.48, respectively; for 

outlier loci median = 0.44 with 2.5% and 97.5% quantiles equal to 0.23 and 0.63, 

respectively; Figure S13).  Shared outlier loci among methods is shown in Figure S14, while 

Figure S15 shows support for similar outlier patterns in FCA for methods run separately.  

Figure S16 shows the contribution of the number of loci to the resolution of the analysis. 
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Figure S1. Distribution of genotyping call rate vs heterozygosity (Adjusted R

2
 = 0.03) 
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Figure S2. Site frequency spectrum of 4,179 SNPs of orange roughy samples from the 

Atlantic Ocean 

 

 

 
Figure S3. Site frequency spectrum of 4,179 SNPs of orange roughy samples from eight 

sampling locations in the Atlantic Ocean 
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Figure S4. Distribution of z scores (deviations from expected genotypic frequencies given 

allelic frequencies) across all 4,179 SNPs in the sample of 365 orange roughy from the 

Atlantic Ocean 

 

 
Figure S5. Distribution of z scores (deviations from expected genotypic frequencies given 

allelic frequencies) across all 4,179 SNPs in the sample of 365 orange roughy from the 

Atlantic Ocean for each of eight sampling locations 
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 1 

 2 
Figure S6. Distribution of outlier and neutral loci as identified using Lositan. Outlier loci 3 

were defined as those with an adjusted p-value ≤ 0.05. 4 

 5 

6 
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 7 
Figure S7. BayesScan 2.1 MCMC output assuming a prior odds of 10:1 of the neutral model 8 

relative to the selection model. A. Plots of MCMC demonstrating convergence to stationarity. 9 

B. Posterior distribution of BayesScan FST values. 10 

 11 

12 
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 13 
Figure S8: Identification of outlier loci across runs of BayeScan with different prior odds 14 

(PO) on model with (shaded dots to the right) and without (shaded dots to the left) selection. 15 

 16 

 17 

 18 
Figure S9. Distribution of  for neutral and outlier loci across the three prior treatments 19 

20 
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 21 
Figure S10. Determining optimal number of factors, K, for PCAdapt. A. Mean squared error 22 

against K, suggesting K = 1 is best; B. Scores of Factor 1 against Factor 2 scores showing 23 

that only Factor 1 discriminates between North and South Atlantic; C. Distribution of Factor 24 

1 scores across sampling locations; D. Distribution of Factor 2 scores across sampling 25 

locations. 26 

27 
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 28 
Figure S11. Distribution of log Bayes Factor across 10 replicate runs of PCAdapt for all 4,179 29 

loci 30 

31 
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 32 
Figure S12. BayEnv2 MCMC samples of the posterior distribution of the covariance matrix. 33 

Plots includes samples taken across 10 independent runs, and only display samples taken after 34 

burn-in. For each run, 500 samples were recorded after burnin, taken every 500
th

 step. 35 

  36 
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 37 

 38 
Figure S13. Distribution for neutral and outlier loci of absolute values of: (A) Spearman's 39 

Rank  scores across Bayes Factors; (B) Pearson's Correlation Coefficient rs scores 40 

 41 

 42 

 43 

 44 

45 
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 46 
Figure S14. Venn diagram of count of shared outlier loci across outlier detection methods 47 

48 
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 49 
Figure S15: FCA analysis of a) 281 outlier loci from the Lositan analysis; x-axis: factor 1 50 

(32.5%), y-axis: factor 2 (20.1%).  b) 209 outlier loci from the BayEnv2 analysis; x-axis: 51 

factor 1 (23.8%), y-axis: factor 2 (23.3%).  c) 281 outlier loci from the PCAdapt analysis; x-52 

axis: factor 1 (23.1%), y-axis: factor 3 (20.7%). d) 64 outlier loci from the BayeScan analysis; 53 

x-axis: factor 1 (30.3%), y-axis: factor 3 (20.1%).  The Faraday population is circled in all 54 

panels.  Note that factors 2 and 3 had essentially the same support in all cases, and so the most 55 

informative pairing with factor 1 is illustrated. 56 

57 
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 58 
 59 

Figure S16: Test FCA analyses based on random subsamples of loci from the total of 420 60 

combined from all four analytical methods (Lositan, Bayscan, BayEnv2 and PCAdapt).  a) 61 

300 loci, b) 200 loci, c) 100 loci, d) 50 loci.  Factor 1 is on the x-axis and factor 2 is on the y-62 

axis.  In each panel the Faraday population samples are circled. 63 

 64 

 65 

66 
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Table S1. Minor allele frequency (MAF) and z score for loci with z score < -5 across the 67 

whole dataset of 4,179 SNPs genotyped at 365 samples of orange roughy from the Atlantic 68 

Ocean 69 

 70 

MAF z.HWE 

0.02 -10.00 

0.02 -6.76 

0.01 -6.26 

0.01 -6.26 

0.01 -5.33 

0.01 -5.30 

 71 

Table S2. Minor allele frequency (MAF) and z score loci with z score < -5 identified across 72 

4,179 SNPs genotyped at 365 samples of orange roughy from the Atlantic Ocean sampled 73 

from eight separate locations. 74 

 75 

Population MAF z.HWE 

Hebrides 0.02 -6.93 

North 

Rockall 

0.02 -6.86 

North 

Rockall 

0.02 -6.86 

Porcupine 

Bank 

0.03 -5.92 

Porcupine 

Bank 

0.13 -5.16 

Bay of 

Biscay 

0.02 -6.56 

Bay of 

Biscay 

0.02 -6.56 

Bay of 

Biscay 

0.02 -6.56 

Sedlo Bank 0.08 -5.15 

Namibia 0.02 -7.62 

Namibia 0.04 -6.02 

Namibia 0.12 -5.14 

Namibia 0.03 -5.01 

Namibia 0.03 -5.01 

Namibia 0.03 -5.01 

Namibia 0.03 -5.01 

Namibia 0.03 -5.01 

South Africa 0.01 -8.25 

South Africa 0.02 -5.44 

South Africa 0.02 -5.39 

 76 

 77 

 78 


