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Abstract

Measures of heart rate variability (and heart rate more generally) are providing powerful

insights into the physiological drivers of behaviour. Resting heart rate variability (HRV) can be

used as an indicator of individual differences in temperament and reactivity to physical and

psychological stress. There is increasing interest in deriving such measures from free ranging

wild animals, where individuals are exposed to the natural and anthropogenic stressors of life.

We describe a robust, externally mounted heart rate monitor for use in wild mammals,

deployed here on wild breeding adult female grey seals (Halichoerus grypus), that delivers

millisecond precise measures of inter beat intervals (IBIs), allowing computation of resting

HRV parameters. Based on Firstbeat™ heart rate belts, our system allows for remote, contin-

uous recording of IBI data from over 30 individuals simultaneously at ranges of up to 200m.

We assessed the accuracy of the IBI data provided by the Firstbeat™ system using concur-

rent IBI data derived from in-field electrocardiogram (ECG) recordings. Bland-Altmann analy-

ses demonstrated high correspondence between the two sets of IBI data, with a mean

difference of 0.87±0.16ms. We used generalized additive mixed-effects models to examine

the impact of the default Firstbeat™ software artefact correction procedure upon the genera-

tion of anomalous data (flats and stairs). Artefact correction and individual activity were major

causes of flats and stairs. We used simulations and models to assess the impact of these

errors on estimates of resting HRV and to inform criteria for subsampling relatively error free

IBI traces. These analyses allowed us to establish stringent filtering procedures to remove

traces with excessive numbers of artefacts, including flats and stairs. Even with strict criteria

for removing potentially erroneous data, the abundance of data yielded by the Firstbeat™ sys-

tem provides the potential to extract robust estimates of resting HRV. We discuss the advan-

tages and limitations of our system for applications beyond the study system described here.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0252013 June 4, 2021 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Twiss SD, Brannan N, Shuert CR, Bishop

AM, Pomeroy P.P, Moss S (2021) An external

telemetry system for recording resting heart rate

variability and heart rate in free-ranging large wild

mammals. PLoS ONE 16(6): e0252013. https://doi.

org/10.1371/journal.pone.0252013

Editor: Stephen Raverty, Animal Health Centre,

CANADA

Received: July 23, 2020

Accepted: May 9, 2021

Published: June 4, 2021

Copyright: © 2021 Twiss et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: UK NERC supported the long-term

research at the Isle of May through core funding to

SMRU. PP was in receipt of NERC grant no. NE/

G008930/1 and Esmée Fairbairn Foundation

funding during the work. AMB and CRS were

supported by the Durham Doctoral Studentship

scheme. The funders had no role in study design,

https://orcid.org/0000-0002-1923-8874
https://doi.org/10.1371/journal.pone.0252013
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252013&domain=pdf&date_stamp=2021-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252013&domain=pdf&date_stamp=2021-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252013&domain=pdf&date_stamp=2021-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252013&domain=pdf&date_stamp=2021-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252013&domain=pdf&date_stamp=2021-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252013&domain=pdf&date_stamp=2021-06-04
https://doi.org/10.1371/journal.pone.0252013
https://doi.org/10.1371/journal.pone.0252013
http://creativecommons.org/licenses/by/4.0/


Introduction

Resting heart rate variability (HRV; variation in the intervals between heartbeats) has proven

to be an informative physiological measure, integrating a wide range of processes linked to

sympathovagal balance into a metric that is indicative of an individual’s temperament or cop-

ing style [1–3] and reactivity to stress, whether psychological or physical [3–6]. Acquisition of

reliable measures of resting HRV can be more challenging than estimates of heart rate due to

the requirement for millisecond precision of inter-beat interval (IBI) data through accurate

detection of RR peaks [3, 5]. Although electrocardiogram (ECG) devices provide the ‘gold

standard’ for recording HRV metrics due to their ability to record the entire QRS complex,

they are rarely practicable in studies of freely moving animals [7, 8]. Even non-invasive porta-

ble ECG devices, such as Holter monitors [9, 10], are typically only capable of short-term

recordings making them more suitable for captive or laboratory animals and livestock. This

places constraints upon the ability of researchers to incorporate the potentially useful HRV

metrics in studies of free-ranging wild animals. Therefore, there is a need for affordable robust

devices that can provide reliable IBI data at the required millisecond precision on free-ranging

wild animals. Ideally, such devices would allow for long-term and remote recording of data

across multiple individuals to minimise disturbance from the number of interventions

required, allowing the study animals to behave normally in their natural environment. We

describe and assess a system that has the potential to fulfil this role even in a challenging

situation.

Increasingly, heart rate monitors are being integrated into wild studies, where animals are

exposed to the natural challenges and stressors of life [11–15]. The telemetry devices used

often differ depending upon research context and study species, with differences in morphol-

ogy or life history often dictating the best strategy to employ [14–16]. For example, some stud-

ies utilize implanted electrodes to record heart rate or HRV [17, 18]. These systems not only

require recovery of devices for data-download, but in non-sterile conditions it is often desir-

able to avoid surgical implantation of devices, thus, externally mounted heart rate monitors

can provide a viable solution.

External telemetry devices, such as the Polar1 RS800CX with H2/H3 sensors (Polar Elec-

tro Oy, Kempele, Finland), can provide the required millisecond precision by using peak volt-

age to register the time-points of successive R-peaks. IBI data are transmitted from the sensor

mounted on the study individual (with appropriate electrodes) to the remote RS800CX

receiver. Such devices can permit prolonged monitoring of IBIs in freely moving subjects and

are typically more affordable than ECG devices, permitting larger sample sizes. However, with

a limited transmission range (c. 20-50m), the majority of studies utilising this system have

deployed devices on relatively constrained individuals; either in laboratories or captivity, or on

domesticated species in controlled conditions [4, 5, 12, 13, 19]. Understandably, relatively few

studies have attempted to deploy such heart rate monitors to measure HRV in a wild context

[6, 8, 20].

A major consideration with externally mounted heart rate monitors is that they can be

prone to errors (artefacts) in IBI data [3, 5, S1 Fig in S1 File]. Artefacts in IBI data can lead to

significant biases in estimates of HRV and dealing with artefacts is an important stage in

ensuring reliable metrics of HRV are generated [3, 5, 21]. Sources of artefacts in IBI data can

be intrinsic (e.g. arrhythmias, noise from muscle action potentials), or extrinsic (e.g. poor elec-

trode-skin conductance, equipment malfunction), causing beats to be either missed or spuri-

ously generated, leading to erroneously long or short IBI values [3, 5, 12]. Artefacts generated

by spuriously long or short IBIs create extreme ‘peaks’ (or troughs) in a trace of IBIs, and can

be detected and corrected using a range of software (e.g. “Kubios” [22], “ARTiiFACT” [23],
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“RHRV” [24]) although thresholds must be considered carefully to avoid removal of normal

biological variation in IBIs such as sinus arrythmia. Correction is typically done by means of

deleting spurious beat(s) or replacing missing beat(s) through interpolation. However, there

are two forms of artefacts that cannot be corrected by these software packages [5, 8, 12]: The

first presents as invariable sequences of IBIs, such that graphical representations of IBIs over

time form a flat, horizontal line. For simplicity we refer to this form of artefact as ‘flats’. The

second are sequences of monotonically increasing or decreasing IBIs, which appear as straight,

positively or negatively, sloped lines on graphs of IBIs against time. We refer to these as ‘stairs’.

Further details of the form of flats, stairs and other artefacts are provided in S1 Fig in S1 File.

Few studies have explicitly considered the impacts of flats or stairs on the resulting estimates of

resting HRV. One study [8] stated that any trace where >5% of the trace was classified as any

type of error should not be used for estimating HRV. Such strict criteria for removing poten-

tially erroneous data can be utilised in captive situations where a researcher is likely to have

the option to re-measure a restrained animal. However, in field studies such options for re-

deployment are unlikely to be available, and ethical considerations drive a need to maximise

the utility of any collected data. In addition, determination of resting HRV, the key baseline

metric of individual coping style, requires subjects to be in a resting state primarily [3]. Field

studies of free ranging animals therefore also require some means of determining the activity

of their study individuals and temporally linking this information to IBI data.

Here we describe a robust, externally mounted system based on Firstbeat™ heart rate belts

(https://international-shop.firstbeat.com/product/team-pack/) capable of long-term remote record-

ing of IBIs with millisecond precision from multiple free-ranging individuals simultaneously. We

deployed this system on wild adult female grey seals (Halichoerus grypus) during their annual

breeding season. As deep divers, phocid seals, such as the grey seal, are renowned for their remark-

able capacity to alter their heart rate (documented heart rate in free-living grey seals ranges from 4

to 120 bpm) [25, 26]. In addition, the terrestrial breeding sites occupied by phocid seals present

physically challenging conditions for any externally mounted heart rate monitor, with aggregations

of seals interacting, often aggressively, and moving around on a variety of substrates including rock,

mud, sand and in water [27]. Our aims in this study are to (i) assess the ability of this system to gen-

erate accurate IBI data in a field context, (ii) assess the occurrence and potential causes of artefacts

(in particular flats and stairs) within traces generated by this system, and (iii) determine the poten-

tial impact of these errors on estimates of resting HRV derived from the IBI data.

Methods

Description of the study system, heart rate monitor design and

deployments

Study animals and study site. Data were collected at the Isle of May (56.1˚ N, 2.55˚ W)

grey seal breeding colony in 2015, 2016 and 2017 (27/10-24/11/2015; 25/10-27/11/2016; 23/10-

11/12/2017). Adult female grey seals typically begin to arrive on this colony in mid-October,

with peak density of seals ashore in mid-November [28]. Individual females will spend 18–20

days ashore, during which they each bear and nurse one pup, enter oestrus towards the end of

lactation (approximately 16 days after giving birth [29]) and mate. Grey seals are capital breed-

ers, fasting whilst on the colony and relying on energy reserves gathered prior to the breeding

season, stored primarily as blubber [30]. The Isle of May has a rugged topography with aggre-

gations of breeding seals scattered across the island but primarily occupying pockets of flatter

terrain with access to water (either tidal inlets or pools of water) [27, 28, 31].

Capture/handling of seals. Breeding females and their pups are routinely captured as

part of long-term reproductive studies by the Sea Mammal Research Unit, SMRU [28, 30, 32].
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Individual females were identified using pre-existing brands, flipper tags and/or pelage pat-

terns [30, 33, 34]. Details of the capture procedure are provided elsewhere [30, 35, 36]. In brief,

target females of known identity are chemically immobilized using a mass-specific intramus-

cular injection of zolazepam-tiletamine (‘Zoletil’, Virbac, U.K.). Immobilization was main-

tained for 30–40 min allowing measurement of maternal mass, morphometrics, collection of

physiological samples (e.g. blood) and attachment of telemetry devices. Mothers are captured

and sampled twice during their lactation period, once early in lactation and again towards the

end of lactation, before the female enters oestrus [29]. Telemetry devices were recovered dur-

ing the late lactation captures. These double captures permit calculation of maternal mass

changes across the main period of lactation [30], and, assuming a linear rate of mass loss, can

be used to estimate maternal mass on any day during lactation.

All animal procedures were performed under the UK Home Office project licence #60/

4009 and conformed to the UK Animals (Scientific Procedures) Act, 1986. All research

received prior ethical approval from the Durham University’s Animal Welfare Ethical Review

Board and from the University of St Andrews Animal Welfare and Ethics Committee and the

School of Biology’s Ethics Committee. NatureScot (formerly Scottish Natural Heritage)

approved field site access to the Isle of May national nature reserve (permit numbers by year;

2015 = MON/RP/175, 2016 = MON/RP/177, 2017 = MON/RP/178).

Heart rate monitor design and attachment. Firstbeat™ heart rate belts (Jyväskylä, Fin-

land) are designed for use on humans and use peak voltage to register successive R-peaks in

the QRS complex with millisecond precision (sampling rate of 1000 Hz). The devices compute

the time between successive R peaks to generate a sequence of R-R intervals or inter-beat inter-

vals (IBIs). The transmitter portion of the belts utilises the ‘BlueRobin’ transmission protocol

(868/915 MHz) to transmit IBI data (in milliseconds) to a remote receiver (Firstbeat™ Team

Receiver) located at ranges of up to 200 m (line of sight) from the transmitters. The receiver is

connected to a PC which logs the IBI data. The Team Receiver is capable of logging IBI data

from multiple transmitters, deployed on different individuals, simultaneously. We used the

Team Receiver 30, allowing up to 30 simultaneous recordings.

To modify Firstbeat™ heart rate belts to suit our study species (Fig 1), we removed the two

short rubberized electrode straps (12 cm x 2.5 cm) extending from the central transmitter unit

Fig 1. FirstbeatTM transmitter and modified electrodes. Image also shows the two attachment donuts, the right hand

one with cover plate in place.

https://doi.org/10.1371/journal.pone.0252013.g001
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and replaced them with 50cm protected cables screwed to the strap contact through a small

solder tab. Each distal end of the two cables was passed through a hole in a 50 ml adhesive car-

tridge piston (TAH industries Inc., Robbinsville, NJ) with EDPM O-ring. Cables passed

through the piston face at a shallow angle and were silver soldered to a silver disc (16 mm

diameter, 0.3 mm thickness, fully annealed sterling silver disks). The disc was then pressed

flush with the open side of the piston. The connections made on the Firstbeat™ module and the

recess in the piston were then back filled with polyurethane composite after priming. The silver

discs and pistons were then treated by immersion in 11% sodium hypochlorite solution to cre-

ate a silver chloride electrode (Fig 1).

We also fashioned PVC donuts (52 mm outer diameter) with a bevelled outer edge (Fig 1)

and a central hole (19 mm diameter) to accept the electrode and plastic cup with its O-ring.

The donut had a lateral channel (4 mm wide, 4 mm deep) extending from the inner hole to the

edge of the bevelling to allow the electrode cable to sit flush with the top surface of the donut.

Two holes were drilled and tapped into the outer flat face of the donut to receive machine

screws for attachment of an aluminium cover plate (Fig 1). Firstbeat™ heart rate monitors

require CR2032 lithium batteries, and we used new (and tested) batteries prior to each deploy-

ment (Maxell CR2032) which were adequate to power the monitors for our maximum deploy-

ment duration (13 days). The battery compartment was sealed using waterproof tape. The total

mass of the heart rate monitor, donuts and cover plates was 0.11 kg. The minimum re-capture

mass for a female grey seal in our study was 100.2 kg, therefore, the attached devices were less

than 0.1% of seals body mass.

Attachment of the heart rate monitors. Seal pelage was cleaned with water and dried

prior to attachment. All attachments were made using the adhesive Loctite 422 (Henkel Ltd.,

Hemel Hemstead, UK) to the upper layer of pelage. For attachment of the transmitter, we

designed a bespoke ballistic nylon pocket that was mounted dorsally between the scapulae

(Fig 2A), with the opening facing posteriorly. The transmitter was placed within the pocket

Fig 2. The mounting of the FirstbeatTM transmitter and modified electrodes on an adult female grey seal. Devices and cables were protected by nylon (blue and

green in Fig 2A). Anterior of the centrally mounted heart rate transmitter is the accelerometer mounting (a). Data were transmitted to a receiving station located within

line-of-sight at distances of up to 200 m from instrumented seals (b).

https://doi.org/10.1371/journal.pone.0252013.g002
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and secured by means of two cable ties (5 mm width) contained within sewn channels running

anterior-posterior in the base of the pocket.

The electrode cables were inserted into ballistic nylon sleeves that extended from the trans-

mitter to within 20 mm of the electrode. We used these nylon sleeves as cable protection, and

they permitted attachment of the cables to the fur. Sleeves were glued at approximately 5 cm

intervals to the fur to ensure firm attachment while allowing for flexion and torsion exerted by

the seal during normal behaviours. The electrodes were then positioned directly posterior of

the fore flippers. A circle of fur c.18 mm was clipped to ca. 1 mm hair length using Lindstrom™
Angle Type Wire Cutter (108 mm overall length, 0.35–1.0 mm cutting capacity). The donuts

were then glued to the surrounding full-length hair (typically ca.10 mm) so that the inner hole

of the donut encompassed the clipped fur, and the cable channel was angled approximately

45o posterior and dorsally. We added electrode gel (Ten20: Weaver and Company, Aurora,

Colorado, USA) to the inner hole, and to the base of the electrode to improve conductance.

The electrodes were then inserted into the inner hole of the donut and plastic spacers (10 x 10

x 3 mm) were inserted behind the electrodes to ensure proximity of electrode to the skin.

Finally, an aluminium cover plate was placed over the donut via two machine screws.

In-field deployments. In total, 52 different individuals were instrumented across the

three field campaigns. Our aim was to redeploy devices on the same individuals in multiple

seasons where possible [37], therefore, across these three seasons we performed 89 separate

deployments. The length of deployment ranged from 6 to 13 days, with a mean deployment of

9 days. For in-field recordings of IBIs, the Firstbeat™ receiver was attached to a tripod with

antennae height approximately 1.8 m above ground level and positioned 50–200 m away from

instrumented seals (Fig 2B). Due to the broken terrain of the Isle of May and patchy distribu-

tion of breeding seals not all seals could be recorded simultaneously by line-of-sight. Daily

recordings typically involved collection of data on 2–6 seals for 2–4 hours, before relocating

the receiver to monitor other individuals. We endeavoured to balance data collection on all

instrumented seals across the time of day (daylight hours only) and the deployment period.

We conducted direct behavioural observations concurrent with logging IBI data [38].

As heart rate is inevitably linked to activity, and computation of resting HRV requires sub-

jects to be stationary “with minimal, or unvarying, motor activity” [3], it was important to iden-

tify IBI data collected from periods of relative inactivity. In 2015 this was based on concurrent

visual behavioural observations. Across the 2016 and 2017 seasons, 29 females were additionally

instrumented with tri-axial accelerometers to enable us to identify periods of inactivity without

the requirement for direct visual observation [38, 39]. Nine of these females were instrumented

in both 2016 and 2017. Accelerometers were mounted on the crown of the head or torso, for-

ward of the heart rate monitor transmitter unit (Fig 2A) and configured to sample at 50 or 25

Hz with a sensitivity range of ± 2 or 4 g depending on the year [39]. The accelerometry signal

from each female was processed and transformed and summarized by a range of feature vari-

ables at a second-by-second level according to Shuert et al. [38–40]. Random forest models

were trained for a simple binomial classifier of ‘Inactive’ or ‘Active’ (the latter category includ-

ing all non-resting behaviours) [38–40]. Once trained, each random forest model (relating to

each year of study) yielded very high classification precision (76–86%) and recall (88–98%) for

the two behavioural states, regardless of accelerometer placement or sampling configuration.

Assessment of the accuracy of IBI data produced by the

Firstbeat™ system

The raw IBI data (in milliseconds) were first corrected for artefacts (Fig 3). We used the default

options in the Firstbeat™ Sports software (v.4.5.0.2) which detects extreme values, and either
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deletes spurious extra beats (extreme short IBIs) or interpolates for potentially missing beats

(extreme long IBIs) [41]. In order assess the accuracy of corrected IBI values generated by the

Firstbeat™ system we compared them with concurrent IBI data derived from in-field ECG

Fig 3. Example 300 s traces of interbeat intervals (ms), corrected for artefacts by Firstbeat™ Sports software (v.4.5.0.2), from the Firstbeat™ heart rate belts deployed

on lactating grey seals. (a) A trace with less than 5% flats (green dots) and stairs (blue dots). (b) A trace with a prolonged period of flats (0 - c. 85 s). (c) A trace with

sequences of stairs (c. 115 s, 165 s and 265 s). All traces also contain additional isolated flats and stairs.

https://doi.org/10.1371/journal.pone.0252013.g003
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recordings. Prior to the recovery of telemetry equipment from the sampled seals during late-

lactation captures, we used an AliveCor Heart Monitor (Model: AC-009) with the associated

AliveECG Vet App (version 2.1.4, Build 17) on an iPod touch (version 8.2 (12D508)) to obtain

at least 60 s of concurrent ECG [42]. Recordings were made with display settings at 50 mm/s

(paper speed) and amplitudes of 20 mm/mV [42]. The AliveCor Heart Monitor electrodes

were placed horizontally onto the flank of the sedated seal, immediately posterior of the left

fore-flipper. If no success was had on the left flank, an ECG recording was then attempted on

the right flank. The Firstbeat™ receiver was also logging IBI data simultaneously from typical

recording distances. All instruments were time-synchronised (to within < 1 s) at the start of

each day to ensure ability to match post hoc concurrent Firstbeat™ and AliveCorr readings.

Only ECG traces that had clearly identifiable R peaks (from which we could extract IBI values

as described below) and that had concurrent Firstbeat™ data with�20% flats and stairs for the

duration of the ECG trace were used (examples of concurrent IBI data derived from the First-

beat™ system and the AliveCor ECG are shown in S2 and S3 Figs in S1 File). With these crite-

ria, we achieved a total of 16 Alive-Cor ECG traces from 12 individuals (2015 n = 10 traces | 8

individuals; 2016 n = 4 traces | 3 individuals; 2017 n = 2 traces | 2 individuals). ECG traces

were saved as pdf files and converted to 300dpi jpg images using pdf2jpg (https://pdf2jpg.net/).

R-R peak intervals (IBI values in ms) were measured from these ECG traces using Image-J v.

1.51p [43]. Measurement precision was checked by comparison of two replicate measurements

of one AliveCor trace, which demonstrated that that measurements of R-R intervals were

highly repeatable (S4 and S5 Figs in S1 File).

As an independent check on the corrected IBI data provided by the Firstbeat™ system, ECG

data were temporally-matched with concurrent Firstbeat™ data. Agreement between these two

independent measures of IBI was measured using Bland Altman analyses [12, 13, 44].

Assessment of the causes of flats, stairs and artefacts within the Firstbeat™
IBI data

Identification of flats, stairs and artefacts (corrected) within the Firstbeat™ IBI data.

During the artefact correction procedure, the Firstbeat™ Sports software also retains a record

of which IBIs have been corrected and were therefore classified as potential artefacts by the sys-

tem. As a further step, we also examined the corrected IBI data for flats and stairs. To ensure

complete capture of flats and stairs, we implemented bespoke R scripts (NB, AB, ST) to iden-

tify flats (two or more consecutive identical IBI values) and stairs (sequences of more than two

identical, but non-zero, differences between successive IBIs; Fig 3, S1 Fig in S1 File). Flats and

stairs were not corrected but were flagged in the datasets as these types of error. We compared

the identification of IBIs as artefacts by the FirstBeatTM software with our additional identifica-

tion of IBIs as flats or stairs.

Modelling the determinants of flats, stairs and artefacts (corrected) in 5min traces.

Processed IBI data were then split into sequential 5 min windows [3] to allow the computation

of the number of flats, stairs, and artefacts corrected by the FirstBeatTM software within each 5

min trace. IBIs within the 2016 and 2017 traces were then time-matched to classified Inactive

or Active behavioural states derived from the accelerometer data. These traces were used to

explore potential determinants of erroneous IBIs in these traces (n = 6609 5 min traces). To do

this, we fitted generalized additive mixed-effects models (GAMMs, [45]) with Gaussian distri-

bution and identity link function (bam, from the ‘mgcv’ package v1.8–24, [46]) in R version

3.5.0 [47]. We constructed separate models for the number of flats, the number of stairs, and

the number of corrected artefacts by FirstBeatTM software. Response variables were log-trans-

formed (flats and stairs) or square-root transformed (corrected artefacts) to meet
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heteroscedasticity assumptions and address overdispersion [48]. For each model we included

the following potential explanatory variables; percentage of IBI’s that were corrected for arte-

facts by the Firstbeat™ software (Artefacts; NB: not included in number of artefacts model),

percentage of IBIs where the seal was classified as ‘active’ (Activity), day of year (Day; number

of days since Jan 1), time of day (Time; proportion of 24 hr), deployment timepoint (tDeploy;

days since attachment), the seal’s estimated mass on the day that the trace was recorded

(Mass), and Temperature (in oC, at the nearest 30 min interval to the onset of the 5 min heart

rate trace) recorded from a portable Nexus Weather station (TFA Nexus, Germany) positioned

at a central point on the island. We included these covariates because when examining HRV

data it is important to account for individual size, physical activity, temperature effects and

potential temporal patterns, all of which can influence baseline heart rates and HRV [3]. We

also included tDeploy to account for potential changes in skin-electrode conductance over

time (due to dissipation of electrode gel, deterioration of electrodes and/or ingress water or

detritus between the skin and electrodes). Each of these variables was included as a smoothed

term in our initial models as we expected nonlinear relationships between most of our inde-

pendent variables and response variables. For example, Day represents the changing patterns

of colonisation on the island, with a peak in seal numbers and density mid-season. Individual

seal identity (ID, nindiv = 29), a unique identifier for each heart rate monitor (TagID, ntag =

17), and year of study (nyear = 2) were also included as smoothed random effects in the models

[49] to account for individuals present in multiple years, tags re-used across years and interan-

nual variation. We also included a temporal autocorrelation term, as traces recorded consecu-

tively are more likely to exhibit similar error patterns [48, 50]. If the full model with

autocorrelation indicated that the estimated degrees of freedom for any covariate was 1.00, the

smoother functions for those covariates were removed and the covariates were retained as lin-

ear terms [51]. For model inference we examined all plausible alternate models with reduced

combinations of explanatory variables using the R function ‘dredge’ from the Package

‘MuMIn’ [52]. We used Akaike’s information criterion (AIC) for model selection, with our

‘best’ models having the lowest AIC (ΔAIC = 0). We also retained all models within a

ΔAICc� 6 of the ‘best’ model within a preliminary confidence set. This confidence set was

reduced further, retaining only models with a ΔAICc value lower than more complex models

within which they were nested. This approach avoids retaining overly complex models but

also acknowledges that the model with the lowest AICc score is not necessarily the most parsi-

monious model [53, 54]. For each response variable we also provide the output from the null

model for comparison (models with no fixed effects and only the random effects). Greater con-

sideration in our discussion was placed on highly significant terms (p< 0.001) due to the ten-

dency of GAMMs to overfit, and p values > 0.001 should be treated as ambiguous as

recommended in [45] and [55].

Assessment of the effect of flats and stairs on estimates of resting HRV

To test the effect of flats and stairs on potential estimates of resting HRV we constructed simu-

lations with varying percentages of flats or stairs in R version 3.5.0 [47]. There are multiple

potential measures of sympathovagal balance that can be derived from IBI data [3] though the

root mean square of successive differences (rMSSD; eqn 1) is a preferred metric for use under

free-running conditions because it is impacted less by respiratory influences [56, 57] and is

pragmatic in that it an easy to interpret measure of HRV [3, 6].

rMSSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

PN� 1

j¼1
DIBI2

j

r

ð1Þ
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Where; N = the length of the IBI series (1:j), and ΔIBI = the difference between adjacent IBI

values (adapted from [24]).

We used the R package ‘RHRV’ [24] to compute rMSSD for each of the 5 min traces. We

broadened the range of physiologically acceptable values for heart rate (bpm) relative to the

default RHRV settings, spanning a minimum acceptable heart rate of 20bpm to a maximum of

200 bpm. Previously documented heart rates in free-living grey seals range from 4 to 120 bpm

[25, 26], although extreme bradycardia of 4 bpm has only been observed during prolonged

dives and was assumed unlikely to occur on land (the lowest mean heart rate among our 5 min

traces was 41 bpm, with a maximum of 124 bpm).

We then selected three of the 5 min traces that had zero corrected artefacts, flats or stairs as

examples of ‘perfect’ traces. We chose examples with relatively high rMSSD (107.9 ms), inter-

mediate rMSSD (92.5 ms) and a relatively low rMSSD (69.4 ms). The effect of the proportion

of flats was simulated by taking each trace in turn, randomly selecting an IBI measurement

within the trace, and then changing the next IBI in the sequence to this same value to generate

two consecutive identical IBI values. This process was repeated up to a maximum number of

iterations equivalent to half the length of trace, so that a variety of modified traces were gener-

ated containing from one flat to traces where all IBI values were equivalent. This whole process

was then repeated for 1000 runs, and rMSSD values computed for each simulated trace. A sim-

ilar process was used to assess the effect of stairs, except that introduced errors involved select-

ing two known IBI values within the trace at random, and replacing all intervening IBIs with

values that increased (or decreased) monotonically from the value of the first selected IBI to

the value of the second selected IBI. Again, over 1000 iterations this created a range of simu-

lated traces for which rMSSD values were computed, each with varying proportions of stairs

from zero to 100%.

Results

Assessment of the accuracy of IBI data produced by the Firstbeat™ system

The corrected FirstbeatTM IBI data showed a high degree of agreement with the AliveCor ECG

measurements. With all data combined, the mean difference between Firstbeat™ IBI data and

AliveCor ECG measurements was 0.87±0.16 ms (n = 16 traces | 12 individuals | 2487 IBIs).

Individual traces exhibited a similar degree of agreement as determined through Bland-Alt-

man plots and measurements of bias and limits of agreement (Fig 4). Additional plots and

summary statistics for these analyses on individual traces are presented in the S6 and S7 Figs

and S1 Table in S1 File.

Comparison of FirstBeatTM artefact detection with manual flats and stairs

detection

Our comparison of the classification of IBIs as artefacts by the Firstbeat™ Sports software

(v.4.5.0.2) with our own classification of IBIs as flats or stairs illustrates that the vast majority

of flats and stairs occurred in IBIs that had been corrected by the Firstbeat™ Sports software

(Table 1). 40.7% of the IBIs identified as artefacts and corrected by the Firstbeat™ Sports soft-

ware were subsequently identified as flats by our algorithm (Table 1A). Only 2.2% of IBIs were

identified as flats by us and not identified as artefacts by the Firstbeat™ Sports software. The

vast majority (93.9%) of flats occurred in IBIs that had been corrected as artefacts by the First-

beat™ Sports software (Table 1A). Stairs were less frequent than flats in the traces (99,242 cf.

783,625 IBIs), and only 5.5% of the IBIs identified as artefacts and corrected by the Firstbeat™
Sports software were identified as stairs by our algorithm (Table 1B). Only 0.01% of IBIs were
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Fig 4. Bland-Altman plot showing limits of agreements between Firstbeat™ IBI data and AliveCor ECG

measurements during recapture events (n = 16 traces | 12 individuals). Each dot represents a single IBI, and

different colours indicate individual seals. Horizontal dashed lines represent mean difference (0.87 ms) and lower

(-14.89 ms) and upper limits of agreement (16.61 ms). The 95% confidence intervals for the bias (mean difference,

centre line) are 0.61 to 1.12 ms. The 95% confidence intervals for the lower limit of agreement (lower broken line) are

-15.33 to -14.43 ms. The 95% confidence intervals for the upper limit of agreement (upper broken line) are 16.16 to

17.06 ms.

https://doi.org/10.1371/journal.pone.0252013.g004

Table 1. Matrices of all recorded IBIs (n = 3997680) showing whether they were classified as artefacts (and subse-

quently corrected) or not by the FirstBeatTM software and whether they were categorised as flats (a), or as stairs

by our bespoke processing (b). Values represent the agreement between the two algorithms. Row and column totals

in italics.

(a) Artefact Non-Artefact

Flat 735429 48196 783625
Non-Flat 1071522 2142533 3214055

1806951 2190729
(b) Artefact Non-Artefact

Stair 99015 227 99242
Non-Stair 1707890 2190548 3898438

1806905 2190775

https://doi.org/10.1371/journal.pone.0252013.t001
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identified as stairs by us and not identified as artefacts by the Firstbeat™ Sports software.

Almost all (99.8%) stairs occurred in IBIs that had been corrected as artefacts by the Firstbeat™
Sports software (Table 1B).

Assessment of the causes of flats, stairs and artefacts within the Firstbeat™
IBI data

Determinants of flats. The best model accounting for the number of flats in a trace

included the linear terms Time and Temperature and the smooth terms; Artefacts, Activity,

tDeploy and Day (Table 2). The number of flats increased with time as a proportion of 24 hr.

The total number of artefacts also had a noticeable effect on the number of flats in a trace (Fig

5A). As the percentage of the trace that is an artefact increases beyond 50%, the number of

flats increased steeply. The number of flats also increased with activity up to approximately

20% of the trace being classified as active; further increases in activity had no additional effect

on the number of flats (Fig 5B). There also was a general pattern of more flats in traces

recorded later in a deployment, and later in the season compared to earlier in the season (Fig

5C and 5D). The random smooth terms for individual ID and heart rate monitor ID were

retained, though the effect of the monitor ID was much smaller than individual ID (Table 2).

Year was excluded from the model during model selection procedures.

Determinants of stairs. The best model accounting for the number of stairs (log trans-

formed) in a trace (Table 3) included the smoothed terms Artefacts, Activity, and Tempera-

ture. Stairs increased with increasing artefacts until approximately 80% of the trace comprised

artefacts, after which the number of stairs declined (Fig 6A). Activity exhibited a similar pat-

tern to that seen in the analysis of flats. The number of stairs increased up to approximately

30% activity and then plateaued (Fig 6B). The number of stairs in a trace was greatest at inter-

mediate temperatures (Fig 6C), though with wide confidence intervals at the extremes of the

observed temperature range. The only random smooth term retained was individual ID

(Table 3); heart rate monitor ID and Year were excluded from the model during model selec-

tion procedures.

Determinants of corrected artefacts. The best model accounting for the number of First-

beat™ corrected artefacts (square root transformed) in a trace included the smoothed terms

Table 2. Estimated degrees of freedom (edf) for smoothed terms, estimate and standard error for linear terms from the ‘best’ model predicting number of flats (log

transformed) in traces.

Explanatory variable

A. Linear terms Estimate Std. Error t-value P value

Time 0.72 0.13 5.39 < 0.0001

Temperature 0.013 0.0065 1.93 0.054

B. Smooth terms edf F-value p-value

Day 15.38 5.40 < 0.0001

tDeploy 4.53 8.81 < 0.0001

Activity 5.91 12.69 < 0.0001

Artefacts 6.43 304.77 < 0.0001

Random smooth effects

ID 23.88 58.48 < 0.0001

Heart rate monitor ID 6.69 39.34 0.0095

Rho = 0.18. Comparison with null model; ΔAIC = 2130.0. Deviance explained = 39.6%. Model details: n(traces) = 6609, n(individuals) = 29, n(heart rate monitor ID) =

17. Highly significant terms (p < 0.001) are in bold [55]. See S2 Table in S1 File for details of the model confidence set.

Basis dimension (k) = 9 for all smooth terms except for Day (k = 24)

https://doi.org/10.1371/journal.pone.0252013.t002
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Activity, tDeploy, Day, Time, Mass and Temperature (Table 4). The number of artefacts in

traces generally increased with activity (Fig 7A), though again the modelled relationship

tended to plateau around 70–80% activity. In relation to tDeploy, the number artefacts showed

an initial rise between days 3 and 5, followed by a general decline over the remainder of the

deployment period (Fig 7B). Day showed an irregular relationship with number of corrected

Fig 5. Estimated smoothing curves for GAMM describing the effect that (a) the percentage of the trace comprised of

artefacts, (b) proportion of activity, (c) deployment time and (d) day of year have on the number of flats in 5 min IBI

traces for female grey seals. The smoothing curve is indicated by the solid black line with approximate 95% confidence

intervals represented by grey shading. On the y-axis, 0 indicates no effect of the covariate, while positive values indicate

positive correlation and negative values indicate negative correlation. The effect, relative to the mean number of stairs

(dashed line), for a particular value of a covariate can be obtained as the natural antilogarithm of the y-axis value for

the smoothing curve. The sampling spread of HR traces across each covariate scale is indicated by above the x-axis.

https://doi.org/10.1371/journal.pone.0252013.g005

Table 3. Estimated degrees of freedom (edf) for smoothed terms, estimate and standard error for linear terms

from the ‘best’ model predicting number of stairs (log transformed) in traces.

Explanatory variable

Smooth terms edf F-value p-value

Activity 3.08 5.74 < 0.0001

Artefacts 13.19 225.07 < 0.0001

Temperature 1.55 0.78 0.52

Random smooth effects

ID 17.11 2.14 < 0.0001

Rho = 0.05. Comparison with null model; ΔAIC = 3533.4. Deviance explained = 56.1%. Model details: n(traces) =

6609, n(individuals) = 29. Highly significant terms (p < 0.001) are in bold [55]. See S2 Table in S1 File for details of

the model confidence set.

Basis dimension (k) = 9 for all smooth terms except for Artefacts (k = 24).

https://doi.org/10.1371/journal.pone.0252013.t003
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artefacts (Fig 7C), with a tendency towards more artefacts in traces during the mid-season

period. Time had limited effect on number artefacts other than towards the end of the daylight

period where there was a relatively small increase in artefacts in traces (Fig 7D). The random

Fig 6. Estimated smoothing curves for GAMM describing the effect that (a) the percentage of artefacts, (b) proportion

of activity and (c) temperature have on the number of stairs in 5 min IBI traces for female grey seals. The smoothing

curve is indicated by the solid black line with approximate 95% confidence intervals represented by grey shading. On

the y-axis, 0 indicates no effect of the covariate, while positive values indicate positive correlation and negative values

indicate negative correlation. The effect, relative to the mean number of stairs (dashed line), for a particular value of a

covariate can be obtained as the natural antilogarithm of the y-axis value for the smoothing curve. The sampling spread

of HR traces across each covariate scale is indicated by above the x-axis.

https://doi.org/10.1371/journal.pone.0252013.g006

Table 4. Estimated degrees of freedom (edf) for smoothed terms, estimate and standard error for linear terms

from the ‘best’ model predicting number of corrected Artefacts (square root transformed) in traces.

Explanatory variable

Smooth terms edf F-value p-value

Day 12.7 4.04 <0.0001

Time 2.90 4.89 0.0013

tDeploy 5.55 4.03 0.00033

Activity 3.28 31.14 <0.0001

Mass 2.94 1.30 0.31

Temperature 2.96 1.18 0.25

Random smooth effects

ID 22.45 233.86 <0.0001

Heart rate monitor ID 9.55 339.20 0.00016

Rho = 0.42. Comparison with null model; ΔAIC = 225.4. Deviance explained = 41.3%. Model details: n(traces) =

6609, n(individuals) = 29, n(heart rate monitor ID) = 17. Highly significant terms (p < 0.001) are in bold [55]. See S2

Table in S1 File for details of the model confidence set.

Basis dimension (k) = 9 for all smooth terms except for Day (k = 24)

https://doi.org/10.1371/journal.pone.0252013.t004
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smooth terms for individual ID and heart rate monitor ID were retained (Table 4). Year was

excluded from the model during model selection procedures.

Assessment of the effect of flats and stairs on estimates of resting HRV

Simulations of increasing proportions of flats or stairs in a trace showed that even at small pro-

portions (� 5%) flats and stairs tend to lead to a decline in rMSSD (Fig 8). Within this range,

the effect was essentially linear; 5% flats in the trace resulted in a reduction of rMSSD by 2 ms

for the high trace, and 1 ms for the moderate and low traces (Fig 8). The presence of stairs

tended to cause a more rapid decline in rMSSD; with 5% stairs reducing the rMSSD estimate

by 4 ms for the high trace, and 2–3 ms for the moderate and low traces (Fig 8).

Discussion

Here, we have described and assessed a robust, externally mounted heart rate monitor for use

in wild mammals, that delivers millisecond precision measures for IBI’s, allowing computation

of key physiological parameters, in particular, measures of resting HRV when coupled with

information on individual activity [38, 39, 58]. Our system allows for collection of IBI data on

many individuals concurrently over prolonged time-periods. Even with quite stringent filter-

ing procedures to discard traces with excessive artefacts and unwanted levels of animal activity,

we were able to retain a useful sample size of individuals, and large number of traces per

Fig 7. Estimated smoothing curves for GAMM describing the effect that (a) proportion of activity, (b) deployment

time, (c) day of year and (d) time of day have on the number of artefacts identified by the FirstbeatTM software in 5 min

IBI traces for female grey seals. The smoothing curve is indicated by the solid black line with approximate 95%

confidence intervals represented by grey shading. On the Y axis, 0 indicates no effect of the covariate, while positive

values indicate positive correlation and negative values indicate negative correlation. The effect, relative to the mean

number of stairs (dashed line), for a particular value of a covariate can be obtained as the natural antilogarithm of the

y-axis value for the smoothing curve. The sampling spread of HR traces across each covariate scale is indicated by

above the x-axis.

https://doi.org/10.1371/journal.pone.0252013.g007
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individual. We assessed the accuracy of the IBI data transmitted by the modified Firstbeat™
heart rate belts on a subset of individuals during recapture events. These tests showed very

close agreement between the corrected Firstbeat™ IBI measurements and those derived inde-

pendently from in-field ECG traces, with< 1 ms difference in measurements of IBIs ranging

from approximately 500 to 900 ms duration, equating to approximately 0.002% difference at

most.

One of the key objectives of this effort was to develop a system capable of remotely record-

ing IBI data with millisecond precision suitable for computing resting HRV (and heart rate)

metrics, simultaneously from multiple freely moving wild animals that are not restrained or

constrained by laboratory settings. However, this comes with a trade-off, as animal activity

increased the number of artefacts identified by the Firstbeat™ software, and the number of flats

and stairs. Physical activity is known to cause artefacts due to noise from muscle action poten-

tials [3, 5]. In our study, higher levels of activity however had little additional effect. This may

be a product of the coarse classification of activity we have used (active vs. inactive), as activity

includes a wide range of behaviours from minor movements (such as vigilance behaviours) to

intense aggressive interactions [27, 31, 38]. Similarly, day of year and (to a lesser extent) time

of day also contributed to explaining variation in the occurrence of artefacts, with artefacts

more prevalent during the mid-season period and at the end of the daylight period. These tem-

poral patterns are likely mediated though changing seal behaviour (as opposed to ‘activity’ per

se) across the breeding season and diurnally [3]. Artefacts may be more commonly associated

with specific types of activity than others (e.g. locomotion will likely generate more artefacts

than head movements associated with vigilance behaviours), however, our binary classification

of activity would not be able to resolve this.

The presence of flats and stairs in our traces were highly associated with the artefact correc-

tion procedures in the FirstbeatTM Sports software, especially where a large proportion of a

trace comprised corrected IBIs. Essentially, the Firstbeat™ software detects extreme IBI values,

and either deletes spurious extra beats, or interpolates for potentially missing beats [41]. When

there are multiple missing beats (e.g. during a period of poor or obscured transmission), the

software automatically interpolates the signal, resulting in a sequence of identical IBI values

(flats) or monotonically changing values (stairs). The relationship between the percentage of a

Fig 8. Output of n = 1000 simulations for increasing proportion of flats (a) and stairs (b) in IBI traces with high

(dotted curve), moderate (dashed curve) and low (solid curve) resting rMSSD estimates. Proportion of flats and stairs

shown to a maximum of 50% of the trace, rMSSD estimates diminish to zero at 100% flats or stairs in all traces.

Vertical grey dashed line indicates the 5% flats or stairs for reference. The curves do have 95% confidence intervals

plotted, but these are narrower than the width of the plotting line, so are not visible.

https://doi.org/10.1371/journal.pone.0252013.g008
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trace comprised of corrected artefacts and the occurrence of flats was not linear. In fact, the

occurrence of flats diminishes in traces with approximately 10–40% of corrected artefacts.

Lower percentages of artefacts are more likely to be single missing beats spread across the

trace, in which case interpolation will not necessarily result in a detectable flat or stair (using

our criteria for these types of error), and the FirstbeatTM Sports software has more informative

adjacent IBIs to enable reasonable correction of extreme values. At higher percentages of arte-

facts, it is inevitable that a greater proportion of missing beats will be adjacent, resulting in

interpolation generating flats (or stairs). For stairs, our results showed that at extremely high

levels of corrected artefacts (over ca. 80%) the number of stairs declines. Stairs occur where the

software interpolates missing beats lying between two beats with differing values. At extremely

high levels of corrected artefacts, there will be few ‘valid’ data points, and interpolation is more

likely to be in the form of flats than stairs (noticeably the occurrence of flats continues increas-

ing up to 100% of corrected artefacts). Additional flats (or stairs) will be generated in traces via

the artefact correction procedure when line-of-sight signal transmission is interrupted, even

momentarily. In our system, where seal morphology necessitated placement of the transmitter

dorsally, this included occasions where a seal rolled onto their back. Furthermore, due to the

generally supine position of seals, even relatively small geographical features (e.g. rocks, walls)

would obscure transmission once seals moved out of line-of-sight of the receiver.

The presence of flats and stairs did lead to a reduction in IBI variability and therefore rMSSD

values in our simulations. For traces with up to 5% of flats or stairs the impact was minimal and

linear; however, the effect was greater for individuals with higher resting HRV, which conse-

quently has the effect of making inter-individual comparisons more conservative. These find-

ings are in line with those identified in previous studies [3, 8] and can be used to inform criteria

for selecting traces deemed reasonable for computing resting HRV estimates for individual

seals. Retaining traces with up to 5% flats or stairs would have minimal impact on estimates of

rMSSD but allow researchers to maximise the number of useable traces. In addition, since the

effect of the percentage of flats or stairs on HRV in our simulations was relatively linear, at least

in this range of 0–5% flats or stairs, one could readily implement a correction for rMSSD values

derived from our 5 min traces based on the remaining percentage of flats (0–5%) in a trace.

Finally, in all models, individual identity had a highly significant effect, suggesting individ-

ual differences in the occurrence of flats, stairs and artefacts. There are potentially many influ-

ences at play here, such as individual differences in location and micro-habitat, especially with

respect to access to water [27, 28, 59], behaviour patterns [60, 61], or even the possibility of

cognitive control of heart rate [62] that may influence the occurrence of flats and stairs. Heart

rate monitor tag ID was also retained in the best models for flats and artefacts, but we were

unfortunately unable to conduct a crossed experimental design to thoroughly disentangle the

effects of individual ID and tag ID.

Telemetry system advantages and limitations

The modified Firstbeat™ system we deployed here has several notable advantages for exploring

physiological questions in situ on wild animals. Overall, the Firstbeat™ system proved to be a

reliable and minimally invasive method for gathering large amounts of IBI data on multiple

individuals simultaneously, while the subjects are engaged in natural behaviour over multiple

days in natural conditions. The devices proved robust to the conditions of the colony, with-

standing being rolled on rocks, dragged through mud and water, and surviving aggressive

encounters between individuals.

Less exposed implantable heart rate data loggers have been used in other studies that can

either record data internally [18] or communicate with an externally mounted transmitter [6].
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However, such systems require the re-acquisition of the logger in order to retrieve data, neces-

sitating recapture of the individuals involved and multiple surgical procedures. An advantage

of the FirstbeatTM system is that it provides greater certainty of acquiring some data on all

study individuals, even if they ultimately prove impossible to recapture, because the system

continually transmits IBI data to a remote receiver. In our study, we did recapture animals, but

only at the end of the planned deployments (end of lactation) to retrieve the transmitters for

future use. Furthermore, implantable heart rate data loggers suffer the drawback of typically

summarising heart rate over discrete time periods (e.g. every 2–30 s) or only estimating instan-

taneous heart rate to the nearest 10–50 ms, rendering them unsuitable for conducting HRV

analyses [8].

Another distinct advantage of the Firstbeat™ system, compared to other split transmitter-

receiver systems, such as the Polar1 RS800CX system (which requires each receiver to be

paired to a single transmitter [8]), is that the Firstbeat™ Receiver can monitor multiple individ-

uals simultaneously. The Firstbeat™ system can also log data from transmitters located at dis-

tances of up to 200 m from the receiver, compared to the very limited range (c. 20–50 m) of

the RS800CX system [8]. This decreases the potential for disturbance associated with multiple

approaches and the placement of receivers in close proximity to study animals. Whilst 200 m

is a substantial recording range, the system does require a study species that has a restricted

range, at least for a period of time, such as seals confined to a breeding colony, or a set-up that

enables mobility of receiving stations (e.g. following a migrating herd of ungulates). For exam-

ple, in our study, we were limited to a single Firstbeat™ Receiver 30, and we could not achieve

line of sight on all instrumented seals simultaneously due to the to the rugged terrain and pat-

chy aggregation of instrumented seals. However, additional infrastructure (e.g. more receivers

coupled to permanent base-stations) would extend the capability of this system and permit

continuous data collection (overnight) on a larger number of individuals. Firstbeat™ also pro-

duce a Team-receiver capable of recording up to 80 transmitters simultaneously. In more open

terrain, such a set-up could achieve very high sample sizes. Further enhancements of our sys-

tem could be made by improving battery life of the transmitter unit for more prolonged

deployment. However, this would also require an improvement in electrode design. Our

results show that the performance of our electrodes declined over time (although adequate for

our 13 d deployments). The use of sub-dermal electrodes (where ethical considerations per-

mit) would assist in reducing artefacts due to poor skin-electrode conductance and enable pro-

longed deployment.

While our focus here has been on gathering millisecond precision IBI measurements to

provide resting HRV measures [3, 37, 38], the FirstbeatTM system is equally suitable for acquir-

ing heart rate measures from free ranging animals. Basic heart rate metrics are widely used in

studies of wild animal physiology, behaviour and energetics (e.g. [14, 15, 61, 63]) and so the

devices we describe here have potentially wide applicability across these research efforts. With

the potential for continuous recording of IBI data from multiple individuals simultaneously,

the system we describe here could provide extensive data to examine circadian and seasonal

cycles in heart rate, or changes in heart rate with activity and context (e.g. social context) or in

responses to stressors, including anthropogenic stressors, in free-ranging species [14, 15, 61–

64] while providing sufficient data to allow stringent error filtering for deriving estimates of

heart rate and resting HRV. Further, the results presented here provide researchers with a

pragmatic approach for filtering acquired data that enable extraction of a robust estimates of

resting HRV (and heart rate) from wild animals in natural settings, while balancing the

requirement for relatively error free IBI data.
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